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Abstract

We show how to construct nonnegative low-rank approximations of nonnegative tensors
in Tucker and tensor train formats. We use alternating projections between the nonnegative
orthant and the set of low-rank tensors, using STHOSVD and TTSVD algorithms, respec-
tively, and further accelerate the alternating projections using randomized sketching. The
numerical experiments on both synthetic data and hyperspectral images show the decay of
the negative elements and that the error of the resulting approximation is close to the initial
error obtained with STHOSVD and TTSVD. The proposed method for the Tucker case is
superior to the previous ones in terms of computational complexity and decay of negative
elements. The tensor train case, to the best of our knowledge, has not been studied before.
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1 Introduction

Low-rank matrices and tensors have become ubiquitous in a multitude of tasks related to com-
putational science and machine learning [1–3]. These highly structured representations lead
to significant reduction in storage and, simultaneously, to elegant and efficient numerical algo-
rithms, which prove useful in solving high-dimensional ODEs and PDEs [4–6], recovering signals
from scarce measurements [7, 8], global optimization [9], classification [10], etc.

In certain applications, the data are naturally nonnegative, and it is important to retain
this property in the approximate representation. The data in question can be probability
distributions [11–13], joint multidimensional concentrations of chemical compounds [14, 15],
multispectral images [16], audio [17], and others. The issue with the standard approaches
to low-rank approximation, both for matrices and tensors, is that they give no guarantee of
nonnegativity.

An existing remedy is to employ the framework of nonnegative matrix factorization (NMF)
[18] and nonnegative tensor factorization (NTF) [16]. This is a collection of techniques, all of
which are based on the idea that every individual factor of the low-rank decomposition should be
nonnegative, thereby leading to a nonnegative approximation. The nonnegative rank, however,
can be larger than the usual rank of the matrix/tensor, so that the resulting representation
becomes less compact (its further processing becomes less efficient too).

An alternative view on the problem is less strict as it allows the factors of the low-rank
decomposition to have negative entries [19]. The low-rank nonnegative matrix approximation
(LRNMA) problem for X ∈ Rm×n+ can be formulated as minimization of the Frobenius norm:

‖X − Y ‖F → min s.t. Y ∈ Rm×n+ , rank
(
Y
)
≤ r. (1)

Some optimality properties of this best-approximation formulation were studied in [20], viewed
as a more general low-rank optimization problem with convex constraints [21, 22]. Stepping
away from the search for the best approximation, a different approach based on alternating
projections was proposed in [23] that provably locally converges to a good approximation. Fur-
ther developments in this direction concerned the computational efficiency of the alternating
projections [24,25] and an augmented Lagrangian method [26].

The most important difference between the algorithms for the NMF and LRNMA formu-
lations is that in NMF, the low-rank iterates are guaranteed to be nonnegative; in LRNMA,
however, the intermediate low-rank matrices do contain negative elements, but they converge to
a low-rank nonnegative matrix as the number of negative elements and their magnitude decrease
with iterations. This allows one to perceive the alternating projections approach to LRNMA as
a filtering procedure that can reduce the magnitude of the negative entries of a low-rank matrix
below a certain threshold, acceptable for a given application.

In this paper, we study how alternating projections can be used for multidimensional low-
rank nonnegative tensor approximation (LRNTA) and accelerated with randomized low-rank
projections, as was done for matrices in [25]. We focus on two popular tensor formats: the
Tucker [27] and tensor train (TT) [28] decompositions. Tucker-LRNTA was the subject of [29],
where it was treated as consensus optimization between multiple LRNMA problems. To the
best of our knowledge, TT-LRNTA is approached for the first time in our work.

2 Preliminaries

2.1 Tensors

We understand tensors as multidimensional arrays, i.e. elements of Rn1×...×nd ; see [30] for a
gentle introduction. Matrices will be denoted by uppercase letters (X,Y, . . . ) and tensors by
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bold uppercase letters (X,Y , . . . ). The Frobenius norm of a tensor is the Euclidean norm
induced by the standard inner product

〈X,Y 〉F =
∑
i1,...,id

X(i1, . . . , id)Y (i1, . . . , id), ‖X‖F =
√
〈X,X〉F ,

and the Chebyshev norm is defined as the entry of maximum magnitude

‖X‖C = max
i1,...,id

|X(i1, . . . , id)|.

The mode-k unfolding of a d-dimensional tensor X ∈ Rn1×...×nd for 1 ≤ k ≤ d is a matrix
X(k) ∈ Rnk×

∏
j 6=k nj defined as

Y = permute
(
X,
[
k, 1, 2, . . . , k − 1, k + 1, . . . , d

])
,

X(k) = reshape
(
Y ,
[
nk,
∏

j 6=k
nj

])
,

with the help of Matlab-style permute and reshape operations. The k-th matricization of X
for 1 ≤ k ≤ d− 1 is a matrix X<k> ∈ Rn1...nk×nk+1...nd defined as

X<k> = reshape
(
X,
[∏k

i=1
ni,
∏d

j=k+1
nj

])
.

The mode-k product of a tensor X ∈ Rn1×...×nd and a matrix U ∈ Rmk×nk is a tensor

Y = X ×k U ∈ Rn1×...×nk−1×mk×nk+1×...×nd , Y(k) = UX(k).

The Tucker, or multilinear, rank of a d-dimensional tensor X is an ordered d-tuple

ranktucker
(
X
)

=
(

rank
(
X(1)

)
, . . . , rank

(
X(d)

))
.

If ranktucker
(
X
)

= (r1, . . . , rd) then it is possible to represent X as a series of mode-k products

X = G×1 U1 ×2 . . .×d Ud

between a Tucker core G ∈ Rr1×...×rd and Tucker factors Uk ∈ Rnk×rk . This representation is
known as the Tucker decomposition of X; it is not unique and none of the rk can be reduced
without breaking the exact equality. For more details, see [30,31].

The tensor train (TT) rank of a d-dimensional tensor X is an ordered (d− 1)-tuple

ranktt
(
X
)

=
(

rank
(
X<1>

)
, . . . , rank

(
X<d−1>

))
.

Let ranktt
(
X
)

= (r1, . . . , rd−1); then there exist two matrices G1 ∈ Rn1×r1 , Gd ∈ Rrd−1×nd and
d− 2 three-dimensional tensors Gk ∈ Rrk−1×nk×rk for 2 ≤ k ≤ d− 2 such that every entry of X
can be calculated as

X(i1, . . . , id) =
∑

α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2) . . .Gd−1(αd−2, id−1, αd−1)Gd(αd−1, id),

where each αk ranges from 1 to rk. This is called the TT decomposition of X and G1, {Gk},
Gd are called TT cores. Like Tucker decomposition, it is not unique and exactness cannot be
achieved with smaller values of rk. Find more in [28].
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2.2 Sketching

To compute the singular value decomposition (SVD) of an m × n matrix X (m ≥ n) is a
classic problem in numerical linear algebra. The state-of-the-art algorithms (see [32] for a
thorough review) require O(mn2) flops, whether you need all n singular vectors or only r � n
dominant ones. This comes out as a serious bottleneck for computing low-rank approximations
of large matrices; notably, matrices of size n× nd−1 with d ≥ 3 appear in the HOSVD [31] and
TTSVD [33] algorithms for tensor approximation in Tucker and TT formats, respectively.

Randomized sketching is a powerful modern technique [34], which allows one to find good
(rather than best) rank-r approximations directly, using O(mnk) flops with k ≥ r, bypassing
the full SVD. The main principle is to obtain a sketch of the original matrix (by multiplying it
with an n× k random matrix Ψ) that is smaller in size, yet its column space approximates the
dominant singular subspace.

A better subspace can be obtained with the randomized subspace iteration algorithm [35,
Alg. 4.4], which computes the range of (XXT )pXΨ with p ≥ 0. Practical implementation
is presented in Alg. 1. The projection onto the corresponding orthonormal basis followed by
truncated SVD (we denote it by SVDr, where r is the truncation rank) gives the randomized
SVD algorithm [35, Alg. 5.1] of the desired complexity (see Alg. 2).

Algorithm 1: Randomized subspace iteration [35, Alg. 4.4]

input: Data matrix X ∈ Rm×n, range sketch size k ≥ r, number of iterations p,
random matrix generator TestMatrix

1 Ψ← TestMatrix(n, k) ∈ Rn×k

2 Z1 ← XΨ ∈ Rm×k
3 [Q,R]← QR(Z1)
4 for j = 1, . . . , p do
5 Z2 ← QTX ∈ Rk×n
6 [Q,R]← QR(ZT2 )

7 Z1 ← XQ ∈ Rm×k
8 [Q,R]← QR(Z1)

9 return Q

Algorithm 2: Randomized truncated SVD [35, Alg. 5.1] (HMT)

input: Data matrix X ∈ Rm×n, target rank r, estimated orthonormal basis Q ∈ Rm×k
1 Z ← QTX ∈ Rk×n
2 [Ur,Σr, Vr]← SVDr(Z)
3 Ur ← QUr
4 return Ur,Σr, V

T
r

Another approach to randomized SVD [36] relies on two random matrices Ψ ∈ Rn×k and
Φ ∈ Rl×m. It achieves the same asymptotic complexity as Alg. 2 but with a potentially smaller
constant [25]. The first matrix Ψ is used to obtain the orthonormal basis Q. Then, instead
of projecting onto Q directly, the second matrix Φ is employed through the Moore-Penrose
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pseudoinverse (ΦQ)†ΦX ∈ Rk×n (see Alg. 3).

Algorithm 3: Randomized truncated SVD [36] (Tropp)

input: Data matrix X ∈ Rm×n, target rank r, range sketch size k ≥ r, co-range sketch
size l ≥ k, random matrix generator TestMatrix

1 Ψ← TestMatrix(n, k) ∈ Rn×k

2 Φ← TestMatrix(l,m) ∈ Rl×m

3 Z ← XΨ ∈ Rm×k
4 [Q,R]← QR(Z)

5 W ← ΦQ ∈ Rl×k
6 [P, T ]← QR(W )

7 G← T−1P TΦX ∈ Rk×n
8 [Ur,Σr, Vr]← SVDr(G)
9 Ur ← QUr

10 return Ur,Σr, V
T
r

Before either of the algorithms is applied, the distribution of Ψ (and Φ) must be specified.
In this paper, we will use matrices Ψ ∈ Rn×k with iid Rademacher entries:

ψij ∼ Rad, ψij =

{
1, with probability 1/2

−1, with probability 1/2

For brevity, we will write HMT(p, k) for the combination of Algs. 1-2 and Tropp(k, l) for Alg. 3.

3 Low-rank nonnegative tensor approximation

3.1 Matrix case

An alternating-projections-based approach to solve the LRNMA problem was proposed in [23].
Consider two sets: the nonnegative orthant Rm×n+ and the set of low-rank matrices

M≤r = {X ∈ Rm×n : rank
(
X
)
≤ r}.

Both of them are closed, so for every matrix X there are best (with respect to the Frobe-
nius norm) nonnegative ΠRm×n

+

(
X
)
∈ Rm×n+ and low-rank ΠM≤r

(
X
)
⊂ M≤r approximations,

respectively. The former is unique due to convexity and is given by

ΠRm×n
+

(
X
)

= max
(
X, 0

)
.

The projection onto M≤r, however, is not unique in general, but every matrix in ΠM≤r

(
X
)

is
obtained as a truncated SVD of X [37]. Hence, with a slight abuse of notation, we will write

ΠM≤r

(
X
)

= SVDr

(
X
)
.

Given a nonnegative matrix X ∈ Rm×n+ , the algorithm from [23] then iterates between the
two sets as follows:

X(0) ← X, X(2k+1) ← ΠM≤r

(
X(2k)

)
, X(2k) ← ΠRm×n

+

(
X(2k−1)).

Clearly, one can also start with a low-rank matrix and change the order of the projections.
Further papers considered more efficient alternating projections that use approximate rank
truncation based on tangent spaces [24] and randomized sketching [25].
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As we noted in the Introduction and as is seen directly from the algorithm, the intermediate
matrices are not simultaneously low-rank and nonnegative: the even iterates are only nonneg-
ative and the odd iterates are only low-rank. However, both of the subsequences converge to a
low-rank nonnegative matrix. It was proved in [23] that if the initial matrix X is sufficiently
close to the intersection M≤r ∩ Rm×n+ , the iterates converge to a quasioptimal solution of the
LRNMA problem (1). We aim to draw from these ideas to present multidimensional extensions
of the alternating projections approach to Tucker-LRNTA and TT-LRNTA.

3.2 Tucker case

As we discussed in Subsec. 2.1, every tensor X ∈ Rn1×...×nd admits an exact Tucker decompo-
sition

X = G×1 U1 ×2 . . .×d Ud, G ∈ Rr1×...×rd , Uk ∈ Rnk×rk ,

with ranktucker
(
X
)

= (r1, . . . , rd). In practice, one seeks an approximate Tucker decomposition

X ≈ Y = G×1 U1 ×2 . . .×d Ud

of given rank r = (r1, . . . , rd) or such that the approximation is accurate up to a given threshold

‖X − Y ‖F < ε‖X‖F .

Both the exact and approximate Tucker decompositions can be constructed with the higher-
order SVD (HOSVD) algorithm [31]: it computes the SVDs of the mode-k unfoldings X(k),
chooses the Tucker factors Uk as the left singular factors, and computes the Tucker core by
orthogonal projection

G = X ×1 U
T
1 ×2 . . .×d UTd .

Unlike the truncated SVD for matrices, HOSVD does not lead to the optimal Tucker approxi-
mation; however, it is guaranteed to construct a quasioptimal one:

‖X −HOSVDr

(
X
)
‖F ≤

√
dmin

Y
‖X − Y ‖F , ranktucker

(
Y
)
� r.

The sequentially truncated HOSVD (STHOSVD) is a more computationally efficient proce-
dure with similar approximation properties [38]. We provide its pseudocode in Alg. 4. Ran-
domization can be employed to accelerate STHOSVD even further (cf. [39,40]). By substituting
HMT or Tropp in place of SVDr, we get a family of algorithms with different rank-truncation
strategies defined by svdr ∈ F = {SVDr,HMT,Tropp}.
Algorithm 4: Sequentially truncated higher-order SVD [38] (STHOSVD)

input: Data tensor X ∈ Rn1×...×nd , target Tucker rank r = (r1, . . . , rd)
1 G←X
2 for k = 1, 2, . . . , d do
3 [Urk ,Σrk , V

T
rk

]← SVDr(G(k), rk)

4 Uk ← Urk ∈ Rnk×rk

5 G(k) ← ΣrkV
T
rk
∈ Rrk×r1...rk−1nk+1...nd

6 return G, U1, U2, . . . , Ud

We will use STHOSVD and its randomized variants as approximate projections onto the
closed set of tensors with low Tucker rank

Mtucker
�r = {X ∈ Rn1×...×nd : ranktucker

(
X
)
� r}.
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Since the projection onto the nonnegative orthant Rn1×...×nd
+ is the same as for matrices,

ΠRn1×...×nd
+

(
X
)

= max
(
X, 0

)
,

we can formulate an alternating projection algorithm NSTHOSVD for the LRNTA problem in
Tucker format; see Alg. 5.

Algorithm 5: STHOSVD-based alternating projections (NSTHOSVD)

input: Data tensor X ∈ Rn1×...×nd , target Tucker rank r = (r1, . . . , rd), number of
iterations s, rank-truncation strategy svdr ∈ F

1 X(0) ←X
2 for i = 1, 2, . . . , s do

3 X(i) ← max(X(i−1), 0)

4 [G, U1, . . . , Ud]← STHOSVD(X(i), r, svdr)

5 X(i) ← G×1 U1 ×2 . . .×d Ud ∈ Rn1×···×nd

6 return G, U1, U2, . . . , Ud

Note that a different alternating projections algorithm NLRT was proposed for Tucker-
LRNTA in [29] and its convergence was proved. While we suggest to use approximate projections
onto the actual sets of interest Rn1×...×nd

+ and Mtucker
�r , NLRT performs exact projections onto

modified sets

Ω1 =
{

(X1, . . . ,Xd) : X1 = . . . = Xd ∈ Rn1×...×nd
+

}
,

Ω2 =
{

(X1, . . . ,Xd) :
(
Xk

)
(k)
∈M≤rk , 1 ≤ k ≤ d

}
,

which are subsets of the Cartesian product
(
Rn1×...×nd

)
× . . .×

(
Rn1×...×nd

)
. This is essentially

a consensus optimization problem, where LRNMA is computed for every mode-k unfolding
individually.

3.3 Tensor train case

In the same vein, exact and approximate TT decompositions of a tensor X can be computed
with TTSVD [28], whose pseudocode we show in Alg. 6. The resulting approximation of given
TT rank r = (r1, . . . , rd−1) is quasioptimal

‖X − TTSVDr

(
X
)
‖F ≤

√
d− 1 min

Y
‖X − Y ‖F , ranktt

(
Y
)
� r,

and is typically used as an approximate projection onto the set of tensors with low TT rank

Mtt
�r = {X ∈ Rn1×...×nd : ranktt

(
X
)
� r}.

Algorithm 6: TTSVD [28]

input: Data tensor X ∈ Rn1×...×nd , target TT rank r = (r1, . . . , rd−1)
1 G← reshape

(
X, [n1, n2 . . . nd]

)
] ∈ Rn1×n2...nd

2 [Ur1 ,Σr1 , V
T
r1 ]← SVDr(G, r1)

3 G1 ← Ur1
4 for k = 2, . . . , d− 1 do
5 G← reshape(Σrk−1

V T
rk−1

, [rk−1nk, nk+1 . . . nd]) ∈ Rrk−1nk×nk+1...nd

6 [Urk ,Σrk , V
T
rk

]← SVDr(G, rk)

7 Gk ← reshape
(
Urk , [rk−1, nk, rk]) ∈ Rrk−1×nk×rk

8 Gd ← Σrd−1
V T
rd−1

9 return G1,G2, . . . ,Gd−1, Gd
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Swapping SVDr for a randomized SVD algorithm such as HMT or Tropp is a straightforward
way to reduce the computational complexity (cf. [39,41,42]). We use these variants of TTSVD
to solve the TT-LRNTA problem with alternating projections. Our algorithm NTTSVD is
presented in Alg. 7.

Algorithm 7: TTSVD-based alternating projections (NTTSVD)

input: Data tensor X ∈ Rn1×...×nd , target TT rank r = (r1, . . . , rd−1), number of
iterations s, rank-truncation strategy svdr ∈ F

1 X(0) ←X
2 for i = 1, 2, . . . , s do

3 X(i) ← max(X(i−1), 0)

4 [G1,G2, . . . ,Gd−1, Gd]← TTSVD(X(i), r, svdr)

5 X(i) ←
∑

α1,...,αd−1

G1(j1, α1)G2(α1, j2, α2) . . .Gd−1(αd−2, jd−1, αd−1)Gd(αd−1, jd)

6 return G1,G2, . . . ,Gd−1, Gd

3.4 Computational complexities

In this section, we will estimate the one-iteration complexity of NSTHOSVD and NTTSVD. The
most computationally expensive part of both algorithms is rank truncation, for which we have
3 options: SVD, HMT(p, k), and Tropp(k, l). For an m× n matrix with m ≥ n and truncation
rank r, the standard truncated SVD costs O(mn2) floating point operations [32,37]. As for the
randomized approaches, HMT(p, k) requires O(mn(pk + r)) operations and Tropp(k, l) runs in
O(mn(r + k + l)). While the asymptotic complexities are independent of the random matrix
distribution, the constants can be reduced if structured random matrices are used (see [25]).

Turning to STHOSVD and TTSVD, let us denote by r the maximum truncation rank of
the tensor (Tucker or TT), let n = max(n1, . . . , nd), and assume that r is small compared to
n. Every step of STHOSVD (Alg. 4) is dominated by rank truncation of unfolding matrices,
whose sizes decrease progressively from n× nd−1 down to n× rd−1. The whole procedure then
costs O(nd+1) for SVD, O(nd(pk + r)) for HMT(p, k), and O(nd(r + k + l)) for Tropp(k, l).
The analysis of TTSVD (Alg. 6) is absolutely analogous: the matricizations become smaller as
n × nd−1, rn × nd−2, . . . , rn × n, so that the total cost is also O(nd+1), O(nd(pk + r)), and
O(nd(r + k + l)), respectively.

To compute a single element of a tensor given in the Tucker and TT formats, O(dr2) and
O(rd) operations are needed, respectively. However, given the rich multilinear structure, it is
possible to build the full tensor directly, using O(ndr) in both cases, which is faster than com-
puting nd elements individually. The nonnegative projections then require O(ndr) operations.
This tells us that the overall complexity of a single iteration of NSTHOSVD and NTTSVD is
defined by rank truncation, and we list it in Tab. 1. With randomization, we reach balance in
complexity of low-rank and nonnegative projections: both of them scale linearly with nd, the
number of elements of the tensor.

SVD HMT(p, k) Tropp(k, l)

NSTHOSVD O(nd+1) O(nd(pk + r)) O(nd(r + k + l))
NTTSVD O(nd+1) O(nd(pk + r)) O(nd(r + k + l))

Table 1: The asymptotic computational complexity of a single iteration of NSTHOSVD and
NTTSVD algorithms with different rank-truncation methods.
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3.5 Related work: existing theoretical analysis of alternating projections

Originally, the method of alternating projections was developed to compute the orthogonal pro-
jection of a given point onto the intersection of two closed subspaces in a Hilbert space [43].
Provided that the sum of these subpsaces is closed too, the iterates converge linearly in norm for
any starting point with a rate defined by the Friedrichs angle between the two subspaces [44,45].

One way to generalize closed subspaces is to consider closed convex sets (such as the non-
negative orthant Rn1×...×nd

+ ). For a pair of two closed convex sets, the method of alternating
projections no longer finds the best approximation of the starting point, but solves the feasibility
problem: converges to an arbitrary point in the intersection [46]. The iterates converge for every
starting point, but do so only weakly. To prove strong convergence or even linear convergence,
it is required that the pair of closed convex sets satisfies certain regularity assumptions [47].

The setting of closed convex sets is the most natural for the method of alternating projec-
tions. Indeed, owing to the Bunt-Motzkin theorem, every point of a finite-dimensional Euclidean
space has a unique best approximation by a set if and only if this set is closed and convex [48].
Meanwhile, alternating projections have been extensively used for nonconvex sets as well, even
though the projections are not uniquely defined for them (which complicates the global conver-
gence analysis). Many sets that appear in practice are, however, prox-regular : the projections
onto them are locally unique, i.e. the best approximation is uniquely defined for every point
that is close enough to the set [49]. This property is shared, for example, by closed convex sets
(obviously) and smooth manifolds [50]. When at least one of the two sets is prox-regular and
their intersection satisfies certain regularity properties, the method of alternating projections
locally linearly converges to a point in the intersection [51]. Notably, if the two sets are smooth
manifolds, the regularity assumption translates to their intersection being transversal [50] and
can be further relaxed to nontangential intersections [52]. Moreover, it was shown in [52] that
alternating projections on smooth manifolds converge to quasioptimal approximations.

The sets of rank-r matrices, tensors of Tucker rank r, and tensors of TT rank r are smooth
manifolds [53] and the set of low-rank matricesM≤r is prox-regular at every rank-r matrix [54].
This suggests good behavior of the alternating projections for the LRNMA and LRNTA prob-
lems. The matrix case, where truncated SVD produces the optimal low-rank approximation,
was theoretically addressed in [23]. In the tensor case, STHOSVD and TTSVD lead to qua-
sioptimal projections, which will make the convergence analysis for NSTHOSVD and NTTSVD
more delicate.

In the present work, we do not concentrate on the theoretical side of why NSTHOSVD
and NTTSVD converge to low-rank nonnegative tensors. Instead, we rely on strong numerical
evidence showing that they do in a number of different experiments. The successful outcome,
in turn, motivates us to prove rigorous convergence guarantees in the future papers.

4 Numerical experiments

In this section, we evaluate and compare the performance of deterministic and randomized
variants of the NSTHOSVD and the NTTSVD algorithms, which were introduced in Sec. 3.
The examples we consider are

• the Hilbert tensor (Subsec. 4.1),

• a mixture of multidimensional Gaussians (Subsec. 4.2),

• a hyperspectral image (Subsec. 4.3).
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For every Tucker-LRNTA experiment, we provide the respective results obtained with the NLRT
algorithm [29] to compare its performance with NSTHOSVD. Note that comparing NTTSVD
with NSTHOSVD and NLRT is not particularly meaningful since the difference in running
times are mostly dictated by how well a given dataset is approximated in Tucker and TT tensor
formats.

All the experiments were carried out in Python (3.9.12) with Intel(R) Core(TM) i3-8130U
CPU@2.20GHz and 8GB of RAM.‘

4.1 Hilbert tensor

Our first example of an approximately low-rank nonnegative tensor is the Hilbert tensor

X(i1, . . . , id) =
1

i1 + . . .+ id − d+ 1
,

which is a multidimensional extension of the well-known Hilbert matrix. In Table 2, we present
the results obtained with NSTHOSVD, NTTSVD, and NLRT when applied to a 3-dimensional
Hilbert tensor of size 128× 128× 128 with Tucker ranks r = (3, 2, 4) and TT-ranks r = (3, 2).

First of all, note that the low-rank approximations obtained with simple STHOSVD and
TTSVD contain negative elements whose total Frobenius norm is about 10−2. Using 250 it-
erations of NSTHOSVD and NTTSVD (deterministic or randomized), we can reduce their
Frobenius norm down to 5 double-precision machine epsilons. The total number of negative
elements also decreases, and sometimes we manage to remove them completely. Remarkably,
the relative approximation errors grow by only about 3% (Frobenius) and 7.5% (Chebyshev)
so that the resulting low-rank tensors are still good approximations. The running time is an
important aspect too: using randomized sketching, we achieved speed-up factors of about 7-11,
compared to NSTHOSVD/NTTSVD with deterministic low-rank projections. All the variants
show identical linear decay of the Frobenius norm of the negative elements (see Fig. 1).

Before comparing NSTHOSVD with NLRT, we would like to point out that NLRT never
actually forms a tensor in the Tucker format. At every iteration, it computes low-rank approx-
imations (X1, . . . ,Xd) ∈ Ω2 of every unfolding (like HOSVD) but proceeds to the nonnegative
projection without computing the Tucker core (unlike HOSVD). While NLRT iterations (all
its d components) do converge to a single nonnegative tensor with low Tucker ranks, it is not
formed explicitly. In Table 2, the NLRT-related results on relative errors and negative elements
are computed based on the following low-rank STHOSVD approximation,

X̂ = STHOSVDr

(1

d

∑d

k=1
ΠRn1×...×nd

+

(
Xk

))
, (2)

and the running time is shown for the original NLRT (i.e. excluding the additional STHOSVD).
The results in Table 2 show that NSTHOSVD is superior to NLRT in terms of speed and mit-

igating negative elements, and they achieve similar relative errors. Deterministic NSTHOSVD
is about 3 times faster than NLRT (just as STHOSVD is asymptotically d times faster than
HOSVD) and its randomized versions are 23-39 times faster. The Frobenius norm of the nega-
tive elements of X̂ is of order 10−9, which is an improvement over the initial 10−2, but is much
larger than what NSTHOSVD achieves. We also compare the properties of X1, X2, X3, and
X̂ after 250 iterations of NLRT (see Table 3).
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Method
Running time

(Second)
Relative error
(Frobenius)

Relative error
(Chebyshev)

Negative
elements

(Frobenius)

Negative
elements

(%)

TTSVD 0.6 7.72 · 10−2 3.67 · 10−1 9.7 · 10−3 6.3 · 10−3

NTTSVD, SVDr 121 7.88 · 10−2 3.94 · 10−1 9.3 · 10−16 1.9 · 10−4

NTTSVD, HMT(1, 12) 16 7.88 · 10−2 3.94 · 10−1 0.0 0.0
NTTSVD, HMT(0, 15) 13 7.88 · 10−2 3.94 · 10−1 1.2 · 10−16 9.5 · 10−5

NTTSVD, Tropp(4, 30) 10 8.13 · 10−2 3.82 · 10−1 0.0 0.0

STHOSVD 0.5 7.72 · 10−2 3.67 · 10−1 9.7 · 10−3 6.3 · 10−3

NSTHOSVD, SVDr 118 7.89 · 10−2 3.95 · 10−1 5.9 · 10−16 1.4 · 10−4

NSTHOSVD, HMT(1, 11) 17 7.89 · 10−2 3.95 · 10−1 0.0 0.0
NSTHOSVD, HMT(0, 15) 14 7.89 · 10−2 3.95 · 10−1 0.0 0.0
NSTHOSVD, Tropp(6, 35) 10 7.89 · 10−2 3.94 · 10−1 2.5 · 10−16 4.8 · 10−5

NLRT 390 7.88 · 10−2 3.99 · 10−1 8.6 · 10−10 3.3 · 10−4

Table 2: Comparison of NTTSVD, NSTHOSVD, and NLRT for low-rank nonnegative tensor
approximation of a 128 × 128 × 128 Hilbert tensor with Tucker ranks (3, 2, 4) and TT-ranks
(3, 2): running times, relative errors, and negative elements after 250 iterations.

Tensor
Relative
error

(Frobenius)

Relative
error

(Chebyshev)

Negative
elements

(Frobenius)

Negative
elements

(Chebyshev)

Negative
elements

(%)

X1 7.88 · 10−2 3.99 · 10−1 1.9 · 10−10 1.1 · 10−10 3.3 · 10−4

X2 7.88 · 10−2 3.99 · 10−1 8.5 · 10−10 5.1 · 10−10 3.3 · 10−4

X3 7.88 · 10−2 3.99 · 10−1 4.6 · 10−11 2.7 · 10−11 3.3 · 10−4

X̂ 7.88 · 10−2 3.99 · 10−1 8.6 · 10−10 5.2 · 10−10 3.3 · 10−4

Table 3: Comparison of the NLRT components {Xk}3k=1 and the auxiliary tensor X̂ in Tucker
format for low-rank nonnegative tensor approximation of a 128× 128× 128 Hilbert tensor with
Tucker ranks (3, 2, 4): relative errors and negative elements after 250 iterations.

4.2 Multidimensional Gaussian mixture

In the second experiment, we test our approach on synthetic data that are an example of the
low-rank density approximation problem: a multidimensional mixture of Gaussians

f(x) =
m∑
j=1

αj exp
(

(x− µj)>A−1j (x− µj)
)
, x ∈ Rd,

with weights αj ∈ R, means µj ∈ Rd, and covariance matrices Aj ∈ Rd×d. Every individual
Gaussian has approximately low rank (it is a rank-1 tensor if Aj is diagonal) so the mixture can
be approximated as well. We consider the mixture f(x) in a hypercube [−a, a]d and discretize the
domain on an equidistant tensor-product grid with step 2a/(n−1), which gives a d-dimensional
n× . . .× n tensor X.

We choose the 4-dimensional scenario with a balanced mixture of 2 Gaussians (α1 = α2)
with the following means,

µ1 =
[
0 0 0 0

]>
, µ1 =

[
0.5 −0.5 0.5 −0.5

]>
,
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Figure 1: Comparison of deterministic and randomized variants of NSTHOSVD (a) and
NTTSVD (b) for low-rank nonnegative tensor approximation of a 128 × 128 × 128 Hilbert
tensor with Tucker ranks (3, 2, 4) and TT-ranks (3, 2): the Frobenius norm of the negative part
over 250 iterations.

and covariance matrices,

A1 =


0.403 0.236 0.159 0.188
0.236 0.422 0.193 0.313
0.159 0.193 0.124 0.164
0.188 0.313 0.164 0.288

 , A2 =


0.173 0.229 0.200 0.191
0.229 0.347 0.254 0.201
0.200 0.254 0.348 0.252
0.191 0.201 0.252 0.360

 .
We take a = 1 as the size of the domain and n = 64 as the size of the tensor.

We carried out 200 iterations of NTTSVD, NSTHOSVD, and NLRT with Tucker ranks
(14, 14, 14, 14) and TT-ranks (10, 20, 10); see Table 4. Simple STHOSVD and TTSVD pro-
duce tensors with many, about 40%, negative elements. The application of NTTSVD and
NSTHOSVD decreases their number to 1% and 2%, and their norms almost 400 and 1000
times, respectively (we show the convergence curves in Fig. 2). Compared to NSTHOSVD,
NLRT leaves 1.5 times more negative elements with a 3 times higher norm. Sketching accel-
erates NTTSVD and NSTHOSVD 2-3 times, while deterministic NSTHOSVD itself is 3 times
faster than NLRT. The increase of the relative error, due to sketching, is within 5% for most of
the methods. We also compare the 4 NLRT components with the auxiliary low-rank tensor (2)
in Table 5.
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Method
Runnung

time
(Second)

Relative
error

(Frobenius)

Relative
error

(Chebyshev)

Negative
elements

(Frobenius)

Negative
elements

(%)

TTSVD 5.9 7.4 · 10−2 1.5 · 10−1 5.3 41.0

NTTSVD, SVDr 963 8.7 · 10−2 1.8 · 10−1 1.4 · 10−2 1.1
NTTSVD, HMT(1, 40) 550 8.7 · 10−2 1.8 · 10−1 1.4 · 10−2 1.1
NTTSVD, HMT(0, 45) 452 8.7 · 10−2 1.8 · 10−1 1.4 · 10−2 0.89
NTTSVD, Tropp(38, 100) 371 9.1 · 10−2 1.7 · 10−1 1.4 · 10−2 0.62
NTTSVD, Tropp(35, 100) 325 9.4 · 10−2 1.7 · 10−1 1.4 · 10−2 0.49

STHOSVD 3.4 2.2 · 10−2 7.7 · 10−2 1.8 38.0

NSTHOSVD, SVDr 670 2.6 · 10−2 1.0 · 10−1 1.6 · 10−3 1.8
NSTHOSVD, HMT(1, 24) 447 2.6 · 10−2 1.0 · 10−1 1.6 · 10−3 1.8
NSTHOSVD, HMT(0, 24) 346 2.6 · 10−2 1.0 · 10−1 1.7 · 10−3 1.3
NSTHOSVD, Tropp(22, 80) 230 2.7 · 10−2 1.0 · 10−1 1.7 · 10−3 0.99
NSTHOSVD, Tropp(18, 80) 205 3.5 · 10−2 8.8 · 10−2 1.8 · 10−3 0.75

NLRT 2096 2.6 · 10−2 1.0 · 10−1 5.1 · 10−3 3.1

Table 4: Comparison of NTTSVD, NSTHOSVD, and NLRT for low-rank nonnegative tensor
approximation of a 64 × 64 × 64 × 64 Gaussian mixture with Tucker ranks (14, 14, 14, 14) and
TT-ranks (10, 20, 10): running times, relative errors, and negative elements after 200 iterations.

Tensor
Relative
error

(Frobenius)

Relative
error

(Chebyshev)

Negative
elements

(Frobenius)

Negative
elements

(Chebyshev)

Negative
elements

(%)

X1 2.6 · 10−2 1.0 · 10−1 3.1 · 10−3 2.4 · 10−4 2.0
X2 2.6 · 10−2 1.0 · 10−1 3.2 · 10−3 2.2 · 10−4 1.9
X3 2.6 · 10−2 1.0 · 10−1 2.5 · 10−3 1.4 · 10−4 2.7
X4 2.6 · 10−2 1.0 · 10−1 2.8 · 10−3 2.3 · 10−4 2.2

X̂ 2.6 · 10−2 1.0 · 10−1 5.1 · 10−3 3.5 · 10−4 3.1

Table 5: Comparison of the NLRT components {Xk}4k=1 and the auxiliary tensor X̂ in Tucker
format for low-rank nonnegative tensor approximation of a 64× 64× 64× 64 Gaussian mixture
with Tucker ranks (14, 14, 14, 14): relative errors and negative elements after 200 iterations.
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Figure 2: Comparison of deterministic and randomized variants of NSTHOSVD (a) and
NTTSVD (b) for low-rank nonnegative tensor approximation of a 64 × 64 × 64 × 64 Gaus-
sian mixture with Tucker ranks (14, 14, 14, 14) and TT-ranks (10, 20, 10): the Frobenius and
Chebyshev norms of the negative part and the density of negative elements over 200 iterations.
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4.3 Hyperspectral image

Our final example is an openly available hyperspectral image of the Washington DC National
Mall1 of size 307×307×191, the last dimension being the spectral bands (we also linearly scale
the elements to [0, 1]). With Tucker ranks (40, 40, 33) and TT-ranks (33, 33), the image can be
compressed 215 and 51 times, respectively. To measure the quality of low-rank approximations,
we use 3 values: the relative error in the Frobenius norm, the band-wise mean of the structural
similarity index measure (SSIM, [55]), and the statistical R2 coefficient of determination,

R2 = 1−
‖X − Y ‖2F
‖X − α‖2F

, α =
1∏d

k=1 nk

∑
(i1,...,id)

X(i1, . . . , id) ∈ R,

where Y is a low-rank approximant.
In Table 6, we see that 100 iterations of deterministic NTTSVD and NSTHOSVD lower the

Frobenius norm of the negative elements 350 and 100 times, respectively, compared to TTSVD
and STHOSVD. Both the relative error and the R2 score stay the same, and SSIM undergoes a
reduction by 0.03−0.04. The randomized variants based on HMT with 1 power-method iteration
lead to similar results, but achieve them about 1.5 times faster. With the more computationally
efficient randomized approaches, SSIM seems to degrade more severely than the 2 other quality
measures. Find the convergence curves for NTTSVD and NSTHOSVD in Fig. 3. The approx-
imation quality achieved with NLRT is identical to deterministic NSTHOSVD; however, the
norm of the negative elements is 2.4 times higher, and it runs 4 times slower (6 times compared
to randomized NSTHOSVD). As Table 7 shows, the negative elements in the low-rank auxiliary
tensor (2) have a larger norm than the unfoldings, which NLRT operates on. Finally, in Fig. 4
we present the actual images for visual evaluation.

Method
Running
time

(Second)

Relative
error

(Frobenius)
SSIM R2

Negative
elements

(Frobenius)

TTSVD 3.2 1.8 · 10−1 0.66 0.94 2.2

NTTSVD, SVDr 341 1.8 · 10−1 0.63 0.94 6.0 · 10−3

NTTSVD, HMT(1, 75) 236 1.8 · 10−1 0.62 0.94 6.0 · 10−3

NTTSVD, HMT(0, 75) 173 2.1 · 10−1 0.57 0.92 1.0 · 10−2

NTTSVD, Tropp(60, 150) 151 2.6 · 10−1 0.46 0.88 1.8 · 10−2

NTTSVD, Tropp(50, 150) 102 2.7 · 10−1 0.45 0.87 1.9 · 10−2

STHOSVD 3.4 1.8 · 10−1 0.64 0.94 2.1

NSTHOSVD, SVDr 440 1.8 · 10−1 0.60 0.94 1.9 · 10−2

NSTHOSVD, HMT(1, 75) 296 1.9 · 10−1 0.60 0.94 1.9 · 10−2

NSTHOSVD, HMT(0, 75) 268 2.1 · 10−1 0.53 0.92 2.6 · 10−2

NSTHOSVD, Tropp(60, 150) 225 2.8 · 10−1 0.40 0.86 5.4 · 10−2

NSTHOSVD, Tropp(50, 150) 131 2.9 · 10−1 0.39 0.85 5.1 · 10−2

NLRT 1874 1.8 · 10−1 0.60 0.94 4.6 · 10−2

Table 6: Comparison of NTTSVD, NSTHOSVD, and NLRT for low-rank nonnegative tensor
approximation of a 307× 307× 191 hyperspectral image of the Washington DC National Mall
with Tucker ranks (40, 40, 33) and TT-ranks (33, 33): running times, relative errors, negative
elements, SSIM, and R2 score after 100 iterations.

1Data available at https://github.com/JakobSig/HSI2RGB/blob/master/washington hsi.mat
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Figure 3: Comparison of deterministic and randomized variants of NSTHOSVD (a) and
NTTSVD (b) for low-rank nonnegative tensor approximation of a 307 × 307 × 191 hyperspec-
tral image of the Washington DC National Mall with Tucker ranks (40, 40, 33) and TT-ranks
(33, 33): the Frobenius and Chebyshev norms of the negative part and the density of negative
elements over 100 iterations.

Tensor
Relative error
(Frobenius)

SSIM R2 Negative elements
(Frobenius)

X1 1.8 · 10−1 0.60 0.94 3.6 · 10−2

X2 1.8 · 10−1 0.60 0.94 3.6 · 10−2

X3 1.8 · 10−1 0.60 0.94 1.5 · 10−2

X̂ 1.8 · 10−1 0.60 0.94 4.6 · 10−2

Table 7: Comparison of the NLRT components {Xk}3k=1 and the auxiliary tensor X̂ in Tucker
format for low-rank nonnegative tensor approximation of a 307×307×191 hyperspectral image
of the Washington DC National Mall with Tucker ranks (40, 40, 33): negative elements, relative
errors, SSIM, and R2 score after 100 iterations.
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Original TTSVD NTTSVD, SVDr NTTSVD, HMT(1,75)

NTTSVD, HMT(0,75) NTTSVD, Tropp(50,150) STHOSVD NSTHOSVD, SVDr

NSTHOSVD, HMT(1,75) NSTHOSVD, HMT(0,75) NSTHOSVD, Tropp(50,150) NLRT

Figure 4: Comparison of the approximations of a 307 × 307 × 191 hyperspectral image of
the Washington DC National Mall achieved with TTSVD, STHOSVD, and different iterative
LRNTA approaches (after 100 iterations). We present the 50th spectral band.
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Figure 5: Comparison of randomized NSTHOSVD and NLRT for low-rank nonnegative ten-
sor approximation: the decay of the Frobenius norm of the negative elements for the Hilbert
tensor (a), the Gaussian mixture (b), and the hyperspectral image (c).

5 Conclusion

In this work, we looked at a natural multidimensional extension of randomized alternating pro-
jections for the LRNMA problem [25] and proposed two algorithms, NSTHOSVD and NTTSVD,
for the Tucker and tensor train formats, respectively. The numerical experiments showed
that our approach allows to reduce the number (and the absolute value) of the negative el-
ements in the low-rank approximation without significant loss of accuracy. Comparing with the
NLRT method [29], which was developed for the Tucker case, we observed that our algorithm
NSTHOSVD is superior in terms of computational efficiency per iteration and in how fast it
reduces the negative elements (see Fig. 5).

The use of randomization allowed us to obtain algorithms, whose complexity scales linearly
with the number of elements of the tensor, thereby achieving balance in complexity of low-rank
and nonnegative projections. Moreover, by choosing the configuration parameters of randomized
sketching (such as the oversampling, the distribution of the random matrix) one can tune the
methods to achieve the desired trade-off between speed and accuracy.

Though the proposed algorithms work in numerical experiments, they still require a proof
of convergence. We will study their theoretical properties in future papers.
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