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Abstract

In this paper, we attempt to propose Ekeland’s variational principle for interval-valued functions

(IVFs). To develop the variational principle, we study a concept of sequence of intervals. In the

sequel, the idea of gH-semicontinuity for IVFs is explored. A necessary and sufficient condition for

an IVF to be gH-continuous in terms of gH-lower and upper semicontinuity is given. Moreover, we

prove a characterization for gH-lower semicontinuity by the level sets of the IVF. With the help of this

characterization result, we ensure the existence of a minimum for an extended gH-lower semicontin-

uous, level-bounded and proper IVF. To find an approximate minima of a gH-lower semicontinuous

and gH-Gâteaux differentiable IVF, the proposed Ekeland’s variational principle is used.

Keywords: Interval-valued functions, gH-semicontinuity, gH-Gâteaux differentiability, Ekeland’s

variational principle
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1. Introduction

In real analysis, we deal with real-valued functions and their calculus. Similarly, interval analysis

deals with interval-valued functions (IVFs), where uncertain variables are represented by intervals.

The analysis of IVFs enables one to effectively deal with the errors/uncertainties that appear while

modeling the practical problems. Development of the theories of IVFs is primarily important for the

analysis of fuzzy-number-valued functions since alpha-cuts of a fuzzy number is a compact interval

[17]. In fact, for a given alpha, the alpha-cut of a fuzzy-number-valued function is an interval-valued

function. Thus, once the tools to analyze IVFs are ready, by the decomposition principle [17], one

can easily investigate the properties of fuzzy-valued functions.

To identify characteristic of IVFs, calculus plays a significant role. Wu [34] proposed the con-

cepts of limit, continuity, and H-differentiability for IVFs. The concept of H-differentiability uses

H-difference to find the difference between elements of I(R), and hence it is restrictive [31]. To over-

come the shortcomings of H-differentiability, Stefanini and Bede [31] introduced gH-differentiability

for IVFs. Thereafter, by using gH-differentiability, Chalco-Cano et al. [6] developed the calculus for

IVFs. In the same article [6], the fundamental theorem of calculus for IVFs has been presented. With
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the help of the parametric representation of an IVF, the notions of gH-gradient and gH-partial deriva-

tive of an IVF has been discussed in [16]. Recently, Ghosh et al. [18] introduced the concepts of

gH-Gâteaux and Fréchet derivatives for IVFs with the help of linear IVFs. Further, researchers have

also discussed concepts of differential equations with IVFs [1, 7, 32, 34]. In order to study the interval

fractional differential equations, Lupulescu [26] developed the theory of fractional calculus for IVFs.

In developing mathematical theory for optimization with IVFs, apart from calculus of IVFs, an

appropriate choice for ordering of intervals is necessary since the set of intervals is not linearly or-

dered [19] like the set of real numbers. Hence, the very definition of optimality gets differed than that

of conventional one. However, one can use some partial ordering structures on the set of intervals.

Some partial orderings of intervals are discussed by Ishibuchi and Tanka in their 1990 paper [24].

By making use of these partial orderings and H-differentiability, Wu [34] proposed KKT optimality

conditions for an IOP. In a set of two papers, Wu [35, 36] solved four types of IOPs and presented

weak and strong duality theorems for IOPs by using H-differentiability. Chalco-Cano et al. [5] used

a more general concept of differentiability (gH-differentiability) and provided KKT type optimality

conditions for IOPs. Singh et al. [30] investigated a class of interval-valued multiobjective program-

ming problems and proposed the concept of Pareto optimal solutions for this class of optimization

problems. Unlike the earlier approaches, in 2017, Osuna-Gómez et al. [28] provided efficiency con-

ditions for an IOP without converting it into a real-valued optimization problem. In 2018, Zhang et

al. [37] and Gong et al. [22] proposed genetic algorithms to solve IOPs. Ghosh et al. [21] reported

generalized KKT conditions to obtain the solution of constrained IOPs. Many other authors have also

proposed optimality conditions and solution concepts for IOP, for instances, see [1, 16, 20, 33] and

the references therein.

1.1. Motivation and Work Done

So far, all the solution concepts in interval analysis to find minima of an IVF are for those IVFs

that are gH-continuous and gH-differentiable. However, while modeling the real-world problems,

we may get an objective function that is neither gH-differentiable nor gH-continuous1. We thus, in

this study, introduce the notions of gH-semicontinuity and give results which guarantees the exis-

tence of a minima and an approximate minima for an IVF which need not be gH-differentiable or

gH-continuous.

For a nonsmooth optimization problem, it is not always easy to find an exact optima [14]. In

such situations, one attempts to find approximate optima. It is a well-known fact that Ekeland’s

variational principle [10] is helpful to give approximate solutions [14]. Also, it is widely known that

in the conventional and vector optimization problems, the concept of weak sharp minima [3] plays

an important role. It is closely related to sensitive analysis and convergence analysis of optimization

problems [4, 23]. Ekeland’s variational principle is a useful tool to show the existence of weak sharp

minima for a constrained optimization problem with nonsmooth objective function [14]. Moreover,

Ekeland’s variational principle [10] is one of the most powerful tools for nonlinear analysis. It has

1Analytical models of some interesting real-world problems with neither differentiable nor continuous objective func-

tions can be found in Clarke’s book [9].
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applications in different areas including optimization theory, fixed point theory, and global analysis,

for instances, see [2, 11, 12, 13, 15, 25, 29]. Due to all these wide applications of Ekeland’s variational

principle in different areas, especially in nonsmooth optimization and control theory, we attempt to

study this principle for gH-lower semicontinuous IVFs in this article. Further, we also give Ekeland’s

variational principle for gH-Gâteaux differentiable IVFs.

1.2. Delineation

The proposed study is presented in the following manner. In Section 2, basic terminologies and

definitions on intervals and IVFs are provided. In Section 3, we define gH-semicontinuity for IVFs

and give a characterization for gH-continuity of an IVF in terms of gH-lower and upper semiconti-

nuity. Also, we give a characterization of gH-lower semicontinuity, and using this we prove that an

extended gH-lower semicontinuous, level-bounded and proper IVF attains its minimum. Further, a

characterization of the set argument minimum of an IVF is given. After that, we present Ekeland’s

variational principle for IVFs and its application in Section 4. Lastly, the conclusion and future scopes

are given in section 5.

2. Preliminaries and Terminologies

In this article, the following notations are used.

• R denotes the set of real numbers

• R+ denotes the set of nonnegative real numbers

• I(R) represents the set of all closed and bounded intervals

• Bold capital letters are used to represent the elements of I(R)

• I(R) = I(R) ∪ {−∞,+∞}

• 0 represents the interval [0, 0]

• X denotes a finite dimensional Banach space

• Bδ(x̄) is an open ball of radius δ centered at x̄.

Consider two intervals A = [a, a] and B =
[

b, b
]

. The addition of A and B, denoted A ⊕ B, is

defined by

A ⊕ B =
[

a+ b, a+ b
]

.

The addition of A and a real number a, denoted A ⊕ a, is defined by

A ⊕ a = A ⊕ [a, a] = [ a+ a, a+ a ] .

The subtraction of B from A, denoted A ⊖ B, is defined by

A ⊖ B =
[

a− b, a− b
]

.

The multiplication by a real number µ to A, denoted µ⊙ A or A ⊙ µ, is defined by

µ⊙ A = A ⊙ µ =

{

[µa, µa], if µ ≥ 0

[µa, µa], if µ < 0.

3



Definition 2.1. (gH-difference of intervals [31]). Let A and B be two elements of I(R). The gH-

difference between A and B is defined as the interval C such that

C = A ⊖gH B ⇐⇒











A = B ⊕ C

or

B = A ⊖ C.

For A = [a, a] and B = [b, b], A ⊖gH B is given by (see [31])

A ⊖gH B = [min{a− b, a− b},max{a− b, a− b}].

Also, if A = [a, a] and a be any real number, then we have

A ⊖gH a = A ⊖gH [a, a] = [min{a− a, a− a},max{a− a, a− a}].

Definition 2.2. (Dominance of intervals [36]). Let A = [a, a] and B = [b, b] be two elements of I(R).
Then,

(i) B is said to be dominated by A if a ≤ b and a ≤ b, and then we write A � B;

(ii) B is said to be strictly dominated by A if A � B and A 6= B, and then we write A ≺ B.
Equivalently, A ≺ B if and only if any of the following cases hold:

• Case 1. a < b and a ≤ b,

• Case 2. a ≤ b and a < b,

• Case 3. a < b and a < b;

(iii) if neither A � B nor B � A, we say that none of A and B dominates the other, or A and B are

not comparable. Equivalently, A and B are not comparable if either ‘a < b and a > b’ or ‘a > b
and a < b’;

(iv) B is said to be not dominated by A if either B � A or A and B are not comparable, and then we

write A ⊀ B. Similarly, a real number a is said to be not dominated by A if either [a, a] � A or

A and [a, a] are not comparable, and then we write A ⊀ a.

Remark 1. By Definition 2.2, it is easy to see that for any A, B ∈ I(R) either A ≺ B or A ⊀ B.

In the following two lemmas, we give a few inequalities about intervals and their norms. The

norm of an interval A = [a, ā] is defined by (see [27])

‖A‖I(R) = max{|a|, |ā|}.

It is noteworthy that the set I(R) equipped with the norm ‖.‖I(R) is a normed quasilinear space with

respect to the operations ⊕,⊖gH and ⊙ (see [26]).

Lemma 2.3. Let A, B, C and D be elements of I(R). Then,

(i) ‖A ⊕ B‖I(R) ≤ ‖A‖I(R) + ‖B‖I(R)
(

triangle inequality for the elements of I(R)
)

,
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(ii) if A � C and B � D, then A ⊕ B � C ⊕ D,

Proof. See Appendix A.

Lemma 2.4. (Properties of the elements of I(R) under gH-difference). For all elements A, B, C, D ∈
I(R) and ǫ > 0, we have

(i) ‖A ⊖gH B‖I(R) < ǫ ⇐⇒ B ⊖gH [ǫ, ǫ] ≺ A ≺ B ⊕ [ǫ, ǫ],

(ii) A ⊖gH [ǫ, ǫ] ⊀ B =⇒ A � B,

Proof. See Appendix B.

Definition 2.5. (Infimum of a subset of I(R)). Let S ⊆ I(R). An interval Ā ∈ I(R) is said to be a

lower bound of S if Ā � B for all B in S. A lower bound Ā of S is called an infimum of S if for all

lower bounds C of S in I(R), C � Ā. We denote infimum of S by inf S.

Example 2.6. Let S =
{[

1
n
, 1
]

: n ∈ N
}

. The set of lower bounds of S is

{[α, β] : −∞ < α ≤ 0 and −∞ < β ≤ 1}.

Therefore, the infimum of S is [0, 1] because [α, β] � [0, 1] for all −∞ < α ≤ 0 and −∞ < β ≤ 1.

Definition 2.7. (Supremum of a subset of I(R)). Let S ⊆ I(R). An interval Ā ∈ I(R) is said to be

an upper bound of S if B � Ā for all B in S. An upper bound Ā of S is called a supremum of S if for

all upper bounds C of S in I(R), Ā � C. We denote supremum of S by sup S.

Example 2.8. Let S =
{[

1
n2 + 1, 3

]

: n ∈ N
}

. The set of upper bounds of S is

{[α, β] : 2 ≤ α < +∞ and 3 ≤ β < +∞}.

Therefore, the supremum of S is [2, 3] because [2, 3] � [α, β] for all 2 ≤ α < +∞ and 3 ≤ β < +∞.

Remark 2. Let S =
{

[aα, bα] ∈ I(R) : α ∈ Λ and Λ being an index set
}

. Then, by Definition 2.5

and 2.7, it follows that inf S =

[

inf
α∈Λ

aα, inf
α∈Λ

bα

]

and sup S =

[

sup
α∈Λ

aα, sup
α∈Λ

bα

]

. It is evident that if

inf S and sup S exist for an S, then they are unique.

Note 1. Infimum and supremum of a subset of I(R) may not exist. For instance, consider S =
{[−2,−1], [−3,−1], [−4,−1], · · · }. Here, S has no lower bound in I(R) as {−2,−3,−4, · · · } has

no lower bound in R. Therefore, infimum of S does not exist in I(R).

Remark 3. (i) It is noteworthy that infimum and supremum of a subset of I(R) always exist in

I(R). For instance, consider S as in Note 1. Here, infimum of S does not exist in I(R) but exists

in I(R). Note that infimum of S is −∞.

(ii) Infimum and supremum of a finite subset S of real numbers always belong to the set S but

this is not true for a finite subset of I(R). For instance, consider S = {[−2, 4], [−1, 3]}. Then,

inf S = [−2, 3] and sup S = [−1, 4].
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Definition 2.9. (Infimum of an IVF). Let S be a nonempty subset of X and F : S → I(R) be an

extended IVF. Then infimum of F, denoted as inf
x∈S

F(x) or inf
S

F, is equal to the infimum of the range

set of F, i.e.,

inf
S

F = inf{F(x) : x ∈ S}.

Similarly, the supremum of an IVF is defined by

sup
S

F = sup{F(x) : x ∈ S}.

Definition 2.10. (Sequence in I(R)). An IVF F : N → I(R) is called a sequence in I(R). The image

of nth element, F(n), is said to be the nth element of the sequence F. We denote a sequence F by

{F(n)}.

Example 2.11. (i) F : N → I(R) that is defined by F(n) = [n, n+ 1] is a sequence.

(ii) F : N → I(R) that is defined by F(n) =
[

n
4
, n
2

]

is also a sequence.

Definition 2.12. (Convergence of a sequence in I(R)).

1. A sequence {F(n)} is said to converge to L ∈ I(R) if for each ǫ > 0, there exists an integer

m > 0 such that

‖F(n)⊖gH L‖I(R) < ǫ for all n ≥ m.

The interval L is called limit of the sequence {F(n)} and is presented by lim
n→+∞

F(n) = L or

F(n) → L.

2. We say the limit of a sequence {F(n)} is +∞ if for every real number a > 0, there exists an

integer m > 0 such that

[a, a] ≺ F(n) for all n ≥ m.

3. We say the limit of a sequence {F(n)} is −∞ if for every real number a > 0, there exists an

integer m > 0 such that

F(n) ≺ [−a,−a] for all n ≥ m.

Example 2.13. Consider the sequence F(n) =
[

1
n
, 1
]

, n ∈ N, in I(R).
Let ǫ > 0 be given. Note that

‖F(n)⊖gH [0, 1]‖I(R) =

∥

∥

∥

∥

[

1

n
, 1

]

⊖gH [0, 1]

∥

∥

∥

∥

I(R)

=

∥

∥

∥

∥

[

0,
1

n

]
∥

∥

∥

∥

I(R)

=
1

n
< ǫ whenever n >

1

ǫ
.

So, by taking m = ⌊1
ǫ
⌋+ 1, where ⌊·⌋ is the floor function, we have

‖F(n)⊖gH [0, 1]‖I(R) < ǫ for all n ≥ m.

Thus, lim
n→+∞

F(n) = L = [0, 1].
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Note 2. Let {F(n)} be a sequence in I(R) with F(n) =
[

f(n), f(n)
]

, where
{

f(n)
}

and
{

f(n)
}

be

two convergent sequences in R. Then, {F(n)} is convergent and

lim
n→+∞

F(n) =

[

lim
n→+∞

f(n), lim
n→+∞

f(n)

]

.

The reason is as follows.

Suppose f(n) and f(n) are convergent sequences with limits l1 and l2, respectively. Then, for

each ǫ > 0, there exist positive integers m1 and m2 such that
∣

∣f(n)− l1
∣

∣ < ǫ for all n ≥ m1, and
∣

∣f(n)− l2
∣

∣ < ǫ for all n ≥ m2

⇐⇒ max
{
∣

∣f(n)− l1
∣

∣ ,
∣

∣f(n)− l2
∣

∣

}

< ǫ for all n ≥ m, where m = max{m1, m2}

⇐⇒
∥

∥

[

f(n), f(n)
]

⊖gH [l1, l2]
∥

∥

I(R)
< ǫ for all n ≥ m

i.e., ‖F(n)⊖gH [l1, l2]‖I(R) < ǫ for all n ≥ m.

Thus,

lim
n→+∞

F(n) = [l1, l2] =

[

lim
n→+∞

f(n), lim
n→+∞

f(n)

]

.

Definition 2.14. (Bounded sequence in I(R)). A sequence {F(n)} is said to be bounded above if

there exists an interval K1 ∈ I(R) such that

F(n) � K1 for all n ∈ N.

A sequence {F(n)} is said to be bounded below if there exists an interval K2 ∈ I(R) such that

K2 � F(n) for all n ∈ N.

A sequence {F(n)} is said to be bounded if it is both bounded above and below.

Definition 2.15. A sequence {F(n)} is said to be monotonic increasing sequence if F(n) � F(n+1)
for all n ∈ N.

Lemma 2.16. A bounded above monotonic increasing sequence of intervals is convergent and con-

verges to its supremum.

Proof. Let {F(n)} be a bounded above monotonic increasing sequence and M be its supremum.

Then, by Definition 2.7, we have

(i) F(n) � M for all n ∈ N and

(ii) for a given ǫ > 0, there exists an integer m > 0 such that M ⊖gH [ǫ, ǫ] ≺ F(m).

Since {F(n)} is a monotonic increasing sequence,

M ⊖gH [ǫ, ǫ] ≺ F(m) � F(m+ 1) � F(m+ 2) � · · · � M.

That is, M ⊖gH [ǫ, ǫ] ≺ F(m) ≺ M ⊕ [ǫ, ǫ] for all n ≥ m. Thus, the sequence {F(n)} is convergent

and lim
n→+∞

F(n) = M.
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Definition 2.17. (Limit inferior and limit superior of a sequence in I(R)). Let {F(n)} be a sequence.

The limit inferior of {F(n)}, denoted lim inf F(n), is defined by

lim inf F(n) = lim
n→+∞

inf{F(n),F(n+ 1),F(n + 2), · · · }.

Similarly, limit superior of {F(n)} is defined by

lim supF(n) = lim
n→+∞

sup{F(n),F(n+ 1),F(n + 2), · · · }.

Example 2.18. Consider the following sequence in I(R):

F(n) =

{

[

1
n2 ,

1
n2 + 1

]

if n is odd

[n, n2 + 1] if n is even.

It is easy to see that inf
n∈N

[

1
n2 ,

1
n2 + 1

]

= [0, 1] and inf
n∈N

[n, n2 + 1] = [1, 2]. Therefore,

lim
n→+∞

inf{F(n),F(n + 1),F(n+ 2), · · · } = [0, 1] and hence, lim inf F(n) = [0, 1].

Note that sup
n∈N

[

1
n2 ,

1
n2 + 1

]

= [1, 2] and sup
n∈N

[n, n2 + 1] = +∞. Thus,

lim
n→+∞

sup{F(n),F(n + 1),F(n+ 2), · · · } = +∞ and hence, lim supF(n) = +∞.

3. gH-continuity and gH-semicontinuity of Interval-valued Functions

In this section, we define gH-lower and gH-upper semicontinuity for extended IVFs and show

that gH-continuity of an IVF implies gH-lower and upper semicontinuity and vice-versa. Further,

we give a characterization of gH-lower semicontinuity in terms of the level sets of the IVF (Theorem

3.20) and use this to prove that an extended gH-lower semicontinuous, level-bounded and proper IVF

attains its minimum (Theorem 3.24). We also give a characterization of the set argument minimum of

an IVF (Theorem 3.25).

Throughout this section, an extended IVF is an IVF wih domain X and codomain I(R).

Definition 3.1. (gH-limit of an IVF). Let F : S → I(R) be an IVF on a nonempty subset S of X .

The function F is called tending to a limit L ∈ I(R) as x tends to x̄, denoted by lim
x→x̄

F(x), if for each

ǫ > 0, there exists a δ > 0 such that

‖F(x)⊖gH L‖I(R) < ǫ whenever 0 < ‖x− x̄‖X < δ.

Definition 3.2. (gH-continuity). Let F : S → I(R) be an IVF on a nonempty subset S of X . The

function F is said to be gH-continuous at x̄ ∈ S if for each ǫ > 0, there exists a δ > 0 such that

‖F(x)⊖gH F(x̄)‖I(R) < ǫ whenever ‖x− x̄‖X < δ.
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Definition 3.3. (Lower limit and gH-lower semicontinuity of an extended IVF). The lower limit of an

extended IVF F at x̄ ∈ X , denoted lim inf
x→x̄

F(x), is defined by

lim inf
x→x̄

F(x) = lim
δ↓0

(inf{F(x) : x ∈ Bδ(x̄)})

= sup
δ>0

(inf{F(x) : x ∈ Bδ(x̄)}) .

F is called gH-lower semicontinuous (gH-lsc) at a point x̄ if

F(x̄) � lim inf
x→x̄

F(x). (3.1)

Further, F is called gH-lsc on X if (3.1) holds for every x̄ ∈ X .

Example 3.4. Consider the following IVF F : R2 → I(R):

F(x1, x2) =







[1, 2]⊙ sin
(

1
x1

)

⊕ cos2 x2 if x1x2 6= 0

[−2,−1] if x1x2 = 0.

The lower limit of F at (0, 0) is given by

lim inf
(x1,x2)→(0,0)

F(x1, x2) = lim
δ↓0

(inf{F(x1, x2) : (x1, x2) ∈ Bδ(0, 0)}) .

Note that as x1 → 0, sin
(

1
x1

)

oscillates between −1 and 1. Therefore, for any δ > 0,

inf
(x1,x2)∈Bδ(0,0)

F(x1, x2) = [1, 2]⊙ (−1) = [−2,−1].

Also, note that when (x1, x2) = (0, 0), F(x1, x2) = [−2,−1]. Thus,

lim inf
(x1,x2)→(0,0)

F(x1, x2) = [−2,−1].

Since F(0, 0) = [−2,−1] � [−2,−1] = lim inf
(x1,x2)→(0,0)

F(x1, x2), the function F is gH-lsc at (0, 0).

Note 3. Let F be an extended IVF with F(x) =
[

f(x), f(x)
]

, where f, f : X → R ∪ {−∞,+∞}

be two extended real-valued functions. Then, F is gH-lsc at x̄ ∈ X if and only if f and f both are lsc

at x̄. The reason is as follows.

f and f are lsc at x̄ ⇐⇒ f(x̄) ≤ lim inf
x→x̄

f(x) and f(x̄) ≤ lim inf
x→x̄

f(x)

⇐⇒
[

f(x̄), f(x̄)
]

�
[

lim inf
x→x̄

f(x), lim inf
x→x̄

f(x)
]

⇐⇒
[

f(x̄), f(x̄)
]

� lim inf
x→x̄

[

f(x), f(x)
]

, by Remark 2

i.e., F(x̄) � lim inf
x→x̄

F(x).
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Note 3 reduces our efforts to check gH-lower semicontinuity of extended IVFs that are given in

the form F(x) =
[

f(x), f(x)
]

. For example, consider F : R2 → I(R) as

F(x1, x2) =







[

|x1x2|
2x1

2+x2
2 ,

e|6x1x2|

x1
2+x2

2

]

if x1x2 6= 0

0 if x1x2 = 0

and take x̄ = (0, 0). It is easy to see that both

f(x1, x2) =

{

|x1x2|
2x1

2+x2
2 if x1x2 6= 0

0 if x1x2 = 0

and

f(x1, x2) =

{

e|6x1x2|

x1
2+x2

2 if x1x2 6= 0

0 if x1x2 = 0

are lsc at x̄. Thus, by Note 3, F is gH-lsc at x̄.

Theorem 3.5. Let F be an extended IVF. Then, F is gH-lsc at x̄ ∈ X if and only if for each ǫ > 0,

there exists a δ > 0 such that F(x̄)⊖gH [ǫ, ǫ] ≺ F(x) for all x ∈ Bδ(x̄).

Proof. Let F be gH-lsc at x̄.

To the contrary, suppose there exists an ǫ0 > 0 such that for all δ > 0, F(x̄) ⊖gH [ǫ0, ǫ0] ⊀ F(x)
for atleast one x in Bδ(x̄).

Then,

F(x̄)⊖gH [ǫ0, ǫ0] ⊀ inf{F(x) : x ∈ Bδ(x̄)} for all δ > 0

=⇒ F(x̄)⊖gH [ǫ0, ǫ0] ⊀ lim
δ↓0

(inf{F(x) : x ∈ Bδ(x̄)})

=⇒ F(x̄)⊖gH [ǫ0, ǫ0] ⊀ lim inf
x→x̄

F(x)

=⇒ F(x̄) � lim inf
x→x̄

F(x), by (ii) of Lemma 2.4,

which contradicts that F is gH-lsc at x̄. Thus, for each ǫ > 0, there exists a δ > 0 such that

F(x̄)⊖gH [ǫ, ǫ] ≺ F(x) for all x ∈ Bδ(x̄).

Conversely, suppose for a given ǫ > 0, there exists a δ > 0 such that F(x̄) ⊖gH [ǫ, ǫ] ≺
F(x) for all x ∈ Bδ(x̄). Then,

F(x̄)⊖gH [ǫ, ǫ] � inf{F(x) : x ∈ Bδ(x̄)}

=⇒ F(x̄)⊖gH [ǫ, ǫ] � lim
δ↓0

(inf{F(x) : x ∈ Bδ(x̄)})

=⇒ F(x̄)⊖gH [ǫ, ǫ] � lim inf
x→x̄

F(x).

As, F(x̄)⊖gH [ǫ, ǫ] � lim inf
x→x̄

F(x) for every ǫ > 0, we have F(x̄) � lim inf
x→x̄

F(x). Thus, F is gH-lsc at x̄.
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Definition 3.6. (Upper limit and gH-upper semicontinuity of an extended IVF). The upper limit of

an extended IVF F at x̄ ∈ X , denoted lim sup
x→x̄

F(x), is defined as

lim sup
x→x̄

F(x) = lim
δ↓0

(sup{F(x) : x ∈ Bδ(x̄)})

= inf
δ>0

(sup{F(x) : x ∈ Bδ(x̄)}) .

F is called gH-upper semicontinuous (gH-usc) at x̄ if

lim sup
x→x̄

F(x) � F(x̄). (3.2)

Further, F is called gH-usc on X if (3.2) holds for every x̄ ∈ X .

Note 4. Let F be an extended IVF with F(x) =
[

f(x), f(x)
]

, where f, f : X → R ∪ {−∞,+∞}
be two extended real-valued functions. Then, because of a similar reason as in Note 3, F is gH-usc at

x̄ ∈ X if and only if f and f are usc at x̄.

Theorem 3.7. Let F be an extended IVF. Then, F is gH-usc at x̄ ∈ X if and only if for each ǫ > 0,

there exists a δ > 0 such that F(x) ≺ F(x̄)⊕ [ǫ, ǫ] for all x ∈ Bδ(x̄).

Proof. Similar to the proof of Theorem 3.5.

Theorem 3.8. An extended IVF F is gH-continuous if and only if F is both gH-lower and upper

semicontinuous.

Proof. Let F be gH-continuous at x̄ ∈ X . Then, for each ǫ > 0, there exists a δ > 0 such that

‖F(x)⊖gH F(x̄)‖I(R) < ǫ for all x ∈ Bδ(x̄)

⇐⇒ F(x̄)⊖gH [ǫ, ǫ] ≺ F(x) ≺ F(x̄)⊕ [ǫ, ǫ] for all x ∈ Bδ(x̄), by (i) of Lemma 2.4

⇐⇒ F(x̄) is gH-lsc and gH-usc at x̄, by Theorems 3.5 and 3.7.

Definition 3.9. (Proper IVF). An extended IVF F is called a proper function if there exists an x̄ ∈ X
such that F(x̄) ≺ [+∞,+∞] and [−∞,−∞] ≺ F(x) for all x ∈ X .

Example 3.10. Consider the IVF F : R2 → I(R) that is given by F(x1, x2) = [x1, e
x1 + x2

2] .
Note that F(0, 0) = [0, 1] ≺ [+∞,+∞]. Also, [−∞,−∞] ≺ F(x1, x2) for all (x1, x2) ∈ R2.
Therefore, F is a proper function.

Lemma 3.11. Let F1 and F2 be two proper extended IVFs, and S be a nonempty subset of X . Then,

(i) inf
x∈S

F1(x)⊕ inf
x∈S

F2(x) � inf
x∈S

{F1(x)⊕ F2(x)} and

(ii) sup
x∈S

{F1(x)⊕ F2(x)} � sup
x∈S

F1(x)⊕ sup
x∈S

F2(x).
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Proof. Let α1 = inf
x∈S

F1(x) and α2 = inf
x∈S

F2(x). Then,

α1 � F1(x) for all x ∈ S and α2 � F2(x) for all x ∈ S

=⇒ α1 ⊕α2 � F1(x)⊕ F2(x) for all x ∈ S, by (ii) of Lemma 2.3

=⇒ α1 ⊕α2 � inf
x∈S

(F1(x)⊕ F2(x))

i.e., inf
x∈S

F1(x)⊕ inf
x∈S

F2(x) � inf
x∈S

{F1(x)⊕ F2(x)}.

Part (ii) can be similarly proved.

Theorem 3.12. Let F1 and F2 be two proper extended IVFs, and S be a nonempty subset of X . Then,

(i) lim inf
x→x̄

F1(x)⊕ lim inf
x→x̄

F2(x) � lim inf
x→x̄

(F1 ⊕ F2)(x) and

(ii) lim sup
x→x̄

(F1 ⊕ F2)(x) � lim sup
x→x̄

F1(x)⊕ lim sup
x→x̄

F2(x).

Proof.

lim inf
x→x̄

F1(x)⊕ lim inf
x→x̄

F2(x) = lim
δ↓0

inf
x∈Bδ(x̄)

F1(x)⊕ lim
δ↓0

inf
x∈Bδ(x̄)

F2(x), by Definition 3.3

� lim
δ↓0

(

inf
x∈Bδ(x̄)

F1(x)⊕ inf
x∈Bδ(x̄)

F2(x)

)

� lim
δ↓0

inf
x∈Bδ(x̄)

(F1 ⊕ F2)(x), by (i) of Lemma 3.11

= lim inf
x→x̄

(F1 ⊕ F2)(x).

This completes the proof of (i).

Part (ii) can be similarly proved.

Theorem 3.13. Let F1 and F2 be two proper and gH-lsc extended IVFs. Then, F1 ⊕ F2 is gH-lsc.

Proof. Take x̄ ∈ X . Since F1 and F2 are gH-lsc at x̄, we have

F1(x̄) � lim inf
x→x̄

F1(x) and F2(x̄) � lim inf
x→x̄

F2(x)

=⇒ F1(x̄)⊕ F2(x̄) � lim inf
x→x̄

F1(x)⊕ lim inf
x→x̄

F2(x), by (ii) of Lemma 2.3

=⇒ (F1 ⊕ F2)(x̄) � lim inf
x→x̄

(F1 ⊕ F2)(x), by (i) of Theorem 3.12

=⇒ F1 ⊕ F2 is gH-lsc at x̄.

Since x̄ is arbitrarily chosen, so F1 ⊕ F2 is gH-lsc on X .

Lemma 3.14. (Characterization of lower limits of IVFs). Let F be an extended IVF. Then,

lim inf
x→x̄

F(x) = inf
{

α ∈ I(R) : there exists a sequence xk → x̄ with F(xk) → α
}

.
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Proof. Let ᾱ = lim inf
x→x̄

F(x). Assume that sequence xk → x̄ with F(xk) → α. In the below, we show

that ᾱ � α.

Since xk → x̄, for any δ > 0, there exists kδ ∈ N such that xk ∈ Bδ(x̄) for every k ≥ kδ.

Therefore,

inf{F(x) : x ∈ Bδ(x̄)} � F(xk) for any δ > 0

=⇒ inf{F(x) : x ∈ Bδ(x̄)} � lim
k→+∞

F(xk) for any δ > 0

=⇒ inf{F(x) : x ∈ Bδ(x̄)} � α for any δ > 0

=⇒ lim
δ↓0

inf{F(x) : x ∈ Bδ(x̄)} � α

=⇒ lim inf
x→x̄

F(x) = ᾱ � α.

Next, we show that there exists a sequence xk → x̄ with F(xk) → ᾱ.

Consider a nonnegative sequence {δk} with δk ↓ 0, and construct a sequence ᾱk = inf{F(x) :
x ∈ Bδk(x̄)}.

As δk ↓ 0, by Definition 3.3 of lower limit, ᾱk → ᾱ. Also, by definition of infimum, for a given

ǫ > 0 and k ∈ N, there exists xk ∈ Bδk(x̄) such that F(xk) � ᾱk. That is, ᾱk � F(xk) � αk, where

αk → ᾱ.

Note that xk ∈ Bδk(x̄) and δk ↓ 0. Therefore, as k → +∞, xk → x̄. Also, note that F(xk) is a

monotonic increasing bounded sequence and therefore, by Lemma 2.16, F(xk) converges to ᾱ, and

the proof is complete.

Lemma 3.15. (Characterization of upper limits of IVFs). Let F be an extended IVF. Then,

lim sup
x→x̄

F(x) = sup
{

α ∈ I(R) : there exists a sequence xk → x̄ with F(xk) → α
}

.

Proof. Similar to the proof of Lemma 3.14.

Definition 3.16. (Level set of an IVF). Let F be an extended IVF. For an α ∈ I(R), the level set of F,

denoted as levα⊀F, is defined by

levα⊀F = {x ∈ X : α ⊀ F(x)}.

Example 3.17. Consider F : R2 → I(R) as F(x) = [1, 2] ⊙ x1
2 ⊕ [3, 4] ⊙ ex2

2

and α = [−1, 10].
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Then,

levα⊀F =
{

(x1, x2) ∈ R2 : [−1, 10] ⊀ [1, 2]⊙ x1
2 ⊕ [3, 4]⊙ ex2

2

}

=
{

(x1, x2) ∈ R2 : [−1, 10] ⊀
[

x1
2 + 3ex2

2

, 2x1
2 + 4ex2

2

]}

=
{

(x1, x2) ∈ R2 :
[

x1
2 + 3ex2

2

, 2x1
2 + 4ex2

2

]

� [−1, 10] or

[−1, 10] and
[

x1
2 + 3ex2

2

, 2x1
2 + 4ex2

2

]

are not comparable
}

=
{

(x1, x2) ∈ R2 : [−1, 10] and
[

x1
2 + 3ex2

2

, 2x1
2 + 4ex2

2

]

are not comparable
}

=
{

(x1, x2) ∈ R2 : ‘x1
2 + 3ex2

2

< −1 and 2x1
2 + 4ex2

2

> 10’ or

‘x1
2 + 3ex2

2

> −1 and 2x1
2 + 4ex2

2

< 10’
}

=
{

(x1, x2) ∈ R2 : x1
2 + 3ex2

2

> −1 and 2x1
2 + 4ex2

2

< 10
}

=
{

(x1, x2) ∈ R2 : 2x1
2 + 4ex2

2

< 10
}

.

Hence,

levα⊀F =
{

(x1, x2) ∈ R2 : x1
2 + 2ex2

2

< 5
}

.

Definition 3.18. (Level-bounded IVF). An extended IVF F is said to be level-bounded if for any

α ∈ I(R), levα⊀F is bounded.

Lemma 3.19. Let F be an extended IVF and x̄ ∈ X . Then,

inf
{xk}

(lim inf F(xk)) ⊀ lim inf
x→x̄

F(x), (3.3)

where the infimum on the left-hand side is taken over all sequences xk → x̄.

Proof. Let M = lim inf
x→x̄

F(x) and L = inf
{xk}

lim inf F(xk).

If M = −∞, there is nothing to prove.

Next, let M = +∞. Let {xk} be an arbitrary sequence converging to x̄. We show that F(xk) →
+∞. Since M = +∞, for any given α > 0, there exists a δ > 0 such that [α, α] ≺ infx∈Bδ(x̄) F(x).
Since xk → x̄, there exists an integer m > 0 such that xk ∈ Bδ(x̄) for all n ≥ m. Thus,

[α, α] ≺ F(xk) for all n ≥ m, and hence F(xk) → +∞.

Finally, let [−∞,−∞] ≺ M ≺ [+∞,+∞], i.e., M ∈ I(R). Let, if possible, there exists an ǫ0 > 0
such that for all δ > 0, infx∈Bδ(x̄) F(x) � M ⊖gH [ǫ0, ǫ0]. Then,

lim
δ↓0

inf
x∈Bδ(x̄)

F(x) � M ⊖gH [ǫ0, ǫ0]

=⇒ lim inf
x→x̄

F(x) � M ⊖gH [ǫ0, ǫ0]

i.e., M � M ⊖gH [ǫ0, ǫ0],
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which is not true. Thus, for a given ǫ > 0, there exists a δ > 0 such that infx∈Bδ(x̄) F(x) � M⊖gH [ǫ, ǫ].
This implies F(x) � M ⊖gH [ǫ, ǫ] for all x ∈ Bδ(x̄).

Let {xk} be a sequence converging to x̄. Since xk ∈ Bδ(x̄) for large enough k, we have

lim inf F(xk) � M ⊖gH [ǫ, ǫ] for any ǫ > 0. Thus, lim inf F(xk) ⊀ M for any sequence converg-

ing to x̄, and hence L ⊀ M. Therefore, (3.3) holds.

Theorem 3.20. Let F be an extended IVF. Then, F is gH-lsc on X if and only if the level set levα⊀F

is closed for every α ∈ I(R).

Proof. Let F be gH-lsc on X . For a fixed α ∈ I(R), suppose that {xk} ⊆ levα⊀F such that xk → x̄.
Then,

α ⊀ F(xk)

=⇒ α ⊀ lim inf F(xk)

=⇒ α ⊀ lim inf
x→x̄

F(x), by Lemma 3.19

=⇒ α ⊀ F(x̄) since F is gH-lsc at x̄.

Thus, x̄ ∈ levα⊀F, and hence levα⊀F is closed.

Since α ∈ I(R) is arbitrarly chosen, levα⊀F is closed for every α ∈ I(R).

Conversely, suppose the level set levα⊀F is closed for every α ∈ I(R). Fix an x̄ ∈ X . To prove

that F is gH-lsc at x̄, we need to show that

F(x̄) � lim inf
x→x̄

F(x).

Let ᾱ = lim inf
x→x̄

F(x). The case of ᾱ = +∞ is trivial; so assume ᾱ ≺ [+∞,+∞].

By Lemma 3.14, there exists a sequence xk → x̄ with F(xk) → ᾱ. For any α such that ᾱ ≺ α, it

will eventually be true that α ⊀ F(xk), or in other words, that xk ∈ levα⊀F. Since levα⊀F is closed,

x̄ ∈ levα⊀F.

Thus, α ⊀ F(x̄) for every α such that ᾱ ≺ α, then ᾱ ⊀ F(x̄). Therefore, either F(x̄) � ᾱ or ᾱ

and F(x̄) are not comparable. But since ᾱ = lim inf
x→x̄

F(x), so ᾱ is comparable with F(x̄), and hence

F(x̄) � ᾱ.

Since x̄ ∈ X is arbitrarily chosen, F is gH-lsc on X . This completes the proof.

Definition 3.21. (Indicator function). Consider a subset S of X . The indicator function of S is defined

by

δS(s) =

{

0 if s ∈ S

+∞ if s /∈ S.
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Remark 4. (i) It is easy to see that δS is proper if and only if S is nonempty.

(ii) By Theorem 3.20, δS is gH-lsc if and only if S is closed.

Definition 3.22. (Argument minimum of an IVF). Let F be an extended IVF. Then, the argument

minimum of F, denoted as argmin
x∈X

F(x), is defined by

argmin
x∈X

F(x) =







{

x ∈ X : F(x) = inf
y∈X

F(y)
}

if inf
y∈X

F(y) 6= +∞

∅ if inf
y∈X

F(y) = +∞.

Example 3.23. Consider F : R2 → I(R) as F(x1, x2) =







[

− 1
|x1|

, e
− 1

|x1|
+x2

2
]

if x1 6= 0

[−∞, 0] if x1 = 0.
Then,

inf
(x1,x2)∈R2

F(x1, x2) = [−∞, 0].

argmin
x∈R2

F(x) =

{

(x1, x2) ∈ R2 : F(x1, x2) = inf
x∈R2

F(x1, x2) = [−∞, 0]

}

= {(0, x2) : x2 ∈ R}.

Therefore, argmin
x∈R2

F(x) = {(0, x2) : x2 ∈ R}.

Theorem 3.24. (Minimum attained by an extended IVF). Let F be gH-lsc, level-bounded and proper

extended IVF. Then, the set argminX F is nonempty and compact.

Proof. Let ᾱ = inf F. So, ᾱ ≺ [+∞,+∞] because F is proper.

Note that levα⊀F 6= ∅ for any α that satisfies ᾱ ≺ α ≺ [+∞,+∞]. Also, as F is level-bounded,

levα⊀F is bounded and by Theorem 3.20, it is also closed. Thus, levα⊀F is nonempty compact for

ᾱ ≺ α ≺ [+∞,+∞] and are nested as levα⊀F ⊆ levβ⊀F when α ≺ β. Therefore,
⋂

ᾱ≺α≺+∞

levα⊀F = levᾱ⊀F = argmin
X

F

is nonempty and compact.

Next, we present a theorem which gives a characterization of the argument minimum set of an

IVF in terms of gH-Gâteaux differentiability. An IVF F : X → I(R) is said to be gH-Gâteaux

differentiable (see [18]) at x̄ ∈ X if the limit

FG (x̄)(h) = lim
λ→0+

1

λ
⊙ (F(x̄+ λh)⊖gH F(x̄))

exists for all h ∈ X and FG (x̄) is a gH-continuous linear IVF from X to I(R). Then, we call FG (x̄)
as the gH-Gâteaux derivative of F at x̄.

Theorem 3.25. (Characterization of the set argument minimum of an IVF). Let F be an extended

IVF and x̄ ∈ argminx∈X F(x). If the function F has a gH-Gâteaux derivative at x̄ in every direction

h ∈ X , then

FG (x̄)(h) = 0 for all h ∈ X .

Proof. Observe that any x̄ ∈ argminx∈X F(x), is also an efficient point. Then, the proof follows from

proof of the Theorem 4.2 in [18].
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4. Ekeland’s Variational Principle and its Applications

In this section, we present the main results—Ekeland’s variational principle for IVFs along with

its application for gH-Gâteaux differentiable IVFs.

Lemma 4.1. Let x̄ ∈ X and A ∈ I(R). Then, {x ∈ X : A ⊀ ‖x− x̄‖X} is a bounded set.

Proof. Let A = [a, a]. Then,

{x ∈ X : A ⊀ ‖x− x̄‖X}

= {x ∈ X : [a, a] ⊀ ‖x− x̄‖X}

= {x ∈ X : ‖x− x̄‖X � [a, a] or ‘[a, a] and ‖x− x̄‖X are not comparable’}

= {x ∈ X : ‘‖x− x̄‖X ≤ a and ‖x− x̄‖X ≤ a’

or ‘[a, a] and ‖x− x̄‖X are not comparable’}

= {x ∈ X : ‘‖x− x̄‖X ≤ a’ or ‘‖x− x̄‖X < a and ‖x− x̄‖X > a’

or ‘‖x− x̄‖X > a and ‖x− x̄‖X < a’}

= {x ∈ X : ‖x− x̄‖X ≤ a or a < ‖x− x̄‖X < a},

which is a bounded set.

Hence, for any x̄ ∈ X and A ∈ I(R), {x ∈ X : A ⊀ ‖x− x̄‖X} is bounded.

Theorem 4.2. (Ekeland’s variational principle for IVFs). Let F : X → I(R) ∪ {+∞} be a gH-lsc

extended IVF and ǫ > 0. Assume that

inf
X

F is finite and F(x̄) ≺ inf
X

F ⊕ [ǫ, ǫ].

Then, for any δ > 0, there exists an x0 ∈ X such that

(i) ‖x0 − x̄‖X < ǫ
δ
,

(ii) F(x0) � F(x̄), and

(iii) argmin
x∈X

{F(x)⊕ δ‖x− x0‖X} = {x0}.

Proof. Let ᾱ = inf
X

F and F(x) = F(x)⊕ δ‖x− x̄‖X .

Since F is the sum of two gH-lsc and proper IVFs, F is gH-lsc by Theorem 3.13. Also,

levα⊀F =
{

x ∈ X : α ⊀ F(x)
}

= {x ∈ X : α ⊀ F(x)⊕ δ‖x− x̄‖X}

⊆ {x ∈ X : α ⊀ ᾱ⊕ δ‖x− x̄‖X}

=

{

x ∈ X :
α⊖gH ᾱ

δ
⊀ ‖x− x̄‖X

}

= {x ∈ X : A ⊀ ‖x− x̄‖X} , where A =
α⊖gH ᾱ

δ
.
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Therefore, by Lemma 4.1, F is level-bounded. Clearly, F is proper. Hence, by Theorem 3.24,

C = argminX F is nonempty and compact.

Let us consider the function F̃ = F ⊕ δC on X . Note that F̃ is proper and level-bounded. Since C
is nonempty and compact, so by Remark 4, δC is gH-lsc. Thus, by Theorem 3.13, F̃ is gH-lsc, and

hence by Theorem 3.24, argminX F̃ is nonempty.

Let x0 ∈ argminX F̃. Then, over the set C, F is minimum at x0.

Since x0 ∈ C, F(x0) ≺ F(x) for x /∈ C. This implies that for any x /∈ C,

F(x0)⊕ δ‖x0 − x̄‖X ≺ F(x)⊕ δ‖x− x̄‖X

=⇒ F(x0) ≺ F(x)⊕ δ‖x− x̄‖X ⊖gH δ‖x0 − x̄‖X .

Hence, F(x0) ≺ F(x)⊕ δ‖x − x0‖X for all x /∈ C with x 6= x0, and thus argminx∈X{F(x)⊕ δ‖x −
x0‖X} = {x0}.

Also, as x0 ∈ C, we have F(x0) � F(x̄), which implies

F(x0) � F(x̄) because F(x̄) = F(x̄)

=⇒ F(x0)⊕ δ‖x0 − x̄‖X � F(x̄)

=⇒ F(x0) � F(x̄)⊖gH δ‖x0 − x̄‖X

=⇒ F(x0) ≺ ᾱ⊕ [ǫ, ǫ]⊖gH δ‖x0 − x̄‖X because F(x̄) ≺ inf
X

F ⊕ [ǫ, ǫ]

=⇒ δ‖x0 − x̄‖X ≺ ᾱ⊕ [ǫ, ǫ]⊖gH F(x0)

=⇒ δ‖x0 − x̄‖X ≺ [ǫ, ǫ] because ᾱ⊖gH F(x0) � 0

=⇒ ‖x0 − x̄‖X <
ǫ

δ
.

This completes the proof.

Next, we give an application of Ekeland’s variational principle for IVFs. In order to do that we

need the concept of norm of a bounded linear IVF. By a bounded linear IVF (see [18]), we mean a

linear IVF G : X → I(R) for which there exists a nonnegative real number C such that

‖G(x)‖I(R)≤ C‖x‖X for all x ∈ X .

In the next lemma, we introduce norm for a bounded linear IVF.

Lemma 4.3. (Norm of a bounded linear IVF). Let G : X → I(R) be a bounded linear IVF. Then,

‖G‖ = sup
x∈X

‖x‖X=1

‖G(x)‖I(R)

is a norm on the set of all bounded linear IVFs on X .
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Proof. Observe that ‖G‖ ≥ 0 for any bounded linear IVF G and ‖G‖ = 0 if and only if G = 0. Let

γ ∈ R. We see that

‖γ ⊙ G‖

= sup
x∈X

‖x‖X=1

‖(γ ⊙ G)(x)‖I(R) = sup
x∈X

‖x‖X=1

|γ|‖G(x)‖I(R)

= |γ| sup
x∈X

‖x‖X=1

‖G(x)‖I(R) = |γ|‖G‖.

Further,

‖G1 ⊕G2‖ = sup
x∈X

‖x‖X=1

‖(G1 ⊕G2)(x)‖I(R)

= sup
x∈X

‖x‖X=1

‖G1(x)⊕G2(x)‖I(R)

≤ sup
x∈X

‖x‖X=1

(‖G1(x)‖I(R) + ‖G2(x)‖I(R)), by (i) of Lemma 2.3

= sup
x∈X

‖x‖X=1

‖G1(x)‖I(R) + sup
x∈X

‖x‖X=1

‖G2(x)‖I(R)

= ‖G1‖+ ‖G2‖.

Hence, the result follows.

Theorem 4.4. Let G : X → I(R) be a linear IVF. If G is gH-continuous on X , then G is a bounded

linear IVF.

Proof. By the hypothesis, G is gH-continuous at the zero vector of X . Therefore, by Lemma 4.2 in

[18], G is a bounded linear IVF.

As an application of Theorem 4.2, we give a variational principle for gH-Gâteaux differentiable

IVFs.

Theorem 4.5. (Variational principle for gH-Gâteaux differentiable IVFs). Let F : X → I(R) ∪
{+∞} be a gH-lsc and gH-Gâteaux differentiable extended IVF, and ǫ > 0. Suppose that

inf
X

F is finite and F(x̄) ≺ inf
X

F ⊕ [ǫ, ǫ].

Then, for any δ > 0, there exists an x0 ∈ X such that

(i) ‖x0 − x̄‖X < ǫ
δ
,

(ii) F(x0) � F(x̄), and

(iii) ‖FG (x0)‖ ≤ δ.
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Proof. By Theorem 4.2, there exists an x0 ∈ X that satisfies (i) and (ii), and x0 ∈ argminx∈X{F(x)⊕
δ‖x− x0‖X}. Therefore, F(x0) � F(x)⊕ δ‖x− x0‖X and hence

F(x0)⊖gH δ‖x− x0‖X � F(x). (4.1)

Take any h ∈ X and set x = x0 + th in the equation (4.1) with t > 0. Then, we get

F(x0)⊖gH δ‖th‖X � F(x0 + th).

Thus,

−δ‖h‖X �
1

t
⊙ (F(x0 + th)⊖gH F(x0)) .

Letting t → 0+, we get

−δ‖h‖X � FG (x0)(h).

Taking the infimum on both sides over all h ∈ X with ‖h‖X = 1, we get

−δ ≤ −‖FG (x0)‖, or, ‖FG (x0)‖ ≤ δ.

This completes the proof.

The importance of the Theorem 4.5 is that in the absence of points belonging to the set argminx∈X F(x),
we can capture a point x0 that almost minimizes F. In other words, the equations F(x0) = inf

X
F and

FG (x0) = 0 can be satisfied to any prescribed accuracy δ > 0.

5. Discussion and Conclusion

In this article, the concept of gH-semicontinuity (Definitions 3.3 and 3.6) has been introduced

for IVFs. Their interrelation with gH-continuity has been shown (Theorem 3.8). The concept of

sequence of intervals is used to give a characterization of lower and upper limits of extended IVFs

(Lemmas 3.14 and 3.15). By using a characterization of gH-lower semicontinuity for IVFs (Theorem

3.20), it has been reported that an extended gH-lsc, level-bounded and proper IVF always attains its

minimum (Theorem 3.24). A characterization of the set of argument minimum of an IVF has been

provided with the help of gH-Gâteaux differentiability (Theorem 3.25). We have further presented

Ekeland’s variational principle for IVFs (Theorem 4.2). The proposed Ekeland’s variational principle

has been applied to find variational principle for gH-Gâteaux differentiable IVFs (Theorem 4.5).

In this article, we have considered analyzing closed and bounded intervals and IVFs whose values

are closed and bounded intervals. A future study can be performed for other types of intervals. The

analysis for other types of intervals is important because if we do not restrict the study for closed

and bounded intervals the supremum of a set of closed and bounded intervals may become an open

interval. For instance, for S =
{[

1− 1
n
, 2− 1

n

]

: n ∈ N
}

, sup S = (1, 2).

Immediately in the next step, we shall consider to solve the following two problems as the appli-

cations of the proposed study.
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Problem 1. The applications of the proposed variational principles in control systems in imprecise

or uncertain environment will be shown shortly. Study of a control system in imprecise

environment eventually appears due to the incomplete information (e.g., demand for a

product) or unpredictable changes (e.g., changes in the climate) in the system. The gen-

eral control problem in an imprecise or uncertain environment that we shall consider to

study is the following:

min G(x(T ))

subject to
dx

dt
= F(t, x(t), u(t)),

x(0) = x0 ∈ C0, x(T ) ∈ C1,

where C0 and C1 are closed subsets of Rn; x : [0, T ] → Rn and u : [0, T ] → K
are state and control variables, respectively, for some metrizable subset K of Rn; F :
[0, T ]× Rn ×K → I(R) is a gH-continuous IVF and G : Rn → I(R) is a gH-Fréchet

differentiable IVF. To solve this system, the procedure adopted by Clarke in [8] may be

useful.

Problem 2. We shall attempt to give optimality conditions for the following IOP, where X and Y are

finite dimensional Banach spaces, C is a nonempty closed subset of X × Y , and S is a

closed convex subset of Y :

min F(x, y)

subject to gi(x, y) � 0, i = 1, 2, · · · , m,

hj(x, y) = 0, j = 1, 2, · · · , k,

(x, y) ∈ C,

y ∈ S,
〈

F (x, y), y − z
〉

≤ 0 for all z ∈ S,

where F : X × Y → I(R), gi : X × Y → I(R) ∪ {+∞}, i = 1, 2, · · · , m, hj :
X × Y → I(R) ∪ {+∞}, j = 1, 2, · · · , k, F : X × Y → Y , and

〈

F (x, y), y − z
〉

denotes an inner product of F (x, y) and y − z.

Also, with the help of the proposed Ekeland’s variational principle, in future, we shall try to investi-

gate the concept of weak sharp minima [3] for IVFs and use it for sensitivity analysis of IOPs.

In parallel to the research proposed on IVFs, the research of fuzzy-valued functions (FVFs) may be

another interesting path for future study. We hope that some FVF results would be similarly obtained

to this article.

Appendix A. Proof of the Lemma 2.3

Proof.

Proof of (i). Let A = [a, a] and B = [b, b]. Then,

‖A ⊕ B‖I(R) = ‖[a, a]⊕ [b, b]‖I(R) = ‖[a + b, a+ b]‖I(R) = max{|a+ b|, |a+ b|}.

We now have the following two possible cases.
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• Case 1. ‖A ⊕ B‖I(R) = |a+ b|.

Since |a+ b| ≤ |a|+ |b| ≤ max{|a|, |a|}+max{|b|, |b|} = ‖A‖I(R) + ‖B‖I(R),
we get ‖A ⊕ B‖I(R) ≤ ‖A‖I(R) + ‖B‖I(R).

• Case 2. ‖A ⊕ B‖I(R) = |a+ b|.

Since |a+ b| ≤ |a|+ |b| ≤ max{|a|, |a|}+max{|b|, |b|} = ‖A‖I(R) + ‖B‖I(R),
therefore, ‖A ⊕ B‖I(R) ≤ ‖A‖I(R) + ‖B‖I(R).

Hence, ‖A ⊕ B‖I(R) ≤ ‖A‖I(R) + ‖B‖I(R) for all A, B ∈ I(R).

Proof of (ii). Let A = [a, a], B = [b, b], C = [c, c] and D = [d, d].
We note that

A � C =⇒ [a, a] � [c, c] =⇒ a ≤ c and a ≤ c. (A.1)

Also,

B � D =⇒ [b, b] � [d, d] =⇒ b ≤ d and b ≤ d. (A.2)

From (A.1) and (A.2), we have

a+ b ≤ c + d and a+ b ≤ c+ d

=⇒ [a+ b, a+ b] � [c+ d, c+ d].

Thus, A ⊕ B � C ⊕ D.

Appendix B. Proof of the Lemma 2.4

Proof.

Proof of (i). Let A = [a, a], B = [b, b] and ǫ > 0.
A ⊖gH B = [a− b, a− b] or [a− b, a− b]. Let us now consider the following four possible cases.

• Case 1. A ⊖gH B = [a− b, a− b] and ‖A ⊖gH B‖I(R) = |a− b|.
So, we have

a− b ≤ a− b and |a− b| ≤ |a− b|. (B.1)

Let ‖A ⊖gH B‖I(R) < ǫ. Then,

|a− b| < ǫ. (B.2)

By equation (B.2), we have −ǫ < a− b < ǫ, and hence b− ǫ < a.
By equations (B.1) and (B.2), we have |a − b| < ǫ. This implies b − ǫ < a. Therefore,

B ⊖gH [ǫ, ǫ] = [b− ǫ, b− ǫ] ≺ [a, a] = A.
Note that by equation (B.2), a < b + ǫ. Also, by equations (B.1) and (B.2), we have

|a− b| < ǫ. This implies a < b+ ǫ. Therefore, A = [a, a] ≺ [b+ ǫ, b+ ǫ] = B ⊕ [ǫ, ǫ].
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• Case 2. A ⊖gH B = [a− b, a− b] and ‖A ⊖gH B‖I(R) = |a− b|.
So, we have

a− b ≤ a− b and |a− b| ≤ |a− b|. (B.3)

Consider

‖A ⊖gH B‖I(R) < ǫ

=⇒ |a− b| < ǫ (B.4)

By equation (B.4), we have

b− ǫ < a.

By equations (B.3) and B.4), we have |a − b| < ǫ. This implies b − ǫ < a. Therefore,

B ⊖gH [ǫ, ǫ] = [b− ǫ, b− ǫ] ≺ [a, a].
Note that by equation (B.4), a < b + ǫ. Also, by equations (B.3) and (B.4), we have

|a− b| < ǫ. This implies a < b+ ǫ. Therefore, A = [a, a] ≺ [b+ ǫ, b+ ǫ] = B ⊕ [ǫ, ǫ].

• Case 3. A ⊖gH B = [a− b, a− b] and ‖A ⊖gH B‖I(R) = |a− b|.
This case can be proved by following the steps similar to Case 1.

• Case 4. A ⊖gH B = [a− b, a− b] and ‖A ⊖gH B‖I(R) = |a− b|.
This case can be proved by following the steps similar to Case 2.

Conversely, let B ⊖gH [ǫ, ǫ] ≺ A ≺ B ⊕ [ǫ, ǫ].
Note that

B ⊖gH [ǫ, ǫ] ≺ A =⇒ [b− ǫ, b− ǫ] ≺ [a, a]

=⇒ b− ǫ < a and b− ǫ < a. (B.5)

Also,

A ≺ B ⊕ [ǫ, ǫ] =⇒ [a, a] ≺ [b+ ǫ, b+ ǫ]

=⇒ a < b+ ǫ and a < b+ ǫ. (B.6)

From equations (B.5) and (B.6), we have

b− ǫ < a < b+ ǫ and b− ǫ < a < b+ ǫ

=⇒ |a− b| < ǫ and |a− b| < ǫ

=⇒ max{|a− b|, |a− b|} < ǫ

i.e., ‖A ⊖gH B‖I(R) < ǫ.

This completes the proof of (i).

Proof of (ii). Let A = [a, a], B = [b, b] and ǫ > 0.
Consider A ⊖gH [ǫ, ǫ] ⊀ B. This implies [a − ǫ, a − ǫ] ⊀ [b, b]. Thus, ‘b ≤ a − ǫ and b ≤ a − ǫ’ or

‘b < a− ǫ and b > a− ǫ’ or ‘b > a− ǫ and b < a− ǫ’. Let us consider all these three possibilities in

the following three cases.
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• Case 1. b ≤ a− ǫ and b ≤ a− ǫ.
So, we have

a > b and a > b, because ǫ > 0

=⇒ B ≺ A =⇒ A � B.

• Case 2. b < a− ǫ and b > a− ǫ.
Since b < a− ǫ, so a > b, and thus A � B.

• Case 3. b > a− ǫ and b < a− ǫ.
Since b < a− ǫ, so a > b, and thus A � B.

Hence, proof of (ii) is complete.
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