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Abstract
In this work, we introduce a variational multi-scale (VMS) method for the numerical approx-
imation of parabolic problems, where sub-grid scales are approximated from the eigenpairs
of associated elliptic operator. The abstract method is particularized to the one-dimensional
advection-diffusion equations, for which the sub-grid components are exactly calculated in
terms of a spectral expansion when the advection velocity is approximated by piecewise
constant velocities on the grid elements.We prove error estimates that in particular imply that
when Lagrange finite element discretisations in space are used, the spectral VMS method
coincides with the exact solution of the implicit Euler semi-discretisation of the advection-
diffusion problem at the Lagrange interpolation nodes. We also build a feasible method to
solve the evolutive advection-diffusion problems by means of an offline/online strategy with
reduced computational complexity.We perform some numerical tests in good agreement with
the theoretical expectations, that show an improved accuracywith respect to several stabilised
methods.
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1 Introduction

The variational multi-scale is a general methodology to deal with the instabilities arising in
the Galerkin discretisation of PDEs (partial differential equations) with terms of different
derivation orders (see cf. Hughes 1995; Hughes and Stewart 1995; Hughes et al. 1998)).

The VMS formulation is based upon the formulation of the Galerkin method as two
variational problems, one satisfied by the resolved scales and another satisfied by the sub-
grid scales of the solution. To build a feasible VMS method, the sub-grid scales problem is
approximately solved by some analytic or computational procedure. In particular, an element-
wise diagonalisation of the PDE operator leads to the Adjoint Stabilised Method, as well
as to the Orthogonal Sub-Scales (OSS) method, introduced by Codina in Codina (2000).
Within these methods, the effect of the sub-grid scales is modelled by means of a dissipative
interaction of operator terms acting on the resolved scales. The VMS methods have been
successfully applied to many flow problems, and in particular to Large Eddy Simulation
(LES) models of turbulent flows (cf. Hughes et al. 2000; John 2006; Chacón Rebollo and
Lewandowski 2014).

The application of VMS method to evolution PDEs dates back to the 1990s, when the
results from Hughes (1995) were extended to nonsymmetric linear evolution operators, see
(Hughes and Stewart 1995). The papers (Harari 2004; Harari and Hauke 2007) deal with
the spurious oscillations generated in the Galerkin method for parabolic problems due to
very small time steps. The series of articles (Hauke and Doweidar 2005a, b, 2006) deal with
transient Galerkin and SUPGmethods, transient subgrid scale (SGS) stabilized methods and
transient subgrid scale/gradient subgrid scale (SGS/GSGS), making a Fourier analysis for
the one-dimensional advection-diffusion-reaction equation.

A stabilised finite element method for the transient Navier–Stokes equations based on the
decomposition of the unknowns into resolvable and subgrid scales is considered in Codina
(2002); Codina et al. (2007). Further, (Asensio et al. 2007) compares the Rothe method with
the so-called Method of Lines, which consists on first, discretise in space by means of a
stabilized finite element method, and then use a finite difference scheme to approximate the
solution.

More recently, (ChacónRebollo andDia 2015) introduced the use of spectral techniques to
model the sub-grid scales for 1D steady advection-diffusion equations. The basic observation
is that the eigenpairs of the advection-diffusion operator may be calculated analytically on
each grid element. A feasible VMS-spectral discretization is then built by truncation of
this spectral expansion to a finite number of modes. An enhanced accuracy with respect to
preceding VMS methods is achieved.

In Chacón Rebollo et al. (2020), the spectral VMS method is extended to 2D steady
advection-diffusion problems. It is cast for low-order elements as a standard VMS method
with specific stabilised coefficients, that are anisotropic in the sense that they depend on
two grid Péclet numbers. To reduce the computing time, the stabilised coefficients are pre-
computed at the nodes of a grid in an offline step, and then interpolated by a fast procedure
in the online computation.

The present paper deals with the building of the spectral VMS numerical approximation
to evolution advection-diffusion equations. We construct an abstract spectral VMS discreti-
sation of parabolic equations, that is particularised to 1D advection-diffusion equations. The

123



Spectral variational multi-scale method... Page 3 of 27 43

sub-grid components are exactly calculated in terms of spectral expansions when the driving
velocity is approximated by piecewise constant velocities on the grid elements. We prove
error estimates that in particular imply that when Lagrange finite element discretisations in
space are used, the solution provided by the spectral VMS method coincides with the exact
solution of the implicit Euler semi-discretisation at the Lagrange interpolation nodes. We
also build a feasible method to solve the evolutive advection-diffusion problem by means of
an offline/online strategy that pre-computes the action of the sub-grid scales on the resolved
scales. This allows to dramatically reduce the computing times required by the method. We
further perform some numerical tests for strongly advection dominated flows. The spec-
tral VMS method is found to satisfy the discrete maximum principle, even for very small
time steps. A remarkable increase of accuracy with respect to several stabilised methods is
achieved.

The outline of the paper is as follows. In Sect. 2, we describe the abstract spectral VMS
discretisation to linear parabolic problems, which is applied to transient advection-diffusion
problems in Sect. 3. A feasiblemethod is built in Sect. 4, based upon an offline/online strategy.
We present in Sect. 5 our numerical results, and address some conclusions in Sect. 6.

2 Spectral VMSmethod

In this section, we build the spectral VMS discretisation to abstract linear parabolic equation.
Let � a bounded domain in R

d and T > 0 a final time. Let us consider two separable
Hilbert spaces on �, X and H , so that X ⊂ H with dense and continuous embedding. We
denote (·, ·) the scalar product in X ; X ′ and H ′ are the dual topological spaces of X and
H , respectively, and 〈·, ·〉 is the duality pairing between X ′ and X . We identify H with its
topological dual H ′ so that X ⊂ H ≡ H ′ ⊂ X ′. Denote by L(X) the space of bilinear
bounded forms on X and consider b ∈ L1(0, T ;L(X)) uniformly bounded and X -elliptic
with respect to t ∈ (0, T ).

Given the data f ∈ L2(0, T ; X ′) and u0 ∈ H , we consider the following variational
parabolic problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find u ∈ L2((0, T ); X) ∩ C0([0, T ]; H) such that,

d

dt
(u(t), v) + b(t; u(t), v) = 〈 f (t), v〉 ∀ v ∈ X , in D′(0, T ),

u(0) = u0 in H .

(1)

It is well known that this problem is well posed and, in particular, admits a unique solution
(Dautray and Lions 1992). To discretize this problem, we proceed through the so-called
Horizontal Method of Lines (Asensio et al. 2007; Bernardi et al. 2004; Harari and Hauke
2007). First, we discretise in time by the Backward Euler scheme and then we apply a steady
spectral VMS method to the elliptic equations appearing at each time step.

Consider a uniform partition of the interval [0, T ], {0 = t0 < t1 < . . . < tN = T }, with
time-step size �t = T /N . The time discretization of problem (1) by the Backward Euler
scheme gives the following family of stationary problems: given the initialization u0 = u0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find un+1 ∈ X such that,
(
un+1 − un

�t
, v

)

+ bn+1(un+1, v) = �t 〈 f n+1, v〉 ∀ v ∈ X ,

∀ n = 0, 1, . . . , N − 1,

(2)
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where bn+1 and f n+1 are some approximations of b(t; ·, ·) and f (t), respectively, at t = tn+1.
To discretise in space problem (2), we assume that � is polygonal (when d = 2) or poly-

hedric (when d = 3), and consider a family of conforming and regular triangulations of �,
{Th}h>0, formed by simplicial elements, where the parameter h denotes the largest diameter
of the elements of the triangulation Th . The VMS method is based on the decomposition,

X = Xh ⊕ X̃ ,

where Xh is a continuous finite element sub-space of X constructed on the grid Th , and X̃
is a complementary, infinite-dimensional, sub-space of X . Notice that this is a multi-scale
decomposition of the space X , being Xh the large or resolved scale space and X̃ the small
or sub-grid scale space. This decomposition defines two projection operators Ph : X �→ Xh

and P̃ : X �→ X̃ , by

Ph(v) = vh, P̃(v) = ṽ, ∀ v ∈ X , (3)

where vh and ṽ are the unique elements belonging to Xh and X̃ , respectively, such that
v = vh + ṽ. Hence, one can decompose the solution of problem (2) as

un+1 = un+1
h + ũn+1,

where un+1
h = Ph(un+1) and ũn+1 = P̃(un+1) satisfy the coupled problem,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
un+1
h − unh

�t
, vh

)

+
(
ũn+1 − ũn

�t
, vh

)

+ bn+1(un+1
h , vh) + bn+1(ũn+1, vh) = 〈 f n+1, vh〉 (4.1)

(
un+1
h − unh

�t
, ṽ

)

+
(
ũn+1 − ũn

�t
, ṽ

)

+ bn+1(un+1
h , ṽ) + bn+1(ũn+1, ṽ) = 〈 f n+1, ṽ〉 (4.2)

∀vh ∈ Xh , ∀ṽ ∈ X̃ ,

for all n = 0, 1, . . . , N − 1. The small scales component ũn+1 thus satisfies,

(ũn+1, ṽ) + �t bn+1(ũn+1, ṽ) = 〈Rn+1(un+1
h ), ṽ〉 (4)

where 〈Rn+1(un+1
h ), ṽ〉 is the residual of the large scales component, defined as,

〈Rn+1(un+1
h ), ṽ〉 := (unh + ũn , ṽ) + �t 〈 f n+1, ṽ〉 − (un+1

h , ṽ) − �t bn+1(un+1
h , ṽ), ∀ ṽ ∈ X̃ .

In condensed notation, this may be written as,

ũn+1 = �n+1(Rn+1(un+1
h )), (5)

where

�n+1 : X̃ → X̃
g �→ �n+1(g) = G̃

is the static condensation operator on X̃ defined as,

(G̃, ṽ) + �t bn+1(G̃, ṽ) = 〈g, ṽ〉 ∀ ṽ ∈ X̃ , for any g ∈ X̃ ′.

Inserting expression (5) in the large scales equation (4.1), leads to the condensed VMS
formulation of problem (2):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find un+1
h ∈ Xh such that

(un+1
h , vh ) + �t bn+1(un+1

h , vh ) + (�n+1(Rn+1(un+1
h )), vh ) + �t bn+1(�n+1(Rn+1(un+1

h )), vh )

= �t 〈 f n+1, vh 〉 + (unh + �n (Rn (unh )), vh )

∀ vh ∈ Xh , ∀ n = 0, 1, . . . , N − 1,

(6)
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with u0h = Ph(u0). This problem is an augmented Galerkin formulation, where the additional
terms represent the effect of the small scales component of the solution (ũn+1) on the large
scales component (un+1

h ).
To build an approximation of the sub-grid scales, we use a spectral decomposition of the

operator associated to the variational formulation on each grid element, at each discrete time.
To apply this approximation to problem (6), the small scales space X̃ is approximated by the
“bubble” sub-spaces,

X̃  X̃h =
⊕

K∈Th

X̃K , with X̃K = {ṽ ∈ X̃ , such that supp(ṽ) ⊂ K }. (7)

Hence, we approximate

ũn+1  ũn+1
h =

∑

K∈Th

ũn+1
K , with ũn+1

K ∈ X̃K , ∀ n = 0, 1, . . . , N − 1. (8)

Then, problem (4) is approximated by the following family of decoupled problems,

(ũn+1
K , ṽK ) + �t bn+1(ũn+1

K , ṽK ) = 〈Rn+1(un+1
h ), ṽK 〉, ∀ ṽK ∈ X̃K , ∀ K ∈ Th . (9)

Let Ln+1 : X �→ X ′ be the operator defined by

〈Ln+1w, v〉 = bn+1(w, v), ∀ w, v ∈ X , (10)

and let Ln+1
K be the restriction of this operator to X̃K . Let us also consider the weighted L2

space,

L2
p(K ) = {w : K → R measurable such that p|w|2 ∈ L1(K )},

where p is some measurable real function defined on K , which is positive a.e. on K . This is
a Hilbert space endowed with the inner product

(w, v)p =
∫

K
p(x)w(x)v(x)dx .

We denote by ‖ · ‖p the norm on L2
p(K ) induced by this inner product.

Now, we can state the following result, which allows to compute the small scales on each
grid element by means a spectral expansion.

Theorem 2.1 Let us assume that there exists a complete sub-set {z̃n,K
j } j∈N on X̃K formed by

eigenfunctions of the operator Ln
K , which is an orthonormal system in L2

pn,K (K ) for some

weight function pn,K ∈ C1(K̄ ). Then,

ũnK =
∞∑

j=1

β
n,K
j rn,K

j z̃n,K
j , ∀ n = 1, . . . , N , (11)

where β
n,K
j = (�

n,K
j )−1, with �

n,K
j = 1 + �t λn,K

j being λ
n,K
j the eigenvalue of Ln

K

associated to z̃n,K
j , and

rn,K
j = 〈Rn(unh), p

n,K z̃n,K
j 〉.

This is a rather straightforward application of Theorem 1 in Chacón Rebollo and Dia (2015),
that we do not detail for brevity.
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Once the eigenpairs (z̃n+1,K
j , λ

n+1,K
j ) are known, the previous procedure allows us to

directly compute un+1
h from problem (6), approximating the sub-grid component ũn+1 by

expressions (8) and (11). This gives the spectral VMS method to fully discretize problem
(1). Namely,

⎧
⎪⎪⎨

⎪⎪⎩

Find un+1
h ∈ Xh such that

(un+1
h , vh) + �t bn+1(un+1

h , vh) + (ũn+1
h , vh) + �t bn+1(ũn+1

h , vh)

= �t 〈 f n+1, vh〉 + (unh, vh) + (ũnh, vh)∀ vh ∈ Xh, ∀ n = 0, 1, . . . , N − 1,

(12)

where,

ũn+1
h =

∑

K∈Th

∞∑

j=1

β
n+1,K
j 〈Rn+1

h (un+1
h ), pn+1,K z̃n+1,K

j 〉 z̃n+1,K
j , ∀ n = 0, . . . , N − 1, (13)

with

〈Rn+1
h (un+1

h ), ṽ〉 := (unh + ũnh , ṽ) + �t 〈 f n+1, ṽ〉 − (un+1
h , ṽ) − �t bn+1(un+1

h , ṽ), ∀ ṽ ∈ X̃ .

u0h = Ph(u0) and ũ0h ∈ X̃h some approximation of ũ0.

3 Application to transient advection-diffusion problems

In this section, we apply the abstract spectral VMS method introduced in the previous sec-
tion to transient advection-diffusion equations, that we state with homogeneous boundary
conditions,

⎧
⎨

⎩

∂t u + a · ∇u − μ�u = f in � × (0, T ),

u = 0 on ∂� × (0, T ),

u(0) = u0 on �,

(14)

where a ∈ L∞(0, T ;W 1,∞(�))d is the advection velocity field, μ > 0 is the diffusion
coefficient, f ∈ L2((0, T ); L2(�)) is the source term and u0 ∈ L2(�) is the initial data.
Different boundary conditionsmay be treated as well, as these also fit into the general spectral
VMS method introduced in the previous section.

The weak formulation of problem (14) reads,

⎧
⎪⎨

⎪⎩

Find u ∈ L2((0, T ); H1
0 (�)) ∩ C0([0, T ]; L2(�)) such that,

d

dt
(u(t), v) + (a · ∇u(t), v) + μ(∇u(t),∇v) = 〈 f (t), v〉 ∀ v ∈ H1

0 (�),

u(0) = u0.

(15)

Problem (15) admits the abstract formulation (1) with H = L2(�), X = H1
0 (�) and

b(w, v) = (a · ∇w, v) + μ(∇w,∇v), ∀ w, v ∈ H1
0 (�).
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In practice, we replace the velocity field a by ah , the piecewise constant function defined
a. e. on � such that ah = aK on the interior of each element K ∈ Th . Then, we apply the
spectral VMS method to the approximated problem,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find Un+1 ∈ H1
0 (�) such that

(
Un+1 −Un

�t
, v

)

+ (an+1
h · ∇Un+1, v) + μ(∇Un+1, ∇v) = 〈 f n+1, v〉, ∀ v ∈ H1

0 (�),

∀ n = 0, 1, . . . , N − 1,

(16)

with u0 = u0.
In this case, Lnw = anh · ∇w − μ�w is the advection–diffusion operator. Proposition 1

in Chacón Rebollo and Dia (2015) proved that the eigenpairs (w̃
n,K
j , λ

n,K
j ) of operator Ln

K

can be obtained from the eigenpairs (W̃ K
j , σ K

j ) of the Laplace operator in H1
0 (K ), in the

following way:

w̃
n,K
j = ψn,K W̃ K

j , ψn,K (x) = exp
(

1
2μ anK · x

)

λ
n,K
j = μ

(

σ K
j + |anK |2

4μ2

)

, ∀ j ∈ N.
(17)

Moreover, for the weight function

pn,K (x) = (ψn,K )−2 = exp

(

− 1

μ
aK · x

)

(18)

the sequence

z̃n,K
j = w̃

n,K
j

‖w̃n,K
j ‖pn,K

, ∀ j ∈ N, (19)

is a complete and orthonormal system in L2
pn,K (K ) (see Theorem 2 in Chacón Rebollo and

Dia (2015)). Then, Theorem 2.1 holds and it is possible to apply the method (12) to problem
(16).

3.1 One dimensional problems

The eigenpairs of the Laplace operator can be exactly computed for grid elements with simple
geometrical forms, as it is the case of parallelepipeds. In the 1D case, the elements K ∈ Th
are closed intervals, K = [a, b]. The eigenpairs (W̃ K

j , σ K
j ) are solutions of the problem

{−∂xx W̃ K = σ K W̃ K in K ,

W̃ K (a) = W̃ K (b) = 0.

Solutions of this problem are

W̃ K
j = sin

(√

σ K
j (x − a)

)
, σ K

j =
(
jπ

hK

)2

, with hK = b − a, for any j ∈ N.

As the function pn,K defined in (18) is unique up to a constant factor, to express the eigenpairs
in terms of non-dimensional parameters, we replace pn,K by (we still denote it in the same
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way),

pn,K (x) = exp

(

−2 Pn,K
x − a

hK

)

, (20)

where Pn,K = |anK | hK
2μ

is the element Péclet number. Then, from expressions (17) and (19),

z̃n,K
j =

√
2

hK
exp

(

Pn,K
x − a

hK

)

sin

(

jπ
x − a

hK

)

, λK
j = μ

(
jπ

hK

)2

+ |anK |2
4μ

. (21)

It follows

β
n,K
j = 1

1 + SK (P2
n,K + π2 j2)

for any j ∈ N, (22)

where SK = �t μ

h2K
is a non-dimensional parameter that represents the relative strength of

the time derivative and diffusion terms in the discrete equations, at element K .

Error analysis

We afford in this section the error analysis for the solution of the 1D evolutive convection-
diffusion problem by the spectral VMS method (12).

Let {αi }Ii=0 ∈ �̄ be the Lagrange interpolation nodes of space Xh . Let ωi = (αi−1, αi ),
i = 1, . . . , I . Setting X̃i = H1

0 (ωi ), it holds,

H1
0 (�) = Xh ⊕ X̃ , with X̃ =

I⊕

i=1

X̃i .

Observe that this decomposition generalises (7) with X̃h = X̃ . Moreover, when operator
in (10) is Lnw = anh · ∇w − μ�w, problem (4) can be exactly decoupled into the family of
problems (9). In particular, if the projection operator Ph in (3) is the Lagrange interpolate on
Xh , then Un

h = Ph(Un), Ũ n
h = Un − Un

h ∈ X̃ and consequently, Un
h ∈ Xh satisfies method

(12).
Notice that thanks to the spectral expansion, the sub-grid scales contribution in method

(12), when the advection velocity is element-wise constant, is exactly computed, and then,
the discretisation error only is due to the time discretisation and the approximation of the
advection velocity a, but not to the space discretisation.

Therefore, to analyze the discretisation error we compare the solution of problem (16) to
the solution of the implicit Euler time semi-discretisation of problem (15),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find un+1 ∈ H1
0 (�) such that(

un+1 − un

�t
, v

)

+ (an+1∂x un+1, v) + μ (∂x un+1, ∂xv) = 〈 f n+1, v〉 ∀ v ∈ H1
0 (�),

∀ n = 0, 1, . . . , N − 1,

(23)

with u0 = u0.
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We assume that ah restricted to each K is extended by continuity to ∂K . Given a sequence
b = {bn, n = 1, . . . , N } of elements of a normed space Y , let us denote,

‖b‖l p(Y ) =
(

�t
N∑

n=1

‖bn‖p
Y

)1/p

, ‖b‖l∞(Y ) = max
n=1,...,N

‖bn‖Y .

We shall use the following discrete Gronwall’s lemma, whose proof is standard, and so
we omit it.

Lemma 3.1 Let αn, βn, γn, n = 1, 2, . . . be non-negative real numbers such that

(1 − σ �t) αn+1 + βn+1 ≤ (1 + τ �t) αn + γn+1

for some σ ≥ 0, τ ≥ 0. Assume that σ �t ≤ 1 − δ for some δ > 0. Then it holds

αn ≤ eρ tn α0 + 1

δ

n∑

l=1

eρ (tn−tl ) γl ,

and
n∑

l=1

βl ≤
(
1 + τ

σ
+ (σ + τ) eρ tn−1 tn−1

)
α0 + 1

δ

(
1 + (σ + τ) eρ tn−1 tn−1

)
n∑

l=1

γl ,

with ρ = (σ + τ)/δ.

Let e = {en, n = 0, 1, . . . , N } ⊂ H1
0 (�) be the sequence of errors en = un −Un ∈ H1

0 (�),
where we recall that Un is the solution of the discrete problem (16), and denote δt en+1 =
en+1 − en

�t
. It holds the following result.

Proposition 3.2 Assume that a ∈ L∞(� × (0, T ))d , f ∈ L2(� × (0, T )), �t ≤ (1 −
ε)

μ

‖a‖2L∞(�×(0,T ))

for some ε ∈ (0, 1) and ‖ah‖L∞(�×(0,T )) ≤ D ‖a‖L∞(�×(0,T )) for some

constant D > 0. Then,

‖δt e‖l2(L2(�)) + μ‖e‖l∞(H1
0 (�)) ≤ C ‖ah − a‖l2(L∞(�)), (24)

for some constant C > 0 independent of h, �t and μ.

Proof Let us subtract (16) from (23) with v = vh ∈ Xh . This yields
(
en+1 − en

�t
, vh

)

+ (an+1
h ∂x en+1, vh) + μ (∂x en+1, ∂xvh) = ((an+1

h − an+1)∂xun+1, vh).

Setting vh = δt en+1, and using the identity 2(b, b−a) = ‖b‖2
L2(�)

−‖a‖2
L2(�)

+‖b−a‖2
L2(�)

for any a, b ∈ L2(�)
d
yields

�t ‖δt en+1‖2
L2(�)

+ �t (an+1
h ∂x e

n+1, δt e
n+1) + μ

2

(
‖∂x en+1‖2

L2(�)
− ‖∂x en‖2

L2(�)

)

≤ �t ((an+1
h − an+1)∂x u

n+1, δt e
n+1). (25)

It holds

|(an+1
h ∂x e

n+1, δt e
n+1)| ≤ ‖an+1

h ‖L∞(�) ‖∂x en+1‖L2(�) ‖δt en+1‖L2(�)
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≤ 1

2
‖δt en+1‖2L2(�)

+ ‖a‖2L∞(�×(0,T ))

2
‖∂x en+1‖2L2(�)

. (26)

As a ∈ L∞(� × (0, T ))d , f ∈ L2(� × (0, T )), then the un are uniformly bounded in
L∞(0, T ; H1

0 (�)), due to the standard estimates for the implicit Euler method in strong
norms. Then, for some constant C > 0,

((an+1
h − an+1)∂xu

n+1, δt e
n+1) ≤ ‖an+1

h − an+1‖L∞(�) ‖∂xun+1‖L2(�) ‖δt en+1‖L2(�)

≤ C ‖an+1
h − an+1‖2L∞(�) + 1

4
‖δt en+1‖2L2(�)

. (27)

Hence, combining (26) and (27) with (25),

�t

4
‖δt en+1‖2

L2(�)
+ μ

2
(1 − σ �t) ‖∂x en+1‖2

L2(�)
≤ μ

2
‖∂x en‖2

L2(�)
+ C �t ‖an+1

h − an+1‖2L∞(�),

with σ = ‖a‖2l∞(L∞(�))

μ
. Applying the discrete Gronwall’s lemma 3.1, estimate (24) follows.

��
Corollary 3.3 Under the hypotheses of Proposition 3.2, it holds

μ ‖en‖l∞(L∞(�)) ≤ C ‖ah − a‖l2(L∞(�)) (28)

for some constant C > 0. Moreover, if a is constant, then the solutionUn
h of the spectral VMS

method (12) coincides with the solution un of the implicit Euler time semi-discretisation (23)
at the Lagrange interpolation nodes of space Xh.

Proof In one space dimension H1(�) is continuously injected in L∞(�). Then estimate (28)
follows from estimate (24).

If a is constant obviously Un = un for all n = 0, 1, . . . , N . As Un
h (αi ) = Un(αi ) at the

Lagrange interpolation nodes αi , i = 1, . . . , I , then Un
h coincides with un at these nodes. ��

4 Feasible method: offline/online strategy

Building the spectral VMSmethod using the formulation (12) requires quite large computing
times, due to the summation of the spectral expansions that yield the coefficients of the
matrices that appear in the algebraic expression of the method.

In order to reduce this time, we shall neglect the dependency of method (12) w.r.t. ũn−1.
Then, our current discretization of problem (1) is the following,

⎧
⎪⎪⎨

⎪⎪⎩

Find un+1
h ∈ Xh such that

(un+1
h , vh) + �t bn+1(un+1

h , vh) + (ũn+1
h , vh) + �t bn+1(ũn+1

h , vh)

= �t 〈 f n+1, vh〉 + (unh, vh) + (ũnh, vh)∀ vh ∈ Xh, ∀ n = 0, 1, . . . , N − 1,

(29)

where ũn+1
h is given by (13), but ũnh is defined from an approximated residual:

ũnh =
∑

K∈Th

∞∑

j=1

β
n,K
j 〈R̂n

h (u
n
h), p

n,K z̃n,K
j 〉 z̃n,K

j (30)

with

〈R̂n
h (u

n
h), ṽ〉 = (un−1

h , ṽ) + �t 〈 f n, ṽ〉 − (unh, ṽ) − �t bn(unh, ṽ), ∀ṽ ∈ X̃ .
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Neglecting the dependency of method (12) w.r.t. ũn−1 allows to eliminate the recurrence
in time of the sub-grid scales. Thanks to this fact, problem (29) is equivalent to a linear system
(that we describe in detail in Appendix), whose coefficients only depend on non-dimensional
parameters.

4.1 Application to 1D transient advection-diffusion problems

In this case the coefficients of the linear system equivalent to problem (29) only depend on
two non-dimensional parameters, as we confirm below.

As we can see in Appendix, if {ϕm}L+1
m=1 is a basis of the space Xh associated to a partition

{x1 < x2 < · · · < xL+1} of �, the solution un+1
h of (29) can be written as

un+1
h =

L+1∑

m=1

un+1
m ϕm .

Then, the unknown vector un+1 = (un+1
1 , un+1

2 , . . . , un+1
L , un+1

L+1)
t ∈ R

L+1 is the solution
of the linear system

An+1 un+1 = bn+1, (31)

where the matrix and second term are defined in (47) from matrices An+1
i and Bn+1

i given
by (39)–(42) and (43)–(46).

We focus, for instance, on the coefficients of matrix An
1:

(An
1)lm =

∑

K∈Th

∞∑

j=1

β
n,K
j (ϕm, pn,K z̃n,K

j )(z̃n,K
j , ϕl).

Let K = [xl−1, xl ] ∈ Th . From expressions (20) and (21), pn,K and z̃n,K
j depend on the

element non-dimensional parameters Pn,K and SK and the non-dimensional variable x̂ =
x − xl−1

hK
. The change of variable x̂ ∈ [0, 1] �→ x ∈ K from the reference element [0, 1] to

element K in the integral expressions

(ϕm, pn,K z̃n,K
j ) =

∫

K
ϕm pn,K (x)z̃n,K

j (x) dx, (z̃n,K
j , ϕl) =

∫

K
z̃n,K
j (x) ϕl(x) dx

readily proves that these expressions (up to a factor depending on h) can be written as
functions of SK and PK . Further, by (22) the coefficients β

n,K
j also depend on Pn,K and SK .

Then, for each K ∈ Th the spectral expansion that determines the element contribution to
coefficient (An

1)lm , that is,

∞∑

j=1

β
n,K
j (ϕm, pn,K z̃n,K

j )(z̃n,K
j , ϕl),

is a function of Pn,K and SK , up to a factor depending on h. This also holds for the coefficients
of all other matrices that defines the linear system (31), An

i and Bn
i , as these are built from

the basic values (ϕm, pn,K z̃n,K
j ), (z̃n,K

j , ϕl), bn(ϕm, pn,K z̃n,K
j ) and bn(z̃n,K

j , ϕl). We take
advantage of this fact to compute these matrices in a fast way, by means of an offline/online
computation strategy.
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Fig. 1 Values of the spectral series to compute the diagonal coefficient of matrix A3 for each pair (P, S)

Offline stage

In the offline stage we compute the element contribution to the coefficients of all matrices
appearing in system (31) as a function of the two parameters P and S, that take values
at the nodes of a uniform grid, between minimum and maximum feasible values of these
parameters. That is,

{
(Pi , S j ) = (� i,� j), ∀ i, j = 1, 2, . . . M

}
, with � > 0. (32)

In order to set these values, we consider the piecewise affine finite element functions
associated to a uniform partition of � with step h. In practical applications the advection
dominates and P takes values larger than 1. Also, taking usual values of diffusion coefficient
and h  �t (that is, C1 ≤ �t/h ≤ C2 for some constants C1,C2 > 0), S takes low positive
values. Moreover, when we compute the spectral series that determines the coefficients of
the system matrices as functions of P and S, we observe that these values are nearly constant
as P and S approaches 20. For instance, we can see in Figs. 1, 2 and 3 how the spectral series
for the diagonal coefficient of A3 matrix tend to a constant value as P or S increase to 20.
The behavior of coefficients in the remaining matrices is similar. Therefore, in numerical
tests, we will consider a step � = 0.02 and M = 1000 in (32).

To do the computations in this stage, in order to avoid computational roundoff problems
due to large velocities, we express the eigenfunctions of the advection-diffusion operator

given in (19) in terms of the midpoint of the grid elements x l,l+1
2

= xl + xl+1

2
. That is, we

consider

z̃Kj =
√

2

hK
exp

( |aK |
2μ

(x − x l,l+1
2

)

)

sin

(

jπ
x − xl
hK

)

, for any j ∈ N.

We further truncate the spectral series neglecting all the terms following to the first term
that reaches an absolute value less than a prescribed threshold ε. Actually, we have taken
ε = 10−10. In Fig. 4 we represent the number of these summands needed to reach a first term
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Fig. 2 Values of the spectral series to compute the diagonal coefficient ofmatrix A3 for (P, S) ∈ (0, 20)×(0, 1)

Fig. 3 Values of the spectral series to compute the diagonal coefficient ofmatrix A3 for (P, S) ∈ (0, 1)×(0, 1)

with absolute value smaller than this ε for the series defining the diagonal coefficient of A3

matrix. As we can see, more terms are needed as P increases and as S decreases to 0.
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Fig. 4 Number of summands needed to reach a first term with absolute value lower than ε = 10−10 for the
series defining the diagonal coefficient of matrix A3, in terms of (P, S)

Online stage

In the online stage, for each grid element K we compute the contribution of this element to
the coefficients of all matrices appearing in system (31). Then, we sum up over grid elements,
to calculate these coefficients.

For that,we determine PK and SK andfind the indices i, j ∈ 1, . . . , M such that (PK , SK )

belongs to [Pi , Pi+1] × [S j , S j+1]. In other case, if Pk < � we set i = 1 and if PK > �M
we set i = M − 1, and similarly for j in terms of SK .

As we see above, each element contribution is a function of PK and SK that we denote
C(PK , SK ) in a generic way. For instance, for matrix An

1,

C(PK , SK ) =
∞∑

j=1

β
n,K
j (ϕm, pn,K z̃n,K

j )(z̃n,K
j , ϕl).

Then, we compute C(Pk, SK ) by the following second-order interpolation formula:

C(PK , SK ) 
4∑

k=1

Qk

Q
C(αk),

where the αk are the four corners of the cell [Pi , Pi+1] × [S j , S j+1],
Q = �2 is its area and the Qk are the areas of the four rectangles in which the cell is
split by (Pk, SK ) (see Fig. 5).

5 Numerical tests

In this section, we present the numerical results obtained with the spectral method to solve
1D advection-diffusion problems. Our purpose, on the one hand, is to confirm the theoretical
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Fig. 5 Splitting of interpolation
cell for online computation of
matrices coefficients

results stated in Corollary 3.3 for the spectral VMS method and, on the other hand, test the
accuracy of the spectral VMS and feasible spectral VMS methods for problems with strong
advection-dominance, in particular by comparison with several stabilised methods.

5.1 Test 1: Accuracy of spectral VMSmethod for constant advection velocity

To test the property stated in Corollary 3.3, we consider the following advection-diffusion
problem:

⎧
⎨

⎩

∂t u + a ∂xu − μ∂2xxu = 0 in (0, 1) × (0, T ),

u(0, t) = exp((μ − a)t), u(1, t) = exp(1 + (μ − a)t) on (0, T ),

u(x, 0) = exp(x) on (0, 1),
(33)

whose exact solution is given by exp(x + (μ − a)t).
We set T = 0.1, a = 1 and μ = 20. We apply the spectral VMS method (12) to solve this

problem with time step �t = 0.01 and piecewise affine finite element space on a uniform
partition of interval (0, 1) with steps h = 0.05/(2i ) for i = 2, 3, . . . , 7. We have truncated
the spectral expansions that yield the small scales ũnh to 10 eigenfunctions. The errors in
l∞(L2) and l2(H1) norms computed at grid nodes are represented in Fig. 6. We observe that,
indeed, the errors quite closely do not depend on the space step h.

Moreover, we have computed the convergence orders in time, obtaining very closely order
1 in l2(H1) norm and order 2 in l∞(L2) norm, as could be expected.

In the following numerical experiments we consider the 1D problem (14) setting � =
(0, 1), with constant velocity field a, source term f = 0 and the hat-shaped initial condition

u0 =
{
1 if |x − 0.45| ≤ 0.25,
0 otherwise.

(34)

We also set Xh to be the piecewise affine finite element space constructed on a uniform
partition of interval (0, 1) with step size h.
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Fig. 6 Test 1. l∞(L2) and l2(H1) errors for the spectral VMS solution of problem (33)

5.2 Test 2: Accuracy of spectral VMSmethod

Very large Péclet numbers
In this test we examine the accuracy of spectral VMS method for very high Péclet numbers.
To do that, we set a = 1000 and μ = 1, and solve this problem by the spectral VMS
method (12), truncating to 150 spectral basis functions the series (13) that yield the sub-grid
components. The solution interacts with the boundary condition at x = 1 in times of order
1/a (considering that the length of � is 1), that is, 10−3. We then set a time-step �t = 10−3.
Moreover, we set h = 0.02 that corresponds to P = 10 and S = 2.5. We present the results
obtained in Fig. 7, where we represent the Galerkin solution (in red) on the left panels and the
spectral solution (in cyan) on the right panels, both with the exact solution (in blue): in (a)

the first 4 time-steps, in (b) time-steps from 5 to 7 and in c times-steps 8 and 9. By Corollary
3.3 the discrete solution coincides at the grid nodes with the exact solution of the implicit
Euler semi-discretisation, the expected errors at grid nodes are of order �t = 10−3. We can
see that the spectral solution indeed is very close to the exact solution at grid nodes.

As the discrete solution coincides at the grid nodes with the exact solution of the implicit
Euler semi-discretisation and u0 is exact, then u1h should coincide with the exact solution at
grid nodes. This can already be observed in Fig. 7 (a). We also test this result with different
discretisation parameters. We actually set �t = 10−5 and h = 0.02 that corresponds to
P = 10 and S = 0.025. The solution in the first time-step is represented in Fig. 8 (a) and
a zoom around x = 0.7 in depicted in (b). Indeed the discrete solutions coincides with the
exact one at grid nodes.
Very small time steps
We test here the arising of spurious oscillations due to extra small time-steps. These spurious
oscillations occur in the solutions provided by the Galerkin discretisation when CFL <

CFLbound = P/(3(1 − P)) (see Harari and Hauke 2007). For that, we consider the same
problem as in this section but with a = 20, h = 0.01 and the time-step�t is chosen such that
CFL/CFLbound = 1/2. We obtain the results shown in Fig. 9, where we have represented
the first five time-steps. As one can see the spectral solution does not present any oscillation.
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Fig. 7 Solution of problem (14) for a = 1000, μ = 1, f = 0 and u0 given by (34) with �t = 10−3 and
h = 0.02 (P = 10, S = 2.5). The spectral VMS solution is compared to the exact solution and the Galerkin
solution. The results for time-steps numbers 1 to 4, 5 to 7 and 8 to 9 are respectively represented in figures
(a), (b) and (c)

Fig. 8 Solution of problem (14) for a = 1000, μ = 1, f = 0 and u0 given by (34) with �t = 10−5 and
h = 0.02 (P = 10, S = 0.025). The spectral VMS solution is compared to the exact solution and the Galerkin
solution at first time step. Figures (a) and (b) respectively show these solutions in the whole domain and a
zoom around x = 0.7
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Fig. 9 Solution of problem (14) for a = 20, μ = 1, f = 0 and u0 given by (34) with h = 0.01 and �t such
that CFL/CFLbound = 1/2 (P = 0.1, S = 0.0926). Red lines represent Galerkin solution and cyan lines
represent spectral VMS solution in each step-time

5.3 Test 3: Accuracy of the feasible spectral VMSmethod. Comparison with other
stabilisedmethods

We next proceed to compare the results obtained with the feasible spectral VMSmethod (29)
with those obtained by several stabilised methods.

Stabilised methods add specific stabilising terms to the Galerkin discretisation, generating
the following matrix scheme,

(M + �t Rn + �t a2 τ Ms)un+1 = M un,

where M and Rn are, respectively, mass and stiffness matrices, while Ms is a tridiagonal
matrix defined by (Ms)i,i = 2

h , (Ms)i+1,i = (Ms)i,i+1 = − 1
h . Each stabilised method is

determined by the stabilised coefficient τ . In particular, we consider:

1. The optimal stabilisation coefficient for 1D steady advection-diffusion equation (Christie
et al. 1976; John and Novo 2011),

τ1D = μ

|a|2 (P coth(P) − 1). (35)

2. The stabilisation coefficient based on orthogonal sub-scales proposed by Codina in Cod-
ina (2000),

τC =
(

(
4

μ

h2

)2 +
(

2
|a|
h

)2
)−1/2

. (36)

3. The stabilisation coefficient based on L2 proposed by Hauke et al. (2008),

τH = min

{
h√
3|a| ,

h2

24.24μ
,�t

}

. (37)
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Fig. 10 Comparison of different stabilised methods to solve problem (14) when P = 3, S = 25 with
�t = 10−2 and h = 0.02. Solutions in the three first time-steps

Table 1 l∞(L2) and l2(H1)
errors for the solutions
represented in Fig. 10

Method l∞(L2) l2(H1)

P = 3 Galerkin 1.1784e-02 4.7505e-02

S = 25 Spectral 8.7889e-06 5.4716e-05

Codina 3.2285e-03 1.4329e-02

1D 1.3805e-03 1.3446e-03

Hauke 2.1713e-03 1.1124e-02

Franca 9.9020e-03 5.0380e-02

4. The stabilisation coefficient separating the diffusion-dominated from the convection-
dominated regimes proposed by Franca in Chacón Rebollo et al. (2015),

τF = h

|a| min{P, P̃}, (38)

where P̃ > 0 is a threshold separating the diffusion dominated (P ≤ P̃) to the advection
dominated (Pe > P̃) regimes.

In Figs. 10, 11 and 12, we show the solutions of each method for different values of P and
S, always for advection-dominated regime P > 1. We also display the errors in l∞(L2) and
l2(H1) norms for the solutions of these problems in Tables 1, 2 and 3. As it can be observed
in the three tables, spectral method reduces the error between 10 and 100 times compared to
the stabilised methods, without presenting oscillations.

Next, we consider the same tests performed in Sect. 5.2, but applying the feasible spectral
VMS method.

Firstly, we check the behaviour of the feasible spectral VMS method (29) for very large
Péclet numbers. In Fig. 13 we represent the solution of same problem as in Fig. 7 obtained
with this method. We show solutions in time-steps 1 to 4 in (a), times-steps 5 to 7 in (b)
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Fig. 11 Comparison of different stabilised methods to solve problem (14) when P = 1 and S = 5 with
�t = 10−3 and h = 10−2. Solutions in the three first time-steps. Right: zoom around x = 0.7

Table 2 l∞(L2) and l2(H1)
errors for the solutions
represented in Fig. 11

Method l∞(L2) l2(H1)

P = 1 Galerkin 9.6551e-03 7.7424e-02

S = 5 Spectral 7.2887e-05 5.2396e-04

Codina 1.3580e-02 6.4992e-02

1D 3.7524e-03 5.3902e-03

Hauke 4.2353e-03 3.3330e-02

Franca 4.4200e-02 3.1419e-01

Fig. 12 Comparison of different stabilised methods to solve problem (14) when P = 3.5 and S = 100 with
�t = 10−2 and h = 10−2. Solutions in the three first time-steps. Right: zoom around x = 0.99

Table 3 l∞(L2) and l2(H1)
errors for the solutions
represented in Fig. 12

Method l∞(L2) l2(H1)

P = 3.5 Galerkin 4.5006e − 03 3.3305e − 02

S = 100 Spectral 1.6381e − 06 2.0138e − 05

Codina 8.752e − 04 8.4455e − 03

1D 3.3968e − 04 4.5556e − 04

Hauke 5.6656e − 04 5.6930e − 03

Franca 3.0238e − 03 3.0336e − 02
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Fig. 13 Solution of problem (14) for a = 1000, μ = 1, f = 0 and u0 given by (34) with �t = 10−3 and
h = 0.02 (P = 10, S = 2.5). The feasible spectral VMS is compared with different stabilised methods. The
results for time-steps numbers 1 to 4, 5 to 7 and 8 to 9 are respectively represented in figures (a), (b) and (c)

and time-steps 8 and 9 in (c). As we can observe, the spectral method is the closest to the
reference solution without presenting any spurious oscillations.

Secondly, Fig. 14 is the analogous to Fig. 8, but comparing the feasible spectral VMSwith
different stabilised methods. Although Hauke’s solution is closer to the exact solution than
the spectral method, we can see on the right figure that this approximation does not satisfy
the Maximun Principle.

Finally, we illustrate the fact that the feasible spectral VMS method is the only method
among those studied that does not have oscillations for small time steps, when CFL <

CFLbound . In Fig. 15, we can see the first five time-steps solutions obtained with each
method using a time-step that verifies CFL/CFLbound = 1/2.

In the following subsection we compare the computing costs of the Spectral method with
and without offline/online strategy with the other considered methods.

5.4 Computing cost

We are going compare the computing time required by the methods introduced in expres-
sions (35)–(38) with the spectral method with and without offline/online strategy. We have
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Fig. 14 First time-step solution of problem (14) for a = 1000, μ = 1, f = 0 and u0 given by (34) with
�t = 10−5 and h = 0.02 (P = 10, S = 0.025). The feasible spectral VMS is compared with different
stabilised methods in the whole domain � = (0, 1) in (a) and in a zoom around x = 0.7 in (b)

Fig. 15 Solution of problem (14) for a = 20, μ = 1, f = 0 and u0 given by (34) with h = 0.01 and �t such
that CFL/CFLbound = 1/2 (P = 0.1, S = 0.0926). The feasible spectral VMS is compared with different
stabilised methods
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Table 4 Computing time
required by each method to solve
problem (14) when P = 3,
S = 25 (a = 300, μ = 1, h =
0.02,�t = 0.01) and u0 given in
(34) and T = 1 in increasing
times order

Method Computing time

Galerkin 0.015300 s

Spectral offline/online 0.015966 s

Hauke 0.028337 s

Franca 0.039018 s

1D 0.042189 s

Codina 0.034441 s

Spectral 0.072913 s

implemented all considered methods with the Matlab application R2022b (9.13.0) in a Mac
Mini Model M1 2020 computer.

First, let us note that the offline stage described in Subsection 4.1, which is performed
once for all, has taken 3.15 hours. On the other hand, Table 4 shows the computing times (in
seconds) required for eachmethod to solve problem (14)when P = 3, S = 25 (a = 300, μ =
1, h = 0.02,�t = 0.01), u0 given in (34) and T = 1. In the case of the offline/online strategy,
the time corresponds to the online stage.

Aswe can see, Spectralmethodwithout offline/online strategy requires approximately two
to three times the time required by the other considered methods. However, this disadvantage
is solved when we use the offline-online strategy.

6 Conclusions

In this paper we have extended to parabolic problems the spectral VMSmethod developed in
Chacón Rebollo and Dia (2015) for elliptic problems.We have constructed a feasible method
to solve the evolutive advection-diffusion problem bymeans of an offline/online strategy that
pre-computes the effect of the sub-grid scales on the resolved scales.

We have proved that when Lagrange finite element discretisations in space are used, the
solution obtained by the fully spectral VMS method (12) coincides with the exact solution
of the implicit Euler semi-discretisation of the advection-diffusion problem at the Lagrange
interpolation nodes.

We have performed some numerical tests that have confirmed this property for very large
Péclet numbers and very small time steps, by the fully spectral VMS method. Also some
additional tests show an improved accuracy with respect to several stabilised methods for the
feasible spectral VMS method (29), with moderate gains of computing times.

The methodology introduced here may be extended to multi-dimensional advection-
diffusion equations, by parameterising the sub-grid scales in an offline step. This research is
at present in progress.
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Appendix: Matrix formulation of the scheme

Problem (29) is equivalent to a linear systemwith a particular structure that we describe next.
If {ϕm}L+1

m=1 is a basis of the space Xh , the solution u
n+1
h is obtained as

un+1
h =

L+1∑

m=1

un+1
m ϕm,

where un+1 = (un+1
1 , . . . , un+1

L+1)
t ∈ R

L+1 is the unknown vector. Taking vh = ϕl , with
l = 1 . . . L , each term in (29) can be written in the following way:

(un+1
h , ϕl) =

L∑

m=1

(ϕm, ϕl) u
n+1
m =

(
M un+1

)

l

bn+1(un+1
h , ϕl) =

L∑

m=1

bn+1(ϕm, ϕl) u
n+1
m =

(
Rn+1 un+1

)

l

( f n+1, ϕl) =
(
Fn+1

)

l

where
(M)lm = (ϕm, ϕl),

(Rn+1)lm = bn+1(ϕm, ϕl),

(ũn+1
h , ϕl) =

L∑

m=1

∑

K∈Th

∞∑

j=1

β
n+1,K
j (ϕm, pn+1,K z̃n+1,K

j ) (z̃n+1,K
j , ϕl) u

n
m

+
∑

K∈Th

∞∑

j=1

β
n+1,K
j (ũnh, p

n+1,K z̃n+1,K
j ) (z̃n+1,K

j , ϕl)

+�t
∑

K∈Th

∞∑

j=1

β
n+1,K
j ( f n+1, pn+1,K z̃n+1,K

j ) (z̃n+1,K
j , ϕl)

−
L∑

m=1

∑

K∈Th

∞∑

j=1

β
n+1,K
j (ϕm, pn+1,K z̃n+1,K

j ) (z̃n+1,K
j , ϕl) u

n+1
m

−�t
L∑

m=1

∑

K∈Th

∞∑

j=1

β
n+1,K
j bn+1(ϕm, pn+1,K z̃n+1,K

j ) (z̃n+1,K
j , ϕl) u

n+1
m

=
(
An+1
1 un + Gn+1

1 + �t Fn+1
1 − An+1

1 un+1 − �t An+1
2 un+1

)

l
,

with

(An+1
1 )lm =

∑

K∈Th

∞∑

j=1

β
n+1,K
j (ϕm, pn+1,K z̃n+1,K

j ) (z̃n+1,K
j , ϕl), (39)
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(An+1
2 )lm =

∑

K∈Th

∞∑

j=1

β
n+1,K
j bn+1(ϕm, pn+1,K z̃n+1,K

j ) (z̃n+1,K
j , ϕl),

(Fn+1
1 )l =

∑

K∈Th

∞∑

j=1

β
n+1,K
j 〈 f n+1, pn+1,K z̃n+1,K

j 〉 (z̃n+1,K
j , ϕl),

(Gn+1
1 )l =

∑

K∈Th

∞∑

j=1

β
n+1,K
j (ũnh, p

n+1,K z̃n+1,K
j ) (z̃n+1,K

j , ϕl), (40)

and

bn+1(ũn+1
h , vh) =

L∑

m=1

∑

K∈Th

∞∑

j=1

β
n+1,K
j (ϕm , pn+1,K z̃n+1,K

j ) bn+1(z̃n+1,K
j , ϕl) u

n
m

+
∑

K∈Th

∞∑

j=1

β
n+1,K
j (ũnh, p

n+1,K z̃n+1,K
j ) bn+1(z̃n+1,K

j , ϕl)

+ �t
∑

K∈Th

∞∑

j=1

β
n+1,K
j ( f n+1, pn+1,K z̃n+1,K

j ) bn+1(z̃n+1,K
j , ϕl)

−
L∑

m=1

∑

K∈Th

∞∑

j=1

β
n+1,K
j (ϕm , pn+1,K z̃n+1,K

j ) bn+1(z̃n+1,K
j , ϕl) u

n+1
m

− �t
L∑

m=1

∑

K∈Th

∞∑

j=1

β
n+1,K
j bn+1(ϕm , pn+1,K z̃n+1,K

j ) bn+1(z̃n+1,K
j , ϕl) u

n+1
m

=
(
An+1
3 un + Gn+1

2 + �t Fn+1
2 − An+1

3 un+1 − �t An+1
4 un+1

)

l
,

where

(An+1
3 )lm =

∑

K∈Th

∞∑

j=1

β
n+1,K
j (ϕm, pn+1,K z̃n+1,K

j ) bn+1(z̃n+1,K
j , ϕl), (41)

(An+1
4 )lm =

∑

K∈Th

∞∑

j=1

β
n+1,K
j bn+1(ϕm, pn+1,K z̃n+1,K

j bn+1(z̃n+1,K
j , ϕl),

(Fn+1
2 )l =

∑

K∈Th

∞∑

j=1

β
n+1,K
j 〈 f n+1, pn+1,K z̃n+1,K

j 〉 bn+1(z̃n+1,K
j , ϕl),

(Gn+1
2 )l =

∑

K∈Th

∞∑

j=1

β
n+1,K
j (ũnh, p

n+1,K z̃n+1,K
j ) bn+1(z̃n+1,K

j , ϕl). (42)

Taking in account the definition of ũnh in (30), the second terms Gn+1
1 and Gn+1

2 can be
expressed in the following way:

(
Gn+1

1

)

l
=

∑

K∈Th

∞∑

j=1

β
n+1,K
j β

n,K
j 〈R̂n

h (u
n
h), p

n,K z̃n,K
j 〉(z̃n+1,K

j , ϕl

)

=
(
Bn+1
1 un−1 + �t Fn+1

3 − Bn+1
1 un − �t Bn+1

2 un
)

l
,
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(
Gn+1

2

)

l
=

∑

K∈Th

∞∑

j=1

β
n+1,K
j β

n,K
j 〈R̂n

h (u
n
h), p

n,K z̃n,K
j 〉 bn+1(z̃n+1,K

j , ϕl

)

=
(
Bn+1
3 un−1 + �t Fn+1

4 − Bn+1
3 un − �t Bn+1

4 un
)

l
,

where

(Bn+1
1 )lm =

∑

K∈Th

∞∑

j=1

β
n+1,K
j β

n,K
j (ϕm, pn,K z̃n,K

j ) (z̃n+1,K
j , ϕl), (43)

(Bn+1
2 )lm =

∑

K∈Th

∞∑

j=1

β
n+1,K
j β

n,K
j bn(ϕm, pn,K z̃n,K

j ) (z̃n+1,K
j , ϕl), (44)

(Bn+1
3 )lm =

∑

K∈Th

∞∑

j=1

β
n+1,K
j β

n,K
j (ϕm, pn,K z̃n,K

j ) bn+1(z̃n+1,K
j , ϕl), (45)

(Bn+1
4 )lm =

∑

K∈Th

∞∑

j=1

β
n+1,K
j β

n,K
j bn(ϕm, pn,K z̃n,K

j ) bn+1(z̃n+1,K
j , ϕl),

(Fn+1
3 )l =

∑

K∈Th

∞∑

j=1

β
n+1,K
j β

n,K
j 〈 f n, pn,K z̃n,K

j 〉 (z̃n+1,K
j , ϕl),

(Fn+1
4 )l =

∑

K∈Th

∞∑

j=1

β
n+1,K
j β

n,K
j 〈 f n, pn,K z̃n,K

j 〉 bn+1(z̃n+1,K
j , ϕl). (46)

Herewe are neglecting the interaction between different eigenfunctions in two consecutive
time steps. Obviously, this occurs when the operator is time independent.
Thus, problem (29) is equivalent to the lineal system

An+1 un+1 = bn+1,

where An+1 ∈ R
(L+1)×(L+1) and bn+1 ∈ R

(L+1) are given by

An+1 = M + �t Rn+1 − An+1,

bn+1 =
(
M − (An+1

1 + �t An+1
3 ) − (An

1 + �t An
2)+Bn+1

)
un

+
(
An
1 − Bn+1

1 − �t Bn+1
3

)
un−1

+�t Fn+1 − �t Fn+1
1 − �t2 Fn+1

2 + �t Fn
1 − �t Fn+1

3 − �t2 Fn+1
4 ,

with

An+1 = An+1
1 + �t An+1

2 + �t An+1
3 + �t2 An+1

4 ,

Bn+1 = Bn+1
1 + �t Bn+1

2 + �t Bn+1
3 + �t2 Bn+1

4 .

Here, M and Rn+1 are, respectively, the mass and stiffness matrices from the Galerkin
formulation and An+1

i and Bn+1
i are the matrices that represent the effect of the small scales

component of the solution on the large scales component.
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