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HEMIVARIATIONAL INEQUALITIES ON GRAPHS

NOUHAYLA AIT OUSSAID, KHALID AKHLIL, SULTANA BEN AADI,
MOURAD EL OUALI, AND ANAND SRIVASTAV

Abstract. In this paper, a new class of hemivariational inequalities is in-
troduced. It concerns Laplace operator on locally finite graphs together with
multivalued nonmonotone nonlinearities expressed in terms of Clarke’s subdif-
ferential. First of all, we state and prove some results on the subdifferentiability
of nonconvex functionals defined on graphs. Thereafter, an elliptic hemivari-
ational inequality on locally finite graphs is considered and the existence and
uniqueness of its weak solutions are proved by means of the well-known sur-
jectivity result for pseudomonotone mappings. In the end of this paper, we
tackle the problem of hemivariational inequalities of parabolic type on locally
finite graphs and we prove the existence of its weak solutions.

1. Introduction

Discrete calculus incorporates the various research works that focus on develop-
ing a proper theory for differential operators on discrete spaces with a net separa-
tion from the classical continuous calculus. From this perspective, discrete calculus
should be differentiated from discretized calculus which concerns the discretization
of the continuous framework for numerical and algorithmic purposes. Difference
calculus, as a particular case of discrete calculus, is performed generally on the
d−dimensional lattice graph (or grid) Z

d for some d ≥ 1 and plays the role of
an intermediate discipline. Discrete calculus aims then to establish a distinct and
coherent core of calculus that operates purely in the discrete space without any
reference to an underlying continuous counterpart. The philosophy behind this, is
the fact that there is a solid connection between dynamics and the mathematical
description of the space where they occur[45, 9].

The spaces of predilection for the discrete calculus are graphs and networks, from
which cell complexes arise as general space structures [4]. The first application of
graph theory to the modelling of physical systems came from Kirchhoff, who both
developed the basic laws of circuit theory and also made fundamental contributions
to graph theory[24]. Among applications of modern graph theory one can mention
manifold learning, filtering (denoising), content extraction, ranking, clustering, and
network characterization. The main technique here is to use the data to define
weights on the network and then methods are used to formulate content extraction
problems as convex energy minimization problems [13, 41]. Nonconvex energy
models appears also in data filtering on graphs with explicit discontinuities (rapid
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data change) [34] and in nonsmooth nonconvex Regularizer in variational models
for image restoration and segmentation [12, 20, 36]

After a decade from the development of the theory of nonlinear circuit networks
in the sixties, operator theory on infinite graphs and the underlying Sobolev spaces
began to be systematically developed as a theoretical core for studying elliptic and
parabolic problems on graphs and networks. An embryonic study was initiated by
M. Yamasaki and co-authors in [35, 46, 47] and more elaborated work is exposed by
M.I. Ostrovskii in [37]. For some important use of the discrete version of Sobolev
spaces we refer to [9] and references therein. The most modern expository on
discrete operators and Sobolev spaces is the book of D. Mugnolo [32] where the
central topic is the interplay of differential, difference operators and subdifferentials
of convex functionals with the functional analytic theory of evolution equations
together with combinatorial methods.

In many physical and social phenomena, the Laplacian operator arises naturally
in the mathematical description of diffusion through discrete and continuous media.
Discrete diffusion theory [23] based on discrete Fick’s law [15], can be certainly
considered as an approximation of its continuous counterpart, nonetheless problems
still frequently arise where it would be advantageous to have access to a diffusion
theory valid specifically for discrete media [23]. The starting point for this theory
is the formulation of Laplace operator on graphs and its associated discrete energy
functional. Nakamura and Yamasaki introduced (for γ ≡ 1 and κ ≡ 0) in [35] on
an infinite graph G with node set V the convex functional

E
p
γ,κ : RV ∋ φ 7→

1

p

∑

v,w∈V
w∼v

γ(v,w)|φ(v) − φ(w)|p +
1

p

∑

v∈V

κ(v)|φ(v)|p ∈ [0,∞]

The associated operator (L G
γ,κ := ∂E p

γ,κ) is nothing but the discrete p−Laplace
operator. Let us note, parenthetically, the remark in [33], that the development
of the theory of nonlinear electric circuits and the theory of monotone operators
and subdifferentials of convex functionals was simultaneous by Minty and Rock-
afellar among others [30]. Different aspects of the discrete p−laplacian are studied
in the literature [10, 22, 33] and found applications in nonlinear circuit theory,
spectral clustering and image processing, sphere packing problem and with the
tug-of-war-theory[7, 8, 13, 14, 15, 43, 44] or emerging phenomena of a population
of dynamically interacting units [14, 44]. A systematic study of the Laplacian op-
erators on graphs is achieved with means of discrete Dirichlet forms by D. Lenz
and co-authors [22, 18] and references therein. For the Laplacian on finite weighted
graphs with a nonlinear terms we refer to [17] and references therein.

In the development of functional analysis on graphs, the finite difference operator
plays a fundamental role. It started with an intuition that goes back to G. Boole
[3] revealing that the operator

ITφ(v,w) := φ(v) − φ(w), φ ∈ R
V

can be looked as a discretized version of the first derivative of the function φ defined
in all points of the underlying graph G. In the definition of Sobolev spaces on graphs,
the operator ITφ is an equivalent of the gradient. The parallel between discrete
functional calculus and the classical continuous settings can be made by taking into
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account the following rules: Scalar functions replaces vectors of the node set, vector
fields replace vectors of the edge set and gradient of scalar functions at some point
replace evaluation of the difference operator at an edge.

The goal of this paper is to formulate a new class of variational-type inequalities
consisting of nonmonotone multivalued perturbation of the discrete Laplacian on
a locally finite graph. The pseudomonotone term is brought by a nonconvex func-
tional defined by an integral. Let j : R → R be a locally Lipschitz function whose
Clarke’s subdifferential satisfies a growth condition. The following sum functional

J(φ) =
∑

v∈V

µ(v)j(φ(v))

can be looked as a discretized version of the well-studied integral functionals of the
form

J(φ) =

∫

O

j(φ(x)) dµ(x)

The primary question in such situation is the relation between the subdifferential of
j and J. In the integral functional case, this is what we commonly call Aubin-Clarke
theorem. In this paper, we prove its discrete couterpart, that is

∂J(φ) ⊂
∑

v∈V

µ(v)∂j(φ(v))

Having this discrete version of Aubin-Clarke theorem at ones disposal one may
formulate elliptic problem as follows

〈L G
γ,κφ, ψ − φ〉+

∑

v∈V

µ(v)j◦(φ(v);ψ(v) − φ(v)) ≥ 〈f, ψ − φ〉 (1.1)

where j◦ is the generalized Clarke directional derivative of j and its parabolic coun-
terpart

〈φ′ + L
G
γ,κφ, ψ − φ〉+

∑

v∈V

µ(v)j◦(t, φ(v);ψ(v) − φ(v)) ≥ 〈f, ψ − φ〉 (1.2)

Such problems will be called discrete hemivariational inequalities or hemivariational
inequalities on graphs.

The general theory of hemivariational theory is a natural generalization of the
classical variational theory where convex energy functionals are involved. Mathe-
matical formulation of many engineering problems reveals cases that lack of mono-
tonicity and corresponds to nonconvex superpotentials which cannot be formulated
by the classical variational tools. By applying the mathematical notion of general-
ized gradient of Clarke [6], Panagiotopoulos [38] introduced for the first time the so-
called hemivariational inequalities. Since then, such formulation found applications
in many fields, i.e. Navier-Stokes equations [25, 26], boundary value problems[1, 27],
frictional contact [29], history-dependent problems [42], nonlocal problems [49] to
name a few. Different methods are applied for the solvability of hemivariational
inequalities, we can mention Galerkin approximation method, critical point theory,
surjectivity theorems, extremal solutions method, Rothe approximation method ,
equilibrium problem method, penalty method..etc. The main assumption on the
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locally Lipschitz function include Rauch condition, growth condition or unilateral
growth condition.

The remainder of the paper is structured as follows. In Section 2 we recall
the functional setting on graphs and some concepts from nonsmooth analysis. In
Section 3 we extend to the framework of locally finite graphs the Aubin-Clarke
Theorem concerning the subdifferentiability of sum functionals. This may serve
as a building block for developing variational methods for elliptic and parabolic
problems involving the discrete Laplace operator and nonsmooth corresponding
energy functional. In Section 3, we prove the existence and uniqueness of the
elliptic hemivariational problem on locally finite graphs. The main tool is the well-
know surjectivity result for pseudomonotone mappings. Section 4 is devoted to
the discrete parabolic hemivariational inequality. The existence of a solution is
reached by the use of a surjectivity result for the sum of maximal monotone and
pseudomonotone mappings. In the last section, we provide some extensions to the
problems discussed in previous sections. It concerns Galerkin scheme for discrete
hemivariational inequalities, discrete variational-hemivariational inequalities and
discrete quasi-hemivariational inequalities.

2. Preliminaries

2.1. Sobolev spaces on graphs. For the concepts on graphs used in this paper
and the underlying functional analysis which is the theoretical core we deploy in
our formulations, we refer to the complete and self-contained book[32].

Let G = (V,E) be a direct graph, where V is the set of nodes, which is finite
or countable set and E the set of edges, which is a subset of V × V. A weighted
graph is a quadruple G = (E,V, ρ, µ) where (V,E) is a direct graph, µ : V → (0,∞)
is some given function and ρ : E → (0,∞) is some other given function such that
ρ(e) = ρ(ē) whenever e, ē ∈ E (ē = (w, v) when e = (v,w)). For e = (v,w), we note
e− := v the initial endpoint of e and e+ := w the terminal endpoint of e and we say
that they are adjacent (shortly v ∼ w).

Define

η+ve =

{
1 if v is initial endpoint of e

0 otherwise
, η−ve =

{
1 if v is terminal endpoint of e

0 otherwise

Definition 2.1. A weighted graph G := (V,E, ρ, µ) is called outward locally finite
if its outdegree function satisfies

deg+(v) :=
∑

e∈E

η+veρ(e) ≤ M+
v for all v ∈ V and some M+

v > 0.

It is called inward locally finite if its indegree function satisfies

deg
−(v) :=

∑

e∈E

η−veρ(e) ≤ M−
v for all v ∈ V and some M−

v > 0.

It is locally finite if it is both inward and outward locally finite, i.e., if its degree
function satisfies

deg(v) := deg+(v) + deg−(v) ≤ Mv for all v ∈ V and some Mv.
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Example 2.2. If G is unweighted, then it is locally finite if and only if each node
has only finitely incident edges.

Throughout this paper we suppose that G := (V,E, ρ, µ) is a locally finite graph
such that ρ(e) > 0 for all e ∈ E, µ(v) > 0 for all v ∈ V and µ(V) < ∞. Let
p ∈ [1,+∞), we denote by ℓp(E, ρ) the space of all functions ϕ : E → R such that

‖ϕ‖ℓp(E,ρ) :=

(
∑

e∈E

|ϕ(e)|pρ(e)

)1/p

<∞

or else

‖ϕ‖ℓ∞(E,ρ) := sup
e∈E

|ϕ(e)|ρ(e) <∞

For p = 2, ℓ2(E, ρ) is a Hilbert space endowed with the inner product

〈ϕ1, ϕ2〉ρ =
∑

e∈E

ρ(e)ϕ1(e)ϕ2(e)

Similarly, we denote by ℓp(V, µ) the space of all functions φ : V → R such that

‖φ‖ℓp(V,µ) :=

(
∑

v∈V

|φ(v)|pµ(v)

)1/p

<∞

or else

‖φ‖ℓ∞(V,µ) := sup
v∈V

|φ(v)|µ(v) <∞

For p = 2, ℓ2(V, µ) is a Hilbert space endowed with the inner product

〈φ1, φ2〉µ =
∑

v∈V

µ(v)φ1(v)φ2(v)

We simply write ℓp(E) if ρ ≡ 1 and ℓp(V) if µ ≡ 1. Define

(ITφ)(e) = φ(e+)− φ(e−), φ ∈ R
V, e ∈ E

The difference operator ITφ can be looked as a discretized version of the first
derivative of a function φ defined in all points of G. This plays a relevant role in
the development of functional analysis on graphs. For p ∈ [0,+∞[ we define the
discrete Sobolev spaces of order one by

W1,p
ρ,µ(V) = {φ ∈ ℓp(V, µ) : ITφ ∈ ℓp(E, ρ)}

The space W1,p
ρ,µ(V) is a Banach space endowed with the norm

‖φ‖W1,p
ρ,µ

= ‖φ‖ℓp(V,µ) + ‖ITφ‖ℓp(E,ρ)

and a Hilbert space for p = 2 endowed with the inner product

〈φ, ψ〉ρ,µ =
∑

v∈V

µ(v)φ(v)ψ(v) +
∑

e∈E

ρ(e) (φ(e+)− φ(e−)) (ψ(e+)− ψ(e−))

Recall that the distance distρ(v,w) of two nodes v, w is defined as the infimum of
the lengths of all paths from v to w. In this way G, to be more precise, V becomes a
metric space which is not complete in general unless ρ is uniformly bounded away
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from 0, i.e., 1
ρ ∈ ℓ∞. The ball of radius r > 0 and center v0 with respect to distρ is

defined by
Bρ(v0, r) := {w ∈ V : distρ(v0,w) < r}.

If G is connected, then by Proposition 38 (1) in [32], the spaceW 1,p
ρ,µ(V) is densely

and continuously embedded in ℓp(V, µ) for all 1 ≤ p ≤ ∞. Let additionally p <∞,
then by Proposition 38 (2) in [32] this embedding is compact if for ǫ > 0 there are
v ∈ V and r > 0 such that

(i) Bρ(v, r) is a finite set
(ii) there holds ∑

w/∈Bρ(v,r)

|φ(w)|pµ(w) < ǫp (2.1)

for all φ in the unit ball of W 1,p
ρ,µ(V).

Remark 2.3. (1) Condition (i) is satisfied if ρ is uniformly bounded from below
away from 0, and in particular (2.1) holds.

(2) For all ǫ > 0, condition (ii) is satisfied for r > volρ(G) :=
∑

e∈E ρ(e) if
volρ(G) is finite.

The space W1,p
0,ρ,µ(V) is the closure of the space C0(V) of finitely supported func-

tions on V in the norm of W1,p
ρ,µ(V) (C0(V) plays the role of test functions). For

1 ≤ p ≤ ∞, W1,p
0,ρ,µ(V) is a Banach space with respect to the norm of W1,p

ρ,µ(V), and
a Hilbert space for p = 2. For 1 ≤ p <∞ it is continuously and densely embedded
into ℓp(V, µ). If 1 ≤ p < ∞, then it is separable in ℓp(V, µ) and if 1 < p < ∞ it is
uniformly convex and hence reflexive [32].

2.2. Abstract surjectivity result. Let E be a reflexive Banach space with its
dual E∗ and A : D(A) ⊂ E → 2E

∗

be a multivalued function, where D(A) =
{u ∈ E : Au 6= ∅}, stands for the domain of A. We say that A is monotone if
〈u∗−v∗, u−v〉E∗×E ≥ 0 for all u∗ ∈ Au, v∗ ∈ Av and u, v ∈ D(A). If moreover, A
has a maximal graph in the sense of inclusion among all monotone operators, then
we say that A is maximal monotone. We say that A is pseudomonotone operators
if it satisfies the following properties,

(a) for each u ∈ E, the set Au is nonempty, closed and convex in E∗.
(b) A is upper semicontinuous from each finite dimensional subspace of E into

E∗ endowed with its weak topology;
(c) if un → u weakly weakly in E, u∗n ∈ Aun and lim sup

n→∞
〈u∗n, un−u〉E∗×E ≤ 0,

then for each v ∈ E there exists v∗ ∈ Au such that 〈v∗, u − v〉E∗×E ≤
lim inf
n→∞

〈u∗n, un − v〉E∗×E .

For a linear, maximal monotone operator L : D(L) ⊂ E → E∗, an operator A is
said to be pseudomonotone with respect to D(L)(or L−pseudomonotone) if (a) and
(b) are satisfied and

(c’) for each sequences {un} ⊂ D(L) and {u∗n} ⊂ E∗ with un → u weakly in E,
Lun → Lu weakly in E∗, u∗n ∈ Aun for all n ∈ N, u∗n → u∗ weakly in E∗ and
lim sup
n→+∞

〈u∗n, un − u〉E∗×E ≤ 0, we have u∗ ∈ Au and lim
n→+∞

〈u∗n, un〉E∗×E =

〈u∗, u〉E∗×E .
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A is coercive if there exists a function c : R+ → R with c(r) → ∞ as r → ∞
such that 〈u∗, u〉E∗×E ≥ c(‖u‖E)‖u‖E for every (u, u∗) ∈ Graph(A).

Now let f : E → R := R ∪ {+∞} be a proper, convex and lower semicontinuous
functional. The mapping ∂cf : E → 2E

∗

defined by

∂cf(u) = {u∗ ∈ E∗ : 〈u∗, v − u〉E∗×E ≤ f(v)− f(u) for all v ∈ E},

is called the subdifferential of f . Any element u∗ ∈ ∂cf(u) is called a subgradient
of f at u. It is a well know fact that ∂fc is a maximal monotone operator.

Let F : E → R be a locally Lipschitz continuous functional and u, v ∈ E. We
denote by F ◦(u; v) the generalized Clarke directional derivative of F at the point
u in the direction v defined by

F ◦(u; v) = lim sup
w→u, t↓0

F (w + tv)− F (w)

t
.

The generalized Clarke gradient ∂F : E → 2E
∗

of F at u ∈ E is defined by

∂F (u) = {ξ ∈ E∗ : 〈ξ, v〉E∗×E ≤ F ◦(u; v) for all v ∈ E}.

We collect the following properties

(a) the function v 7→ F ◦(u; v) is positively homogeneous, subadditive and sat-
isfies

|F ◦(u; v)| ≤ Lu‖v‖Efor all v ∈ E,

where Lu > 0 is the rank of F near u.
(b) (u, v) 7→ F ◦(u; v) is upper semicontinuous.
(c) ∂F (u) is a nonempty, convex and weakly∗ compact subset of E∗ with

‖ξ‖E∗ ≤ Lu for all ξ ∈ ∂F (u).
(d) for all v ∈ E, we have F ◦(u; v) = max{〈ξ, v〉E∗×E : ξ ∈ ∂F (u)}.

We say that a function F : E → R is regular at x, if for all v, the usual one-sided
directional derivative

F ′(x, v) := lim
h↓0

F (x+ hv)− F (x)

h

exists and is equal to the generalized directional derivative F ◦(x; v). By Proposition
2.3.6 in [6], if F is locally Lipschitz and convex, then it is regular at any x.

The following surjectivity result for operators which are L−pseudomonotone will
be used in our existence theorems in Section 3 and Section 4 (cf. [39, Theorem 2.1]).

Theorem 2.4. If E is a reflexive strictly convex Banach space, L : D(L) ⊂ E →
E∗ is a linear maximal monotone operator, and A : E → 2E

∗

is a multivalued

operator , which is bounded, coercive and L−pseudomonotone. Then L + A is a

surjective operator, i.e. for all f ∈ E∗, there exists u ∈ E such that Lu+Au ∋ f .

It is worth to mention that one can drop the strict convexity of the reflexive
Banach space E. It suffices to invoke the Troyanski renorming theorem to get an
equivalent norm so that the space itself and its dual are strictly convex(cf. [48,
Proposition 32.23, p.862]).
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3. Nonconvex sum functionals on graphs

In this section we will prove the discrete counterpart of the Aubin-Clarke theorem
concerning the subdifferentiability of nonconvex sum functionals. We consider a
function j : R → R which satisfies the following hypothesis H(j):

H(j)1 j : R → R is locally Lipschitz.
H(j)2 there exists αj > 0 such that

|z| ≤ αj(1 + |s|), ∀z ∈ ∂j(s)

Next we define the superpotential J : ℓ2(V, µ) → R defined by

J(φ) =
∑

v∈V

µ(v) j(φ(v))

for all φ ∈ ℓ2(V, µ). The sum functional J can be seen as the discrete version of
the classical integral functionals. The following results is the discret version of the
Aubin-Clarke theorem [6].

Proposition 3.1. Under the assumption H(j):

(1) The functional J is well defined and finite on ℓ2(V, µ).
(2) J is locally Lipschitz.

(3) For all φ, ψ ∈ ℓ2(V, µ), we have

J0(φ;ψ) ≤
∑

v∈V

µ(v) j0(φ(v);ψ(v)) (3.1)

(4) For all φ ∈ ℓ2(V, µ) we have

∂J(φ) ⊂
∑

v∈V

µ(v)∂j(φ(v))

This inclusion is understood in the sense that for each φ∗ ∈ ∂J(φ) ⊂
ℓ2(V, µ), there exists a mapping V ∋ v 7→ ξ(v) such that ξ(v) ∈ ∂j(φ(v))
and

〈φ∗, ψ〉 =
∑

v∈V

µ(v)ξ(v)ψ(v)

for all ψ ∈ ℓ2(V, µ).
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Proof. By H(j), Lebourg’s mean value theorem and Hölder’s inequality, we have

|J(φ1)− J(φ2)| ≤
∑

v∈V

µ(v) | j(φ1(v)) − j(φ2(v)) |

≤
∑

v∈V

µ(v)|ξ| |φ1(v) − φ2(v)| (ξ ∈ ∂j(s) with s ∈ [φ1(v), φ2(v)])

≤ αj

∑

v∈V

µ(v) (1 + |φ1(v)|+ |φ2(v)|) |φ1(v)− φ2(v)|

≤ αj

(
∑

v∈V

µ(v)(1 + |φ1(v)|+ |φ2(v)|)
2

)1/2

‖φ1 − φ1‖ℓ2(V,µ)

≤ αJ

(
1 + ‖φ1‖ℓ2(V,µ) + ‖φ2‖ℓ2(V,µ)

)
‖φ1 − φ2‖ℓ2(V,µ)

≤ α′
j ‖φ1 − φ2‖ℓ2(V,µ)

where αJ depends only on αj, µ andm wherem is such that ‖φ1‖ℓ(V,µ), ‖φ2‖ℓ(V,µ) ≤
m. Consequently, the functional J is well-defined, finite and locally Lipschitz.

Let φ, ψ ∈ ℓ2(V, µ), by Fatou’s Lemma with counting measure,

J0(φ;ψ) = lim sup
θ→φ,λ→0

J(θ + λψ)− J(θ)

λ

= lim sup
θ→φ,λ→0

1

λ

∑

v∈V

µ(v) (j(θ(v) + λψ(v)) − j(θ(v)))

≤
∑

v∈V

µ(v) lim sup
θ→φ, λ→0

j(θ(v) + λψ(v)) − j(θ(v))

λ

≤
∑

v∈V

µ(v)j0(φ(v);ψ(v))

Now, define ĵ and Ĵ as follows

ĵ(ψ) = j0(φ;ψ), Ĵ(ψ) =
∑

v∈V

µ(v)̂j(ψ(v)).

It is clear that ĵ is convex and thus, so is Ĵ. If we observe that ĵ(0) = ĵ(0) =

0, we have Ĵ(ψ) − Ĵ(0) ≥ 〈ξ, ψ〉ℓ2(V,µ) for all ψ and ξ ∈ ∂Ĵ(0). Since ∂Ĵ(0) ⊂∑
v∈V µ(v)∂̂j(0), for convex functions, see [19]. Then there exists a map v 7→ ξ(v)

with ξ(v) ∈ ∂̂j(0) such that for every θ ∈ ℓ2(V, µ)

〈ξ, θ〉ℓ2(V,µ) =
∑

v∈V

µ(v)ξ(v)θ(v)

However, ∂̂j(0) = ∂j(φ), so the result would follow.
�
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Remark that if either j or −j is regular, then J is also regular and equality (3.1)
in holds true. In fact, one have

J◦(φ;ψ) = lim sup
θ→φ,h↓0

J(θ + hψ)− J(ψ)

h

≥ lim
h↓0

J(φ + hψ)− J(φ)

h

= lim
h↓0

∑

v∈V

µ(v)
j(φ(v) + hψ(v)) − j(φ(v))

h

=
∑

v∈V

µ(v) lim
h↓0

j(φ(v) + hψ(v)) − j(φ(v))

h

=
∑

v∈V

µ(v)j′(φ(v);ψ(v))

=
∑

v∈V

µ(v)j◦(φ(v);ψ(v))

which, by Proposition 3.1, leads to

J◦(φ;ψ) =
∑

v∈V

µ(v)j◦(φ(v);ψ(v))

Moreover, J◦ = J′ since

J′(φ;ψ) = lim
h↓0

∑

v∈V

µ(v)
j(φ(v) + hψ(v))− j(φ(v))

h

=
∑

v∈V

µ(v)j′(φ(v);ψ(v))

=J◦(φ;ψ)

Proposition 3.2. Under hypothesis H(j), the following inequalities hold

J0(φ;ψ) ≤ αJ

(
1 + ‖φ‖ℓ2(V,µ)

)
‖ψ‖ℓ2(V), ∀φ, ψ ∈ ℓ2(V, µ)

and

‖θ‖ℓ2(V,µ) ≤ αJ

(
1 + ‖φ‖ℓ2(V,µ)

)
, ∀θ ∈ ∂(J|ℓ2(V,µ))(φ), φ ∈ ℓ2(V, µ)

Proof. Let φ, ψ ∈ ℓ2(V, µ), we have

J0(φ;ψ) ≤
∑

v∈V

µ(v)j0(φ(v);ψ(v))

=
∑

v∈V

µ(v)max{θ.ψ(v) | θ ∈ ∂j(φ(v))}

=
∑

v∈V

µ(v)max{|θ| |ψ(v)| | θ ∈ ∂j(φ(v))}
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By H(j), we have

J0(φ;ψ) ≤ αj

∑

v∈V

µ(v) (1 + |φ(v)|) |ψ(v)|

≤ αj

∑

v∈V

√
µ(v) (1 + |φ(v)|)

√
µ(v)|ψ(v)|

≤ αj

(
∑

v∈V

µ(v) (1 + |φ(v)|)2
)1/2

‖ψ(v)‖ℓ2(V,µ)

≤ α′
j

(
1 + ‖φ‖ℓ2(V,µ)

)
‖ψ(v)‖ℓ2(V,µ)

This, together with [6, Proposition 2.1.2], yield to

‖θ‖ℓ2(V,µ) = sup{〈θ, ψ〉ℓ2(V,µ) | ‖ψ‖ℓ2(V,µ) ≤ 1}

≤ sup{J0(φ;ψ) | ‖ψ‖ℓ2(V,µ) ≤ 1}

≤ α′
j

(
1 + ‖φ‖ℓ2(V,µ)

)
, for θ ∈ ∂J|ℓ2(V,µ)(φ), φ ∈ ℓ2(V, µ)

�

In what follows we consider a superpotential j which subdifferential is obtained
by ”filling in the gaps” procedure [40]. For (v, t) ∈ V × R, define

j(v, t) =

∫ t

0

β(v, s) ds

where β : V×R → R is a function such that β(v, .) is measurable for all v ∈ V and
satisfies the following growth condition

|β(v, t)| ≤ αβ(1 + |t|)

for all v ∈ V and a.e t ∈ R. Note that j(v, .) is locally Lipschitz and satisfies a
growth condition with eventually different constant.

We present the discrete version of the functional in Section 2 of [5] which is in
the following form

J(φ) =
∑

v∈V

µ(v)

∫ φ(v)

0

β(v, t) dt

Then J is a locally Lipschitz function defined on ℓ2(V, µ).
Let’s first describe the ”filling in the gaps” procedure. Let θ ∈ L∞

loc(R), for ǫ > 0
and t ∈ R, we define:

θǫ(t) = ess inf
|t−s|≤ǫ

θ(s), θǫ(t) = ess sup
|t−s|≤ǫ

θ(s).

For a fixed t ∈ R, the functions θǫ, θǫ are decreasing and increasing in ǫ, respectively.
Let

θ(t) = lim
ǫ→0+

θǫ(t), θ(t) = lim
ǫ→0+

θǫ(t),

and let θ̂(t) : R → 2R be a multifunction defined by

θ̂(t) =
[
θ(t), θ(t)

]
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From Chang [5] we know that a locally Lipschitz function j : R → R can be
determined up to an additive constant by the relation

j(t) =

∫ t

0

θ(s) ds

such that ∂j(t) ⊂ θ̂(t) for all t ∈ R. If moreover, the limits θ(t± 0) exist for every

t ∈ R, then ∂j(t) = θ̂(t).
Now by Proposition 3.1, we have

∂J(φ) ⊂
∑

v∈V

µ(v)β̂(v, φ(v))

If we note J(φ) =
∑

v∈V µ(v)β(v, φ(v)) and J(φ) =
∑

v∈V µ(v)β(v, φ(v)) we can write

∂J(φ) ⊂ [J(φ), J(φ)], for all φ ∈ ℓ2(V, µ) (3.2)

If J is convex, then it is regular and equality in (3.2) holds true.

4. Existence Result for elliptic problem

Let G = (V,E, ρ, µ) be a weighted direct graph. Let j : R → R be a locally
Lipschitz function and j0(.; .) denotes its generalized directional derivative. Consider
a function γ : E → (0,∞) such that γ(e) = γ(ē) and a function κ : V → (0,∞) such
that the following assumption H(G) hold:

(G1) There exist αγ , αγ > 0 such that

αγρ(e) ≤ γ(e) ≤ αγρ(e), for all e ∈ E.

(G2) There exist αµ, αµ > 0 such that

αµκ(v) ≤ µ(v) ≤ αµκ(v), for all v ∈ V.

We denote W0 := W
1,2
0,ρ,µ(V) and we define the operator L G

γ,κ : W0 → W0 by

(L G
γ,κφ)(v) :=

1

µ(v)

∑

w∈V
w∼v

γ(v,w)(φ(v) − φ(w)) +
κ(v)

µ(v)
φ(v), v ∈ V, φ ∈ W0

The aim of this paper is to prove the existence of solutions to the problem of
finding φ such that

L
G
γ,κφ+ ∂J(φ) ∋ f, φ ∈ W0 (4.1)

which is equivalent to finding φ ∈ W0 such that
{

L
G
γ,κφ+ ξ = f,

ξ ∈ ∂J(φ).
(4.2)

To obtain a variational formulation of Problem (4.2), we multiply by ψ − φ and
we use the definition of ∂J . This produces the following hemivariational inequality:
Find φ ∈ W0 such that for every ψ ∈ W0

〈L G
γ,κφ− f, ψ − φ〉+

∑

v∈V

µ (v)j0(φ(v);ψ(v) − φ(v)) ≥ 0 (4.3)
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Note that problems (4.1) and (4.3) are not equivalent. This will be the case if, for
example, either j or −j is regular. Generally, if φ is a solution of Problem (5.6),
then it is a solution of Problem (4.3).

Definition 4.1. We say that φ ∈ W0 is a weak solution to problem (4.1), if
∑

v∈V

µ(v)(L G
γ,κφ)(v)(ψ(v)−φ(v))+

∑

v∈V

µ(v)j0(φ(v);ψ(v)−φ(v)) ≥
∑

v∈V

µ(v)f(v)(ψ(v)−φ(v))

for all ψ ∈ W0.

Theorem 4.2. Under assumptions H(G) and H(j) with

αJ <
1

2
αγ ∧ αµ, (4.4)

the problem (4.3) has at least one weak solution.

Proof. We observe first that

〈L G
γ,κφ, ψ〉 =

∑

v∈V

µ(v)(L G
γ,κφ)(v)ψ(v)

=
∑

v∈V

∑

w∈V
w∼v

γ(v,w)(φ(v) − φ(w))ψ(v) +
∑

v∈V

κ(v)φ(v)ψ(v)

=
1

2

∑

(v,w)∈E

γ(v,w)(φ(v) − φ(w))(ψ(v) − ψ(w)) +
∑

v∈V

κ(v)φ(v)ψ(v)

From one side, we have

〈L G
γ,κφ, φ〉 =

1

2

∑

(v,w)∈E

γ(v,w)(φ(v) − φ(w))2 +
∑

v∈V

κ(v)φ2(v)

=
1

2

∑

(v,w)∈E

γ(v,w)

ρ(v,w)
ρ(v,w)(φ(v) − φ(w))2 +

∑

v∈V

κ(v)

µ(v)
µ(v)φ2(v)

≥
1

2
αγ ∧ αµ ‖φ‖

2
W0

(4.5)

Thus, L G
γ,κ is strongly monotone and coercive. From another side

〈L G
γ,κφ, ψ〉 =

1

2

∑

(v,w)∈E

γ(v,w)

ρ(v,w)

√
ρ(v,w)(φ(v) − φ(w))

√
ρ(v,w)(ψ(v) − ψ(w))

+
∑

v∈V

κ(v)

µ(v)

√
µ(v)φ(v)

√
µ(v)ψ(v)

≤
1

2
αγ‖I

Tφ‖ℓ2(E,ρ)‖I
Tψ‖ℓ2(E,ρ) + αµ‖φ‖ℓ2(V,µ)‖ψ‖ℓ2(V,µ)

≤
1

2
αγ ∨ αµ ‖φ‖W0

‖ψ‖W0
(4.6)

Thus, L G
γ,κ is continuous.

Claim 1: The operator L G
γ,κ + ∂J is coercive.
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We have

inf{〈L G
γ,κφ+ ξ, φ〉 | ξ ∈ ∂J(φ)} = 〈L G

γ,κφ, φ〉 + inf{〈ξ, φ〉ℓ2(V,µ) | ξ ∈ ∂J(φ)}

≥
1

2
αγ ∧ αµ‖φ‖

2
W0

− sup{‖ξ‖ℓ2(V,µ) | ξ ∈ ∂J(φ)}‖φ‖ℓ2(V,µ)

≥
1

2
αγ ∧ αµ‖φ‖

2
W0

− αJ‖φ‖ℓ2(V,µ) − αJ‖φ‖
2
ℓp(V,µ)

≥
1

2
αγ ∧ αµ‖φ‖

2
W0

− αJ‖φ‖W0
− αJ‖φ‖

2
W0

≥

(
1

2
αγ ∧ αµ − αJ

)
‖φ‖2W0

− αJ‖φ‖W0
.

If 1
2αγ ∧ αµ > αJ, the above inequality implies that L G

γ,κ + ∂J : W0 → W∗
0 is

coercive.
Claim 2: The operator L G

γ,κ + ∂J is pseudomonotone.
We know that ∂J is nonempty, convex, weak-compact subset of W0. Then for

each φ ∈ W0, L G
γ,κ(φ) + ∂J(φ) is nonempty, bounded, closed and convex subset of

W0. Moreover, L G
γ,κ(φ) + ∂J(φ) is upper semicontinuous from W0 to w −W0.

Let φk be a sequence in W0 converging weakly to φ, and ξk ∈ ∂J(φk) such that

lim sup
k→∞

〈L G
γ,κ(φk) + ξk, φk − φ〉 ≤ 0

which implies

lim sup
k→∞

〈L G
γ,κ(φk), φk − φ〉+ lim inf

k→∞
〈ξk, φk − φ〉 ≤ 0 (4.7)

The embedding W0 →֒ ℓ2(V, µ) is compact. Therefore, φk converges strongly in
ℓ2(V, µ) to φ. By applying Theorem 2.2 in [5], we have

∂
(
J|W0

)
(φ) ⊂ ∂

(
J|ℓ2(V,µ)

)
(φ), ∀φ ∈ W0

Therefore,

|〈θk, φk − φ〉W0
| ≤ const‖θk‖ℓ2(V,µ)‖φk − φ‖ℓ2(V,µ).

Thus

|〈θk, φk − φ〉W0
| → 0, as k → ∞

Then, from (4.7) we have

lim sup
k→∞

〈L G
γ,κ(φk), φk − φ〉 ≤ 0

We have from φk → φ weakly in W0

lim sup
k→∞

〈L G
γ,κ(φk)− L

G
γ,κ(φ), φk − φ〉 ≤ 0

By the coercivity of L G
γ,κ, we get

lim sup
k→∞

‖φk − φ‖W0
≤ 0

Therefore we obtain

φk → φ strongly in W0

L
G
γ,κφk → L

G
γ,κφ strongly in W0.
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It follows that there exist ξ such that ξk → ξ weakly∗ in W0 and

lim
k→∞

〈L G
γ,κ(φk) + ξk, φk − ψ〉 = 〈L G

γ,κ(φ) + ξ, φ− ψ〉

This implies that L G
γ,κ + ∂J : W0 → W0 is pseudomonotone, which completes the

proof. �

Let’s consider the following additional assumption

H(j0) There exists αj0 > 0 such that

j0(s; t− s) + j0(t; s− t) ≤ αj0 |t− s|2

for all s, t ∈ R.

Theorem 4.3. Under assumptions H(G), H(j) and H(j0) with

αj0 ∨ αj <
1

2
αγ ∧ αµ,

the weak solution of the Problem (4.1) is unique.

Proof. Let φ1 and φ2 be two weak solutions of Problem (4.1). It follows then that

〈L G
γ,κφ1, ψ − φ1〉+

∑

v∈V

µ (v)j0(φ1(v);ψ(v) − φ1(v)) ≥ 〈f, ψ − φ1〉, for all φ (4.8)

〈L G
γ,κφ2, ψ − φ2〉+

∑

v∈V

µ (v)j0(φ2(v);ψ(v) − φ2(v)) ≥ 〈f, ψ − φ2〉, for all φ (4.9)

We replace φ in (4.8) by φ2 and in (4.9) by φ1 and we sum up the two inequalities.
We obtain that

〈L G
γ,κ(φ1−φ2), φ2−φ1〉+

∑

v∈V

µ (v){j0(φ1(v);φ2(v)−φ1(v))+j
0(φ2(v);φ1(v)−φ2(v))} ≥ 0

It follows that

−
1

2
αγ ∧ αµ‖φ2 − φ1‖

2
W0

+ αj0

∑

v∈V

µ (v)|φ2(v)− φ1(v)|
2 ≥ 0

Thus

(αj0 −
1

2
αγ ∧ αµ)‖φ2 − φ1‖

2
W0

≥ 0

If αj0 <
1
2αγ ∧ αµ, we have φ1 = φ2, which completes the proof.

�

5. Existence Result for parabolic problem

For 0 < T < ∞, we denote by V := L2(0,T; ℓ2(V, µ)) the usual time Sobolev
space endowed with the norm

‖φ‖V =

(∫ T

0

‖φ(t)‖2ℓ2(V,µ) dt

)1/2

and consider a function j : (0,T)× R → R which satisfies the following hypothesis
H(j):

H(j)1 for each r ∈ R, the function t 7→ j(t, r) is measurable on (0,T),
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H(j)2 for a.e. t ∈ (0,T), the functional r 7→ j(t, r) is locally Lipschitz,
H(j)3 there exists αj > 0 such that

|z| ≤ αj(1 + |r|), for all z ∈ ∂j(t, r) and a.e. t ∈ (0,T).

We define the superpotential J : V → R defined by

J(φ) =
∑

v∈V

µ(v)

∫ T

0

j(t, φ(t, v)) dt

for all φ ∈ V . Similarly to Propostion 3.2, we have the following result

Proposition 5.1. Assume the hypothesis H(j) is fulfilled. Then the functional J

is locally Lipschitz and there exists cJ > 0 such that the following inequalities hold

J0(φ;ψ) ≤ cJ (1 + ‖φ‖V) ‖ψ‖V , ∀φ, ψ ∈ V

and

‖θ‖V ≤ cJ (1 + ‖φ‖V) , ∀θ ∈ ∂(J|V)(φ), φ ∈ V

We introduce the function spaces

W0 = L2(0, T ;W0), M0 = {φ ∈ W0 |
∂φ

∂t
∈ W0}

where the time derivative ∂φ
∂t is understood in the sense of vector-valued distribu-

tions. The norm

‖φ‖M0
:= ‖φ‖W0

+ ‖
∂φ

∂t
‖W0

make the spaceM0 a Banach space. Moreover, the embeddingsM0 ⊂ L2(0, T ; ℓ2(V, µ))
and M0 ⊂ C(0, T ; ℓ2(V, µ)) are compact and continuous, respectively.

The purpose of this section is to prove the existence of solutions for the parabolic
hemivariational inequalities on graphs, which can be stated as follows: Find φ ∈ M0

such that {
φ′ + L G

γ,κφ+ ∂J(φ) ∋ f in V × (0, T )

φ(v, 0) = φ0 in V
(5.1)

Definition 5.2. We say that φ ∈ M0 is a weak solution to problem (5.1), if
φ(0, v) = φ0(v) in V, and the following inequality holds

∫ T

0

∑

v∈V

µ(v)
∂φ(t, v)

∂t
(ψ(t, v)− φ(t, v)) dt+

∫ T

0

L
G
γ,κφ(t, v) (ψ(t, v)− φ(t, v)) dt

+

∫ T

0

∑

v∈V

µ(v)j0(t, φ(t, v);ψ(t, v) − φ(t, v)) dt ≥

∫ T

0

∑

v∈V

f(t, v) (ψ(t, v)− φ(t, v)) dt

for all ψ ∈ W0.

The following theorem is the main result of this section.

Theorem 5.3. Let f ∈ W0 and assume that the hypotheses H(G) and H(j) are

fulfilled. If αJ <
1
2αγ ∧ αµ, then the problem (5.1) admits a weak solution.
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Proof. First, we define the operator Λ : W0 → W0 by

Λ(φ)(ψ) :=

∫ T

0

∑

v∈V

µ(v)ψ(t, v)L G
γ,κ(φ(t, v) + φ̃0(t, v)) dt,

for all φ, ψ ∈ W0 and where φ̃0 is such that φ̃0(t, v) = φ0(v) for all (t, v) ∈ (0,T)×V.
From (4.6) we have

Λ(φ)(ψ) =

∫ T

0

∑

v∈V

µ(v)ψ(t, v)L G
γ,κ(φ(t, v) + φ̃0(t, v)) dt

≤
1

2
αγ ∨ αµ

∫ T

0

‖ψ‖W0
‖φ+ φ̃0‖W0

dt

≤
1

2
αγ ∨ αµ ‖ψ‖W0

‖φ+ φ̃0‖W0

It follows that

‖Λ(φ)‖W0
≤

1

2
αγ ∨ αµ

(
‖φ‖W0

+ ‖φ̃0‖W0

)
, for all φ ∈ W0.

Thus, the operator Λ is continuous. Moreover, the operator Λ is strongly monotone.
In fact, from (4.5), one can obtain

〈Λ(φ)− Λ(ψ), φ− ψ〉W0
= 〈Λ(φ), φ − ψ〉W0

− 〈Λ(ψ), φ− ψ〉W0

=

∫ T

0

∑

v∈V

µ(v)(φ(t, v) − ψ(t, v))L G
γ,κ(φ(t, v) + φ̃0(t, v)) dt

−

∫ T

0

∑

v∈V

µ(v)(φ(t, v) − ψ(t, v))L G
γ,κ(ψ(t, v) + φ̃0(t, v)) dt

=

∫ T

0

∑

v∈V

µ(v)(φ(t, v) − ψ(t, v))L G
γ,κ(φ(t, v) − ψ(t, v)) dt

≥
1

2
αγ ∧ αµ

∫ T

0

‖φ(t, .)− ψ(t, .)‖2W0
dt

=
1

2
αγ ∧ αµ ‖φ− ψ‖2W0

for all φ, ψ ∈ W0.
Define the operator L : D(L) ⊂ W0 → W0 by

Lφ =
∂φ

∂t
, D(L) := {φ ∈ M0 |φ(0) = 0}

which is closed, linear, densely defined and maximal monotone operator [48].
Now, we shall prove the hypotheses of the surjectivity theorem.

Claim 1: The multivalued operator Λ+ ∂J(.+ φ̃0) : W0 → 2W0 is bounded and
pseudomonotone with respect to D(L).

In fact, by the properties of Clarke’s subdifferential, we deduce that the set
Λ(φ) + ∂J(φ + φ̃0) is nonempty, closed and convex in W0 for all φ ∈ W0. By
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Proposition 5.1 and the continuity of Λ, we obtain

‖Λφ+ ξ‖W0
≤ ‖Λφ‖W∗

0
+ ‖ξ‖W∗

0

≤
1

2
αγ ∨ αµ

(
‖φ‖W0

+ ‖φ̃0‖W0

)
+ αJ

(
1 + ‖φ‖V + ‖φ̃0‖V

)

≤ αJ + (αJ +
1

2
αγ ∨ αµ)(‖φ‖W0

+ ‖φ̃0‖W0
)

which implies that Λ + ∂J(. + φ̃0) : W0 → 2W0 is bounded. Moreover, since Λ is
linear and continuous (hence demicontinuous) and ∂J is uppersemicontinuous from
W0 to w −W0.

It remains to verify the last condition. let {φn} ⊂ D(L) and {φ∗n} ⊂ W0 be such

that φn → φ weakly in W0, Lφn → Lφ weakly in W0, φ
∗
n ∈ Λφn + ∂J(φn + φ̃0) with

φ∗n → φ∗ weakly in W0, and

lim sup
n→∞

〈φ∗n, φn − φ〉W0
≤ 0 (5.2)

Then, we are able to find a sequence {ξn} ⊂ W0 such that ξn ∈ ∂J(φn + φ̃0) and

φ∗n = Λφn + ξn, for each n ∈ N

Consequently, from (5.2), we get

lim sup
n→∞

〈Λφn, φn − φ〉W0
+ lim inf

n→∞
〈ξn, φn − φ〉W0

≤ 0 (5.3)

Since W0 ⊂ ℓ2(V, µ) and the embedding of W0 in ℓ2(V, µ) is compact, we have that
φn strongly converges to φ in V . Furthermore, one has

∂(J|W0
)(φ) ⊂ ∂(J|V)(φ) (5.4)

which means that

〈ξn, φn − φ〉W0
= 〈ξn, φn − φ〉V (5.5)

Further, from the boundedness of {un} in W0, we have that {ξn} is bounded both
in V and in W0. Then, by (5.5), we pass to the limit as n→ ∞ to get

lim
n→∞

〈ξn, φn − φ〉W0
= lim

n→∞
〈ξn, φn − φ〉V = 0

This convergence combined with (5.3) and the monotonicity of Λ implies

lim sup
n→∞

‖φn − φ‖2W0
≤ A−1 lim sup

n→∞
〈Λφn, φn − φ〉W0

+ A−1 lim
n→∞

〈Λφ, φ− φn〉W0
≤ 0

where A = 1
2αγ ∧ αµ. Hence φn → φ strongly in W0. On the other side, the

reflexivity of W0 and boundedness of {ξn} ⊂ W0 allow to assume, at least for a
subsequence, that ξn converges weakly in W0 to some ξ ∈ W0. Since ∂J is upper
semicontinuous from W0 to w−W0 and it has convex and closed values, it is closed
from W0 to w−W0 (see [21, Theorem 1.1.4]). Therefore, we obtain ξ ∈ ∂J(φ+ φ̃0).

To conclude, we have φ∗ = ξ + Λφ ∈ Λφ+ ∂J(φ+ φ̃0) and

〈φ∗n, φn〉W0
= 〈ξn + Λφn, φn〉W0

→ 〈ξ + Λφ, φ〉W0
= 〈φ∗, φ〉W0

which means that the operator Λ+∂J(.+ φ̃0) : W0 → 2W0 is pseudomonotone with
respect to D(L).

Claim 2: The operator Λ + ∂J(.+ φ̃0) : W0 → 2W0 is coercive.
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For all φ ∈ W0 one has

〈Λφ+ ∂J(φ+ φ̃0), φ〉W0
= 〈Λφ, φ〉W0

+ 〈∂J(φ+ φ̃0), φ〉W0

≥ A ‖φ‖2W0
− A ‖φ̃0‖W0

‖φ‖W0
+ 〈∂J(φ + φ̃0), φ〉V

≥ A ‖φ‖2W0
− A ‖φ̃0‖W0

‖φ‖W0
− ‖∂J(φ+ φ̃0)‖V ‖φ‖V

≥ A ‖φ‖2W0
− A ‖φ̃0‖W0

‖φ‖W0
− αJ

(
1 + ‖φ+ φ̃0‖V

)
‖φ‖V

≥ A ‖φ‖2W0
− A ‖φ̃0‖W0

‖φ‖W0
− αJ‖φ‖W0

− αJ‖φ‖
2
W0

− αJ‖φ‖W0
‖φ̃0‖W0

≥
(
(A− αJ) ‖φ‖W0

− (A+ αJ) ‖φ̃0‖W0
+ αJ

)
‖φ‖W0

≥ c(‖φ‖W0
)‖φ‖W0

where c : R+ → R with c(r) = (A− αJ) r − (A + αJ) ‖φ̃0‖W0
+ αJ. It is clear that

c(r) → ∞ as r → ∞, thus the operator Λ + ∂J(.+ φ̃0) : W0 → 2W0 is coercive.
We are now in a position to apply the surjectivity result. We deduce that there

exists a function χ ∈ W0 with χ(0) = 0 solving the following inclusion problem
{
Lχ+ Λχ+ ∂J(χ+ φ̃0) ∋ f, in W0

χ(0) = 0.
(5.6)

Claim 3: If χ ∈ M0 is a solution to problem (5.6), then φ = χ + φ̃0 is a weak
solution to problem (5.1).

Let χ ∈ M0 be a solution to problem (5.6). Hence φ = χ+φ̃0 solves the following
problem

{
∂φ
∂t + Λ(φ− φ̃0) + ∂J(φ) ∋ f, in W0

φ(0) = φ0.
(5.7)

By the definition of generalized Clarke subdifferential we obtain (5.1). This com-
pletes the proof.

�

6. Concluding remarks

In this section we give some remarks and extensions of the results proved in
previous sections.

(1) Let Φ : W0 → R̄ be a proper, convex and lower semicontinuous functional
such that 0 ∈ ∂CΦ(φ0), where ∂C is the subdifferential in the sense of convex
analysis. Suppose additionally that φ0 ∈ intD(Φ). Then, the variational-
hemivariational inequality: Find φ ∈ M0 such that

{
φ′ + L G

γ,κφ+ ∂J(φ) + ∂CΦ(φ) ∋ f in V × (0, T )

φ(v, 0) = φ0 in V
(6.1)

admits a solution. To prove the existence of Problem (6.1), let us consider
the functional Ψ : W0 → R̄ defined by

Ψ(φ) =

∫ T

0

Φ(φ+ φ̃0) dt
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Now, it suffices to continue on the proof of Theorem 5.3 and prove, addi-
tionally, that the operator ∂CΨ is maximal monotone and strongly quasi-
bounded with 0 ∈ ∂Ψ(0). The existence follows by the surjectivity result
stated by Theorem 3.1 in [11].

(2) One can think about an alternative proof of existence in both the elliptic
and parabolic problems by using the Galerkin scheme adapted to graph
theory context. Let (Gn)n≥0 be a growing family of finite graphs that
exhaust G in the sense of [31, Definition 4.1] and [33, Definition 3.3] and
consider the problem of finding φn such that

φ′n + L
Gn

γ,κφn +
∑

v∈Vn

µ(v)j′n(φn(v)) = f (6.2)

where jn is a mollification of j. By using techniques from the proof of The-
orem 3.6 in [16] and some standard calculation on the nonlinear term, one
can prove that the sequence (φn)n on Gn is bounded in H1(0,T; ℓ2(V, µ))
and weak∗ in L∞(0,T;W0). By taking a subsequence if necessary, it possi-
ble to prove that (φn)n converges to some φ and j′n(φn) converges in ℓ

2(V, µ)
to some ξ. By the convergence theorem of Aubin and Cellina [2], it is clear
that ξ ∈ ∂j(φ) and by taking the limit in (6.2), one can see that φ resolves
Problem (5.3).

(3) Let h be some nonnegative continuous function which satisfies with j the
following growth condition

|h(ξ1)ξ| ≤ c(1 + |ξ1|+ |ξ2|), for all ξ1, ξ ∈ R, with ξ ∈ ∂j(ξ2)

where c is some nonnegative constant. One can prove a version of Aubin-
Clarke theorem for discrete functionals in the form:

J(φ) =
∑

v∈V

µ(v)h(φ(v))j(φ(v))

With the above hypotheses we have for φ, ψ in ℓ2(V, µ) that

J◦(φ;ψ) ≤
∑

v∈V

µ(v)h(v)j◦(φ(v);ψ(v))

With some modifications, one can prove that the quasi-hemivariational ver-
sions of Problems (5.1) and (5.3) admit weak solutions.

(4) By using Theorem 3.6 in [16], the theory in this paper can be applied for
the operator L G

γ,0 if we assume that G is uniformly locally finite and satisfy
the d− isoperimetric inequality for some d ≥ 2
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