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Abstract
Location selectionof electric vehicle charging stations (LSEVCS) is a complexmulti-attribute
group decision-making (MAGDM) problem involvingmultiple experts andmultiple conflict-
ing attributes. Spherical fuzzy sets (SFSs) can deeply excavate fuzziness and uncertainty in
MAGDM. In this paper, we first propose some new spherical fuzzy distance measures based
on Dice and Jaccard indexes to detect the differences between SFSs or inputs. Secondly, con-
sidering risk preferences of decision makers, we integrate cumulative prospect theory (CPT)
and combined compromise solutions (CoCoSo)method to develop a spherical fuzzy CoCoSo
based on CPT (SF-CPT–CoCoSo) model for settling MAGDM issues. At the same time,
we extend the improved CRiteria Importance Through Intercriteria Correlation (CRITIC)
method, called the distance correlation-based CRITIC (D-CRITIC) method, to reasonably
obtain unknown attribute weights under SFSs. Finally, this paper applies the developedmodel
for LSEVCS to verify its practicability. Moreover, sensitivity analysis and comparative dis-
cussion with existing methods further demonstrate the robustness and effectiveness of the
SF-CPT–CoCoSo model.
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1 Introduction

In the electric vehicle (EV) industry chain, EV charging station is an indispensable and
important part. Reasonable assessment of EVcharging stations plays a great role in promoting
the market development of EV. As one of the popular MAGDM problems, the study on
LSEVCS has become a hot issue in the decision-making field (Liu et al. 2019; Karasan
et al. 2020; Wei et al. 2022, 2021; Rani and Mishra 2021; Feng et al. 2021). However, in
the face of complex and changeable environment and many uncertainties of human cognitive
ability, efficient acquisition of evaluation information is a thorny problem faced byMAGDM,
especially the LSEVCS. In 1965, an efficacious tool for dealing with MAGDM, called fuzzy
sets (FSs), was initiated by Zadeh (1965), which made up for inadequacy of using crisp
numbers in describing the vagueness of things. In the past decades, FSs have facilitated the
advancement of various branches and derived many new versions (Frini 2017; Salah and
Moselhi 2016; Chen et al. 2014; Zadeh 1975; Abdullah et al. 2014; Tao et al. 2015).

As a new enhanced version of FSs, SFSs were presented byMahmood et al. (2019), which
expressed the uncertainty of things more extensively through four dimensions: membership
degree (MD), non-membership degree (N-MD), abstinence degree (AD) as well as rejection
degree (RD). Compared with intuitionistic FSs (IFSs) (Atanassov 1986), Pythagorean FSs
(PYFSs) (Yager 2014), picture FSs (PFSs) (Cuong 2014), etc., SFSs required that the sum
of squares of MD, N-MD and AD could not exceed 1, and provided more flexible scope
for the four dimensions. In recent years, the study of SFSs to deal with uncertain prob-
lems has attracted many scholars’ attentions. Mahmood et al. (2021a) designed similarity
measures based on SFSs in settling medical assessment problems. Nguyen et al. (2022)
developed a spherical fuzzy multi-attribute decision-making (MADM) method to supplier
option of renewable energy wind-driven generator. Ashraf and Abdullah (2020) designed
some novel approaches for dealing with COVID-19 in SFSs. Zhang et al. (2022a) developed
spherical fuzzy GRA approach with CPT for emergency supply supplier selection. Ashraf
et al. (2019a) designed spherical fuzzy distance measure to analyze the environmental fac-
tors affecting children’s development. Aydogdu and Gul (2020) developed a new entropy
proposition of SFSs and its application to MADM. Ayyildiz and Gumus (2020) combined
AHP andWASPASmethod for location of gas station in spherical fuzzy environment. Zhang
et al. (2022b) presented an improved TOPSIS on the basis of CPT under SFSs for residential
location. Donyatalab et al. (2020) established linear assignment model to settle MAGDM
issues in SFSs. Gul (2020) extended the DEMATEL method to SFSs. Gundogdu (2020) put
forward MULTIMOORAmethod under SFSs. Gundogdu and Kahraman (2019a) developed
VIKOR method by using SFSs for warehouse site selection. Jin et al. (2019) came up with
logarithmic aggregation operators and entropy under SFSs for decision support systems.
Zhang et al. (2022c) presented Dombi power Heronian mean operators based on SFSs for
enterprise resource planning systems selection. Wei et al. (2019) utilized cosine function to
introduce the similarity measure under SFSs. Khan et al. (2020) proposed spherical fuzzy
similarity and DIMs in selecting mega projects.

The CoCoSo method was originally introduced by Yazdani et al. (2019). This method
provides a combinatorial decision algorithm based on compromise attitude and aggregation
strategy, which can evaluate and select the scheme comprehensively. Because of its accu-
rate calculation and easy operation, the CoCoSo method has been widely used to tackle
uncertainty problems. For instance, Turskis et al. (2022) extended the CoCoSo method to
m-generalized q-neutrosophic sets for MADM problems. Peng et al. (2022) proposed hesi-
tant fuzzy soft CoCoSo approach for IoE companies’ evaluation. Mandal and Khan (2022)
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established cloud model-based CoCoSo method for trusted cloud service provider selection.
Peng and Luo (2021) introduced CoCoSo method with picture fuzzy information to China’s
stock market bubble alarm. Peng et al. (2020) presented CoCoSo and CRITIC approach for
MADM problems in PYFSs. Peng and Smarandache (2020) came up with neutrosophic soft
CoCoSo approach for solving evaluation of safety issues. Mi and Liao (2020) introduced the
CoCoSo approach by stochastic information for renewable energy investments. However, the
above decision-making processes often assume that DMs make judgments under completely
rational conditions without considering DMs’ risk psychology.

Generally, in the face of many uncertain factors, peoples’ judgment and decision-making
behavior are not completely rational, but greatly affected by personal preference, risk attitude
and so on. Hence, in 1979, Kahneman and Tversky (1979) put forward the prospect theory
(PT) on the basis of bounded rationality hypothesis to explainmany phenomena that expected
utility theory could not. Subsequently, Tversky and Kahneman (1992) modified PT and
further proposed CPT. CPT satisfied random dominance, which could well capture DMs’
psychological senses and fully reflected the subjective risk appetite of DMs. At present, the
research of risk MADM methods based on CPT has become a new hot topic in decision
system. For example, Liao et al. (2021) proposed the CPT-MABAC method for MAGDM
based on probabilistic hesitant FSs. Zhao et al. (2021) established CPT-TODIM approach
for network security service provider selection in bipolar FSs, Jiang et al. (2022) presented
picture fuzzy EDAS method based on CPT. Wang et al. (2020) proposed a set emergency
decision-making method with CPT in hesitant FSs. Fu et al. (2020) presented improved
FMEA approach based on CPT to the railway train risk prioritization. Liao et al. (2020)
integrated the CPT and CoCoSo (CPT–CoCoSo) method for cold chain logistics distribution
center selection under PYFSs. However, up to now, the research of spherical fuzzyMAGDM
method based on CPT is not much. More importantly, the CPT–CoCoSo approach has not
been proposed to solve the uncertain issues under SFSs.

For MAGDM problems, attribute weights often have an important influence on results.
The objective weight methods obtain weight information by measuring objective relations
among attributes in original decision matrix without any subjective judgment of DMs, which
can effectively eliminate DMs’ personal bias against attribute set and enhance the rationality
of weight information. As a common objective weight method, CRITIC (Diakoulaki et al.
1995) method not only characterizes the contrast intensity of each attribute through standard
deviation, but also models the conflicting relationships between attributes by Pearson corre-
lation coefficient. In view of these advantages, CRITIC has been applied to many practical
problems (Mohamadghasemi et al. 2020; Zafar et al. 2021;Wang et al. 2022; Kahraman et al.
2022).

Nonetheless,Krishnan et al. (2021) found that the original CRITICmethod could only cap-
ture linear rather than nonlinear relationships between attributes by using Pearson correlation,
which may lead to disputes over the validity of the final weight information. Therefore, an
improved CRITIC method, called D-CRITIC (Krishnan et al. 2021) method, can overcome
the above problems. It replaces Pearson correlation with distance correlation to arbitrar-
ily capture the nonlinear relationship between attributes, making weight information more
reasonable. However, as a new and effective objective weight method, D-CRITIC, has not
received enough attention. Especially, it has not been extended to fuzzy environment. In addi-
tion, Dice distance and Jaccard distance, as the complement of Dice and Jaccard indexes,
respectively, can effectively capture the difference or deviation between sets or arguments.
They have been extended to some fuzzy environments, such as intuitionistic multiplicative
set (Luo et al. 2019), PYFSs (Huang et al. 2020) and interval-valued SFSs (Jin et al. 2021).
But there is no relevant research on Dice distance and Jaccard distance under SFSs.
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Therefore, stimulated by the above researches, this paper first proposes some Dice and
Jaccard DIMs to capture the differences between SFSs or arguments. Secondly, we integrate
the DMs’mental behavior into the decision-making process to establish an SF-CPT–CoCoSo
model for MAGDM. In the meantime, the D-CRITIC method is extended for the first time
to SFSs in obtaining unknown attribute weights. Finally, we use the developed model for
LSEVCS to illustrate the applicability of the SF-CPT–CoCoSo model and carry out sensi-
tivity analysis as well as comparative study to demonstrate the robustness, effectiveness and
superiority of the proposed model. The proposed model integrates the subjective psycholog-
ical factors of DMs into the decision-making process, and extends D-CRITIC method by the
proposed DIMs to objectively obtain the unknown attribute weight information under SFSs,
which makes the decision-making results more in line with the actual needs.

The main motivations of this paper are as follows. (1) Faced with complex and uncer-
tain decision-making environment, SFSs are superior to other FSs (such as IFSs, PYFSs
and PFSs) in expressing the universality and depth of things. (2) Dice and Jaccard distances
are effective tools for measuring differences between sets or arguments, but they have not
been discussed in SFSs. (3) CoCoSo method sorts schemes based on compromise attitude
and aggregation strategy. It is a popular method to deal with uncertain problems because of
its simple calculation and easy operation. As an effective behavior description model, CPT
can fully simulate DMs’ psychological behaviors when facing risks. The fusion of CoCoSo
method and CPT (CPT–CoCoSo method) can scientifically evaluate and rank schemes under
the premise of fully considering DMs’ psychological behavior. However, up to now, the
CPT–CoCoSomethod has not been extended under SFSs to solve uncertain problems. (4) As
a modified type of CRITIC method, D-CRITIC method can effectively model the nonlinear
relations among attributes via distance correlation to obtain the attribute weights reasonably.
However, the application of D-CRITIC approach in fuzzy environment is still a gap. (5)
LSEVCS is a hot topic in MAGDM, which has attracted the attention of many scholars.
However, most existing methods for LSEVCS often assume that DMs are completely ratio-
nal and do not consider their psychological behavior characteristics. Following the above
reasons, this paper first presents some novel DIMs by Dice and Jaccard indexes. Secondly,
SF-CPT–CoCoSo approach is developed for solvingMAGDMissues, andD-CRITICmethod
is extended to obtain attribute weights in SFSs. Finally, the established model is applied to
LSEVCS to demonstrate its validity. Furthermore, sensitivity analysis and comparative dis-
cussion with existing methods further prove the robustness, effectiveness and superiority of
the SF-CPT–CoCoSo model.

The contributions of this article are: (1) to propose some novel spherical fuzzy DIMs,
including spherical fuzzy Dice distance, generalized spherical fuzzy Dice distance, spherical
fuzzy Jaccarddistance, generalized spherical fuzzy Jaccarddistance and theirweighted forms.
(2) To establish an SF-CPT–CoCoSo model in settling MAGDM issues. The established
model employs SFSs to express the potential ambiguity in the evaluation information of DMs
and uses CoCoSomethod to effectively evaluate and rank schemes. Furthermore, CPT is used
to simulate DMs’ psychological perception for gains and losses in the evaluation process.
(3) To extend the D-CRITIC method to acquire unknown attribute weights in spherical fuzzy
environment for the first time. (4) To utilize the established method to solve LSEVCS and
to illustrate the applicability for the SF-CPT–CoCoSo model. Meanwhile, the robustness,
validity and advantages of the establishedmodel are proved by sensitivity analysis and further
comparison. (5) To afford DMs more choices in settling MAGDM issues and to also offer
some reference on the extension of the CPT–CoCoSo method in other decision-making
environments.
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The remainder of the paper is scheduled as follows: the primary knowledge of SFSs,
the basic ideas of the CoCoSo method, D-CRITIC method and CPT are reviewed in part 2.
Some new spherical fuzzy DIMs are proposed in part 3. The general steps for integrating D-
CRITIC method and SF-CPT–CoCoSo model are presented in part 4. The proposed method
is applied in settling LSEVCS to attest its availability in part 5. This paper is ended with
some conclusions in part 6.

2 Preliminaries

In this part, some essential knowledge of SFSs and the general steps for CoCoSo method,
D-CRITIC method and CPT will be reviewed.

2.1 Spherical fuzzy sets

Definition 1 (Mahmood et al. 2019): Let Ö be a universe of discourse, then the SFS
↔
F

on Ö is defined as where ξ↔
F

: Ö → [0, 1], ϑ↔
F

: Ö → [0, 1], τ↔
F

: Ö → [0, 1] and

0 ≤ ξ2↔
F
(ö) + ϑ2↔

F
(ö) + τ 2↔

F
(ö) ≤ 1,∀ö ∈ Ö. At the same time, for each ö, the numbers

ξ↔
F
(ö), ϑ↔

F
(ö) and τ↔

F
(ö) are MD, N-MD and AD of ö to

↔
F ,respectively, and ς↔

F
(ö) �

√
1 − ξ2↔

F
(ö) − ϑ2↔

F
(ö) − τ 2↔

F
(ö) denotes the refusal degree. The triplet

↔
m� (ξ↔

m
, ϑ↔

m
, τ↔

m
) is

called a spherical fuzzy number (SFN).

Definition 2 (Gundogdu and Kahraman 2019b; Sharaf 2021): Suppose there are two SFNs
↔
m� (ξ↔

m
, ϑ↔

m
, τ↔

m
) and

↔
n� (ξ↔

n
, ϑ↔

n
, τ↔

n
) , respectively, then:

↔
m

c� (ϑ↔
m
, ξ↔

m
, τ↔

m
)

↔
m

c
denotes the complement of

↔
m, (2)

↔
m ⊕ ↔

n�
(

(ξ2↔
m
+ ξ2↔

n
− ξ2↔

m
ξ2↔
n
)1/2, ϑ↔

m
ϑ↔
n
,

((1 − ξ2↔
n
)τ 2↔

m
+ (1 − ξ2↔

m
)τ 2↔

n
− τ 2↔

m
τ 2↔
n
)1/2

)
, (3)

↔
m ⊗ ↔

n�
(

ξ↔
m
ξ↔
n
, (ϑ2↔

m
+ ϑ2↔

n
− ϑ2↔

m
ϑ2↔
n
)1/2,

((1 − ϑ2↔
n
)τ 2↔

m
+ (1 − ϑ2↔

m
)τ 2↔

n
− τ 2↔

m
τ 2↔
n
)1/2

)
, (4)

σ · ↔
m�

(
(1 − (1 − ξ2↔

m
)σ )1/2, ϑσ↔

m
,

((1 − ξ2↔
m
)σ − (1 − ξ2↔

m
− τ 2↔

m
)σ )1/2

)
, σ > 0, (5)

↔
m

σ �
(

ξσ↔
m
, (1 − (1 − ϑ2↔

m
)σ )1/2 ,

((1 − ϑ2↔
m
)σ − (1 − ϑ2↔

m
− τ 2↔

m
)σ )1/2

)
, σ > 0. (6)

Definition 3 Sharaf (2021): Let
↔
m� (ξ↔

m
, ϑ↔

m
, τ↔

m
) be an SFN, then the score function Sc(

↔
m)

and accuracy function Ac(
↔
m) are given as:

Sc(
↔
m) � (ξ↔

m
− τ↔

m
)2 − (ϑ↔

m
− τ↔

m
)2, (7)

Ac(
↔
m) � ξ2↔

m
+ ϑ2↔

m
+ τ 2↔

m
. (8)
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Note that:
↔
m<

↔
n if and only if

i. Sc(
↔
m) < Sc(

↔
n ) or

ii. Sc(
↔
m) � Sc(

↔
n ) and Ac(

↔
m) < Ac(

↔
n ).

Definition 4 (Gundogdu andKahraman 2019b): Let
↔
mc� (ξ↔

mc
, ϑ↔

mc
, τ↔

mc
)(c � 1, 2, . . . p) be

a set of SFNs and
↔
ω� (

↔
ω1,

↔
ω2, . . . ,

↔
ω p)T the corresponding weight vector, with

↔
ωc∈ [0, 1],∑p

c�1
↔
ωc� 1.Then, spherical weighted arithmetic mean (SWAM) operator is defined as:

SWAM↔
ω
(
↔
m1,

↔
m2, . . .

↔
md ) �↔

ω1
↔
m1 +

↔
ω2

↔
m2 + · · ·+ ↔

ω p
↔
mp

�

⎛
⎜⎜⎝

[1 −
p∏

c�1
(1 − ξ2↔

mc
)
↔
ωc ]1/2,

p∏
c�1

ϑ
↔
ωc↔
mc

,

[
p∏

c�1
(1 − ξ2↔

mc
)
↔
ωc −

p∏
c�1

(1 − ξ2↔
mc

− τ 2↔
mc
)
↔
ωc ]1/2

⎞
⎟⎟⎠. (9)

Definition 5 (Gundogdu andKahraman 2019b): Let
↔
mc� (ξ↔

mc
, ϑ↔

mc
, τ↔

mc
)(c � 1, 2, . . . p) be

a set of SFNs and
↔
ω� (

↔
ω1,

↔
ω2, . . . ,

↔
ω p)T the corresponding weight vector, with

↔
ωc∈ [0, 1],∑p

c�1
↔
ωc� 1.Then the spherical weighted geometric mean (SWGM) operator is defined as:

SWGM↔
ω
(
↔
m1,

↔
m2, . . . ,

↔
mp) �↔

m
↔
ω1

1 +
↔
m

↔
ω2

2 + · · ·+ ↔
m

↔
ω p

p

�

⎛
⎜⎜⎝

p∏
c�1

ξ
↔
ωc↔
m c

,

[
1 −

p∏
c�1

(1 − ϑ2↔
mc
)
↔
ωc

]1/2
,

[ p∏
c�1

(1 − ϑ2↔
mc
)
↔
ωc −

p∏
c�1

(1 − ϑ2↔
mc

− τ 2↔
mc
)
↔
ωc ]1/2

]

⎞
⎟⎟⎠.

(10)

2.2 CoCoSomethod

The CoCoSo method (Yazdani et al. 2019) provides a compendium of compromise solu-
tions based on an integrated additive weighting and is exponentially weighted. This method
effectively utilizes the multiplication rules and weighted powers in the aggregation process
and reasonably combines some aggregation strategies and compromise attitudes to obtain
valuable decision results. The general steps are shown as follows.

About an MADM problem, the initial decision matrix from DMs is given as follows:

(ycd )p×q �

⎡
⎢⎢⎢⎣

y11 y12 · · · y1q
y21 y22 · · · y2q
...

...
...

...
yp1 yp2 · · · ypq

⎤
⎥⎥⎥⎦, c � 1, 2, . . . , p; d � 1, 2, . . . , q. (11)

↔
∂ � (

↔
∂ 1,

↔
∂ 2, . . . ,

↔
∂ q ) indicates the weight vector of attributes.

Step 1. Normalize all attribute values by (12):

y∗
cd �

⎧
⎪⎨
⎪⎩

ycd−min
c

ycd

max
c

ycd−min
c

ycd
, for the benefit attributes.

max
c

ycd−ycd

max
c

ycd−min
c

ycd
, for the cost attributes.

(12)
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Step 2.Utilize the weighted summeasure (WSM) and weighted product measure (WPM)
to calculate the weighted sum comparability sequence Sc and the power weighted compara-
bility sequence Pc (Yazdani et al. 2019; Liao et al. 2020):

Sc �
q∑

d�1

(
↔
∂ d · y∗

cd ), c � 1, 2, . . . , p. (13)

Pc �
q∑

d�1

(y∗
cd )

↔
∂ d , c � 1, 2, . . . , p. (14)

Step 3.Compute the three appraisal score strategies with (15)–(17) to measure the relative
importance of alternatives (Yazdani et al. 2019):

Z1
c � Pc + Sc∑p

c�1 (Pc + Sc)
, (15)

Z2
c � Sc

min
c

Sc
+

Pc
min
c

Pc
, (16)

Z3
c � β̂Sc + (1 − β̂)Pc

(β̂ max
c

Sc + (1 − β̂)max
c

Pc)
. (17)

Z1
c denotes the arithmetic average of the sum of WSM and WPM scores, Z2

c indi-
cates a sum of the relative score of WSM and WPM compared to the optimal, and
Z3
c represents the balanced compromise of the WSM and WPM scores. β̂ indicates com-

promise coefficient and 0 ≤ β̂ ≤ 1.
Step 4. Sort the alternatives based on Zc, the greater the value of Zc is, the better the

alternative will be.

Zc � (Z1
c · Z2

c · Z3
c ) +

1

3
(Z1

c + Z2
c + Z3

c ). (18)

2.3 D-CRITIC method

As a modified form of the original CRITIC approach, D-CRITIC was proposed by Krishnan
et al. (2021). This method integrates distance correlation into the CRITIC method to capture
the nonlinear relationship between attributes and makes up for the deficiency of the CRITIC
method in achieving this purpose. It can simulate the conflict relation between attributes
more reliably to obtain attribute weight effectively. Assuming that the initial decision matrix
is given in (11), its general steps are as follows:

Step 1. Normalize the decision matrix with (12).
Step 2. Compute the standard deviation for each attribute (19):

ζd �
√∑p

c�1 (y
∗
cd − yd )2

p − 1
, d � 1, 2, . . . , q. (19)

Here, ζd and yd represent the standard deviation and mean value under the dth attribute,
respectively.

Step 3.Figure out the distance correlation of every pair of attributes. This is themain differ-
ence between the D-CRITIC method and the original CRITIC method. The CRITIC method
uses Pearson correlation to measure the relationship between attributes, which could lead
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to some unreasonable results because two attributes where Pearson correlation is zero may
not be completely independent. Therefore, D-CRITIC method improves this shortcoming by
modeling the conflict relationship between attributes with distance correlation (Szekely et al.

2007) to obtain the final attribute weight rationally. The distance correlation of attributes
↔�d

and
↔� f is computed as follows:

dCor
(↔�d ,

↔� f

)
�

dCov
(↔�d ,

↔� f

)
√
dVar(

↔�d ) · dVar(↔� f )
, d, f � 1, 2, . . . , q, (20)

where dCov
(↔�d ,

↔� f

)
indicates the distance covariance between

↔�d and
↔� f , and

dVar(
↔�d ) � dCov

(↔�d ,
↔�d

)
and dVar(

↔� f ) � dCov
(↔� f ,

↔� f

)
are the distance variance of

↔�d and
↔� f , respectively. The detailed calculation process is shown below:

(1) Construct the distance matrix for each attribute
↔�d based on all the alternatives by (21):

↔
A
d� (

↔
a
d

ce)p×p � (y∗
cd − y∗

ed )p×p, c, e � 1, 2, . . . , p; d � 1, 2, . . . , q. (21)

Here, Ad stands for the distance matrix about attribute
↔�d .

(2) Obtain the double-centered matrix Bd for attribute
↔�d with (22):

↔
B
d � (

↔
b
d

ce)p×p

↔
b
d

ce �↔
a
d

ce − 1

p

p∑
e�1

↔
a
d

ce − 1

p

p∑
c�1

↔
a
d

ce +
1

p2

p∑
c�1

p∑
e�1

↔
a
d

ce, d � 1, 2, . . . , q, (22)

where 1
p

∑p
e�1

↔
a
d

ce and
1
p

∑p
c�1

↔
a
d

ce denote the average of the cth row and e th column

of Ad , respectively, and 1
p2
∑p

c�1

∑p
e�1

↔
a
d

ce represents the total average of A
d .

(3) Determine the distance covariance of attributes
↔�d and

↔� f by (23):

dCov
(↔�d ,

↔� f

)
�

√√√√∑p
c�1

∑p
e�1

↔
b
d

ce · ↔
b

f

ce

p2
, d, f � 1, 2, . . . , q. (23)

(4) Calculate the distance variance for attribute
↔�d depending on (24):

dVar(
↔�d ) � dCov(

↔�d ,
↔�d ) , d � 1, 2, . . . , q. (24)

(5) Obtain the distance correlation between attributes based on distance covariance and
distance variance of attribute.

Step 4. Compute the information content for each attribute by (25):

Id � ζd ·
q∑
f �1

(
1 − dCor(

↔�d ,
↔� f )

)
, d � 1, 2, . . . , q. (25)
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Step 5. Calculate the objective weights by (26):

↔
∂ d� Id∑q

d�1 Id
, d � 1, 2, . . . , q, (26)

where
↔
∂ d indicates the objective weight about attribute

↔�d .

2.4 Cumulative prospect theory

CPT is an effective model to describe the risk preference of DMs, which was presented
by Tversky and Kahneman (1992). As an improved form of PT (Kahneman and Tversky
1979), CPT replaces decision weight in PT with cumulative decision weight, which can
effectively overcome the phenomenon that PT violates random predominance. To describe

the mathematical formula of CPT, consider that k results
↔
x are sorted by ascending order

(i.e.,
↔
x 1≤ · · · ≤↔

x h≤ 0 ≤↔
x h+1≤ · · · ≤↔

x k), where
↔♦c is the probability of result

↔
x c, and

the prospect value
↔
V is defined as:

↔
V�

h∑
c�1

↔
v (

↔
x c) · η−

c +
k∑

c�h+1

↔
v (

↔
x c) · η+c , (27)

where
↔
v (

↔
x c) indicates the value function, which can fully reflect DMs’ risk attitude and

subjective preference when facing the gain and loss. It takes the difference between the
index result and the decision reference point as the basis for decision making, rather than the
absolute value of the index result, which conforms with the psychology and actual situation
of DMs. The specific expression is as follows:

↔
v (

↔
x c) �

{
(
↔
x c)α,

↔
x c≥ 0

−λ(− ↔
x c)β,

↔
x c< 0

, (28)

where
↔
x c represents the difference with respect to the reference point, and

↔
x c≥ 0 indicates

the gain, whereas
↔
x c< 0 means the loss.α, β are the risk attitude coefficients of DMs and

mean the preference degrees in the region of gain and loss.λ denotes the coefficient of loss
aversion that is more sensitive to loss than gain.

η+c and η−
c represent probability weighting function for gain and loss, respectively, defined

as the following:

η−
c �

{
κ−(

↔♦c), if c � 1

κ−(
↔♦1 + · · ·+ ↔♦c) − κ−(

↔♦1 + · · ·+ ↔♦c−1), if 2 ≤ c ≤ h
, (29)

η+c �
{

κ+(
↔♦c), if c � k

κ+(
↔♦c + · · ·+ ↔♦k) − κ+(

↔♦c+1 + · · ·+ ↔♦k), if h + 1 ≤ c ≤ k − 1
(30)

and

κ+(
↔♦) �

↔♦
γ

(
↔♦

γ

+(1− ↔♦)γ )
1
γ
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κ−(
↔♦) �

↔♦
δ

(
↔♦

δ

+(1− ↔♦)δ)
1
δ

, (31)

where γ , δ express the curvature for probability weighting function of gain and loss and
reflect DMs’ different risk attitudes toward gain and loss.

3 Some novel distancemeasures for spherical fuzzy sets

Dice and Jaccard indexes (Dice 1945; Jaccard 1901) can efficaciously describe the degree
of similarity between sets or inputs, which have been widely extended in many decision-
making environments (Wang et al. 2021, 2019a; Ali and Mahmood 2020; Jan et al. 2020;
Mahmood et al. 2021b; Wei and Gao 2018). Based on existing results, in this section we
present some new spherical fuzzy DIMs by Dice and Jaccard indexes to detect the deviation
degree between SFSs or inputs and avoid the loss of information.

3.1 Some Dice and Jaccard distancemeasures for spherical fuzzy sets

In the subsection, we shall introduce some Dice and Jaccard DIMs and their weighted forms
in spherical fuzzy environment.

Definition 6 Let
↔
F1� {< ö, (ξ↔

F1
(ö), ϑ↔

F 1
(ö), τ↔

F1
(ö))|ö ∈ Ö} and

↔
F2� {<

ö, (ξ↔
F2
(ö), ϑ↔

F2
(ö), τ↔

F2
(ö))|ö ∈ Ö} be twoSFSs on Ö � {ö1, ö2, · · · , öp}, thenDice distance

measure between SFSs
↔
F1 and

↔
F2 is given as

d1Dice(
↔
F1,

↔
F2) � 1 − 1

p

p∑
c�1

2
↔
�c

↔
Mc +

↔
Nc

, (32)

where
↔
�c� ξ2↔

F 1

(öc)ξ2F2
(öc) + ϑ2

↔
F 1

(öc)ϑ2
↔
F 2

(öc) + τ 2↔
F 1

(öc)τ 2↔
F 2

(öc),
↔
Mc� ξ4↔

F 1

(öc) + ϑ4
↔
F 1

(öc) +

τ 4
F1
(öc),

↔
Nc� ξ4↔

F 2

(öc) + ϑ4
↔
F 2

(öc) + τ 4
F2
(öc), and d1Dice also satisfies the following conditions:

(1) d1Dice(
↔
F1,

↔
F2) � d1Dice(

↔
F2,

↔
F1);

(2) 0 ≤ d1Dice(
↔
F1,

↔
F2) ≤ 1;

(3) d1Dice(
↔
F1,

↔
F2) � 0 if

↔
F1�

↔
F2.

Proof

(1) Based on Definition 6, d1Dice(
↔
F1,

↔
F2) � d1Dice(

↔
F2,

↔
F1) is obvious.

(2) Since a2 + b2 ≥ 2ab, we have

↔
Mc +

↔
Nc � ξ4↔

F1
(öc) + ϑ4↔

F1
(öc) + τ 4↔

F1
(öc) + ξ4↔

F2
(öc) + ϑ4↔

F2
(öc) + τ 4↔

F2
(öc) ≥ 2

(
ξ2↔
F1
(öc)ξ

2↔
F2
(öc)

+ ϑ2↔
F1
(öc)ϑ

2↔
F2
(öc) + τ 2↔

F1
(öc)τ

2↔
F2
(öc)

)
� 2

↔
�c⇒ 0 ≤ 2

↔
�c

↔
Mc +

↔
Nc

≤ 1 ⇒ 0 ≤ 1

p

p∑
c�1

2
↔
�c

↔
Mc +

↔
Nc

≤ 1

⇒ 0 ≤ 1 − 1

p

p∑
c�1

2
↔
�c

↔
Mc +

↔
Nc

≤ 1,

123



Location selection of electric vehicles charging stations by using … Page 11 of 35 60

so 0 ≤ d1Dice(
↔
F1,

↔
F2) ≤ 1.

(3) When
↔
F1�

↔
F2, we can get ξ↔

F 1

(öc) � ξ↔
F 2

(öc), ϑ↔
F 1

(öc) � ϑ↔
F 2

(öc), τ↔
F 1

(öc) �

τ↔
F 2

(öc), c � 1, 2, . . . p. Therefore, d1Dice(
↔
F1,

↔
F2) � 1 − 1

p

∑p
c�1

2
↔
Mc

2
↔
Mc

� 1 −
1
p

∑p
c�1

2
↔
Nc

2
↔
Nc

� 0.

In practical decision making, elements in SFSs may have different degrees of importance,
so the weighted Dice distance measure is given below:

d1↔
∂ Dice

(
↔
F1,

↔
F2) � 1 −

p∑
c�1

↔
∂ c

2
↔
�c

↔
Mc +

↔
Nc

, (33)

where
↔
∂ � (

↔
∂ 1,

↔
∂ 2, . . . ,

↔
∂ p) denote the weight vector of elements, with

↔
∂ c≥ 0 and∑p

c�1

↔
∂ c� 1. When

↔
∂ � ( 1p , 1

p , . . . , 1
p ), then the weighted Dice distance measure becomes

Dice distance measure.
Clearly, the weighted Dice distance measure satisfies the properties in Definition 6. In the

following, we shall give some other forms for Dice distance measure:

d2Dice(
↔
F1,

↔
F2) � 1 −

∑p
c�1 2

↔
�c

∑p
c�1

↔
Mc

∑p
c�1

↔
Nc

, (34)

d3Dice(
↔
F1,

↔
F2) � 1 − 1

p

p∑
c�1

2

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

↔
Mc +ς4

↔
F 1

(öc)+
↔
Nc +ς4

↔
F 2

(öc)
, (35)

d4Dice(
↔
F1,

↔
F2) � 1 −

p∑
c�1

2

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

∑p
c�1

(↔
Mc +ς4

↔
F 1

(öc)

)
+
∑p

c�1

(↔
Nc +ς4

↔
F 2

(öc)

) , (36)

where ς↔
F 1

(öc) and ς↔
F 2

(öc) represent the RD of elements in SFSs
↔
F1 and

↔
F2 , respectively.

Accordingly, their weighted forms are as follows:

d2↔
∂ Dice

(
↔
F1,

↔
F2) � 1 −

∑p
c�1 2

↔
∂ c

↔
�c

∑p
c�1

↔
∂ c

↔
Mc +

∑p
c�1

↔
∂ c

↔
Nc

, (37)

d3↔
∂ Dice

(
↔
F1,

↔
F2) � 1 −

p∑
c�1

↔
∂ c

2

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

↔
Mc +ς4

↔
F 1

(öc)+
↔
Nc +ς4

↔
F 2

(öc)
, (38)

d4↔
∂ Dice

(
↔
F1,

↔
F2) � 1 −

∑p
c�1 2

↔
∂ c

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

∑p
c�1

↔
∂ c

(↔
Mc +ς4

↔
F 1

(öc)

)
+
∑p

c�1

↔
∂ c

(↔
Nc +ς4

↔
F 2

(öc)

) , (39)
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where
↔
∂ � (

↔
∂ 1,

↔
∂ 2, . . . ,

↔
∂ p) denote the weight vector of elements, with

↔
∂ c≥ 0 and∑p

c�1

↔
∂ c� 1, ς↔

F 1

(öc) and ς↔
F 2

(öc) represent the rejection degree of elements in SFSs
↔
F1

and
↔
F2, respectively.

Furthermore, Dice DIMs d2Dice(
↔
F1,

↔
F2),d3Dice(

↔
F1,

↔
F2),d4Dice(

↔
F1,

↔
F2) and their weighted

forms also satisfy the properties in Definition 6.

Definition 7 Let
↔
F1� {< ö, (ξ↔

F1
(ö), ϑ↔

F 1
(ö), τ↔

F1
(ö))|ö ∈ Ö} and

↔
F2� {<

ö, (ξ↔
F2
(ö), ϑ↔

F2
(ö), τ↔

F2
(ö))|ö ∈ Ö} be two SFSs on Ö � {ö1, ö2, . . . , öp}, then Jaccard

distance measure between SFSs
↔
F1 and

↔
F2 is given as

d1Jaccard(
↔
F1,

↔
F2) � 1 − 1

p

p∑
c�1

↔
�c

↔
Mc +

↔
Nc − ↔

�c

, (40)

where
↔
�c� ξ2↔

F 1

(öc)ξ2F2
(öc) + ϑ2

↔
F 1

(öc)ϑ2
↔
F 2

(öc) + τ 2↔
F 1

(öc)τ 2↔
F 2

(öc),
↔
Mc� ξ4↔

F 1

(öc) + ϑ4
↔
F 1

(öc) +

τ 4
F1
(öc),

↔
Nc� ξ4↔

F 2

(öc)+ϑ4
↔
F 2

(öc)+τ 4
F2
(öc), and d1Jaccard also satisfies the following conditions:

(1) d1Jaccrad(
↔
F1,

↔
F2) � d1Jaccard(

↔
F2,

↔
F1);

(2) 0 ≤ d1Jaccard(
↔
F1,

↔
F2) ≤ 1;

(3) d1Jaccard(
↔
F1,

↔
F2) � 0 if

↔
F1�

↔
F2.

Proof

(1) Based on Definition 7, d1Jaccard(
↔
F1,

↔
F2) � d1Jaccard(

↔
F2,

↔
F1) is obvious.

(2) Since a2 + b2 ≥ 2ab, we have

↔
Mc +

↔
Nc − ↔

�c � ξ4↔
F1
(öc) + ϑ4↔

F1
(öc) + τ 4F1 (öc) + ξ4↔

F2
(öc) + ϑ4↔

F2
(öc) + τ 4F2 (öc) −

(
ξ2↔
F1
(öc)ξ

2↔
F2
(öc)+ϑ2↔

F1
(öc)ϑ

2↔
F2
(öc)

+ τ 2↔
F1
(öc)τ

2↔
F2
(öc)

)
≥ 2

(
ξ2↔
F1
(öc)ξ

2↔
F2
(öc)+ϑ2↔

F1
(öc)ϑ

2↔
F2
(öc) + τ 2↔

F1
(öc)τ

2↔
F2
(öc)

)
−
(

ξ2↔
F1
(öc)ξ

2↔
F2
(öc)+ϑ2↔

F1
(öc)ϑ

2↔
F2
(öc)

+ τ 2↔
F1
(öc)τ

2↔
F2
(öc)

)
� ξ2↔

F1
(öc)ξ

2↔
F2
(öc) + ϑ2↔

F1
(öc)ϑ

2↔
F2
(öc) + τ 2↔

F1
(öc)τ

2↔
F2
(öc) � ↔

�c ⇒ 0 ≤
↔
�c

↔
Mc +

↔
Nc − ↔

�c

≤ 1 ⇒

0 ≤ 1

p

p∑
c�1

↔
�c

↔
Mc +

↔
Nc − ↔

�c

≤ 1 ⇒ 0 ≤ 1 − 1

p

p∑
c�1

↔
�c

↔
Mc +

↔
Nc − ↔

�c

≤ 1.

So, 0 ≤ d1Jaccard(
↔
F1,

↔
F2) ≤ 1.

(3) When
↔
F1�

↔
F2, we can get ξ↔

F 1

(öc) � ξ↔
F 2

(öc), ϑ↔
F 1

(öc) � ϑ↔
F 2

(öc), τ↔
F 1

(öc) �

τ↔
F 2

(öc), c � 1, 2, . . . p. Therefore, d1Jaccard(
↔
F1,

↔
F2) � 1 − 1

p

∑p
c�1

↔
�c↔
�c

� 0.

In practical decision making, elements in SFSs may have different degrees of importance,
so the weighted Jaccard distance measure is given below:

d1↔
∂ Jaccard

(
↔
F1,

↔
F2) � 1 −

p∑
c�1

↔
∂ c

↔
�c

↔
Mc +

↔
Nc − ↔

�c

, (41)
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where
↔
∂ � (

↔
∂ 1,

↔
∂ 2, . . . ,

↔
∂ p) denote the weight vector of elements, with

↔
∂ c≥ 0 and∑p

c�1

↔
∂ c� 1. When

↔
∂ � ( 1p , 1

p , . . . , 1
p ), then the weighted Jaccard distance measure

becomes Jaccard distance measure.
Clearly, the weighted Jaccard distance measure satisfies the properties in Definition 7. In

the following, we shall give some other forms for Jaccard distance measure.

d2Jaccard(
↔
F1,

↔
F2) � 1 −

∑p
c�1

↔
�c

∑p
c�1

↔
Mc +

∑p
c�1

↔
Nc −∑p

c�1

↔
�c

, (42)

d3Jaccard(
↔
F1,

↔
F2) � 1 − 1

p

p∑
c�1

↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

↔
Mc +ς4

↔
F 1

(öc)+
↔
Nc +ς4

↔
F 2

(öc) −
(↔

�c +ς2
↔
F 1

(öc)ς2
↔
F 2

(öc)

) ,

(43)

d4Jaccard(
↔
F1,

↔
F2) � 1 −

∑p
c�1

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

∑p
c�1

(↔
Mc +ς4

↔
F 1

(öc)

)
+
∑p

c�1

(↔
Nc +ς4

↔
F 1

(öc)

)
−∑p

c�1

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

) , (44)

where ς↔
F 1

(öc) and ς
F̈2
(öc) represent the RD of elements in SFSs

↔
F1 and

↔
F2, respectively.

Accordingly, their weighted forms are as follows:

d2↔
∂ Jaccard

(
↔
F1,

↔
F2) � 1 −

∑p
c�1

↔
∂ c �c

∑p
c�1

↔
∂ c

↔
Mc +

∑p
c�1

↔
∂ c

↔
Nc −∑p

c�1

↔
∂ c

↔
�c

, (45)

d3↔
∂ Jaccard

(
↔
F1,

↔
F2) � 1 −

p∑
c�1

↔
∂ c

↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

↔
Mc +

↔
Nc −

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

) , (46)

d4↔
∂ Jaccard

(F1, F2) � 1 −
∑p

c�1

↔
∂ c

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

∑p
c�1

↔
∂ c

↔
Mc +

∑p
c�1

↔
∂ c

↔
Nc −∑p

c�1

↔
∂ c

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

) ,

(47)

where
↔
∂ � (

↔
∂ 1,

↔
∂ 2, . . . ,

↔
∂ p) denote the weight vector of elements, with

↔
∂ c≥ 0 and∑p

c�1

↔
∂ c � 1, and ς↔

F 1

(öc) and ς↔
F 2

(öc) represent the rejection degree of elements in SFSs

↔
F1 and

↔
F2 respectively.

Furthermore, Jaccard DIMs d2Jaccard(
↔
F1,

↔
F2), d3Jaccard(

↔
F1,

↔
F2), d4Jaccard(

↔
F1,

↔
F2) and their

weighted forms also satisfy the properties in Definition 7.

3.2 Some generalized Dice and Jaccard distancemeasures for spherical fuzzy sets

In the subsection, we shall introduce some generalized Dice and Jaccard DIMs and their
weighted forms in spherical fuzzy environment.
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Definition 8 Let
↔
F1� {< ö, (ξ↔

F1
(ö), ϑ↔

F 1
(ö), τ↔

F1
(ö))|ö ∈ Ö} and

↔
F2� {<

ö, (ξ↔
F2
(ö), ϑ↔

F2
(ö), τ↔

F2
(ö))|ö ∈ Ö} be two SFSs on Ö � {ö1, ö2, . . . , öp}, then some gener-

alized Dice DIMs between SFSs
↔
F1 and

↔
F2 are given as:

d1GDice(
↔
F1,

↔
F2) � 1 − 1

p

p∑
c�1

↔
�c

�
↔
Mc +(1 − �)

↔
Nc

, (48)

d2GDice(
↔
F1,

↔
F2) � 1 −

∑p
c�1

↔
�c

�
∑p

c�1

↔
Mc + (1 − �)

∑p
c�1

↔
Nc

, (49)

d3GDice(
↔
F1,

↔
F2) � 1 − 1

p

p∑
c�1

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

�

(↔
Mc +ς4

↔
F 1

(öc)

)
+ (1 − �)

(↔
Nc +ς4

↔
F 2

(öc)

) , (50)

d4GDice(
↔
F1,

↔
F2) � 1 −

∑p
c�1

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

�
∑p

c�1

(↔
Mc +ς4

↔
F 1

(öc)

)
+ (1 − �)

∑p
c�1

(↔
Nc +ς4

↔
F 2

(öc)

) , (51)

where
↔
�c� ξ2↔

F 1

(öc)ξ2↔
F 2

(öc) + ϑ2
↔
F 1

(öc)ϑ2
↔
F 2

(öc) + τ 2↔
F 1

(öc)τ 2↔
F 2

(öc),
↔
Mc� ξ4↔

F 1

(öc) + ϑ4
↔
F 1

(öc) +

τ 4↔
F 1

(öc),
↔
Nc� ξ4↔

F 2

(öc) + ϑ4
↔
F 2

(öc) + τ 4↔
F 2

(öc),ς↔
F 1

(öc) �
√
1 − ξ2↔

F 1

(öc) + ϑ2
↔
F 1

(öc) + τ 2↔
F 1

(öc)

and ς↔
F 2

(öc) �
√
1 − ξ2↔

F 2

(öc) + ϑ2
↔
F 2

(öc) + τ 2↔
F 2

(öc) indicate RD in SFSs
↔
F1 and

↔
F2 on Ö ,

respectively, 0 ≤ � ≤ 1. Accordingly, some weighted generalized Dice DIMs between SFSs
↔
F1 and

↔
F2 are given as:

d1↔
∂ GDice

(
↔
F1,

↔
F2) � 1 −

p∑
c�1

↔
∂ c

↔
�c

�
↔
Mc +(1 − �)

↔
Nc

, (52)

d2↔
∂ GDice

(
↔
F1,

↔
F2) � 1 −

∑p
c�1

↔
∂ c

↔
�c

�
∑p

c�1

↔
∂ c

↔
Mc + (1 − �)

∑p
c�1

↔
∂ c

↔
Nc

, (53)

d3↔
∂ GDice

(
↔
F1,

↔
F2) � 1 −

p∑
c�1

↔
∂ c

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

�

(↔
Mc +ς4

↔
F 1

(öc)

)
+ (1 − �)

(↔
Nc +ς4

↔
F 2

(öc)

) , (54)

d4↔
∂ GDice

(
↔
F1,

↔
F2) � 1 −

∑p
c�1

↔
∂ c

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

�
∑p

c�1

↔
∂ c

(↔
Mc +ς4

↔
F 1

(öc)

)
+ (1 − �)

∑p
c�1

↔
∂ c

(↔
Nc +ς4

↔
F 2

(öc)

) ,

(55)

where
↔
∂ � (

↔
∂ 1,

↔
∂ 2, . . . ,

↔
∂ p) denote the weight vector of elements, with

↔
∂ c≥ 0 and∑p

c�1

↔
∂ c� 1.
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When � � 0.5, the generalized Dice DIMs (48–51) correspondingly change into Dice
DIMs (32) and (34–36), and the weighted generalized Dice DIMs (52–55) correspondingly
change into the weighted Dice DIMs (33) and (37–39).

Definition 9 Let
↔
F1� {< ö, (ξ↔

F1
(ö), ϑ↔

F 1
(ö), τ↔

F1
(ö))|ö ∈ Ö} and

↔
F2� {<

ö, (ξ↔
F2
(ö), ϑ↔

F2
(ö), τ↔

F2
(ö))|ö ∈ Ö} be two SFSs on Ö � {ö1, ö2, . . . , öp}, then some gener-

alized Jaccard DIMs between SFSs
↔
F1 and

↔
F2 are given as:

d1GJaccard(
↔
F1,

↔
F2) � 1 − 1

p

p∑
c�1

↔
�c

�
↔
Mc +�

↔
Nc +(1 − � − �)

↔
�c

, (56)

d2GJaccard(
↔
F1,

↔
F2) � 1 −

∑p
c�1

↔
�c

�
∑p

c�1

↔
Mc + �

∑p
c�1

↔
Nc + (1 − � − �)

∑p
c�1

↔
�c

, (57)

d3GJaccard(
↔
F1,

↔
F2) � 1 − 1

p

p∑
c�1

↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

�

(↔
Mc +ς4

↔
F 1

(öc)

)
+ �

(↔
Nc +ς4

↔
F 2

(öc)

)
+ (1 − � − �)

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

) , (58)

(59)

d4GJaccard(
↔
F1,

↔
F2)

� 1 −
∑p

c�1

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

�
∑p

c�1

(↔
Mc +ς4

↔
F 1

(öc)

)
+ �

∑p
c�1

(↔
Nc +ς4

↔
F 1

(öc)

)
+ (1 − � − �)

∑p
c�1

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

) ,

where
↔
�c� ξ2↔

F 1

(öc)ξ2↔
F 2

(öc) + ϑ2
↔
F 1

(öc)ϑ2
↔
F 2

(öc) + τ 2↔
F 1

(öc)τ 2↔
F 2

(öc),
↔
Mc� ξ4↔

F 1

(öc) + ϑ4
↔
F 1

(öc) +

τ 4↔
F 1

(öc),
↔
Nc� ξ4↔

F 2

(öc) + ϑ4
↔
F 2

(öc) + τ 4↔
F 2

(öc),ς↔
F 1

(öc) �
√
1 − ξ2↔

F 1

(öc) + ϑ2
↔
F 1

(öc) + τ 2↔
F 1

(öc)

and ς↔
F 2

(öc) �
√
1 − ξ2↔

F 2

(öc) + ϑ2
↔
F 2

(öc) + τ 2↔
F 2

(öc) indicate RD in SFSs
↔
F1 and

↔
F2 on Ö ,

respectively, 0 ≤ �, � ≤ 1. Accordingly, some weighted generalized Jaccard DIMs between

SFSs
↔
F1 and

↔
F2 are given as:

d1↔
∂ GJaccard

(
↔
F1,

↔
F2) � 1 −

p∑
c�1

↔
∂ c

↔
�c

�
↔
Mc +�

↔
Nc +(1 − � − �)

↔
�c

, (60)

d2↔
∂ GJaccard

(
↔
F1,

↔
F2) � 1 −

∑p
c�1

↔
∂ c

↔
�c

�
∑p

c�1

↔
∂ c

↔
Mc + �

∑p
c�1

↔
∂ c

↔
Nc + (1 − � − �)

∑p
c�1

↔
∂ c

↔
�c

,

(61)

d3↔
∂ GJaccard

(
↔
F1,

↔
F2) � 1

−
p∑

c�1

↔
∂ c

↔
�c +ς2↔

F1

(öc)ς2↔
F2

(öc)

�

(↔
Mc +ς4↔

F1

(öc)

)
+ �

(↔
Nc +ς4↔

F2

(öc)

)
+ (1 − � − �)

(↔
�c +ς2↔

F1

(öc)ς2↔
F2

(öc)

) ,

(62)

123



60 Page 16 of 35 H. Zhang, G. Wei

d4↔
∂ GJaccard

(
↔
F1,

↔
F2)

� 1−
∑p

c�1

↔
∂ c

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

)

�
∑p

c�1

↔
∂ c

(↔
Mc +ς4

↔
F 1

(öc)

)
+ �

∑p
c�1

↔
∂ c

(↔
Nc +ς4

↔
F 1

(öc)

)
+ (1 − � − �)

∑p
c�1

↔
∂ c

(↔
�c +ς2

↔
F 1

(öc)ς2
↔
F 2

(öc)

) ,

(63)

where
↔
∂ � (

↔
∂ 1,

↔
∂ 2, . . . ,

↔
∂ p) denote the weight vector of elements, with

↔
∂ c≥ 0 and∑n

c�1

↔
∂ c� 1.

When � � 0.5 and � � 0.5, the generalized Jaccard DIMs (56–59) correspondingly
change into generalizedDiceDIMs (48–51), the weighted generalized JaccardDIMs (60–63)
correspondingly change into weighted generalized Dice DIMs (52–55).

When � � 1 and � � 1, the generalized Jaccard DIMs (56–59) correspondingly change
into Jaccard DIMs (40) and (42–44), and the weighted generalized Jaccard DIMs (60–63)
correspondingly change into weighted Jaccard DIMs (41) and (45–47).

4 The CPT–CoCoSomethod with D-CRITIC for spherical fuzzy
multi-attribute group decision-making problems

Suppose there are p alternatives St � {St1, St2, . . . , Stp},q attributes
↔�� {↔�1,

↔�2, . . . ,
↔�q}

and k experts HF � {HF1, HF2, . . . , HFk},
↔∇ � (

↔∇
1
,

↔∇
2
, . . . ,

↔∇
k
)T represents the weight

vector of k experts, with
↔∇
g

≥ 0,
∑k

g�1

↔∇
g

� 1, and attribute weights are unknown.

Let Xg � (xgcd )p×q � (ξxgcd
, ϑxgcd

, τxgcd
)p×q represents the decision matrix of the g th

expert under SFSs, where ξxgcd
, ϑxgcd

and τxgcd
denote MD, N-MD and AD of the gth expert

respectively, with ξxgcd
, ϑxgcd

, τxgcd
∈ [0, 1] and 0 ≤ ξ2

xgcd
+ ϑ2

xgcd
+ τ 2

xgcd
≤ 1.

Next, we propose the CPT–CoCoSo method with D-CRITIC for MAGDM problems in
SFSs.

Step 1. Construct assessment information from DMs utilizing the linguistic terms given
in Table 1.

Table 1 Linguistic terms and their
corresponding SFNs (Gundogdu
and Kahraman 2019b)

Linguistic terms (ξ, ϑ, τ )

Extremely very important (EVI) (0.9, 0.1, 0.1)

Very important (VI) (0.8, 0.2, 0.2)

Important (I) (0.7, 0.3, 0.3)

Relative important (RI) (0.6, 0.4, 0.4)

Average important (AI) (0.5, 0.5, 0.5)

Slightly important (SI) (0.4, 0.6, 0.4)

Not important (NI) (0.3, 0.7, 0.3)

Very unimportant (VU) (0.2, 0.8, 0.2)

Extremely very unimportant (EVU) (0.1, 0.9, 0.1)
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Step 2. Standardize all attribute values by means of (64):

Ug � (ugcd )p×q , c � 1, 2, . . . , p, d � 1, 2, . . . , q, g � 1, 2, . . . , k,

ugcd � (ξ̃ugcd
, ϑ̃ugcd

, τ̃ugcd
) �

{
xgcd � (ξxgcd

, ϑxgcd
, τxgcd

), for benefit attribute

(xgcd )
c � (ϑxgcd

, ξxgcd
, τxgcd

), for cost attribute
. (64)

Step 3. Aggregate the matrix Uo � (ugcd )p×q (g � 1, 2 . . . , k) to get the group decision
matrix W � (wcd )p×q by employing the SWAM operator.

wcd � (
↔
ξ

wcd

,
↔
ϑ

wcd
,

↔
τ

wcd
) � SWAM↔∇ (u

1
cd , u

2
cd , . . . , u

k
cd )

�

⎛
⎜⎜⎜⎜⎝

[
1 −

k∏
g�1

(1 − ξ̃2
ugcd

)

↔∇
g

]1/2
,

k∏
g�1

(ϑ̃ugcd
)

↔∇
g ,

[
k∏

g�1
(1 − ξ̃2

ugcd
)

↔∇
g −

k∏
g�1

(1 − ξ̃2
ugcd

− τ̃ 2
ugcd

)

↔∇
g

]1/2

⎞
⎟⎟⎟⎟⎠

. (65)

Step 4. Get the attribute weights by the D-CRITIC method.
Step 4.1. Since the normalization of the decision matrices are completed in Step 2, then

compute the average solution for each attribute by (66):

wd � 1

p

p⊕
c�1

wcd , d � 1, 2, . . . , q. (66)

Step 4.2. Determine the standard deviation about each attribute (67):

υd �
√∑p

c�1 (d(wcd , wd ))2

p − 1
, d � 1, 2, . . . , q, (67)

where d(wcd , wd ) indicates spherical fuzzy Dice distance measure calculated by (32).
Step 4.3. Calculate the distance correlation of every pair of attributes.
Step 4.3.1. Construct the distance matrix for each attribute based on all alternatives by

(68):

Rd � (rdce)p×p � (d(wcd , wed ))p×p, c, e � 1, 2, . . . , p; d � 1, 2, . . . , q. (68)

Here, Rd stands for Dice distance matrix about attribute �d , and d(wcd , wed ) denotes
Dice distance between wcd and wed computed by (32).

Step 4.3.2. Obtain the double-centered matrix T d for attribute
↔�d with (69):

T d � (tdce)p×p

tdce � rdce − 1

p

p∑
e�1

rdce − 1

p

p∑
c�1

rdce +
1

p2

p∑
c�1

p∑
e�1

rdce, d � 1, 2, . . . , q, (69)

where 1
p

∑p
e�1 r

d
ce and

1
p

∑p
c�1 r

d
ce denote the average of the c th row and d th column of

distance matrix Rd , respectively, and 1
p2
∑p

c�1

∑p
e�1 r

d
ce represents the total average of R

d .
Step 4.3.3. Determine the distance covariance of attributes �d and � f by (70):

dCov
(↔�d ,

↔� f

)
�
√∑p

c�1

∑p
e�1 t

d
ce · t fce

p2
, d, f � 1, 2, . . . , q. (70)
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Step 4.3.4. Calculate the distance variance for attribute
↔�d depending on (71):

dVar(
↔�d ) � dCov(

↔�d ,
↔�d ) , d � 1, 2, . . . , q. (71)

Step 4.3.5. Obtain the distance correlation between attributes with (72):

dCor
(↔�d ,

↔� f

)
�

dCov
(↔�d ,

↔� f

)
√
dVar(

↔�d ) · dVar(↔� f )
, d, f � 1, 2, . . . , q. (72)

Step 4.4 Compute the information content �d for each attribute by (73):

�d � υd ·
q∑
f �1

(
1 − dCor(

↔�d ,
↔� f )

)
, d � 1, 2, . . . , q. (73)

Step 4.5 Get the attribute weights by (74):

↔
∂ d� �d∑q

d�1 �d
, d � 1, 2, . . . , q, (74)

where
↔
∂ d indicate weight about attribute

↔�d .

Step 5. Determine the prospect matrix
↔
L � (

↔
l
cd
)p×q .

↔
l
cd

�
{

(d(wcd , wd ))δ, if Sc(wcd ) ≥ Sc(wd )
−φ(d(wcd , wd ))�, if Sc(wcd ) < Sc(wd )

, (75)

where we take the average solution under each attribute as the reference point to establish
the prospect matrix, wd denotes the average solution about the dth attribute computed by
(66), and d(wcd , wd ) is the Dice distance measure between wcd and wd computed by (32).
In addition, δ � 0.88, � � 0.88, φ � 2.25 is based on Tversky and Kahneman (1992) and
they have been accepted by most scholars.

Step 6. Figure out the probability weight matrix.

Put prospect value
↔
l
cd

in ascending order as l ′c1 ≤ · · · ≤ l ′ch ≤ 0 ≤ l ′c(h+1) ≤ · · · ≤ l ′cq ,

c � 1, 2, . . . , p; l ′cd occurs with probability
↔
∂ d , then

∞cd �

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ−(
↔
∂ h), if h � 1

κ−(
↔
∂ 1 + · · ·+ ↔

∂ d ) − κ−(
↔
∂ 1 + · · ·+ ↔

∂ d−1), if 2 ≤ d ≤ h

κ+(
↔
∂ d ), if d � q

κ+(
↔
∂ d + · · ·+ ↔

∂ q ) − κ+(
↔
∂ d+1 + · · ·+ ↔

∂ q ), if h + 1 ≤ d ≤ q − 1

, (76)

and

κ+(
↔
∂ ) �

↔
∂

λ̄

(
↔
∂

λ̄

+(1− ↔
∂ )λ̄)

1
λ̄

, κ−(
↔
∂ ) �

↔
∂

β

(
↔
∂

β

+(1− ↔
∂ )β )

1
β

. (77)

Here,λ̄ � 0.61, β � 0.69 by experience of Tversky and Kahneman (1992).
Step 7. Normalize the prospect matrix and the probability weight matrix.
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Because the distance of twoSFNs range is from0 and 1, then−2.25 ≤ ↔
l
cd

≤ 1, normalizing

the prospect matrix to make
↔
l
cd

between 0 and 1 with (78):

l∗cd �
↔
l
cd

−(−2.25)

1 − (−2.25)
. (78)

Furthermore, normalize the probability weight matrix with (79):

∞∗
cd � ∞cd∑q

d�1 ∞cd
. (79)

Step 8. Calculate the prospect weighted sum sequence �c(c � 1, 2, . . . p) and the
prospect weighted product sequence �c(c � 1, 2, . . . p) depending on (80) and (81):

�c �
q∑

d�1

∞∗
cd · l∗cd , (80)

�c �
q∑

d�1

(
l∗cd
)∞∗

cd . (81)

Step 9. Determine three score strategies of alternatives by (82–84):

L1
c � �c + �c∑p

c�1 (�c + �c)
, (82)

L2
c � �c

min
c

�c
+

�c

min
c

�c
, (83)

L3
c � β̂�c + (1 − β̂)�c

β̂ max
c

�c + (1 − β̂)max
c

�c
, (84)

where β̂ indicates compromise coefficient,0 ≤ β̂ ≤ 1.
Step 10. Integrate the above three score strategies by (85), and sort all alternatives accord-

ing to the value of Lc, thenthe maximum value of Lc is the best alternative (Fig. 1).

Lc � (L1
c · L2

c · L3
c) +

1

3
(L1

c + L2
c + L3

c). (85)

To facilitate DMs to evaluate candidate schemes in spherical fuzzy environment, Gun-
dogdu and Kahraman (2019b) put forward the linguistic terms for SFNs in Table 1. In this
paper, we will utilize the above linguistic terms to invite experts for evaluating LSEVCS.

4.1 An example for spherical fuzzy multi-attribute group decisionmaking

The fast development of economy has increased the rate of car purchases, but the problems
of environmental pollution and excessive energy consumption caused by it have become
increasingly prominent. As a new energy vehicle, EV has quickly entered into the public
view with low emissions and low noise characteristics, and has become the main choice
for the replacement of traditional fuel vehicle to reduce environmental pollution. However,
reasonable LSEVCS is an important guarantee for promoting the development of the EV
market and meeting the charging demands of EV users. Therefore, in this section we use
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Step1. Construct assessment information

Step2. Normalize all attributes

Step 4. Acquire attribute weights
by D-CRITIC method

Step 8. Obtain the prospect weighted sum
and prospect weighted product sequences

Step 10. Compute the overall scores for 
alternatives and get the optimal one

Step 6. Determine the probability weight
matrix

Step 7. Normalize the prospect matrix and
the probability weight matrix.

Step3. Get the group decision matrix

Step 9. Calculate three score strategies of 
alternatives

Step 5. Construct the prospect
matrix

Fig. 1 The flowchart of the SF-CPT–CoCoSo method

the SF-CPT–CoCoSo model to deal with an example of LSEVCS with SFNs. Suppose
that there are three experts (HF1, HF2, HF3) to assess five possible EV charging stations

Stc(c � 1, . . . , 5) through the following four attributes:
↔�1 (traffic density),

↔�2 (service

level),
↔�3 (charging demand),

↔�4 (construction cost), and except for
↔�4, the others are benefit

attributes.
↔∇ � (0.20, 0.40, 0.40) represents expert’s weights, but the attribute weights are

unknown. The evaluation information from HF1, HF2, HF3 are displayed in Table 2.
Step 1. The evaluation information of experts is given in Table 2, so Step 1 is completed.
Step 2. Normalize all attributes with (64) as shown in Tables 3, 4 and 5.
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Table 2 Assessment information of experts

DMs Alternatives
↔�1

↔�2
↔�3

↔�4

HF1 St1 AI I NI SI

St2 VU RI RI VI

St3 VU NI EVI SI

St4 RI AI AI EVI

St5 I AI SI AI

HF2 St1 RI NI SI AI

St2 VI AI AI SI

St3 NI NI NI I

St4 SI SI NI NI

St5 RI SI I RI

HF3 St1 I NI VU RI

St2 RI I I NI

St3 I SI NI VU

St4 RI NI RI AI

St5 AI RI SI NI

Table 3 Normalized decision matrix from HF1

Alternatives
↔�1

↔�2
↔�3

↔�4

St1 (0.50, 0.50, 0.50) (0.70, 0.30, 0.30) (0.30, 0.70, 0.30) (0.60, 0.40, 0.40)

St2 (0.20, 0.80, 0.20) (0.60, 0.40, 0.40) (0.60, 0.40, 0.40) (0.20, 0.80, 0.20)

St3 (0.20, 0.80, 0.20) (0.30, 0.70, 0.30) (0.90, 0.10, 0.10) (0.60, 0.40, 0.40)

St4 (0.60, 0.40, 0.40) (0.50, 0.50, 0.50) (0.50, 0.50, 0.50) (0.10, 0.90, 0.10)

St5 (0.70, 0.30, 0.30) (0.50, 0.50, 0.50) (0.40, 0.60, 0.40) (0.50, 0.50, 0.50)

Table 4 Normalized decision matrix of HF2

Alternatives
↔�1

↔�2
↔�3

↔�4

St1 (0.60, 0.40, 0.40) (0.30, 0.70, 0.30) (0.40, 0.60, 0.40) (0.50, 0.50, 0.50)

St2 (0.80, 0.20, 0.20) (0.50, 0.50, 0.50) (0.50, 0.50, 0.50) (0.60, 0.40, 0.40)

St3 (0.30, 0.70, 0.30) (0.30, 0.70, 0.30) (0.30, 0.70, 0.30) (0.30, 0.70, 0.30)

St4 (0.40, 0.60, 0.40) (0.40, 0.60, 0.40) (0.30, 0.70, 0.30) (0.70, 0.30, 0.30)

St5 (0.60, 0.40, 0.40) (0.40, 0.60, 0.40) (0.70, 0.30, 0.30) (0.40, 0.60, 0.40)
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Table 5 Normalized decision matrix of HF3

Alternatives
↔�1

↔�2
↔�3

↔�4

St1 (0.70, 0.30, 0.30) (0.30, 0.70, 0.30) (0.20, 0.80, 0.20) (0.40, 0.60, 0.40)

St2 (0.60, 0.40, 0.40) (0.70, 0.30, 0.30) (0.70, 0.30, 0.30) (0.70, 0.30, 0.30)

St3 (0.70, 0.30, 0.30) (0.40, 0.60, 0.40) (0.30, 0.70, 0.30) (0.80, 0.20, 0.20)

St4 (0.60, 0.40, 0.40) (0.30, 0.70, 0.30) (0.60, 0.40, 0.40) (0.50, 0.50, 0.50)

St5 (0.50, 0.50, 0.50) (0.60, 0.40, 0.40) (0.40, 0.60, 0.40) (0.70, 0.30, 0.30)

Step 3. Aggregate individual assessment information to obtain group decision matrix by
() (see Table 6).

Step 4. Calculate the attribute weights by the D-CRITIC approach with (66–74). The
calculation processes are shown in Tables 7, 8, 9, 10 and 11.

Step 5. Determine the prospect matrix based on (75) as shown in Table 12 [where taking
δ � 0.88, � � 0.88, φ � 2.25 by experience of Tversky and Kahneman (1992)].

Step 6. Calculate the probability weight matrix with (76–77) shown in Table 13 [here
takingλ̄ � 0.61, β � 0.69 by experience of Tversky and Kahneman (1992)].

Step 7. Normalize the prospect matrix and probability weight matrix using (78–79) (see
Tables 14, 15).

Table 6 The group decision matrix W � (wet )5×4

Alternatives
↔�1

↔�2
↔�3

↔�4

St1 (0.63, 0.37, 0.38) (0.44, 0.59, 0.31) (0.32, 0.69, 0.32) (0.49, 0.51, 0.45)

St2 (0.67, 0.35, 0.29) (0.61, 0.39, 0.40) (0.61, 0.39, 0.40) (0.61, 0.41, 0.34)

St3 (0.52, 0.51, 0.30) (0.34, 0.66, 0.35) (0.58, 0.47, 0.24) (0.64, 0.38, 0.28)

St4 (0.54, 0.47, 0.40) (0.39, 0.62, 0.40) (0.49, 0.52, 0.40) (0.57, 0.46, 0.38)

St5 (0.59, 0.41, 0.42) (0.51, 0.49, 0.42) (0.56, 0.45, 0.36) (0.57, 0.44, 0.38)

Table 7 The average solution for each attribute

Average solution
↔�1

↔�2
↔�3

↔�4

wd (0.59, 0.42, 0.36) (0.48, 0.54, 0.38) (0.53, 0.50, 0.35) (0.58, 0.13, 0.37)

Table 8 Standard deviation of attributes

Standard deviation
↔�1

↔�2
↔�3

↔�4

υd 0.03384 0.07832 0.11200 0.16030
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Table 9 Distance correlation matrix

Attributes
↔�1

↔�2
↔�3

↔�4

↔�1 1.00000 0.59529 0.22404 0.37011
↔�2 0.59529 1.00000 0.56770 0.22609
↔�3 0.22404 0.56770 1.00000 0.87974
↔�4 0.37011 0.22609 0.87974 1.00000

Table 10 Information content for each attribute

Information content
↔�1

↔�2
↔�3

↔�4

�d 0.06062 0.12617 0.14880 0.24431

Table 11 Attribute weights
↔
∂ d

Attribute weight
↔�1

↔�2
↔�3

↔�4

↔
∂ d 0.10454 0.21757 0.25659 0.42129

Table 12 Prospect matrix

Alternatives
↔�1

↔�2
↔�3

↔�4

St1 0.01587 − 0.08243 − 0.58043 0.29707

St2 0.05297 0.15697 0.08167 0.10722

St3 − 0.16404 − 0.26069 0.03871 0.10509

St4 − 0.08008 − 0.12576 − 0.04285 0.16262

St5 − 0.02371 0.02565 0.01576 0.13784

Table 13 Probability weight matrix

Alternatives
↔�1

↔�2
↔�3

↔�4

St1 0.05323 0.13973 0.29812 0.38076

St2 0.29425 0.27165 0.20968 0.22443

St3 0.07190 0.27020 0.13894 0.38076

St4 0.07190 0.27020 0.16202 0.38076

St5 0.17475 0.11532 0.20968 0.38076
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Table 14 Normalized prospect matrix

Alternatives
↔�1

↔�2
↔�3

↔�4

St1 0.69719 0.66694 0.51371 0.78371

St2 0.70860 0.74061 0.71744 0.72530

St3 0.64184 0.61210 0.70422 0.72464

St4 0.66767 0.65361 0.67912 0.74234

St5 0.68501 0.70020 0.69716 0.73472

Table 15 Normalized probability weight matrix

Alternatives
↔�1

↔�2
↔�3

↔�4

St1 0.06106 0.16026 0.34195 0.43673

St2 0.29425 0.27165 0.20968 0.22443

St3 0.08343 0.31353 0.16122 0.44182

St4 0.08126 0.30535 0.18309 0.43030

St5 0.19846 0.13097 0.23813 0.43244

Table 16 Weighted sum sequence
�c and weight product sequence
�c

Alternatives �c �c

St1 0.66739 3.61071

St2 0.72290 3.68848

St3 0.67915 3.63343

St4 0.69761 3.65721

St5 0.71139 3.67494

Step 8.Calculate the prospect weighted sum and the prospect weighted product sequences
by (80–81) as displayed in Table 16.

Step9.Determine three score strategies of alternatives by (82–84) (wherewe take β̂ � 0.5)
(see Table 17).

Table 17 Three score strategies of
alternatives Alternatives L1c L2c L3c

St1 0.19676 2.00000 0.96979

St2 0.20289 2.10471 1.00000

St3 0.19834 2.02392 0.97761

St4 0.20028 2.05815 0.98718

St5 0.20173 2.08371 0.99432
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Table 18 Total scores of alternatives and sorting

Alternatives The total score strategies Lc Ranking

St1 1.78086 St2 > St5 > St4 > St3 > St1
St2 1.85556

St3 1.79876

St4 1.82291

St5 1.84094

Step 10. Obtain the total score for each alternative by (85) and sort all alternatives, as
shown in Table 18.

4.2 Sensitivity analysis

In a realistic decision-making procedure, different DMs may have different subjective pref-
erences for compromise coefficient β̂, and different values of β̂ may have some effect on
decision results. Hence, we take 11 groups of values of β̂ with a step size of 0.1 in the range
of 0 to 1 to observe the influence of its change on the results (see Table 19).

By Figs. 2 and 3, we can draw the following conclusions:
(1) Taking different values of β̂, the scores of alternative St2 remain constant and are the

largest among all alternatives. (2) Except for alternative St2, the scores of other alternatives
decreased with the increase of β̂ value. (3) For 11 different sets of β̂ values, the rankings
of alternatives are always unchanged:St2 > St5 > St4 > St3 > St1. The above analysis
effectively shows that the developed model is insensitive to different values of compromise
coefficient β̂. In conclusion, the stability and dependability for SF-CPT–CoCoSo model in
settling MAGDM issues is verified through the sensitivity investigation of LSEVCS.

Table 19 Sensitivity analysis of compromise coefficient β̂ to alternative results

β̂ St1 St2 St3 St4 St5

β̂ � 0.0 1.78617 1.85556 1.80311 1.82544 1.84211

β̂ � 0.1 1.78548 1.85556 1.80254 1.82511 1.84195

β̂ � 0.2 1.78466 1.85556 1.80187 1.82472 1.84177

β̂ � 0.3 1.78366 1.85556 1.80105 1.82425 1.84155

β̂ � 0.4 1.78243 1.85556 1.80004 1.82366 1.84128

β̂ � 0.5 1.78086 1.85556 1.79876 1.82291 1.84094

β̂ � 0.6 1.77880 1.85556 1.79707 1.82193 1.84048

β̂ � 0.7 1.77599 1.85556 1.79477 1.82059 1.83986

β̂ � 0.8 1.77190 1.85556 1.79142 1.81864 1.83896

β̂ � 0.9 1.76541 1.85556 1.78611 1.81556 1.83754

β̂ � 1.0 1.75353 1.85556 1.77641 1.80993 1.83494
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Fig. 2 Sensitivity analysis of compromise coefficient β̂ to scores of alternatives

Fig. 3 Sensitivity analysis of compromise coefficient β̂ to rankings of alternatives

4.3 Comparative analysis

4.3.1 Compare D-CRITIC method with some existing objective weighting methods

For this subpart, we employ some existing objective weight methods under SFSs [such as
entropy method (Phi-Hung et al. 2022; Peng and Li 2022), CRITIC method (Ali 2021)] to
calculate attribute weights, so as to illustrate the advantages of using D-CRITIC method in
this paper. The calculation results are as follows:

As can be seen from Table 20, the ranking of attribute weights via using D-CRITIC
method is obviously different from the entropy method and CRITIC method. The main
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Table 20 Attribute weights and ranking under different objective weighting methods

Methods
↔�1

↔�2
↔�3

↔�4

Entropy method (Phi-Hung et al. 2022) 0.25017 0.25988 0.26171 0.22825

Ranking 3 2 1 4

Entropy method (Peng and Li 2022) 0.26333 0.23211 0.24574 0.25883

Ranking 1 4 3 2

CRITIC method (Ali 2021) 0.29325 0.16890 0.26410 0.27375

Ranking 1 4 3 2

D-CRITIC method in this paper 0.10454 0.21757 0.25659 0.42129

Ranking 4 3 2 1

reason is that entropy method only considers the contrast intensity to each attribute in the
process of calculating the weight of attributes, whereas CRITIC method considers both
the contrast intensity and the conflicting relationship held by each attribute. However, the
CRITIC method has a flaw in appropriately capturing the conflicting relationship between
attributes, because it only uses Pearson correlation to model the linear relationship between
attributes. More precisely, two attributes with a zero Pearson correlation coefficient may not
be completely independent. As an improved version of the CRITIC method, the D-CRITIC
method introduces the idea of distance correlation on the basis of CRITICmethod, which can
effectively simulate the nonlinear relationship between attributes. Therefore, the D-CRITIC
method is more reasonable and reliable for obtaining attribute weights.

4.3.2 Compare SF-CPT–CoCoSo with some spherical fuzzy operators

In this subsection, we compare the SF-CPT–CoCoSo model with SWAM (Gundogdu and
Kahraman 2019b) operator, SWGM (Gundogdu and Kahraman 2019b) operator, spheri-
cal weighted averaging aggregation (SFNWAA) (Ashraf et al. 2019b) operator, spherical
weighted geometric aggregation (SFNWGA) (Ashraf et al. 2019b) operator, spherical fuzzy
weighted averaging interaction (SFWAI) (Ju et al. 2021) operator as well as spherical fuzzy
weighted geometric interaction (SFWGI) (Ju et al. 2021) operator. The results are displayed
in Tables 21, 22, 23, 24, 25 and 26. St2 always remains the optimal alternative.

Table 21 SWAM operator and ranking

Alternatives SWAM Scores Ranking

St1 (0.46272, 0.55357, 0.38974) − 0.02152 St2 > St3 > St5 > St4 > St1
St2 (0.61690, 0.39333, 0.36598) 0.06221

St3 (0.56869, 0.46727, 0.28837) 0.04658

St4 (0.51216, 0.50697, 0.39299) 0.00121

St5 (0.55880, 0.45094 0.38939) 0.02491
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Table 22 SWGM operator and ranking

Alternatives SWGM Scores Ranking

St1 (0.40207, 0.57505 0.37148) − 0.04051 St2 > St5 > St1 > St4 > St3
St2 (0.55228, 0.46229, 0.36951) 0.02480

St3 (0.41815, 0.58802, 0.30894) − 0.06595

St4 (0.41998, 0.58142, 0.36789) − 0.04288

St5 (0.51543, 0.47794, 0.40452) 0.00691

Table 23 SFNWAA operator and ranking

Alternatives SFNWAA Scores Ranking

St1 (0.46272, 0.55357, 0.35539) 0.51792 St2 > St3 > St5 > St4 > St1
St2 (0.61690, 0.39333, 0.33997) 0.62787

St3 (0.56869, 0.46727, 0.27585) 0.60852

St4 (0.51216, 0.50697, 0.34049) 0.55490

St5 (0.55880, 0.45094, 0.38195) 0.57531

Table 24 SFNWGA operator and ranking

Alternatives SFNWGA Scores Ranking

St1 (0.40207, 0.60834, 0.35539) 0.47945 St2 > St5 > St3 > St4 > St1
St2 (0.55228, 0.47090, 0.33997) 0.58047

St3 (0.41815, 0.60407, 0.27585) 0.51274

St4 (0.41998, 0.59965, 0.34049) 0.49328

St5 (0.51543, 0.49537, 0.38195) 0.54604

Table 25 SFWAI operator and ranking

Alternatives SFWAI Scores Ranking

St1 (0.46272, 0.57435, 0.38974) 0.36617 St2 > St3 > St5 > St4 > St1
St2 (0.61690, 0.42749, 0.36598) 0.53194

St3 (0.56869, 0.53468, 0.28837) 0.47719

St4 (0.51216, 0.54388, 0.39299) 0.40603

St5 (0.55880, 0.47588, 0.38939) 0.46709

Table 26 SFWGI operator and ranking

Alternatives SFWGI Scores Ranking

St1 (0.43399, 0.60834, 0.37076) 0.34040 St2 > St5 > St3 > St4 > St1
St2 (0.58224, 0.47090, 0.36947) 0.49038

St3 (0.48146 0.60407, 0.30941) 0.38558

St4 (0.46634, 0.59965, 0.36810) 0.36120

St5 (0.53052, 0.49537, 0.40436) 0.43628
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Table 27 The closeness ratios and ranking of alternatives using the SF-TOPSIS method

St1 St2 St3 St4 St5

Closeness ratios 0.21682 0.85700 0.52072 0.42338 0.61473

Ranking St2 > St5 > St3 > St4 > St1

Table 28 The scores and ranking of alternatives by the SF-CODAS method

St1 St2 St3 St4 St5St5

Assessment
scores

− 0.32480 0.34118 0.08234 − 0.16152 0.06280

Ranking St2 > St3 > St5 > St4 > St1

Table 29 The joint generalized scores and ranking of alternatives by the SF-WASPAS method

St1 St2 St3 St4 St5

Joint generalized scores − 0.02850 0.06186 0.03105 − 0.00136 0.02446

Ranking St2 > St3 > St5 > St4 > St1

Table 30 The scores and ranking of alternatives by the SF-CoCoSo method

St1 St2 St3 St4 St5

Joint generalized scores 1.69514 2.04242 1.90683 1.80333 1.91237

Ranking St2 > St5 > St3 > St4 > St1

4.3.3 Comparison of the SF-CPT–CoCoSo method with some existing multi-attribute
group decision-making approaches in spherical fuzzy sets

In this subpart, we employ the spherical fuzzy TOPSIS (SF-TOPSIS) (Kutlu Gündoğdu and
Kahraman 2021) approach, spherical fuzzy CODAS (SF-CODAS) (Gundogdu and Kahra-
man 2019c) approach, spherical fuzzy WASPAS (SF-WASPAS) (Gundogdu and Kahraman
2019d) approach and spherical fuzzy CoCoSo (SF-CoCoSo) (Peng and Li 2022) approach to
attest the legality for the developedmethod. In the light of the assessment information in Table
2 and attribute weights, the results are displayed in Tables 27, 28, 29 and 30, respectively.

Clearly, as you can see from Tables 27, 28, 29 and 30, alternative St2 is always the best and
alternative and St1 is always the worst. Moreover, Table 31 shows the ranking for different
approaches.

4.3.4 Contrastive analysis

From Table 31, although the ranking of SF-CPT–CoCoSo method is somewhat different
from the existing methods, the optimal alternative selection of all methods is consistent. The
above comparative analysis firmly demonstrates the feasibility and rationality of our pre-
sented model. Among the existing methods, each method has its own advantages in decision
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Table 31 The ranking for different methods

Methods Rankings

SWAM (Gundogdu and Kahraman 2019b) St2 > St3 > St5 > St4 > St1
SWGM (Gundogdu and Kahraman 2019b) St2 > St5 > St1 > St4 > St3
SFNWAA (Ashraf et al. 2019b) St2 > St3 > St5 > St4 > St1
SFNWGA (Ashraf et al. 2019b) St2 > St5 > St3 > St4 > St1
SFWAI (Ju et al. 2021) St2 > St3 > St5 > St4 > St1
SFWGI (Ju et al. 2021) St2 > St5 > St3 > St4 > St1
SF-TOPSIS (Kutlu Gündoğdu and Kahraman 2021) St2 > St5 > St3 > St4 > St1
SF-CODAS (Gundogdu and Kahraman 2019c) (threshold parameter

μ � 0.02)
St2 > St3 > St5 > St4 > St1

SF-WASPAS (Gundogdu and Kahraman 2019d) (threshold parameter
μ � 0.5)

St2 > St3 > St5 > St4 > St1

SF-CoCoSo (Peng and Li 2022) (compromise coefficient μ � 0.5) St2 > St5 > St3 > St4 > St1
The proposed SF-CPT–CoCoSo St2 > St5 > St4 > St3 > St1

making. SWAM, SWGM, SFNWAA and SFWGA operators emphasize the overall impact,
whereas SFWAI as well as SFWGI operators focus on the individual effect. SF-TOPSIS and
SF-CODAS approaches evaluate each alternative by measuring its distance from the ideal
solutions. SF-WASPAS and SF-CoCoSo approaches integrate WSM andWPM in evaluating
each set of attributes for different alternatives, and the SF-CoCoSo approach is superior to the
SF-WASPAS approach because it implements aggregation strategies based on the attitude of
compromise. However, the proposed method in this article not only takes advantage of the
merits of the CoCoSo method, but also integrates CPT into the the decision-making process
to fully simulate the psychological behavior characteristics of DMs for facing risks. More-
over, we utilize the proposed DIMs to effectively extend the D-CRITIC approach in getting
the unknown attribute weight legitimately under SFSs. Hence, the presented model makes
the evaluation results more valid and scientific for LSEVCS. Furthermore, the advantages of
the different approaches are also displayed in more detail in Table 32.

5 Conclusions

In this paper, we use CPT to improve the traditional CoCoso method and build a novel risk-
based MAGDM model for solving uncertainty issues under SFSs. Firstly, we propose some
new spherical fuzzy DIMs based on Dice and Jaccard indexes and discuss some special cases
of them. Secondly, considering DMs’ psychological risk factors and different preferences
of DMs to attribute set in decision making, we incorporate CPT into the CoCoSo method
under SFSs to develop an SF-CPT–CoCoSo model to MAGDM. At the same time, in view
of the advantage of the D-CRITIC method in using distance correlation to capture nonlin-
ear relations between attributes, we utilize the proposed DIMs to extend D-CRITIC method
for the first time to SFSs in obtaining unknown attribute weight information. Eventually,
the established model is utilized for LSEVCS issue to demonstrate the applicability of the
SF-CPT–CoCoSo model. Afterward, sensitivity analysis and comparative discussion further
illustrate the stability, validity and superiority of the developed model. Therefore, the main
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Table 32 Comparison of the characteristics of different methods

Methods Detect information
widely

Adjust
parameter
flexibly

Capture the
mental
behavior of
DMs fully

Model nonlinear
relationships
among attributes

SWAM (Gundogdu
and Kahraman
2019b)

√ × × ×

SWGM (Gundogdu
and Kahraman
2019b)

√ × × ×

SFNWAA (Ashraf
et al. 2019b)

√ × × ×

SFNWGA (Ashraf
et al. 2019b)

√ × × ×

SFWAI (Ju et al.
2021)

√ × × ×

SFWGI (Ju et al.
2021)

√ × × ×

SF-TOPSIS (Kutlu
Gündoğdu and
Kahraman 2021)

√ × × ×

SF-CODAS
(Gundogdu and
Kahraman 2019c)

√ √ × ×

SF-WASPAS
(Gundogdu and
Kahraman 2019d)

√ √ × ×

SF-CoCoSo (Peng
and Li 2022)

√ √ × ×

The proposed
SF-CPT–CoCoSo

√ √ √ √

achievements of this article can be summarized as follows: (1) many new spherical fuzzy
Dice and Jaccard DIMs are proposed to provide more options for detecting the differences
between SFSs or inputs; (2) a novel risk MAGDM model called SF-CPT–CoCoSo is devel-
oped to solve uncertain problems; (3) D-CRITIC method is extended for the first time to
effectively obtain unknown attribute weights under SFSs; (4) the proposed model is applied
for LSEVCS to demonstrate its applicability. Moreover, sensitivity analysis and further com-
parison demonstrate the stability, legality and superiority of the SF-CPT–CoCoSo model;
(5) the established model affords DMs more choices in settling MAGDM issues and also
offers some reference on the extension of the CPT–CoCoSomethod in other decision-making
environments. All in all, the establishedmodel adopts SFSs to deeply excavate uncertain eval-
uation information, combines CPT with CoCoSo method to evaluate alternatives under the
premise of fully considering DMs’ risk preferences and introduces D-CRITIC method for
the first time into SFSs to reasonably get attribute weights. Hence, the established model
makes the decision results more reasonable and scientific.
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However, the established model also has some limitations, such as the relatively complex
calculation process. In particular, although distance correlation in the D-CRITIC approach
can efficaciously model the nonlinear relationship between attributes, its computational cost
is high. Therefore, in the following research, on one hand, we will further explore a simple
and efficient algorithm to compute distance correlation to improve D-CRITIC method, so
that the D-CRITIC method can be widely extended in other fuzzy environments. On the
other hand, we will consider the combination of the D-CRITIC method and some subjective
weight methods [such as AHP (Saaty 1980a, b), BWM (Rezaei 2015), FOCUM (Pamucar
et al. 2018) and KEMIRA (Krylovas et al. 2014)] to design somemore sound attribute weight
calculation algorithm to enhance the effectiveness of decisionmaking. In addition, this article
only discusses the proposed model in the case of attribute values as SFNs. But in the actual
decision, many complex information forms may appear in the evaluation process due to the
uncertainty of DMs and the diversity of attributes, such as spherical linguistic FSs (Ashraf
et al. 2018), spherical soft FSs (Perveen et al. 2019), T-spherical hesitant FSs (Al-Quran 2021)
and interval-valued T-SFSs (Garg et al. 2022). Therefore, in future studies, we will also focus
on the further extension of the CPT–CoCoSo method in the aforementioned environment to
develop more MAGDM models for dealing with various uncertain problems (Zhang et al.
2021; Liu et al. 2021; Wu et al. 2014; Lu et al. 2019; Wang et al. 2019b).
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