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Abstract

In this paper, we present the result of maximum regularity of the mild solution of the
fractional Cauchy problem. As our main result, we investigate the uniqueness of mild

solutions for time-fractional Navier-Stokes equations in class C
(
[0,∞);LN

(
R
N
)N)

by

means of the estimates Lp − Lq of Giga-Shor inequality and the Gronwall inequality.
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1 Introduction

Investigating Navier-Stokes equations has always been a challenge for many researchers in the
field of partial differential equations, due to their importance and great relevance [21, 22, 23, 5,
9]. For instance, they are fundamental in modeling fluid behavior in physical systems such as
sea currents, blood flow and air masses, among others. Navier-Stokes equations form a system
of non-linear differential equations which still presents some open problems [5]. In order to
the existence, uniqueness, and regularity of solutions of Navier-Stokes equations, we need some
specific mathematical tools, which in turn require great effort and dedication [5, 1, 2]. A classic
example of this fact is that the existence of a mild global solution to the three-dimensional
equations for incompressible fluids remains an open problem.

Fractional calculus is also an important area of mathematics due to its well-founded theo-
retical basis, as well as its many applications [7, 6, 8, 30]. In recent times, researchers began to
investigate the existence, uniqueness and regularity of mild solutions of time-fractional Navier-
Stokes equations [3, 4]. The project of unifying fractional calculus and Navier-Stokes equations
is in fact something that is growing, and new works with interesting results are certainly to be
expected.

In 2015, Neto and Planas [3] wrote a work on mild solutions of time-fractional Navier-
Stokes equations, in which they investigated the existence and uniqueness of mild solutions in
R

N . Peng et al. [4], in 2017, presented an excellent work on the properties of mild solutions
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of the time-fractional Navier-Stokes equations in Sobolev space via harmonic analysis. In the
same year, Zhou and Peng [14], established the existence and uniqueness of mild solutions (local
and global) in Hβ,q, for the Navier-Stokes equations with the Caputo fractional derivative of
order α ∈ (0, 1). In the same work, the authors investigated the existence and regularity of
classical solutions. For a discussion of the results on solutions of Navier-Stokes equations using
fractional derivatives, we suggest [15, 16, 17, 18, 19, 20].

In this paper, we consider the N -dimensional time-fractional Navier-Stokes equations in R
N

(N ≥ 3), given by 



C
D

α
t u = ∆u− (u · ∇)u−∇p

∇ · u = 0
(x, t) ∈ R

N × (0, T )
(1.1)

where C
D

α
t u (·) is a Caputo fractional derivative of order α ∈ (0, 1), u = u (x, t) : RN × R

+ →
R

N , p (x, t) : RN ×R
+ → R is the pressure (unknown), whose role is to maintain the divergence

equal to 0, ∇ is the differential operator (∂x1
, ..., ∂xN

), ∇·u is the divergence of u, ∆ is Laplace
operator, while (u · ∇) is the derivation operator u1∂x1

+ u2∂x2
+ · · ·+ uN∂xN

. We also have:
(u · ∇)u =

∑
j

∂j (u
ju); p = (−∆)−1∑

j,k

∂j∂k
(
ujuk

)
; P = Id − ∇∆−1∇ = Id + R ⊗ R where

R =
1√
−∆

∇ is the Riesz transform and R = (R1, ..., RN) , R̂jf = i
ξj
|ξ| f̂ and P : Lr → Lr is the

projector of Helmholtz-Leray.

Applying the projector P on both sides of the Eq.(1.1) and using the condition of divergence,
we have Pu = u, P C

D
α
t u = C

D
α
t u, P∇p = 0. Substituting the term (u · ∇)u by ∇ · (u⊗ u) =

(∇ · u)u+ (u · ∇)u (considered as a distribution), we then have that the Cauchy problem for
the incompressible time-fractional Navier-Stokes equations in R

N , can be rewritten as





C
D

α
t u−∆u+ P∇ · (u⊗ u)u = 0, for t ∈ [0, T ), x ∈ R

N

∇ · u = 0, for t > 0, x ∈ R
N

u (0) = u0.
(1.2)

Throughout the paper, we assume that the speed u0 satisfies ∇ · u0 = 0 · T with 0 < T ≤ ∞.

The Eq.(1.2), in abstract form, is given by

{
C
D

α
t u = Aru+ F (u)

u (0) = u0
(1.3)

where Aru = ∆u with Ar : D (Ar) ⊂ Lr
σ → Lr

σ is the Stokes operator and F (u) = −P∇ ·
(u⊗ u).

In what follows we investigate the uniqueness of mild solutions for N -dimensional time-
fractional Navier-Stokes equations given by Eq.(1.2) in order to provide new results for this area
and strengthen the link between fractional calculus and partial differential equations, especially
Navier-Stokes equations. In addition, we demonstrate a result on maximum regularity for the
mild solution of the fractional Cauchy problem according to the Lemma 2.4.

The paper is organized as follows. In section 2, we present the definition of fractional
Laplacian and the Gagliadro-Niremberg-Sobolev and Gronwall inequalities; in addition, we
present the definitions of Riemann-Liouville fractional integral and Caputo fractional derivative.
We then show the mild solution for the time-fractional Navier-Stokes equations given by the
integral equation; the solution is written in terms of the Mittag-Leffler functions of one and
two parameters. We investigate the maximum regularity of the mild solution of the fractional
Cauchy problem, that is, Lemma 2.4. To conclude the section, we present the proof of the
Lemma 2.5, which is fundamental to the proof of the main result of this paper. In section 3, we
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investigate the uniqueness of the mild solutions of the time-fractional Navier-Stokes equations
written with the Caputo fractional derivative, using the techniques presented in section 2.
Concluding remarks close the paper.

2 Preliminary results

Consider the Schwartz class, the class of C∞ functions on R
N whose derivatives decay faster

than any polynomial.

S :=

{
u ∈ C∞

(
R

N
)
: sup
x∈RN

∣∣xξ∂δu (x)
∣∣ <∞, ∀ξ, δ ∈ N

N

}
.

Definition 2.1 Let s ∈ (0, 1). The fractional Laplacian of order s of the function u ∈ S, in
which we denote by (−∆)s u, is defined by [3]

(−∆)s u (x) := C (N, s) P.V

∫

RN

u (x)− u (y)

|x− y|N+2s
dy (2.1)

where C (N, s) :=
22ssΓ

(
s+ N

2

)

πN/2Γ (1− s)
is a normalization constant.

For a fixed T > 0, we use the notation [5]

‖h‖p,q,T =

(∫ T

0

‖h‖q
Lp(RN )N

dt

)1/q

, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ (2.2)

which denotes the standard space Lq
(
(0, T ) ;Lp

(
R

N
)N)

with the obvious modification if q =
∞.

We shall use the following inequality [9]:

(a + b)β ≤ 2β−1
(
aβ + bβ

)
(2.3)

for a, b ≥ 0 and β ≥ 1.

Theorem 2.1 [10](Gagliardo-Nirenberg-Sobolev inequality) Assume that 1 ≤ p ≤ N . Then

there exists a constant C dependending only on p and N such that

‖u‖
L

pN
N−p (R

N ) ≤ C ‖∇u‖Lp(RN )

for all u ∈ C1
0

(
R

N
)
.

Theorem 2.2 [6] (Gronwall inequality) Let u and v be two integrable functions and g a con-

tinuous function, with domain [0, T ]. Let ψ ∈ C1 [0, T ] be an increasing function such that

ψ′ (t) 6= 0, t ∈ [0, T ]. Assume that functions u and v are non-negative and g is non-negative

and non-decreasing. If

u (t) ≤ v (t) + g (t)

∫ T

0

ψ′ (τ) (ψ (t)− ψ (τ))α−1
v (τ) dτ

t ∈ [0, T ), and as v is a non-decreasing function over [0, T ], then

u (t) ≤ v (t)Eα (g (t) Γ (α) [ψ (T )− ψ (0)]α) , ∀t ∈ [0, T ] (2.4)

where Eα (·) is a Mittag-Leffler function with one parameter, given by Eα (t) =
∞∑
k=0

tk

Γ (αk + 1)
,

with 0 < α < 1.
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Let h : RN × [0, T ) → R
N . The Riemann-Liouville fractional integral of order α ∈ (0, 1] of

function h is defined as [7, 8, 11]

Iαt h (x, t) =
1

Γ (α)

∫ t

0

(t− τ)α−1 h (x, τ) dτ, t > 0.

Besides, the Caputo fractional derivative of order α of function q, is given by [7, 8, 11]

C
D

α
t h (x, t) := ∂αt h (x, t) =

1

Γ (α)

∫ t

0

(t− τ)α−1 ∂

∂τ
h (x, τ) dτ, t > 0.

Let Mα be the Mainardi function, given by [3]

Mα (θ) =

∞∑

k=0

θn

n!Γ (1− α (1 + n))
.

This function is a particular case of Wright’s function. The following proposition presents
a classical result about Mainardi function.

Proposition 2.3 For α ∈ (0, 1), −1 < r <∞ and Mα restricted to positive real line, Mα (t) ≥
0 for all t ≥ 0, we have ∫

∞

0

trMα (t) dt =
Γ (r + 1)

Γ (αr + 1)
.

The mild solution for Eq.(1.2), is given by the following integral equation [4]:

u (t) = Eα (t
α∆)u0 −

∫ t

0

(t− τ)α−1
Eα,α ((t− τ)α∆)P∇ · (u⊗ u) (τ) dτ (2.5)

where

Eα (t
α∆)v (x) =

(
(4πtα)−

N
2

∫
∞

0

θ−
N
2 Mα (θ) exp

(
− |·|2
4θt2

)
dθ ∗ v

)
(x)

and

Eα,α (t
α∆)v (x) =

(
(4πtα)−

N
2

∫
∞

0

αθ1−
N
2 Mα (θ) exp

(
− |·|2
4θt2

)
dθ ∗ v

)
(x) ,

with Eα,β (t) =
∞∑
k=0

tk

Γ (αk + β)
, 0 < α < 1 and 0 < β < 1.

The mild solution u ∈ C
(
[0, T ), LN

(
R

N
)N)

is associated with the initial condition u0 ∈
LN
(
R

N
)N

as ∇ · u0 = 0.

Before investigating our main result, we need the results presented in Lemma 2.4 and Lemma
2.5, below.

Lemma 2.4 Let 1 < p, q <∞, 0 < T <∞. If h ∈ Lq
(
(0, T ) ;Lp

(
R

N
)N)

, the function

u (t) = Eα (t
α∆)u0 +

∫ t

0

(t− τ)α−1
Eα,α ((t− τ)α∆)Ph (τ) dτ (2.6)

belongs to Lq
(
(0, T ) ;Lp

(
R

N
)N)

and solves the following Cauchy problem:

{
C
D

α
t u−∆u = Ph for almost everywhere t ∈ (0, T )

u (0) = 0
(2.7)
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In addition, the solution u satisfies the estimate

‖∆u‖p,q,T ≤ C ‖h‖p,q,T (2.8)

with C = C (p,N, q) > 0 independent of h and T .

In the proof of Lemma 2.4, we will use the following definitions:

1. Ω1 = R
N ;

2. Ω2 = limited domain;

3. Ω3 = half space;

4. Ω4 = external domain of RN .

The proof shall be adapted from the proof of Theorem 2.7 [24]. The result ensures that, if
Ω ⊆ R

N satisfies one of the definitions Ω1-Ω4, then the solution u of the Navier-Stokes equation
is unique.

Proof: Indeed, as we have seen earlier, we have been able to rewrite the N -dimensional
time-fractional Navier-Stokes equation Eq.(1.1) in the form of Eq.(1.2). On the other hand,
Eq.(2.7) can be written as follows:





C
D

α
t u−∆u+∇p = h

∇ · u = 0
u (x, 0) = u0.

(2.9)

Next, we will use the embedding property for the second-order derivative ∆u = ∇2u =
(∂j∂ju) , j = 1, ..., m,

‖∆u‖p,q,T =
∥∥∇2u

∥∥
p,q,T

≤ C ‖Aq‖p,q,T , v ∈ D (Aq) (2.10)

where Aq = −∆u.

This applies to C = C (p, q, N) > 0 for 1 < p, q < ∞ if Ω ⊆ R
N satisfies one of the

definitions Ω1-Ω3 and for 1 < p, q < N
2
in Ω4.

In fact, the result for the case Ω1 follows from Lemma 3.1 [25]; for Ω2, it follows from Lemma
2.4 [26, 27]. The uniqueness in case Ω3 follows from Theorem 3.6 [29]. For the case Ω4, see [28].

In this sense, applying Eq.(2.10) in Eq.(2.9) and using ∇p = g− C
D

α
t +∆u, we obtain the

following result:

‖∆u‖p,q,T ≤
∥∥CDα

t u
∥∥
p,q,T

+ ‖Ph‖p,q,T
≤ C ‖h‖p,q,T . (2.11)

This completes the demonstration. ✷

In the proof of Lemma 1 the authors Giga and Sohr assumed that Ω has an external domain,
that is, a domain whose complement in R

N is a non-empty compact set. But since Ω = R
N is

all space, Lemma 2.4 has been proved following the same steps as Theorem 2.7 [24].



6

Lemma 2.5 Let g ∈ Lq
(
(0, T ) ;Lp

(
R

N
)N2
)
where 1 < p, q < ∞, 0 < T < ∞. Then, there

exists a unique solution v = (−∆)−1/2
u belonging to Lq

(
(0, T ) ;Lp

(
R

N
)N)

which solves the

Cauchy problem

{
C
D

α
t v −∆v = P (−∆)−1/2∇ · h, almost everywhere t ∈ (0, T )

v (0) = 0,
(2.12)

and satisfies the following estimates:

‖∇u‖p,q,T ≤ C ‖h‖p,q,T

and

‖u‖ pN

N−p
,q,T ≤ C ‖h‖p,q,T , 1 < p < N, (2.13)

with C = C (p,N, q) > 0 independent of h and T .

Proof: Applying (−∆)−1/2 in Eq.(2.7), we have

C
D

α
t v −∆v = P (−∆)−1/2 ∇ · h. (2.14)

Thus, by the maximum regularity theorem in the fractional sense (Lemma 2.4), we know

that there is a unique solution v ∈ Lq
(
(0, T ) ;Lp

(
R

N
)N)

of Eq.(2.12) for all T > 0.

Moreover, from the Calderon-Zygmund theorem on singular integrals [31, 32] and inequality
(2.7), we get

‖∇u‖p,q,T =
∥∥∥∇ (−∆)1/2 v

∥∥∥
p,q,T

= ‖∆v‖p,q,T
≤ C ‖h‖p,q,T (2.15)

using inequality (2.7).

Using the inequality of Gagliardo-Nirenberg-Sobolev (Theorem 2.1) and inequality (2.15),
we have that, for every t ∈ [0, T ],

∫ T

0

‖u (τ)‖
L

pN
N−p (RN )

dτ ≤ C

∫ T

0

‖∇u (τ)‖q
Lp(RN )

dτ ≤

≤ C̃

∫ T

0

‖g (τ)‖q
Lp(RN )

dτ. (2.16)

Thus, raising both sides of this inequality to 1/q, we conclude that

‖u‖ pN

N−p
,q,T =

(∫ T

0

‖u (τ)‖
L

pN
N−p (RN )

dτ

)1/q

≤ C

(∫ T

0

‖g (τ)‖qLp(RN ) dτ

)1/q

= C ‖g‖p,q,T .
(2.17)

✷
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3 Uniqueness of mild solution

In this section, we demonstrate the main result of this paper, namely, the uniqueness of mild
solution for time-fractional Navier-Stokes equations Eq.(1.2), by means of the estimates in
Lemma 2.4 and Lemma 2.5 and the Gronwall inequality (Theorem 2.2).

Theorem 3.1 Let 0 < T ≤ ∞ and let u,v ∈ C
(
[0, T );LN

(
R

N
)N)

be two solutions of the

time-fractional Navier-Stokes equation on (0, T )×R
N with the same initial condition u0. Then,

u = v ∈ C[0, T ).

Proof: For u,v ∈ C
(
[0, T );LN

(
R

N
)N)

and an ε > 0, there are two decomposition u =

u1 + u2 and v = v1 + v2 such that, for every T > 0,

‖u1‖C([0,T );LN (RN )N) ≤ ε ; sup
(x,t)∈RN×(0,T )

|u2 (x, t)| < K (ε) (3.1)

and

‖v1‖C([0,T );LN (RN )N) ≤ ε ; sup
(x,t)∈RN×(0,T )

|v2 (x, t)| < K (ε) . (3.2)

We can consider

u2 (x, t) =

{
u (x, t) , for |u (x, t)| < K

0, for |u (x, t)| ≥ K

and

v2 (x, t) =

{
v (x, t) , for |v (x, t)| < K

0, for |v (x, t)| ≥ K

for a large enough K.

Now, assume that u and v are solutions in C
(
[0, T );LN

(
R

N
)N)

with the same initial

conditions, for instance u (0) = v (0) = µ. Then, the difference ξ = u − v is a solution of the
integral equation

ξ (t) = −
∫ T

0

(t− τ)α−1
Eα,α ((t− τ)α∆)P∇ · (ξ ⊗ u+ v⊗ ξ) (τ) dτ.

Now, consider the functions

ξ1 (t) = −
∫ T

0

(t− τ)α−1
Eα,α ((t− τ)α∆)P∇ · (ξ ⊗ u1 + v1 ⊗ ξ) (τ) ds

and

ξ2 (t) = −
∫ T

0

(t− τ)α−1
Eα,α ((t− τ)α∆)P∇ · (ξ ⊗ u2 + v2 ⊗ ξ) (τ) ds.

The convolution operator Eα,α ((t− τ)α∆)P∇ has an integrable core whose standard is

O
(
(t− τ)−α/2

)
in L1. From this property and using the estimates Eq.(3.1) and Eq.(3.2) and

Hölder’s inequality repeatedly in time, we have that

‖ξ2 (t)‖LN ≤ C

∫ T

0

(t− τ)
α
2
−1 ‖ξ (τ)‖LN (‖u2 (τ)‖L∞ + ‖v2 (τ)‖L∞) dτ
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≤ 2CK (ε)

(∫ T

0

(t− τ)
2

3
(α−2) dτ

)3/4(∫ T

0

‖ξ (τ)‖4LN dτ

)1/4

≤ 2CK (ε) t
2α−1

4

(∫ T

0

‖ξ (τ)‖4LN dτ

)1/4

, (3.3)

where C denotes a constant independent of ξ, t.

Now, raising both sides of inequality (3.3) to the fourth power and taking the integral with
respect to τ ∈ (0, T ), we have

∫ T

0

‖ξ2 (τ)‖4LN dτ ≤ 2C4 (K (ε))4 T 2α−1

∫ T

0

(∫ τ

0

‖ξ (s)‖4LN ds

)
dτ. (3.4)

On the other hand, by estimate Eq.(2.13) of Lemma 2.5, estimates Eq.(3.1) and Eq.(3.2),
Hölder’s inequality and inequality Eq.(2.3), we obtain

∫ T

0

‖ξ1 (τ)‖4LN dτ ≤ C

∫ T

0

‖(ξ ⊗ (u1 + v1)) (τ)‖4
L

N
2

dτ

≤ C
(
‖u1 (τ)‖C([0,T );LN (RN )N) + ‖v1 (τ)‖C([0,T );LN (RN )N)

)∫ T

0

‖ξ (τ)‖4LN dτ

≤ 2εC

∫ T

0

‖ξ (τ)‖4LN dτ. (3.5)

Taking ε small, we have from inequalities Eq.(3.4) and Eq.(3.5) that

∫ T

0

‖ξ (τ)‖4LN dτ ≤ C̃α (K (ε))4 T 2α−1

∫ T

0

(t− τ)α−1

(∫ τ

0

‖ξ (s)‖4LN ds

)
dτ

0 ≤ τ ≤ T.

Using the Gronwall inequality (Theorem 2.2), we finally have

∫ T

0

‖ξ (τ)‖4LN dτ ≤ 0.Eα

(
C̃α (K (ε))4 T 3α−1Γ(α)

)
= 0,

which implies that

∫ T

0

‖ξ (τ)‖4LN dτ = 0 ⇐⇒ ξ = 0. Therefore, u = v. ✷

4 Concluding remarks

We investigated the uniqueness of mild solution for time-fractional Navier-Stokes equations in

LN
(
R

N
)N

by means of estimates (Lemma 2.4 and Lemma 2.5) and the Gronwall inequality.
A direct consequence of the results obtained here is that when α = 1, we recover the result
valid for the classical Navier-Stokes equation. It is worth mentioning that it remains an open
problem the investigation of the existence, uniqueness and regularity of mild solutions for
time-fractional Navier-Stokes equations introduced by ψ-Caputo fractional derivative [7]. It
seems that a possible way to approach this open problem would be to introduce a new Laplace
transform involving the derivative of a function taken in relation to another function.
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