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Abstract
In this study, a computationalmatrix-collocationmethod based on the Lagrange interpolation
polynomial is specifically streamlined to treat the fractional nonlinear terminal value prob-
lems with multiple delays, such as the Hutchinson, theWazewska-Czyzewska and the Lasota
models in biomathematics. To do this, the robust nonlinear terms of which are smoothed to
be deployed in the method. The uniqueness analysis of the solution is discussed in terms
of the Banach contraction principle. An error analysis technique is non-linearly theorized
and applied to improve the solutions. A programme for the method is especially developed.
Thus, the outcomes of five fractional model problems constrained by terminal conditions are
numerically and graphically evaluated in tables and figures. Based on the investigation of
the results, one can claim that the method presents a sustainable and effective mathematical
procedure for the aforementioned problems.

Keywords Delay differential equation · Error analysis · Fractional derivative ·
Matrix-collocation method · Terminal condition

Mathematics Subject Classification 34A08 · 65L60 · 92B05

1 Introduction

Recent decades have seen a great deal of interest in the modelling of real-world phenomena
by means of fractional differential equations. One of their most applicable subject areas turns
out to be biomathematical applications since fractional order derivatives can determine the
properties of the hereditary and population dynamics with respect to the temporal aspect.
For example, sub-threshold nerve propagation and complex biological systems are modelled
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via the fractional derivative aspect of the mathematical functions (Magin 2004). With the
involvement of delay or time lag systems, the fractional delay differential equations (FDDEs)
are of great importance in that they can govern the historical behavior of a biological model
at previous time, as well as giving details at present time. In that case, some of which are
expressed as follows:

(i) The fractional Hutchinson delay model can describe population growth in the resource-
limited area, giving a physical detail of gestation in earlier time (Fowler 2005; Pimenov
and Hendy 2017). In addition, its behavior can also monitored with aid of the fractional
order derivative in terms of the approximation to the population carrying capacity.

(ii) The fractional Wazewska-Czyzewska and Lasota delay model can evaluate the amount
of the red blood cells with respect to time t , and its constant delay allows an augmen-
tation time for the red blood cells (Ruan 2006; Caraballo et al. 2005). Besides, the
dynamical behavior of the red blood cells is closely chased according to the fractional
order aspect.

(iii) The fractional Gompertz delay model can detail the tumour growth of animals with
respect to time t and its constant delay phenomenon provides animal cells with a time
lag process to copewith tumour growth or augmentation. (Piotrowska and Foryś (2011);
Valentim et al. (2020)). The influence of the fractional order derivatives on the tumour
growth is generally followed through Gompertzian movement.

It is evident from the studies above that applying an analytical treatment to the biomathemat-
ical models especially governing the population growth on a long time process is too hard
to obtain their physical response with regard to well-known mathematical functions. That is
why the numerical treatments are involved in determining dynamical behavior of suchmodels
at extended temporal limits. Some recent numerical methods are pinned from the literature
as follows. The multi-step collocation method is attached to find the numerical solutions of
fractional retarded differential equations ranging from the life cycle of population lemmings
to a model of chronic granulocytic leukaemia (Maleki and Davari 2019). A new method
based on Daftardar-Gejji-Jafari technique is applied to solve FDDEs containing four year
life cycle of the population of lemmings (Jhinga and Daftardar-Gejji 2019). A generalized
finite difference method is extended to treat FDDEs, which are composed of a model of
the limit of food on the population dynamics lied on an area, a model of the fluctuations
of population of adults in an area, and a model of the propagation of human blood cells
(Moghaddam and Mostaghim 2013). A BDF-type method based on the shifted Chebyshev
series is approached to FDDEs of functional type, which contains a fractional Hutchinson
delay model (Pimenov and Hendy 2017). A numerical oscillation analysis is introduced for
Gompertz equation with a delay (Yang and Wang 2020). The reduced differential trans-
forms method is deployed to treat the nonlinear fractional mathematical smoking model
in biomathematics (Mahdy et al. 2020). The predictor-corrector regulation method arising
from Adams-Bashford-Moulton type is utilized for the numerical solution of a fractional
order CoViD-19 virus model expressing the dynamics of reinfection and the importance of
quarantine (Maurício de Carvalho and Moreira-Pinto 2021). The optimal treatment problem
is solved via the forward-backward iterative method for the combined antiretroviral drug
therapy in an HIV infection model (Nath et al. 2023). A cancer-obesity treatment biomathe-
matical model under the control parameters is eliminated for different cases (Dehingia et al.
2022). An algorithm dependent upon the fifth-kind Chebyshev polynomials is applied to
solve the variable-order time-fractional diffusion-wave equation with multi-term (Sadri and
Aminikhah 2022).

123



A streamlined numerical method... Page 3 of 20 74

It is the fact that the applications of FDDEs are not limited to biomathematical models. Their
other applications can be come across in sea surface temperature distribution (Gande and
Madduri 2022), El niño-Southern oscillation in south Africa (Gande and Madduri 2022),
mechanical and electro-dynamical systems (Iqbal et al. 2017; Rabiei and Ordokhani 2019),
and applied sciences (Kürkçü et al. 2019).
Different from thementioned studies above, themain aim in this study is concentrated on treat-
ing the fractional nonlinear terminal value problems with multiple delays (FNTVPs) appear-
ing in biomathematics, applying the Lagrange interpolation matrix-collocation method. In
addition, a general formulation of such problems is extracted and smoothed to be interpreted
via matrix expansions provided by the method. Another advantage of the method is that
the Lagrange interpolation polynomial allows to approach polynomially to the solutions of
FNTVPs, because of the fact that it conveys the standard collocation points, which act like
interpolation points. Indeed, the proposed method is streamlined according to the reduced
form of the matrix relations derived from the linear and nonlinear terms without requiring
additional matrices or their expansions at the collocation points. That is why the proposed
method yields the approximate solutions fast. Thanks to this ability, it can also be incorpo-
rated with the residual error analysis technique in virtue of the reduced matrix relations of the
nonlinear terms. This novelty in a solution form differs from the others in that they contain
well-known polynomials. It is also worth expressing that these solutions can be improved by
this error analysis technique.
As a new class of FDDEs, the Lagrange interpolation matrix-collocation method treats
FNTVPs of the form

C
t D

α
0 y (t) +

3∑

j=1

1∑

i=0

Pi j (t) y
i (t) y j (γi j t + βi j ) = g (t) , 0 < α ≤ 2, 0 ≤ t ≤ T , (1)

subject to the terminal conditions

y(t) = c1 for t ∈ [−βi j , 0] and y(T ) = c2, (2)

where γi j (∈ (0, 1]) and βi j (∈ (0, 1]) denote the proportional and the constant delays, respec-
tively; y(t) and Pi j (t) are continuous functions on [0, T ], α can determine both integer and
fractional order derivatives, and g(t) is a continuous external force function. In view of Eq.
(1), three model problems (i)-(iii) are treated in this study, including a Hutchinson FNTVP
with variable coefficients, and a FNTVP made up of a quartic nonlinearity for sake of using
higher degree of nonlinearity.
The remaining of this study is planned as follows: Sect. 2 expresses a brief preliminary
about fractional calculus and the uniqueness analysis of the Lagrange polynomial solution
of Eq. (1). Section3 informs the conceptual background of the method of solution. Section4
constitutes an error analysis technique enabling the improvement of the obtained solutions.
Section5 presents five benchmarkmodels and their numerical and graphical results. Section6
concludes the validity and efficacy of the method, discussing advantages, disadvantages and
achievements with respect to outcomes in the previous Sect. 5.

2 Preliminaries

In this section, a brief information about fractional calculus is given to lay out the basement
of the proposed method. The uniqueness of the Lagrange polynomial solution of Eq. (1) is
also discussed in details.
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2.1 Fractional calculus

Let y (t) be a continuous function on [0, T ], D stands for a differential operator.

Definition 2.1 Diethelm (2010); Podlubny (1999) Given that α > 0 and t > 0 (α, t ∈ R).
The Riemann-Liouville fractional integral

(
Jα
0

)
of y (t) with respect to α holds

Jα
0 f (t) = 1

� (α)

t∫

0

(t − s)α−1 f (s) ds.

Definition 2.2 Diethelm (2010); Podlubny (1999); Caputo (1969) Given that t > a and
α, t ∈ R. The Caputo fractional derivative

(
C
t D

α
0

)
of order α is then formulated as

C
t D

α
0 y (t) =

⎧
⎨

⎩
1

�(�α�−α)

t∫

0
(t − s)�α�−α−1y(�α�) (s) ds, �α� − 1 < α < �α�

y(α) (t) , α ∈ N.

For foundation of our next uniqueness analysis, it is required to state the following property.

Remark 2.1 Diethelm (2010) A relationship between the Riemann-Liouville fractional inte-
gral and the Caputo fractional derivative leads to

Jα
0

C
t D

α
0 y(t) = y(t) −

�α�−1∑

i=0

y(i)(0)

i ! t i .

2.2 Uniqueness analysis of Lagrange polynomial solution

The Lagrange interpolation polynomial solution form was previously established for the
integral and integer order integro-differential equation (Yüzbaşı and Sezer 2021). In this
study, we shall develop it in the solution form of FNTVPs (1) and the matrix relations, as

y (t) ∼= yN (t) =
N∑

n=0

anLn (t), (3)

where an’s are unknown Lagrange interpolation coefficients, which have to be determined,
and Ln (t) denotes the Lagrange interpolation polynomial, which possesses an explicit form
(see Abramowitz and Stegun 1964)

Ln(t) =
N∏

i=0

t − ti
tn − ti

for n �= i,

such that ti represents the standard collocation points ti = T i/N .
Formerly, the Banach contraction principle was applied to the fractional partial integro-
differential equations and the fractional integro-differential equation of Volterra-Fredholm
type (Santra andMohapatra 2022; Hamoud et al. 2018). Motivated by these works, this study
aims here to newly adapt the Banach contraction principle to Eq. (1) for α ∈ (0, 2], indicating
the uniqueness of the Lagrange polynomial solution. Let some required fundamental proper-
ties are given to establish the uniqueness analysis. Assume that the notation || · || is a standard
norm produced by the normed vector space S = [0, T ]. Also, the following properties are
given.
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Lemma 2.1 Santra and Mohapatra (2022); Hamoud et al. (2018) Let L : S �→ S be a
contraction mapping. Then, for ∀x, y ∈ S, it reads

||L(x) − L(y)|| < λ ||x − y|| ,
from which L(x) is a Lipschitz function and λ ∈ (0, 1] is a Lipschitz contraction constant.

Lemma 2.2 Santra and Mohapatra (2022); Hamoud et al. (2018) Assume that S is complete
and it has a contraction mapping L. Then S appears as a Banach space, which means that
L possesses a unique fixed point ỹ in S.

Lemma 2.3 Let Fi j (y1,2(t)) be the Lipschitz continuous function on S, which is derived from

Fi j (y1,2(t)) = yi1,2(t) y
j
1,2(αi j t + βi j ),

in Eq. (1) such that it has a Lipschitz constant λi j > 0 with respect to y1(t) and y2(t) on S.
Then, it follows that

||Fi j (y1(t)) − Fi j (y2(t))|| < λi j ||y1(t) − y2(t)||.
Thereby, the following theorem can now be extracted.

Theorem 2.1 In view of Lemmas 2.1, 2.2 and 2.3, a unique fixed point solution y(t) on S
yields a Lagrange polynomial solution in case there exists such a condition

3∑

j=1

1∑

i=0

||Pi j ||λi j
�(α + 1)

< 1.

Proof 1 Let ∀y1,2(t) ∈ S, then by incorporating the fractional integral operator
(
Jα
0

)
into Eq.

(1), it follows from Lemmas 2.1 and 2.3 that

L(y1,2(t)) = c0(t) + Jα
0

3∑

j=1

1∑

i=0

Pi j (t)Fi j (y1,2(t)) + Jα
0 g (t) , (4)

where

c0(t) =
�α�−1∑

i=0

y(i)
1,2(0)

i ! t i .

Then, Eq. (4) obeys

||L(y1) − L(y2)|| = ||Jα
0

⎛

⎝
3∑

j=1

1∑

i=0

Pi j (t)Fi j (y1(t)) − Fi j (y2(t))

⎞

⎠ ||

≤
3∑

j=1

1∑

i=0

Jα
0

(||Pi j (t)|| ||Fi j (y1(t)) − Fi j (y2(t))||
)

=
3∑

j=1

1∑

i=0

||Pi j ||λi j
�(α + 1)

||y1(t) − y2(t)||,

and if the condition
3∑

j=1

1∑

i=0

||Pi j ||λi j
�(α + 1)

< 1, ||Pi j || = max
t∈S |Pi j (t)|,
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is satisfied, then there exists a unique fixed point solution y(t) on S according to Lemma 2.2.
Thereby, the uniqueness of the solution of Eq. (1) is validated via this theorem ��

3 Conceptual background of themethod

In this section, the concept of the proposed method is established using the matrix relations
of both linear and nonlinear terms in Eq. (1). Thanks to the easiness of the construction, the
method conserves only a little conceptual background to treat Eq. (1).
A matrix formation of the Lagrange interpolation polynomial solution (3) is written with the
fractional derivative in the Caputo sense, as

C
t D

α
0 y (t) = C

t D
α
0L (t)A = L(α)(t)A, 0 < α ≤ 2, (5)

where

L (t) = [
L0 (t) L1 (t) · · · LN (t)

]
,

L(α)(t) = [
C
t D

α
0 (L0(t)) C

t D
α
0 (L1(t)) · · · C

t D
α
0 (LN (t))

]
,

and

A = [
a0 a1 · · · aN

]T
.

Note here that the matrix relation (5) can be reduced to a main matrix relation for α = 0, as

y (t) = L(0)(t)A = L(t)A, (6)

which can be utilized in further matrix relations.
In order to obtain delayed process of the main matrix relation (6), time variable t is lagged
by αi j t + βi j , proportionally and constantly. So, it becomes

y
(
αi j t + βi j

) = L(αi j t + βi j )A, (7)

where

L(αi j t + βi j ) = [
L0(αi j t + βi j ) L1(αi j t + βi j ) · · · LN (αi j t + βi j )

]
.

Using now the matrix relation (7), the matrix relation of the nonlinear terms is operated under
a unique formulation

⎡

⎣
3∑

j=1

1∑

i=0

Pi j (t) y
i (t) y j (αi j t + βi j )

⎤

⎦

=
3∑

j=1

1∑

i=0

Pi j (t) (L(t))i

⎛

⎝
j∏

k=1

L∗k+i−1(αi j t + βi j )

⎞

⎠A∗i+ j−1, (8)

where

L∗0(αi j t + βi j ) = L(αi j t + βi j ), L∗1(αi j t + βi j )

=

⎡

⎢⎢⎢⎣

L
(
αi j t + βi j

)
0 · · · 0

0 L
(
αi j t + βi j

) · · · 0
...

...
. . .

...

0 0 0 L
(
αi j t + βi j

)

⎤

⎥⎥⎥⎦

(N+1)×(N+1)2

,
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L∗k(αi j t + βi j ) = diag
[
L∗k−1(αi j t + βi j )

]

(N+1)k×(N+1)k+1
, k > 0,

P i j (t) =

⎡

⎢⎢⎢⎣

Pi j (t) 0 · · · 0
0 Pi j (t) · · · 0
...

...
. . .

...

0 0 0 Pi j (t)

⎤

⎥⎥⎥⎦ and

A∗i+ j−1 = [
a0A∗i+ j−2 a1A∗i+ j−2 · · · aNA∗i+ j−2

]T
,

such that A∗0 represents a traditional A.
By the matrix relations (5) and (8), a substantial matrix equation at the standard collocation
points leads to

L(α)A +
3∑

j=1

1∑

i=0

Pi jLi

⎛

⎝
j∏

k=1

L∗k+i−1(αi j , βi j )

⎞

⎠A∗i+ j−1 = G, (9)

where

L(α) =

⎡

⎢⎢⎢⎣

L(α) (t0)
L(α) (t1)

...

L(α) (tN )

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

C
t D

α
0 (L0(t0)) C

t D
α
0 (L1(t0)) · · · C

t D
α
0 (LN (t0))

C
t D

α
0 (L0(t1)) C

t D
α
0 (L1(t1)) · · · C

t D
α
0 (LN (t1))

...
...

. . .
...

C
t D

α
0 (L0(tN )) C

t D
α
0 (L1(tN )) · · · C

t D
α
0 (LN (tN ))

⎤

⎥⎥⎥⎥⎦
,

P i j =

⎡

⎢⎢⎢⎣

Pi j (t0) 0 · · · 0
0 Pi j (t1) · · · 0
...

...
. . .

...

0 0 0 Pi j (tN )

⎤

⎥⎥⎥⎦, G = [
g (t0) g (t1) · · · g (tN )

]T
,

L∗1(αi j , βi j ) =

⎡

⎢⎢⎢⎣

L
(
αi j t0 + βi j

)
0 · · · 0

0 L
(
αi j t1 + βi j

) · · · 0
...

...
. . .

...

0 0 0 L
(
αi j tN + βi j

)

⎤

⎥⎥⎥⎦

(N+1)×(N+1)2

,

and

L∗0(αi j , βi j ) = L(αi j , βi j ) = L(αi j t + βi j ), L∗k(αi j , βi j )

= diag
[
L∗k−1(αi j , βi j )

]

(N+1)k×(N+1)k+1
, k > 0.

For sake of brevity, the matrix equation (9) can be written as

WA +
3∑

j=1

1∑

i=0

Y i j = G ⇒ [W; Y01 ; Y02 ; Y03 ; Y11 ; Y12; Y13 : G] , (10)

where

W = L(α) and Y i j = Pi jLi

⎛

⎝
j∏

k=1

L∗k+i−1(αi j , βi j )

⎞

⎠A∗i+ j−1.
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On the other hand, the matrix relations of the terminal conditions in Eq. (2) can be created
using the main matrix relation (6) as

y (t) = c1 ⇒ [
L0(t) L1(t) · · · LN (t) : c1

]
, t ∈ [−βi j , 0],

y (T ) = c2 ⇒ [
L0(T ) L1(T ) · · · LN (T ) : c2

]
.

}
(11)

Then, the terminal matrix conditions (11) are replaced by the last row(s) of the substantial
matrix equation (10),which are determined according to the number of the terminal conditions
(2). Also, zero conditional matrices are added into the last row(s) of the nonlinear matrix
forms Y i j . The augmented matrix system is, thereby, established as

[
W̃; Ỹ01 ; Ỹ02 ; Ỹ03 ; Ỹ11 ; Ỹ12; Ỹ13 : G̃

]
,

which can be solved by Solve command onMathematica and later the Lagrange interpolation
coefficients are obtained to be inserted into Eq. (3) and this is the final process by which the
Lagrange polynomial solution arises.

4 An error analysis technique: improvement of a solution by nonlinear
treatment of residual function

In the previous papers, the improvement of the polynomial solutions was enabled by an error
analysis consisting of linear and nonlinear operator (Yüzbaşı and Yıldırım 2021; Gümgüm
et al. 2020; Kürkçü and Sezer 2022). In this study, an error analysis technique is established
by nonlinear and linear operators of the residual function to improve the obtained solution
(3). As a first step, after inserting the obtained solution (3) into Eq. (1), a residual function
RN (t) appears as

RN (t) = C
t D

α
0 yN (t) +

3∑

j=1

1∑

i=0

Pi j (t) y
i
N (t) y j

N (αi j t + βi j ) − g (t) ,

which corresponds to N and is on [0, T ].

In addition, eN (t) = y(t)− yN (t) stands for an error function on [0, T ]. Then, as a theoretical
aspect, the following theorem can be stated to improve the obtained solution (3).

Theorem 4.1 Let Eq. (1) conserves an error problem subjected to the homogeneous terminal
conditions of the form

{
L[eN (t)] + N [yN (t) + eN (t)] − N [yN (t)] = −RN (t),

eN (t) = 0, t ∈ [−βi j , 0] and eN (T ) = 0,

which is solved by the same procedure with computation limit M as in Sect. 3 and whose
solution provides an estimated error function eN ,M (t) to be merged with the Lagrange
polynomial solution (3).

Proof 2 Let Eq. (1) is presented as a summarized form with linear and nonlinear operators

L[y(t)] + N [y(t)] = g(t), (12)

where

L[y(t)] = C
t D

α
0 y (t) and N [y(t)] =

3∑

j=1

1∑

i=0

Pi j (t) y
i (t) y j (αi j t + βi j ).
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In that case, the residual function can be rewritten with regard to Eq. (12), as

RN (t) = L [yN (t)] + N [yN (t)] − g(t),

or its more regularized form

L [yN (t)] + N [yN (t)] = RN (t) + g(t). (13)

By subtracting Eq. (13) from Eq. (12), it follows that

L[y(t) − yN (t)] + N [y(t)] − N [yN (t)] = −RN (t), (14)

and adding the error function into Eq. (14), it is transformed into the error equation

L[eN (t)] + N [yN (t) + eN (t)] − N [yN (t)] = −RN (t), (15)

under the homogeneous terminal conditions

eN (t) = 0, t ∈ [−βi j , 0] and eN (T ) = 0.

After solving the error problem above by means of the same procedure, which is limited up
to M , the estimated error function eN ,M (t) is, then, acquired as

eN ,M (t) =
M∑

i=0

ãi Li (t), M > N ,

and then it is merged with the Lagrange polynomial solution (3), as

yN ,M (t) = yN (t) + eN ,M (t) and
∣∣EN ,M (t)

∣∣ = ∣∣y(t) − yN ,M (t)
∣∣ ,

which state the corrected Lagrange polynomial solution and the corrected absolute error
function, respectively.
Hence, the Lagrange polynomial solution (3) is improved by the similar procedure to the
main method in Sect. 3. This completes the proof. ��

5 Model problems

In this section, five model problems are treated by the proposed method and error analysis
technique. In doing so, a hybrid programme containing these two methods is devised on
Mathematica 11.3 settled on a personal computer equipped with 6 GB memory and 2.50
GHz central processing unit. Thereby, absolute sensitivity is aimed in calculations. Indeed,
the CPU time is evaluated peculiarly after wiping off the programming kernel. On the other
hand, for sake of making comparison between the proposed method with existing ones, the
root mean squared error RMSEN is employed as (see Dehghan and Lakestani 2009)

RMSEN =
(
1

N

N∑

i=0

(y(ti ) − yN (ti ))
2

) 1
2

.

In addition, since themost of themodel problemsof fractional order haveno exact solution, the
stepwise absolute error SWEN=|yN+1(t) − yN (t)| is computed. For the model problems of
integer order, theMathematica solution is also involved to directlymonitor the approximation
of the Lagrange interpolation polynomial solution.

123



74 Page 10 of 20 Ö. K. Kürkçü

Fig. 1 Dynamical behavior of the Lagrange polynomial solution y5(t) with regard to α and T = 1 for Model
5.1

Model 5.1. Pimenov and Hendy (2017) Consider the fractional Hutchinson model

C
t D

(α)
0 y (t) − 0.15y (t) + 0.15y (t) y(t − 0.1) = 0, 0 < α ≤ 1, t ∈ [0, T ],

subject to an initial condition y(t) = 0.5 for t ∈ [−0.1, 0]. The exact solution of this model
is not determined. For sake of overseeing the efficiency of the method, the model can be
solved applying NDSolve command on Mathematica, as follows:

Remark 5.1 Let α = 1 and arbitrary T (> 0),

Input := NDSolve
[{

y′[t] − 0.15 ∗ y[t] + 0.15 ∗ y[t] ∗ y[t − 0.1]] == 0,

y[t/; t ≤ 0] == 0.5
}
, y[t], {t, 0, T }

]
[[1, 1, 2]];

which returns a Mathematica solution. As soon as the model is solved by the proposed
method for different α, T = 1 and a long time limit T = 30, the dynamical behavior of the
Lagrange polynomial solution is illustrated in Fig. 1 with respect to α’s and T = 1. Figure2
also stresses that a long time profile of this solution is very consistent with the Mathematica
solution for α = 1 and T = 30. They reach the population capacity, which tends to stabilize
towards the straight line y = 1. Figure3 points out that the error values in terms of RMSEN

and SWEN are decayed, despite the increment of both N = 2(1)10 and α. As a numerical
investigation via Table 1, the stepwise absolute error values take four decimal places on
average even for fractional order derivative, and the accuracy of the method is sharpen with
the implementation of the residual error analysis, causing to obtain low timing complexity.
Model 5.2. Shi et al. (2020); Nemati and Kalansara (2022) Consider the fractional
Hutchinson-type model with variable coefficients

C
t D

1.5
0 y (t) − (t + 1)y (t) − t − 1

2
y (t) y(t − 0.1) = g(t), t ∈ [0, 1],
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Fig. 2 A long-time behavior of the solutions for Model 5.1 with T = 30

Table 1 Numerical profile of the absolute and the corrected absolute error values for Model 5.1 with α = 0.9
and α = 1

ti |e2(ti )|, α = 1 |E2,3(ti )|, α = 1 SWE2, α = 0.9

0.2 7.0241e–05 1.4305e–05 2.2330e–04

0.4 1.2610e–04 1.4287e–05 1.5194e–04

0.6 1.8533e–04 1.4258e–05 1.0187e–04

0.8 2.5137e–04 1.4211e–05 4.2593e–04

1.0 3.2764e–04 1.4121e–05 7.0806e–04

Timing 0.046129 (N = 2) 0.075054 (N = 3) 1.34375 (N = 3)

subject to the terminal conditions y(t) = 0 for t ∈ [−0.1, 0] and y(1) = 1. Here, the exact
solution of this problem is y(t) = t2.3 or y(t) = t4.3 such that g(t) can be determined,
respectively, as

g(t) = 1

2

(
5.76226t0.8 + (−2 + (−0.1 + t)2.3

)
t2.3 − (

2 + (−0.1 + t)2.3
)
t3.3

)
,

and

g(t) = 1

2

(
16.2235t2.8 + (−2 + (−0.1 + t)4.3

)
t4.3 − (

2 + (−0.1 + t)4.3
)
t5.3

)
.

When the problem is solved by the proposed method with N = 5, 6 and the residual error
analysis technique with M = 7(1)10 for both exact solution forms, such present results as
the infinity normed error and timing complexity are compared in Tables 2 and 3 with those of
the stable collocation method (SCM) Shi et al. (2020) and the spectral method based on the
modified hat functions (SM) Nemati and Kalansara (2022). The proposed method is capable
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Fig. 3 Decaying profiles of the error values versus N on the logarithmic scale for Model 5.1 with T = 1
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Table 2 Numerical evaluations in terms of the proposed method (N = 5, 6), SCM (n = 9, 17) and SM
(n = 8, 16) for Model 5.2 with y(t) = t2.3

(N , M) L∞ SCM L∞ Shi et al. (2020) SM L∞ Nemati and Kalansara (2022) Timing

(5,n.a) 1.4398e–03 1.2299e–03 (n=9) 3.0969e–03 (n=8) 6.0625

(6,n.a) 8.4522e–04 3.5591e–04 (n=17) 8.7023e–04 (n=16) 12.6719

(6,7) 3.6100e–04 n.a n.a 4.0938

(6,8) 3.0491e–04 n.a n.a 6.3750

(6,9) 2.0326e–04 n.a n.a 7.8281

Table 3 Numerical evaluations in
terms of the proposed method
(N = 9) and SCM (n = 9) for
Model 5.2 with y(t) = t4.3

(N , M) L∞ SCM L∞ Shi et al. (2020) Timing

(9,n.a) 4.8479e–04 1.7226e–05 (n=9) 11.6875

(9,10) 1.8064e–06 n.a 16.5781

of yielding better results than SCM and SM, applying the residual error analysis for low or
equivalent computation limit.
Model 5.3. Consider the fractional nonlinear delay differential equation with a variable
coefficient

C
t D

1.9
0 y (t) + t2y (0.9t − 0.9) − 0.1y(t)y3 (0.1t − 0.01) = g(t), t ∈ [0, T ],

subject to the terminal conditions y(t) = 0 for t ∈ [−0.9, 0] and y(T ) = e−T sin(T ). The
exact solution leads to y(t) = e−t sin(t) such that g(t) is of the form

g(t) = −2.10227 t0.1P FQ

(
1; 1.025, 0.775, 0.525, 0.275; − t4

64

)

+ 1.91116 t1.1P FQ

(
1; 1.275, 1.025, 0.775, 0.525; − t4

64

)

− 0.587145 t3.1P FQ

(
1; 1.775, 1.525, 1.275, 1.025; − t4

64

)

+ 2.4596 e−0.9t t2 sin(0.9t − 0.9)

− 0.103045 e−1.3t sin3 (0.1t − 0.01) sin(t),

where P FQ is the generalized hypergeometric function Abramowitz and Stegun (1964).
Solving this special problem via the proposed method for T = {1, 3}, the Lagrange polyno-
mial solutions are immediately acquired. Thereby, Fig. 4 depicts that theLagrange polynomial
solution is consistent with the exact solution on a long time scale like T = 3. Table 4 releases
that the accuracy of the method enhances as N is increased. This situation can also be noticed
in Fig. 5, thanks to RMSEN .
Model 5.4. Ruan (2006); Caraballo et al. (2005) Consider the fractional Wazewska-
Czyzewska and Lasota model

C
t D

α
0 y (t) + 0.2y(t) − 0.1 exp (−0.01y(t − 0.1)) = 0, t ∈ [0, T ], (16)

subject to an initial condition y(t) = 0.2 for t ∈ [−0.1, 0]. Here, the exact solution to
the problem is unknown. In order to adapt it to the proposed method, it is beneficial to use
Taylor series expansion of the exponential function. That is, the functional nonlinearity can
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Fig. 4 A long-time behavior of the solutions for Model 5.3 with T = 3

Table 4 Numerical profile of the
absolute error values in terms of
N for Model 5.3 with T = 1

ti |e3(ti )| |e6(ti )|
0.2 4.8832e–04 1.4649e–05

0.4 1.5922e–04 2.0834e–05

0.6 4.2752e–04 1.7033e–05

0.8 1.0903e–03 9.2449e–06

Fig. 5 Decaying profile of the error values versus N on the logarithmic scale for Model 5.3 with T = 1
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Fig. 6 Dynamical behavior of the Lagrange polynomial solution y5(t) with regard to α and T = 4 for Model
5.4

be expanded by its Taylor series around x0 = 0.1 up to third degree since the functional
nonlinear term contains a constant delay. It is, thus, follows that

exp (−0.01y(t − 0.1)) =
∞∑

n=0

(−1)n (0.01)n yn(t − 0.1)

n!
= 1 − 0.01y(t − 0.1) + 5 × 10−5y(t − 0.1)2

− 1.67 × 10−7y(t − 0.1)3 + O(y(t − 0.1)4).

By embedding this expansion into the functional nonlinear term of the problem (16), it can
now be solved via the proposed method for different α and T . For sake of comparison of the
results, the Mathematica can also solve the problem (16) as the following:

Remark 5.2 Let α = 1 and arbitrary T (> 0),

Input := NDSolve[{y′[t] == −0.2 ∗ y[t] + 0.1 ∗ Exp [−0.01 ∗ y[t − 0.1]] ,
y[t/; t <= 0] == 0.2}, y[t], {t, 0, T }][[1, 1, 2]].

The effect of the fractional derivative on the amount of red blood cells, which is governed by
the Lagrange polynomial solution, can be frankly monitored in Fig. 6, whose time interval is
limited up to T = 4. In addition, Fig. 7 simulates that when N = 7, a sustainable diagram
of the red blood cells overlaps with that of Mathematica throughout a long time interval for
T = 30. It is worth indicating that both reach a level of equilibrium limit y = 0.5 as T
increases. In addition, in Table 5, the proposed method provides seven decimal places for
integer order derivative and also, four decimal places for fractional order derivative according
to SWEN .
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Fig. 7 A long-time behavior of the solutions for Model 5.4 with T = 30

Table 5 Numerical profile of the
absolute error values and time
complexity in terms of α and N
for Model 5.4 with T = 1

ti |e6(ti )| SWE5
α = 1 α = 0.85

0.2 2.7693e–07 1.9973e–04

0.4 2.6482e–07 1.5268e–04

0.6 2.5316e–07 1.4151e–04

0.8 2.4197e–07 1.2384e–04

1.0 2.3120e–07 1.2690e–04

Timing 30.8102 (N = 6) 47.8679 (N = 6)

Model 5.5. Piotrowska and Foryś (2011); Valentim et al. (2020) Consider the fractional
Gompertz equation with a delay force

C
t D

α
0 y (t) − 0.4y(t) ln

(
2

y(t − β)

)
= 0, t ∈ [0, T ], (17)

subject to an initial condition y(t) = 0.5 for t ∈ [−β, 0]. Here, its exact solution is unknown.
For the easiness of the calculations, by using the transformation y(t) = exp(u(t)), the
problem can be reduced to a fractional order differential delay equation in the form

C
t D

α
0 u(t) + 0.4u(t − β) = 0.4 ln(2), u(t) = ln(0.5), t ∈ [−β, 0],

which can be solved linearly by the proposed method. Additionally, Mathematica returns the
solution to the problem (17) in view of the following module.

Remark 5.3 Let α = 1, β ∈ (0, 1] and arbitrary T (> 0),

Input := NDSolve[{y′[t] − 0.4 ∗ y[t] ∗ Log[2/y[t − β]] == 0,

y[t/; t <= 0] == 0.5}, y[t], {t, 0, T }][[1, 1, 2]].
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Fig. 8 Dynamical behavior of the Lagrange polynomial solution y10(t)with regard to the fractional derivative
force α for Model 5.5 with T = 10

For different α, the Lagrange polynomial solution in Fig. 8 simulates the tumour growth
propagation on a long time scale up to T = 10. In that case, the physical profile of this
solution is also monitored in Fig. 9, from which it is exposed to the different levels of delay
forces β = 0.1(0.1)0.6 and integer order derivative α = 1. One can state that the tumour
growth propagation reaches at the carrying capacity K = 2 as t → ∞. Table 6 emphasizes
that the accuracy is enhanced according to the increment of N for different derivatives,
consuming the low amount of time in seconds.

6 Conclusions

A streamlined computational method based on the Lagrange interpolation polynomial has
been efficiently proposed to treat fractional terminal value problems with multiple delays
appearing in biomathematics. Amatrix-collocationmethod has newly streamlined in peculiar
to the linear and the nonlinear terms with proportional and constant delays. The method has
transformed them into a reduced matrix expansion (10). Due to this eligibility, the method
has maintained a good approach along with the residual error analysis technique for different
models, which makes it efficient and accurate with regard to the other methods, such as SCM
(Shi et al. 2020) and SM (Nemati and Kalansara 2022). This novelty along with the time
complexity values can be overseen in Tables 1, 2, 3, 4, 5 and 6. Therefore, one of the main
aim has been accomplished. For another aim, an error analysis technique has been suitably
deployed in the model problems, decreasing the error values as seen in Tables 1, 2 and 3.
Although some model problems have no exact solutions, the accuracy and efficiency of the
proposed method have been tested in both traditional and long time intervals, which are laid
on Figs. 1, 2, 4 and 6, 7, 8 and 9.
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Fig. 9 Dynamical behavior of the Lagrange polynomial solution y10(t) with regard to the delay force β for
Model 5.5 with α = 1 and T = 10

Table 6 Numerical profile of the absolute error values and time complexity in terms of α and N for Model
5.5 with β = 0.01 and T = 1

ti |e3(ti )| |e5(ti )| SWE3 SWE5
α = 1 α = 1 α = 0.95 α = 0.95

0.2 1.1938e–05 5.7576e–06 1.0442e–03 3.1902e–04

0.4 1.4151e–05 5.8632e–06 1.1700e–03 2.9320e–04

0.6 5.9517e–06 5.9284e–06 1.0283e–03 2.9516e–04

0.8 1.5331e–05 5.9465e–06 1.0338e–03 2.8231e–04

1.0 1.1612e–05 6.0114e–06 1.1299e–03 2.9638e–04

Timing 0.0092339 (N = 3) 0.0198319 (N = 5) 15.2248 (N = 3) 29.4452 (N = 5)

On the other hand, the proposed method may have a disadvantage in terms of reaching far
higher computation limits since it takes relatively a bit of time. Based on these deductions,
one can draw attention to fact that the proposed method is highly suitable and applicable
tool to treat the fractional terminal value problems encountered in biomathematics. For its a
future implementation, it can be applied to the time-space fractional-partial order nonlinear
terminal value problems arising in applied sciences. Thereby, this study exceeds a milestone
in terms of matrix-collocation methods found in the literature.
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