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Abstract
In this paper, we consider exponentially fitted peer methods for the numerical solution of
first order differential equations and we investigate how the frequencies can be tuned in order
to obtain the maximal benefit. We will show that the key is analyzing the error’s behavior.
Formulae for optimal frequencies are computed. Numerical experiments show the properties
of the proposed algorithm.

Keywords Frequency evaluation · Exponential fitting · Ordinary differential equations ·
Peer methods

Mathematics Subject Classification 65C20 · 65M06 · 35A24 · 65L12

1 Introduction

The exponential fitting technique was originally introduced a few decades ago to reform the
classical algorithms to be particularly effective in the numerical solution of problems with
oscillating or periodic solutions (Conte et al. 2014; Conte and Paternoster 2016; D’Ambrosio
and Paternoster 2014a, b; D’Ambrosio et al. 2017; Ixaru and Vanden Berghe 2004; Ixaru
2012; Ixaru et al. 1997; Paternoster 2002; Simos 2001, 1998; Vanden Berghe et al. 2003).
Exponentially Fitted (EF) algorithms were initially created to make classic numerical inte-
grators more efficient, as, when the oscillation frequency increases, they usually need very
small stepsizes to obtain accurate solutions. In contrast, EF numerical methods can achieve
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the same accuracy with significantly larger step sizes, permitting to develop efficient and
accurate numerical methods.

Despite the enormous efforts on Ordinary Differential Equations (ODEs) problems, the
critical question is how to choose frequencies to maximize the benefits of EF methods. In
Ixaru et al. (2001, 2002, 2003) for EF multistep methods, an algorithm was presented, and
the answer was provided to numerically tune frequencies as optimally as possible for systems
of ODEs. The optimal frequencies were derived by exploiting the expression of the error,
depending on some combination of higher order derivative of the solution.

The present paper considers a general class of EF two-step peer methods (Conte et al.
2018, 2020) of the form (2) for numerical integration of ODEs (1) with oscillatory solution.
We investigate Ixaru’s frequency evaluation algorithm for adapted EF peer methods. We take
the behavior of the leading term of the error as a starting point of the whole investigation and
we develop frequency formulae.

The paper is organized as follows: in Sect. 2, we give a short review of EF peer methods.
Section3 investigates some fundamental concepts of frequency evaluation and explores the
development of the EF peer method frequency assessment, while Sect. 4 describes the esti-
mation of derivatives. Some numerical examples in Sect. 5 illustrate the efficiency of the new
frequency assessment algorithm, and, lastly, some conclusions are drawn in Sect. 6. Appendix
A contains the expressions of the leading term of the error.

2 EF peer methods

We consider systems of ODEs of the form

y′(t) = f (t, y(t)), y(t0) = y0 ∈ R
d , t ∈ [t0, T ], (1)

where f : R × R
d → R

d is sufficiently smooth to ensure that the solution exists and it is
unique. In addition, we assume that the problem (1) possesses an oscillatory solution. Let
{tn := t0 + nh, n = 0, . . . , N } be a discretization of the interval [t0, T ] with fixed stepsize
h > 0, 0 ≤ c1 ≤ · · · ≤ cs = 1 be fixed distinct nodes and define tni = tn +ci h, i = 1, . . . , s.
Two-step peer methods can be formulated as follows:

Yn = (B ⊗ I) Yn−1 + h (A ⊗ I) F(Yn−1) + h (R ⊗ I) F(Yn), (2)

where h > 0 is the stepsize, I is the identity matrix of dimension d , A = [
ai j

]s
i, j=1, B =

[
bi j

]s
i, j=1 and R = [

ri j
]s
i, j=1 are the coefficient matrices. The stages vector Yn = [Yni ]si=1

contains the approximations Yni ≈ y(tni ) and F(Yn) = [ f (tni , Yni )]si=1. As cs = 1, Yns is
the approximation of the solution at grid point tn+1.

The order of EF peer methods has been analyzed by Schmitt and Weiner (2004) by
introducing the condition

AB(q) = cmi −
s∑

j=1

bi j (c j − 1)m − m
s∑

j=1

ai j (c j − 1)m−1 − m
i∑

j=1

ri j c
m−1
j = 0,

m = 0, . . . , q − 1, i = 1, . . . , s

(3)

and providing the following Theorem.

Theorem 1 If AB(p + 1) is verified, the implicit s-stage peer method (2) has order of con-
sistency p.
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Corollary 1 The peer method (2) has order p ≥ s if

B 1 = 1, (4a)

AV1D = CV0 − B (C − I)V1 − RV0D, (4b)

where 1 = [1, 1, . . . , 1]T, C = diag(c1, . . . , cs), D = diag(1, . . . , s) and

V0 =
⎡

⎢
⎣

1 c1 . . . cs−1
1

...
...

...
...

1 cs . . . cs−1
s

⎤

⎥
⎦ , V1 =

⎡

⎢
⎣

1 (c1 − 1) . . . (c1 − 1)s−1

...
...

...
...

1 (cs − 1) . . . (cs − 1)s−1

⎤

⎥
⎦ .

We briefly review the procedure of construction of EF peer methods introduced in Conte
et al. (2018, 2020) in the following Algorithm.

Algorithm 1 : Construction of EF peer methods
Start: Choose the fitting space:

F = {1, t, t2, . . . , t K , e±μt , t e±μt , t2e±μt , . . . , t P e±μt }, (5)

with μ = i ω where ω ∈ R is problem’s oscillating frequency.
Use: Define the linear difference operator

Li [h,w] y(t) = y(t + ci h) −
s∑

j=1

bi j y(t + (c j − 1) h) − h
s∑

j=1

ai j y
′(t + (c j − 1) h)

− h
i∑

j=1

ri j y
′(t + c j h), i = 1, . . . , s,

(6)

where the vector w contains all the coefficients of the method (2). The coefficient matrices A, B and R of
peer methods (2) are obtained by imposing that the operator (6) annihilates when the function y belongs to
the fitting space (5).
Step 1: Construct the classic moments and the dimensionless classic moments:

L∗
i m (h,w) = 1

hm
Li [h,w]tm |t=0 for i = 1, . . . , s, m = 0, 1, . . . , M − 1. (7)

which have the form:

L∗
i m (h,w) = cmi −

s∑

j=1

bi j (c j − 1)m − m
s∑

j=1

ai j (c j − 1)m−1 − m
i∑

j=1

ri j c
m−1
j ,

for i = 1, . . . , s, m = 0, 1, . . . , M − 1.

(8)

Step 2:We now look for the maximum value M that ensures the compatibility of the system

L∗
i m (h,w) = 0, i = 1, . . . , s, m = 0, 1, . . . , M − 1, (9)

which is equivalent to annihilating the difference operator (6) on polynomials with a degree less or equal to
M − 1.
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This system corresponds to the simplifying condition (3) with q = M .

AB(M) = cmi −
s∑

j=1

bi j (c j − 1)m − m
s∑

j=1

ai j (c j − 1)m−1

− m
i∑

j=1

ri j c
m−1
j = 0, i = 1, . . . , s, m = 0, . . . , M − 1.

(10)

Therefore, we may construct an s-order peer method if M = s + 1, due to the Theorem 1 and Corollary 1.
Step 3: Construct the formal expressions of

E∗
i m (z,w) = 1

hm
Li [h,w]tmeμt |t=0 = 0, i = 1, . . . , s, (11)

G±(m)
i (Z ,w) = 0, m = 0, 1, . . . , P, i = 1, . . . , s,

where Z = z2 and G±(m)
i (Z ,w) are the G−functions at each stage i

G+
i (Z ,w) = E∗

i0(z, w) + E∗
i0(−z, w)

2
, G−

i (Z ,w) = E∗
i0(z, w) − E∗

i0(−z, w)

2z
, (12)

Step 4: Construct the possible expressions for the fitting space (5) taking into account that M = s + 1
and the self-consistency condition K + 2P = M − 3 has to be verified. The number of stages s and the
dimension M of the system (9) are of different parities, so the number K + 1 = s − 1 − 2P of classic
functions in the fitting space is odd or even if s is even or odd.

Step 5: Solve formally the linear systems

L∗
i m (h,w) = 0, i = 1, . . . , s, m = 0, . . . , K ,

G±(m)
i (Z ,w) = 0, i = 1, . . . , s, m = 0, . . . , P.

with Z dependent coefficients. The numeric values of ai j and bi are computed either for real or imaginary
μ-values.

Step 6: Compute the leading term of the local truncation error for CL and EF peer methods (Choices for K
and P summarized in Table 1):

(ltee f )i = (−1)P+1hs+1
L∗
i,K+1(h,w)

(K + 1)! Z P+1
DK+1(D2 − μ2)P+1y(t), i = 1, . . . , s,

where we denote D the derivative with respect to time.

3 Frequency evaluation

3.1 Basic elements

The question of how frequencies need to be tuned to achieve maximum benefit from EF
methods has not been answered for a long time. Ixaru et al. (2001, 2002, 2003), and Vanden
Berghe et al. (2001a, b) have proposed a frequency evaluation algorithm for EF multistep
methods and EF Runge–Kutta methods (respectively) which enable to tune of the frequency
μ in the way that the principal local truncation error vanishes. Therefore, the analysis of the
error behavior is a required step. We refer to the articles Ixaru et al. (2001, 2002, 2003) and
Vanden Berghe et al. (2001a, b) for technical information and even some practical points and
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Table 1 Choices for K and P in the fitting space (5)

Method K P

CL peer, (Algorithm A0) s −1

EF peer, with s even or odd (Algorithm A1) s − 1 0

EF peer, with s even or odd (Algorithm A2) s − 2 0

we restrict the discussion to only three relevant cases: A0, A1, and A2 algorithms that exactly
incorporate all linear combinations from the reference set of functions.

• Algorithm A0: {1, t, t2, . . . , t K },
• Algorithm A1:{1, t, t2, . . . , t K , eμt | μ ∈ R},
• Algorithm A2:{1, t, t2, . . . , t K , e±μt | μ ∈ R or μ ∈ iR},

where K is specified by the considered method. The choice A0 covers the purely algebraic
classical method; Algorithm A1 is especially of importance whenever the solution exhibits
a purely exponential behavior, while Algorithm A2 describes oscillatory solutions if μ is
strictly imaginary.

As said, for the investigation of frequency, analyzing the behavior of the error is a necessary
stage. We compute the expression of the leading term of the error (lte) for these algorithms
by using the general procedure described in Sect. 2 and appropriate options for K and P in
the fitting space based on the above algorithms.

3.2 Frequency evaluation for adapted EF peer methods

To start, we consider EF peer methods derived in Algorithm 1 to the scalar equation y′(t) =
f (t, y(t)), then the leading term of their error (lte) assumes the form

(ltee f )i = (−1)P+1hs+1
L∗
i,K+1(h,w)

(K + 1)! Z P+1 DK+1(D2 − μ2)P+1y(t), i = 1, . . . , s. (13)

When we apply three types of algorithms A0, A1 and A2 to the scalar equation (1) and
assume appropriate options for K and P in the fitting space summarized in Table 1 and by
attention to Eq. (13) the lte is derived as follows.

• Algorithm A0: in this case K = s and P = −1, therefore lte is described as follows

(lteA0) = hs+1

(s + 1)!D
s+1y(t); (14)

• Algorithm A1: in this case K = s − 1 and P = 0 and lte is given by the following
expressions assuming s even or odd.

– if s = 2, then K = 1, P = 0

(lteA1)i = −h3

2!
L∗
i,2(h,w)

Z
D2(D2 − μ2)y(t); i = 1, 2, (15)

– if s = 3, then K = 2, P = 0

(lteA1)i = −h4

3!
L∗
i,3(h,w)

Z
D3(D2 − μ2)y(t), i = 1, 2, 3. (16)

123



78 Page 6 of 16 D. Conte et al.

• Algorithm A2: for this case with K = s − 2 and P = 0, assuming that s is even or odd,
the following expressions provide lte.

– s = 2, then K = 0, P = 0

(lteA2)i = −h3
L∗
i,1(h,w)

Z
D(D2 − μ2)y(t); i = 1, 2, (17)

– s = 3, then K = 1, P = 0

(lteA2)i = −h4

2!
L∗
i,2(h,w)

Z
D2(D2 − μ2)y(t), i = 1, 2, 3. (18)

Our principal purpose is to determine the μ value that guarantees maximum accuracy when
the classical A0 case is replaced by one of the two EF Algorithms. For the calculation of
parameterμ, we restrict discussion to the expressions for the lte of A1 and A2 cases especially
for s = 2 and s = 3:

(lteA1, s = 2) = −h3

2

L∗
i,2(h,w)

Z

(
y(4)(t) − μ2y

′′
(t)

)
, i = 1, 2,

(lteA1, s = 3) = −h4

3!
L∗
i,3(h,w)

Z

(
y(5)(t) − μ2y(3)(t)

)
, i = 1, 2, 3,

(lteA2, s = 2) = −h3
L∗
i,1(h,w)

Z

(
y(3)(t) − μ2y

′
(t)

)
, i = 1, 2,

(lteA2, s = 3) = −h4

2

L∗
i,2(h,w)

Z

(
y(4)(t) − μ2y

′′
(t)

)
, i = 1, 2, 3. (19)

In all cases, we see that the lte consists of a product of three factors, i.e.

• a general h3 (in the case s = 2) or general h4 factor (in the case s = 3),
• a function depending on Z which tends to the classical value when Z tends to zero.
• a factor that involves two derivatives of the solution.

The important thing for our studies is the different behavior of the third factor. This
differential factor can make a real difference in accuracy. Let us then introduce the following
functionals:

D1[y(t), μ, s = 2] =
(
y(4)(t) − μ2y

′′
(t)

)
, D1[y(t), μ, s = 3] =

(
y(5)(t) − μ2y(3)(t)

)

D2[y(t), μ, s = 2] =
(
y(3)(t) − μ2y

′
(t)

)
, D2[y(t), μ, s = 3] =

(
y(4)(t) − μ2y

′′
(t)

)

If a μ exists such that D1 identically vanishes on the quoted interval then the version A1
corresponding to thatμwill be exact. The reason is that identically vanishingD1 is equivalent
to looking at the differential equation y(4)(t) − μ2y

′′
(t) = 0 and y(5)(t) − μ2y(3)(t) = 0 for

s = 2 and s = 3, respectively.
In general, no constant μ can be found such that D1 identically vanishes but it makes

sense to address the problem of finding that value of μ which ensures that the values of D1

are kept as close to zero as possible for tn in the considered interval. When D1 is held close
to zero, the optimal μ are given by

μA1,s=2 = ±
√

y(4)(tn)

y ′′
(tn)

, μA1,s=3 = ±
√

y(5)(tn)

y(3)(t)
. (20)

In A1 case the frequency must be real.
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For algorithm A2, the same considerations can be repeated for D2. The reason is that
identically vanishing D2 are equivalent to looking at the differential equation y(3)(t) −
μ2y

′
(t) = 0 and y(4)(t) − μ2y

′′
(t) = 0 for s = 2 and s = 3, respectively. When D2 is held

close to zero, the optimal μ are given by

μA2,s=2 = ±
√

y(3)(tn)

y ′
(tn)

, μA2,s=3 = ±
√

y(4)(tn)

y ′′
(tn)

. (21)

The frequencies are either real or imaginary if Algorithm A2 is chosen.
We have succeeded in proposing formulae for the optimal μ = iω (ω is frequency) value

in (20)–(21). Having found the optimal value for μ, we have the optimal frequency ω.

4 Estimation of the derivatives

The evaluation of the optimal μ value and then optimal frequency ω requires knowing the
total derivatives appearing in the expressions of the formulae (20)–(21). At first, it seems like
a very simple task: the first-order derivative is equivalent to the right-hand sides of the Eq. (1)
i.e. f (t, y(t)), after that, it is very straightforward to calculate the higher-order derivatives.
This technique works well on many problems, but in Ixaru et al. (2002), authors demonstrate
this should be avoided on stiff problems. They also demonstrate that it is sufficient to use
finite difference approximations of the derivatives. Since the expressions of the formulae
(20)–(21) contain derivatives of orders three and four (for s = 2) and four and five (for
s = 3), we will estimate the derivatives in each integration point tn with five points finite
difference formulae for s = 2 and six points finite difference formulae for s = 3.

Since in Van de Vyver (2005), the author has shown approximation of the derivatives by
five points finite difference formulae, in this work we just mention the formulae of the six
points finite difference with data at tn−4, tn−3, tn−2, tn−1, tn and tn+1 for the input.

y
′ 
 3 yn−4 − 20 yn−3 + 60 yn−2 − 120 yn−1 + 65 yn + 12 yn+1

60h
,

y
′′ 
 yn−4 − 6 yn−3 + 14 yn−2 − 4 yn−1 − 15 yn + 10 yn+1

12h2
,

y(3) 
 − yn−4 + 7 yn−3 − 22 yn−2 + 34 yn−1 − 25 yn + 7 yn+1

4h3
,

y(4) 
 − yn−4 + 6 yn−3 − 14 yn−2 + 16 yn−1 − 9 yn + 2 yn+1

h4
,

y(5) 
 − yn−4 + 5 yn−3 − 10 yn−2 + 10 yn−1 − 5 yn + yn+1

h5
.

The data yn−4, yn−3, yn−2, yn−1, yn for the input points are the value of the numerical
solution at tn−4, tn−3, tn−2, tn−1, tn . The estimation for the yn+1 at tn+1 is determined by
Milne-Simpson two-step formulae (Ixaru et al. 2002) as follows:

yn+1 = yn−1 + h

3

(
f (tn−1, yn−1) + 4 f (tn, yn) + f (tn+1, yn+1)

)
.

It is necessary that we make this approximation with a method that has a higher or the
same order as the EF peer method. Therefore it is sufficient to choose Milne-Simpson’s two-
step formulae. We only use the result for the calculation of the derivatives and not for the
propagation of the solution.
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Case s = 2

If tn is a root of y
′′
(t), the algorithm A1 is not defined, while A2 is not defined when tn is a

root of y
′
(t). In a very special case, when tn is a root of both y

′
(t) and y

′′
(t) EF algorithms

are not suitable and so the classic A0 Algorithm must be activated. In general, a logical way
to choose between A1 and A2 involves comparing |y ′

(t)| and |y ′′
(t)|. If |y ′

(tn)| < |y ′′
(tn)|

then A1 is selected, otherwise A2.

Case s = 3

In this case, if tn is a root of y(3)(t), the algorithm A1 is not defined, whereas A2 when tn is
a root of y

′′
(t), not defined. It happens that both y

′′
(t) and y(3)(t) change the sign with the

same time interval, neither the two EF algorithms are not suitable, so the classic A0 should
be enabled. In general, as in the previous case, there is a reasonable way to choose between
A1 and A2 involves comparing |y ′′

(t)| and |y(3)(t)|. If |y ′′
(tn)| < |y(3)(tn)| then algorithm

A1 otherwise A2 is selected.

5 Numerical experiments

In this section we present numerical experiments showing the behaviour of the new “optimal
EF peer methods”, with Z -dependent coefficients whose are computed for optimal μ-values
in (20)–(21). In the following examples, we apply the described optimal EF peer methods
and the classic and EF peer methods to solve the test cases. We compare errors of the optimal
EF implicit peer methods with errors of classic and EF implicit peer methods of Conte et al.
(2020) in Examples 1 and 2, and we also compare achieved results from Example 3 with
reported results by Ixaru et al. (2002).
The error will be estimated as the infinite norm of the difference between the numerical
solution and the exact solution at the endpoint and reported in the tables. In addition, we will
use the following notation to represent the used numerical methods:

• CL = classic,
• EF = exponentially fitted,
• IM P2 = implicit peer method of order 2.

In the following examples, we use the notation reported in Conte et al. (2020). We consider
s = 2. In this case K = 0 and P = 0. We fix c1 = 0, c2 = 1. According to Z = μ2h2 =
−ω2h2, the numerical values of ai j and bi are computed either for real or imaginaryμ-values.
The corresponding optimal EF IM peer method and EF IM peer method are:

B =
[
0 1
0 1

]
, R =

[
1 0
0 1

]
,

A =
[

0 −1
1−η−1(Z)
Zη0(Z)

+ 1 η−1(Z)
Zη0(Z)

(η0(Z) − 1 − (Zη0(Z) − η−1(Z))) + η0(Z) − 1

]

.

Example 1 Let us consider the Prothero–Robinson problem

y′(t) = λ ( y(t) − sin(51 t) ) + (51) cos(51 t), t ∈
[
0,

π

2

]
,

y(0) = 0,
(22)
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Table 2 Comparison of errors for
the problem (22) with λ = −1, N
grid points and fixed and optimal
frequency ω (Example 1)

Methods N
ω 320 640 1280

CL IM P2 – 3.78e−02 9.33e−03 2.31e−03

EF IM P2 50 1.45e−03 3.62e−04 8.98e−05

Optimal EF IM P2 ωop 7.89e−04 6.23e−05 −5.83e-06

Table 3 Comparison of errors for
the problem (22) with λ = −106,
N grid points and fixed and
optimal frequency ω (Example 1)

Methods N
ω 320 640 1280

CL IM P2 – 2.16e−7 2.55e−8 3.15e−09

EF IM P2 50 9.73e−10 1.36e−10 1.22e−10

Optimal EF IM P2 ωop 9.49e−09 3.08e−10 9.62e−12

whose exact solution is

y(t) = sin(51 t) = sin(50 t) cos(t) + cos(50 t) sin(t).

The oscillating behavior of the exact solution leads us to utilize the EF methods with the
parameter μ characterizing the functions belonging to the fitting space equal to μ = iω. So
the problem is integrated by the EF peer methods, where the parameter ω is chosen equal to
the frequency of the exact solution, i. e. ω = 50.
We also consider the case inwhich the oscillatory frequencyω is not known exactly. Therefore
by finding the frequency from the formulae (20)–(21) and denoting with ωop, we employ the
EF peer methods whose coefficients are computed in correspondence of a frequency ωop and
μ = i ωop value.
We used the initial conditions and carried out with CL, EF IM peer methods, and opti-
mal EF IM peer methods, whose algorithms are constructed by the procedure described in
Algorithm 1. We consider interval [0, π

2 ] with different grid points N = 320, 640, 1280.
Tables 2, 3 represent the absolute errors from the considered methods, for λ = −1 (non stiff
case) and λ = −106 (stiff case). We see that the optimal EF IM peer method works much
better than CL and is close to EF IM peer methods, irrespective of whether the problem is
stiff or non-stiff.

For additional confirmation,wepresent somegraphs for both casesλ = −1 andλ = −106.
In Fig. 1, we depict the variation of ωop at each integration point for the problem when the
A2 algorithm is chosen. It is seen from Fig. 2, (as expected) the obtained ωop is close to
ω = 50. It is instructive to mention that Fig. 2 shows the efficiency curve for this problem
obtained by the CL IM, EF IM, and optimal EF IM peer methods.

Example 2 Consider the Prothero–Robinson problem

y′(t) = λ ( y(t) − sin(101 t) ) + (101) cos(101 t), t ∈
[
0,

π

2

]
,

y(0) = 0,
(23)

where exact solution is

y(t) = sin(101 t) = sin(100 t) cos(t) + cos(100 t) sin(t).
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Fig. 1 Plot of calculated ωop for problem (22) with λ = −1 (up), −106 (below), N = 320 grid point
(Example 1)
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Fig. 2 Plots of errors of the considered methods (22) with λ = −1 (left), −106 (right), N grid points and
fixed and optimal frequency ω (Example 1)

Table 4 Comparison of errors for
the problem (23) with λ = −1, N
grid points and fixed and optimal
frequency ω (Example 2)

Methods N
ω 320 640 1280

CL IM P2 – 1.31e−01 3.45e−02 8.81e−03

EF IM P2 100 2.53e−03 6.77e−04 1.73e−04

Optimal EF IM P2 ωop 8.41e−03 4.96e−05 1.93e−05

The oscillating behavior of the exact solution leads us to utilize the EF methods with the
parameter μ = iω. This system is integrated by the EF peer methods, where the parameter
ω is chosen equal to the frequency of the exact solution, i.e. ω = 100. In this example, we
also consider the case in which the oscillatory frequency ω is not known exactly and we
integrate the system by the optimal EF peer methods with ωop. In detail, we utilized the
initial conditions and performed the experiments with CL and EF IM peer methods, as well
as optimal EF IM peer methods, whose algorithms are constructed in the process outlined in
Algorithm 1. We examine the interval [0, π

2 ] with various grid points N = 320, 640, 1280.
The absolute errors from the considered approaches are listed in the Tables 4 and 5 for
λ = −1 (non-stiff case) and λ = −106 (stiff case).

Whether the problem is stiff or non-stiff, the optimal EF IM peer methods perform much
better than CL IM and are close to EF IM peer methods. We offer some graphs for both
scenarios λ = −1 and λ = −106 for extra validation. It is instructive to mention that Fig. 3
shows the efficiency curve for this problem obtained by the CL, EF, and optimal EF IM peer
methods. In Fig. 4, we depict the variation of ωop at each integration point for the problem
when the A2 algorithm is chosen. As predicted, it is obvious from Fig. 4, the obtained ωop is
close to ω = 100.
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Table 5 Comparison of errors for
the problem (23) with λ = −106,
N grid points and fixed and
optimal frequency ω (Example 2)

Methods N
ω 320 640 1280

CL IM P2 – 2.16e−7 7.51e−08 4.90e−08

EF IM P2 100 5.78e−08 7.52e−09 9.48e−10

Optimal EF IM P2 ωop 4.61e−07 1.27e−08 5.78e−10

Fig. 3 Plots of errors of the considered methods on problem (22) with λ = −1, −106, N grid points and
different values for the frequency ω (Example 2)

Example 3 Consider the following test case

y
′ = 1 − t + 1

2
t2, t > 0, y(0) = 1, (24)

with the exact solution

y(t) = 1 + t − 1

2
t2 + 1

6
t3.

This is a simple differential equation, and it helps to illustrate some exciting aspects when
(24) is approached by optimal EF IM peer methods (with Z -dependent coefficients whose
are computed for optimal μ-values) introduced in this work. We can construct the optimal
μ value for both A1 and A2 algorithms by using formulae (20) and (21). For instance, when
s = 2, by using formulae (20) the optimal μ value for A1 is the constant representation

ϕ1(t) = μ2 = y(4)(tn)

y ′′
(tn)

= 0
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Fig. 4 Plot of calculated ωop for problem (23) with λ = −1 (up), −106 (below), N = 320 grid point
(Example 2)
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Fig. 5 Plot of calculated optimal μ2 value for problem (24) for s = 2, h = 0.0125

while by using formulae (21) the optimal μ2 value for A2 is

ϕ2(t) = μ2 = y(3)(tn)

y ′
(tn)

= 1

1 − t + t2
2

.

It follows that by using the A1 algorithm when s = 2, we don’t have all of the data to
construct the optimal μ value. For this reason, in this test case, we construct the solution
by the A2 algorithm along with the whole interval. In Fig. 5, we depict the variation of
optimal μ2 at each integration point for the problem. As predicted, it is evident from Fig. 5,
μ2 
 0.024 when t = 10, s = 2, h = 0.0125, as the theoretically expected value 0.024 is
also given from ϕ2(10).

This test case has been employed by Ixaru et al. (2002). They used EF multistep methods
for Eq. (24). In Table 6, we report the absolute errors at t = 1, t = 5 and t = 10, with the
fixed stepsize h = 0.0500, 0.0250 and h = 0.0125 by optimal EF IM peer methods and
compare them with reported results in Ixaru et al. (2002). From this table, we observe that
for s = 2, the optimal EF IM peer methods have the same accuracy behavior concerning
with EF multistep methods (Ixaru et al. 2002).

6 Conclusion

In this paper, we applied EF peer methods for the numerical solution of first-order ODEs and
examined the problem of how the frequencies should be tuned to obtain the maximal benefit
from the exponential fitting versions. To answer this question, we analyzed the error behavior
of EF peer methods. We have succeeded in proposing formulae for optimal μ values. Under
this condition and with the determination of optimal μ values, we achieved the “optimal EF
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Table 6 Comparison of errors for the problem (24)

t = 1

h = 0.0500 h = 0.0250 h = 0.0125

Classical A0 (Ixaru et al. 2002) −8.15e−04 −2.06e−04 −5.18e−05

EF multistep (Ixaru et al. 2002) −1.61e−05 −2.08e−06 −2.73−07

Optimal EF IM P2 4.86e−04 5.78e−05 7.06e−06

t = 5

h = 0.0500 h = 0.0250 h = 0.0125

Classical A0 (Ixaru et al. 2002) −4.15e−03 −1.04e−03 2.60e−04

EF multistep (Ixaru et al. 2002) 1.68e−05 1.80e−06 2.16e−07

Optimal EF IM P2 4.14e−04 5.25e−05 6.62e−06

t = 10

h = 0.0500 h = 0.0250 h = 0.0125

Classical A0 (Ixaru et al. 2002) −8.31e−3 −2.08e−03 −5.21e−04

EF multistep (Ixaru et al. 2002) 2.53e−05 2.87e−06 3.49e−07

Optimal EF IM P2 4.01e−04 5.11e−05 6.46e−06

peer methods”. The introduced methods were tested on some examples, and the efficiency
of optimal EF peer methods was shown.

Acknowledgements The authors would like to thank the anonymous referees who provided valuable and
detailed comments to improve the quality of the publication. The authors are members of the GNCS group.
This work was supported by the GNCS-INDAMproject and by the ItalianMinistry of University and Research
(MUR) through the PRIN 2017 project (no. 2017JYCLSF) Structure preserving approximation of evolutionary
problems, and the PRIN 2020 project (no. 2020JLWP23) Integrated Mathematical Approaches to SocioEpi-
demiological Dynamics (CUP: E15F21005420006).

Funding Open access funding provided by Università degli Studi di Salerno within the CRUI-CARE Agree-
ment.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Conte D, Paternoster B (2016) Modified Gauss–Laguerre exponential fitting based formulae. J Sci Comput
69(1):227–243

Conte D, Ixaru LG, Paternoster B, Santomauro G (2014) Exponentially-fitted Gauss–Laguerre quadrature rule
for integrals over an unbounded interval. J Comput Appl Math 255:725–736

Conte D, D’Ambrosio R, Moccaldi M, Paternoster B (2018) Adapted explicit two-step peer methods. J Numer
Math 255:725–736

123

http://creativecommons.org/licenses/by/4.0/


78 Page 16 of 16 D. Conte et al.

Conte D, Mohammadi F, Moradi L, Paternoster B (2020) Exponentially fitted two-step peer methods for
oscillatory problems. Comput Appl Math. https://doi.org/10.1007/s40314-020-01202-x

D’Ambrosio R, Paternoster B (2014a) Exponentially fitted singly diagonally implicit Runge–Kutta methods.
J Comput Appl Math 263:277–287

D’Ambrosio R, Paternoster B (2014b) Numerical solution of a diffusion problem by exponentially fitted finite
difference methods. SpringerPlus 3:425

D’Ambrosio R, Moccaldi M, Paternoster B (2017) Adapted numerical methods for advection–reaction–
diffusion problems generating periodic wavefronts. Comput Math Appl. https://doi.org/10.1016/j.
camwa.2017.04.023

Ixaru LG (2012) Runge–Kutta method with equation dependent coefficients. Comput Phys Commun 183:63–
69

Ixaru LG, Vanden Berghe G (2004) Exponential fitting. Kluwer, Boston
Ixaru LG, Vanden Berghe G, De Meyer H, Van Daele M (1997) Four-step exponential-fitted methods for

nonlinear physical problems. Comput Phys Commun 100:56–70
Ixaru LG, Rizea M, De Meyer H, Vanden Berghe G (2001) Weights of the exponential fitting multistep

algorithms for ODEs. J Comput Appl Math 132:83–93
Ixaru LG, Vanden Berghe G, De Meyer H (2002) Frequency evaluation in exponential fitting multistep algo-

rithms for ODEs. J Comput Appl Math 140:423–434
Ixaru LG, Vanden Berghe G, De Meyer H (2003) Exponentially fitted variable two-step BDF algorithms for

first order ODEs. Comput Phys Commun 150:116–128
Paternoster B (2002) Two step Runge–Kutta–Nyström methods for y = f(x, y) and P-stability. Lect Notes

Comput Sci 2331:459–466
Schmitt BA, Weiner R (2004) Parallel two-step W-methods with peer variables. SIAM J Numer Anal 42:265–

282
Simos TE (1998) An exponentially-fitted Runge–Kutta method for the numerical integration of initial-value

problems with periodic or oscillating solutions. Comput Phys Commun 115:1–8
Simos TE (2001) A fourth algebraic order exponentially-fitted Runge–Kutta method for the numerical solution

of the Schrödinger equation. IMA J Numer Anal 21:919–931
Van de Vyver H (2005) Frequency evaluation for exponentially fitted Runge–Kutta methods. J Comput Appl

Math 184:442–463
Vanden Berghe G, Ixaru LG, De Meyer H (2001a) Frequency determination and step-length control for

exponentially fitted Runge–Kutta methods. J Comput Appl Math 132:95–105
VandenBergheG, IxaruLG,VanDaeleM (2001b)Optimal implicit exponentially fittedRunge–Kuttamethods.

Comput Phys Commun 140:346–357
VandenBergheG,VanDaeleM,VandeVyverH (2003)Exponential fittedRunge–Kuttamethods of collocation

type: fixed or variable knot points? J Comput Appl Math 159:217–239

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s40314-020-01202-x
https://doi.org/10.1016/j.camwa.2017.04.023
https://doi.org/10.1016/j.camwa.2017.04.023

	Frequency evaluation for adapted peer methods
	Abstract
	1 Introduction
	2 EF peer methods
	3 Frequency evaluation
	3.1 Basic elements
	3.2 Frequency evaluation for adapted EF peer methods

	4 Estimation of the derivatives
	Case s=2
	Case s=3

	5 Numerical experiments
	6 Conclusion
	Acknowledgements
	References




