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Abstract
In this paper, we present an epidemiological model to study the dynamics of toxoplasmosis
in cat and mouse populations under a continuous cat vaccination program. We construct a
mathematical model at the cat and mouse populations level that includes the effect of oocysts
of the parasite T. gondiiwhich causes the toxoplasmosis infection. We include vertical trans-
mission in both populations. We prove that the basic reproduction numberR0 is a threshold
parameter that determines the global dynamics and the outcome of the toxoplasmosis dis-
ease in the cat and population. Numerical simulations are presented to support the theoretical
results and to show the impact of a vaccination program for cats. In addition, the simulations
give insight on the effect of a public health program related to removing the oocysts from the
environment. These simulations show the effectiveness of a constant vaccination intervention
and a oocysts clearance program.
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1 Introduction

Toxoplasmosis is considered to be a leading cause of death attributed to foodborne illness in
the United States (CDC 2022). More than 40 million men, women, and children in the U.S.
carry the Toxoplasma parasite and worldwide toxoplasmosis infection has a high prevalence
(CDC 2022). Toxoplasma gondii (T. gondii) is a protozoan parasite that is the causative agent
of toxoplasmosis (Attias et al. 2020; Dubey 2008). Despite the great majority of the infected
people are either asymptomatic or havemild symptoms, some persons suffer from neurologic
damage (Attias et al. 2020; Matta et al. 2021). Furthermore, a woman who is newly infected
with Toxoplasma during pregnancy can pass the infection to her unborn child and there can
be severe consequences for the unborn child, such as fetal death, child disability, diseases of
the nervous system and eyes (CDC 2022; Bigna et al. 2020; Robert-Gangneux et al. 2011).
Pregnant women can be infected through zoonotic transmission or foodborne transmission
(CDC 2022; Dubey 2008; Dubey and Beattie 1988; Dubey 1996).Immunodeficient people
can have severe consequences due to toxoplasmosis (CDC 2022; Matta et al. 2021). The life-
cycle of T. gondii is complex, with more than one infective form and several transmission
pathways (Attias et al. 2020; Dubey 2020).

The protozoan T. gondii is a prevalent parasite in wild and domestic animals worldwide
especially in cats (Dubey 2020; Reyes-Lizano et al. 2001; Beaver et al. 1984; Markell et al.
1990). T. gondii parasites in cats have a full life cycle and in most cases do not affect the
cat’s life (Attias et al. 2020; Dubey 2008). However, in few cats that are immunosuppressed
clinical signs appear and the central nervous system, muscles, lungs and eyes can be affected
(Hartmann et al. 2013). Oocysts are the environmentally resistant stage of the protozoan
parasite T. gondii (Dubey 1995; Frenkel et al. 1970; Ndao et al. 2020). Cats can pose a risk
for humans when they shed oocysts, but this only occurs once in their lifetime (Hartmann
et al. 2013). It is important to mention that T. gondii can infect most species of warm-blooded
animals (CDC2022;Dubey2008, 2020). InSouthAmerica it has been found a seroprevalence
in cats of 45% (Dubey et al. 2006). Other studies estimated the seroprevalence to be 35% and
59% indomestic cats andwild felids (Montazeri et al. 2020).Cats are crucial in the life cycle of
T. gondiibecause they are the only hosts that can excrete the environmentally-resistant oocysts
(Dubey et al. 2006, 2020; Attias et al. 2020). Cats shed unsporulated oocysts in their feces
that are not instantaneously infectious (CDC 2022; Dubey et al. 1970; Frenkel et al. 1970;
González-Parra et al. 2022). These oocysts spread and contaminate the environment (Aramini
et al. 1999; Dumètre and Dardé 2003; Dubey et al. 1998; Trejos and Duarte 2010). Humans
can get infected by ingestion of cysts in raw/uncookedmeat and drinking contaminated water
with oocysts (Aramini et al. 1999).

Intermediate hosts such as rodents become infected after ingesting soil, water or plant
material contaminated with oocysts (CDC 2022; Dubey and Frenkel 1976; Dubey 2008).
In Vargas-Villavicencio et al. (2016), the congenital transmission using a mouse model was
studied. They also determined parasite load and vertical transmission. It has been reported
that maternal–fetal transmission of T. gondii occurs in mice (Robert-Gangneux et al. 2011;
Shiono et al. 2007; Darcy and Zenner 1993; Pezerico et al. 2009). Vertical transmission
has been reported to occur through successive generations in mice (Rejmanek et al. 2010).
Current studies suggest that vertical transmission is common in natural populations of mice
(Hide 2016; Marshall et al. 2004; Murphy et al. 2008) and that mice are extremely vulnerable
to the consequences of infection with T. gondii (Innes 1997).

Mathematical epidemiological models have been designed to investigate many diseases
related to viruses and parasites (Bedson et al. 2021; Chowell et al. 2016; Chowell and Hyman
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2016; Brauer and Castillo-Chavez 2001; Hethcote 2005) and different mathematical models
have been used to investigate the dynamics of toxoplasmosis under different assumptions
(Deng et al. 2021). Previous models focused in different populations such as humans, cats
and mice (Ferreira et al. 2017; González-Parra et al. 2009; Arenas et al. 2010; Turner et al.
2013; Lélu et al. 2010; Mateus-Pinilla et al. 2002; Marinović et al. 2020; Trejos and Duarte
2005). In addition, few articles have investigated the effect of vaccination of cats (Arenas et al.
2010; González-Parra et al. 2022; Lélu et al. 2010;Mateus-Pinilla et al. 2002;Marinović et al.
2020; Turner et al. 2013). For instance in Mateus-Pinilla et al. (2002) a model that considers
vaccination in a population of cats and swine was presented. It has been mentioned that there
is a need to develop a safe and effective toxoplasmosis vaccine (Wang et al. 2019). Moreover,
successful vaccination of domestic cats is oneway to reduce T. gondii transmission to humans
and food-producing animals (Wang et al. 2019). InWang et al. (2019), the authors mentioned
that an effective toxoplasmosis vaccine must be able to induce both humoral and cellular
immune responses, directed against multiple different proteins, at different stages of the
parasites life cycle. In addition, a mathematical model based on delay differential equations,
but does not include the mouse population has been developed previously (González-Parra
et al. 2022). However, including more hosts makes the analysis more complex.

The mathematical model proposed in this work considers the transmission of the T. gondii
by an effective contact between oocysts and mice (CDC 2022). In addition, the cats can get
infected by contact with oocysts (Arenas et al. 2010; Deng et al. 2021; Lélu et al. 2010).
The model includes vertical transmission in both the cat and mouse populations (Hide 2016;
Marshall et al. 2004; Murphy et al. 2008) and also includes the vaccination of cats. The
constructed model has several additional underlying hypotheses that are mentioned in the
next section. The cat population is divided into three subpopulations, susceptibles S(t),
infectious I (t) and vaccinated/recovered VR(t). On the other hand, the mouse population is
composed by only two classes; susceptibles Sm(t) and infectious Im(t). The model does not
include a recovered class for the mouse population since in the infected mice the parasite
disseminate systemically, reaching tissue sites that support chronic infection including the
brain, muscle, and other tissues (Bierly et al. 2008;Melchor and Ewald 2019; Remington and
Krahenbuhl 1982). Moreover, for the infected mouse the parasite can remain, potentially for
the host’s lifetime (Dubey et al. 1998; Webster 2007). The mathematical model considers the
T. gondii oocysts that are the vector that transmits the toxoplasmosis disease. Animals can
be infected by eating infected meat, by ingestion of feces from a cat that has itself recently
been infected, or by transmission from mother to fetus. Cats have been shown as a major
reservoir of this infection (Arenas et al. 2010; Lappin 1999; Torda 2001; Turner et al. 2013).
We investigate the local and global stability of the equilibrium points of the system and
we compute the basic reproductive number R0 to study the stability of the toxoplasmosis-
free steady state. Numerical computer simulations are included to get useful insight on the
dynamics of toxoplasmosis.Moreover, these simulations allowus to study the effect of control
strategies.

The paper is organized as follows: In Sect. 2 we construct the mathematical model. Sec-
tion 3 is devoted to analyzing the steady states and finding the basic reproduction numberR0.
In addition, we construct a Lypaunov function that allow us to prove the global stability of
the disease free steady state. Section 4 contains numerical simulations of different scenarios
and in Sect. 5 conclusions are presented.
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2 Mathematical model

In this section, we construct the mathematical model for the transmission of toxoplasmosis
in cat and mouse populations. The model considers a constant vaccination program for cats
(Arenas et al. 2010; Lélu et al. 2010; Mateus-Pinilla et al. 2002; Marinović et al. 2020;
Turner et al. 2013). In addition, the model includes the oocyst population since they are
primarily responsible for the maintenance of T. gondii in the environment (Lappin 1999).
This is crucial since the cats are the only ones known to excrete T. gondii oocysts (Arenas
et al. 2010; Lappin 1999). The constructed model considers the direct contact of cats with
the oocysts in the environment. Contamination of the environment by oocysts has been well
documented (Dubey and Beattie 1988). As expected, the likelihood of acquisition of T.
gondii infection depends on the amount of oocysts in the environment (Mateus-Pinilla et al.
2002). There are normally two sources of infection: tissue cysts from prey and oocysts in
the environment (Dubey and Beattie 1988). However, infection of prey ultimately is traced
indirectly to oocyst shedding by cats. The proposed model considers the assumption that the
infection depends on the environmental load of oocysts, which depends on the number of
infected cats during previous weeks (Arenas et al. 2010; Hill and Dubey 2002).

The constructed mathematical model is based on a system of ordinary differential equa-
tions. The model includes parameters related to vaccination rate and survival time of oocysts.
The model assumes lifelong immunity after recovery from infection since even though the
cats can be re-infected with Toxoplasma and shed oocysts again but the amount of shedding
in future episodes is relatively insignificant (CDC 2022; Dubey 2020). We assume that the
vaccine provide complete immunity to vaccinated cats, therefore we have created just one
compartment for the vaccinated and the recovered cats. Vertical transmission in the cat pop-
ulation is considered based on several studies (Dubey et al. 1996; Powell and Lappin 2001;
Sato et al. 1993) and on the fact that it has been detected lactational transmission with T.
gondii (Powell and Lappin 2001; Dubey et al. 1995; Powell et al. 2001). A natural exponential
decay is considered for the oocysts. The model does not consider a subpopulation of exposed
oocysts, but in future works might be included since after oocysts are shed by the cats, they
are not infective for about 24–48h. Sporulated oocysts survive for long periods under most
ordinary environmental conditions (Hill and Dubey 2002). In order to construct the model
the following notations and hypothesis are taken:

– The total population of cats N (t) is divided into three disjoint subpopulations: Cats who
may become infected (Susceptible S(t)), cats infected by T. gondii (Infected I (t)), and
cats who have been vaccinated or have immunity by recovering (Vaccinated/recovered)
VR(t)).

– The total population of mice Nm(t) is divided into two disjoint subpopulations: Suscep-
tible Sm(t) and infected Im(t).

– Oocysts O(t): Number of oocysts in the environment.
– The birth rate is assumed equal to the cat natural death rateμ, thus the total cat population

remains constant, i.e. ˙N (t) = 0.
– A susceptible cat or mouse transits to the infected subpopulation following an effective

contact with oocysts (at rate β and βm respectively).
– The period from when the oocysts are shed by the cats until they are infective is assumed

null.
– A susceptible cat transits to the vaccinated subpopulation VR(t) at a rate γ . An infected

cat transits to the vaccinated/recovered subpopulation VR(t) at a rate α.
– The increase of oocysts O(t) at time t is proportional to the number of infected cats I (t).

123



Mathematical modeling of toxoplasmosis... Page 5 of 20 88

– μ0 is the death or clearance rate of oocysts.
– Vertical transmission is assumed in the subpopulations I (t) and Im(t).
– Cats not vaccinated can be re-infected with Toxoplasma in the future, but do not shed

oocysts again (Dubey 2020).
– The model assumes that the vaccine produces lifelong immunity (Freyre et al. 1993;

Frenkel 1990).
– Homogenous mixing is assumed, i.e, all the susceptible subpopulations S(t) and Sm(t)

have the same probability to become infected.

The general developed model is a first order nonlinear system of ordinary differential equa-
tions SI VR (Susceptible, Infected andVaccinated orRecovered).After considering a constant
cat population, a simple linear recruitment rate for the mice population, and vertical trans-
mission in both populations one gets,

Ṡ(t) = μVR(t) − βS(t)O(t) − γ S(t),
İ (t) = βS(t)O(t) − α I (t),
V̇R(t) = α I (t) + γ S(t) − μVR(t),
Ȯ(t) = k I (t) − μ0O(t),
Ṡm(t) = (b − μm)Sm − βm Sm(t) O(t),
İm(t) = (b − μm)Im + βmSm(t) O(t),

(1)

where k > 0 is the rate of appearance of new oocysts in the environment per infected
cat. The total population of cats and mice is given by N (t) = S(t) + I (t) + VR(t), and
Nm(t) = Sm(t) + Im(t) respectively. Now, using x = Sm/N (t), y = Im/N (t), taking into
account that Ṡm = ẋ Nm + x Ṅm , İm = ẏNm + y Ṅm , and after simplifications replacing again
x(t) by S(t) and y(t) by I (t) one gets

Ṡ(t) = μVR(t) − βS(t)O(t) − γ S(t),
İ (t) = βS(t)O(t) − α I (t),
V̇R(t) = α I (t) + γ S(t) − μVR(t),
Ȯ(t) = k I (t) − μ0 O(t),
Ṡm(t) = −βm Sm(t) O(t),
İm(t) = βm Sm(t) O(t).

(2)

Additionally, without loss of generality the total population of cats is assumed to be N (t) =
S(t)+ I (t)+ VR(t) = 1, i.e., constant and scaled. Notice, that the terms related to births (b)
and deaths (μm) in the mouse population disappear due to the previous scaling of the mouse
population. Setting the right hand side to zero we can find the equilibrium points of system
(2). Notice, that if O(t) = 0 we obtain that the susceptible and infected mouse populations
can have any value at the equilibrium point and therefore there are infinitelymany equilibrium
points (Hethcote 2005). On the other hand, if O(t) > 0 then only one endemic equilibrium
point exists. Now, taking into account the scaled populations we can reduce the model (2) to
a simpler one as follows,

Ṡ(t) = μ(1 − I (t)) − βS(t)O(t) − (μ + γ )S(t),
İ (t) = βS(t)O(t) − α I (t),
Ȯ(t) = k I (t) − μ0O(t),
Ṡm(t) = −βm Sm(t) O(t),

(3)

where Im(t) = 1 − Sm(t) and VR(t) = 1 − S(t) − I (t). The initial conditions at time t = 0
are given by

S(0) > 0, I (0) ≥ 0, O(0) ≥ 0, Sm(0) ≥ 0. (4)
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Fig. 1 Diagram of the mathematical model (2) including cat and mouse populations. In both populations
vertical transmission is considered

The model is depicted graphically in Fig. 1. The next section is devoted to the equilibrium
and stability analysis of the mathematical model (3).

3 Stability analysis of themodel

In this section, the mathematical model (3) is analyzed qualitatively in order to investigate the
existence and stability of its associated equilibria. First we perform local stability analysis for
the disease-free equilibrium and then the global stability analysis. From the analytic theory
of ordinary differential equations, it can be proven that for any set of initial data (4), there
exists a unique solution, (S(t), I (t), O(t), Sm(t)) defined on the maximum open interval
(−Tc, Tc) with Tc > 0 (Hale 1969; Khalil 2002; Lakshmikantham et al. 1989).

It is important from a biological point of view to prove that the solutions are positive for
all t ≥ 0 and that them are bounded. The next theorem guarantees this fact.

Theorem 1 If the parameters of model (3) are all positive and the initial conditions given by
(4) are verified, then the solutions of the model (3) given by

(
S(t), I (t), O(t), Sm(t)

)

remain positive and uniformly bounded in [0,+∞).

Proof Since N (t) ≤ 1, then from the third equation of system (3), it is clear that

Ȯ(t) ≤ k − μ0O(t).

Therefore, if O(0) ≤ k

μ0
then O(t) ≤ k

μ0
. On the other hand, if O(0) >

k

μ0
then O(t) <

O(0). Let BO = max

{
k

μ0
, O(0)

}
> 0. Therefore, O(t) ≤ BO for all t ≤ 0. Now, from

first equation of model (3), we have that

Ṡ(t) > μ(1 − I (t)) − βS(t)BO − (μ + γ )S(t),
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it implies that

S(t) ≥ S(0) exp(−BT t) + exp(−BT t)
∫ t

0
exp(BT s)μ(1 − I (s))ds > 0,

for all t ≥ 0 and where BT = βBO + μ + γ. Let’s assume that there exists a t0 > 0 such
that I (t0) = 0, İ (t0) ≤ 0 and I (t) > 0 for all t ∈ [0, t0). Then using the second equation of
(3) one gets that 0 ≥ O(t0). Using again the third equation of system (3) we obtain

Ȯ(t) > −μ0O(t),

for all t ∈ [0, t0). Thus, since O(t) is continuous one obtains

O(t0) ≥ O(0) exp(−μ0t0) > 0.

Then we have a contradiction. Thus, I (t) > 0 for all t > 0.Using the third equation of model
(3) one gets that O(t) ≥ 0 for all t ≥ 0, and in the same way that Sm(t) ≥ 0 with t ≥ 0. In
the same way, when 0 < O(t) ≤ BO , from the last equation of system (3) we can see that

Sm(t) = Sm(0) exp

(
−βm

∫ t

0
O(s)ds

)
≥ Sm(0) exp (−βm BOt) > 0.

It is clear that Sm(t) → 0 as t → ∞. Now, if O(t) = 0, then Sm is constant. ��
Next, it is clear that the subpopulation S is bounded by μ

μ+γ
. Indeed, by the standard

comparison theorem (Lakshmikantham et al. 1989) one can obtain that

S(t) ≤ S(0) exp(−(μ + γ )t) + μ

μ + γ
(1 − exp(−(μ + γ )t)).

For th case that S(0) ≤ μ
μ+γ

, we obtain that S(t) ≤ μ
μ+γ

. Let us focus on the dynamics of
the model (3) in the following restricted region:

Ω0 =
{
(S, I , O, Sm) ∈ R

4+/0 < S ≤ μ

μ + γ
, 0 ≤ I ≤ βkμ

μ0α(μ + γ )
, S + I < 1, 0

≤ O ≤ k

μ0
, 0 ≤ Sm + Im ≤ 1

}
,

where R4+ denotes the nonnegative cone of R4. Therefore, Ω0 is positively invariant. For the
case that S(0) >

μ
μ+γ

, then either the solutions enter Ω0 in finite time or S(t) approaches
μ

μ+γ
asymptotically (similarly for the oocysts O(t) if O(0) > k

μ0
). Hence, the region Ω0

attracts all solutions in R4+. Thus, we arrive to the following result.

Proposition 1 The region Ω0 is positively invariant and attracting.

Thus, by proposition (1), it is sufficient to consider the dynamics of the solutions of model
(3) in Ω0, i.e., system (3) is mathematically well-posed in Ω0.

3.1 Disease free equilibrium points

The equilibrium states of the epidemic models are generally important and provide insightful
information related to the dynamics of the diseases. Generally, thesemodels have disease free,
endemic equilibrium points and periodic solutions. The local and global stability depends on
the parameters of the model. One important secondary parameter is the basic reproduction
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number R0, which determines the number of secondary cases generated by an infectious
individual entering a fully susceptible population, measuring the diffusion of the disease
(van den Driessche and Watmough 2002; Van den Driessche and Watmough 2008).

The mathematical model (3) has infinitely many toxoplasmosis-free equilibrium points,
which are obtained by considering I = 0 and O = 0. This occurs due to the fact that
the variable Sm is independent of the equations that govern the dynamics of cats (Hethcote
2005). The set formed by all these equilibrium points form an invariant set which is a subset

of Ω0, where these points have as coordinates:
(

μ
μ+γ

, 0, 0, S∗
m

)
∈ Ω0. Notice that we have

a total disease free equilibrium point F∗
0 =

(
μ

μ+γ
, 0, 0, 1

)
when we consider that all the

subpopulations do not have infected cases. However, since the mice can’t spread the disease
under the model (3) we consider that whenever I = 0 and O = 0, one gets a toxoplasmosis-
free steady state. Thus, we can define a toxoplasmosis-free equilibrium set as

J =
{
(S, I , O, Sm) :

(
μ

μ + γ
, 0, 0, S∗

m

)
∈ Ω0

}
. (5)

The stability of this set J can be determined by the LaSalle’s invariance principle (Laksh-
mikantham et al. 1989; Khalil 2002). In the next subsection, we will propose a V function to
prove that whenR0 < 1 all the solutions of the system (3) converge to the toxoplasmosis-free
set J .

Let’s study the particular local stability of the total disease free equilibrium point F∗
0 =(

μ
μ+γ

, 0, 0, 1
)
, which is determined by considering the system (2) in steady state and I = 0,

O = 0 and Im = 0. The local stability of F∗
0 is determined by the eigenvalues of J (F∗

0 ).
The disease free equilibrium point F∗

0 is locally asymptotically stable if the real part of the
eigenvalues are all negative. Evaluating the Jacobian of the system (3) at F∗

0 one gets:

J (F∗
0 ) =

⎛
⎜⎜⎜⎝

−μ − γ − μ − βμ
μ+γ

0

0 − α
βμ

μ+γ
0

0 k − μ0 0
0 0 − βm 0

⎞
⎟⎟⎟⎠ .

Thus, computing the eigenvalues of J (F∗
0 ) one gets that λ1 = −μ − γ , is a eigenvalue.

The rest of the eigenvalues are the roots of the polynomial given by

p(λ) = λ

(
(λ + α)(λ + μ0) − kβ

μ

μ + γ

)
(6)

However, one gets an eigenvalue λ = 0 and then wemight apply the center manifold theorem
(Guckenheimer and Holmes 2013). However, it is clear that whenever I 
= 0 or O 
= 0, then
the system is not able to reach the total disease free equilibrium point F∗

0 . Therefore, F
∗
0 is not

locally asymptotically stable (las). However, in the next subsectionwewill use global stability
analysis to prove that all the solutions of the system (3) converge to the toxoplasmosis-free
set J , which includes the total disease free equilibrium point F∗

0 .

3.2 Global stability of disease-free equilibrium point

Here we will find the conditions for the relative eradication of the disease independently of
the initial conditions of the subpopulations.
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Let us define the threshold parameter

R0 =
√

μ kβ

μ0 (γ + μ) α
. (7)

For the global stability analysis, we will show that if R0 ≤ 1, then regardless of the initial
conditions all the trajectories of the solutions X(t) of system (3) converge to the set J ∈ Ω0.
This is proven below.

Theorem 2 All the trajectories of the solutions X(t) of the system (3) converge to the set
J ∈ Ω0 if R0 ≤ 1.

Proof We analyze the global stability by proposing a suitable function L as follows

L(X(t)) = k I (t)

α μ0
+ O(t)

μ0
. (8)

where X(t) = (S(t), I (t), O(t), Sm(t)) . The function L satisfies

L(F∗) = 0, for all F∗ ∈ J ,

L(X(t)) > 0, for all X(t) 
= F∗, (9)

L(X(t)) → ∞, when ‖X‖ → ∞. It follows that L(X(t)) is radially unbounded.

Now, taking the time derivative of L(X(t)) along the trajectories of system (3), and from the
restricted region Ω0 one gets that

dL(X(t))

dt
=k İ (t)

α μ0
+ Ȯ(t)

μ0
= k (β S(t) O(t) − α I (t))

α μ0
+ k I (t) − μ0 O(t)

μ0

=k (β S(t) O(t)

α μ0
− O(t) =

(
k β S(t)

α μ0
− 1

)
O(t) ≤

(
μ k β

μ0(μ + γ )α
− 1

)
O(t)

= (R2
0 − 1

)
O(t) = (R0 − 1) (R0 + 1) O(t).

Thus,
dL(X(t))

dt
≤ 0 when R0 ≤ 1, and

dL(X(t))

dt
= 0 if and only if X(t) = 0 and

O(t) = 0, or O(t) = 0, or S(t) = α μ0
k β

.This implies that the largest time invariant set such
that

LF∗ =
{
X(t) ∈ Ω0 : dL(X(t))

dt
= 0

}

is reduced to the set J . Then, applying LaSalle’s invariance principle (Khalil 2002), one gets
that the limit set of each solution is contained in the largest time invariant set J ∈ Ω0 if
R0 ≤ 1. Then every solution starting in Ω0 approaches J as t → ∞. ��
In the numerical simulations section we will see that whenever R0 ≤ 1 the solution
approaches J as t → ∞ regardless of the initial conditions. Notice thatR0 does not depend
on the transmission rate βm between the oocysts and the mouse population. This fact can
be explained on the basis that mice is an intermediate host and cannot generate oocysts and
therefore does not affect the load of oocysts in the environment and therefore can’t spread
the disease under the assumptions of model (1).
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3.3 Endemic equilibrium point

From Eq. (6) it can be deduced that the total disease free point F∗
0 is unstable whenR0 > 1.

In a similar way, it can be found that any equilibrium point in the set J is also unstable
whenever R0 > 1. Thus, the solutions of the model (3) might converge to endemic points
when R0 > 1. It is important to determine these endemic points and their stability. For this,
we set the left-hand side of the system (3) to zero. We obtain the following

0 = μ(1 − I ∗) − βS∗O∗ − (μ + γ )S∗,
0 = βS∗O∗ − α I ∗,
0 = k I ∗ − μ0 O∗,
0 = −βm S∗

m O∗,

(10)

Thus, the endemic point will be the positive solutions of nonlinear system (10) denoted by

E∗ = (
S∗, I ∗, O∗, S∗

m

)
. (11)

Now, if I (t) > 0, O(t) > 0, then from system (10) one gets that S∗
m = 0. Thus, an endemic

equilibrium point is

E∗
0 = (S∗ = αμ0

βk
, I ∗ = μβk − (γ + μ)αμ0

βk(μ + α)
, O∗ = μβk − (γ + μ)αμ0

μ0k(μ + α)
, S∗

m = 0) ∈ Ω0.

(12)

This endemic equilibrium is feasible biologically if μβk − (γ + μ)αμ0 > 0, or in terms of
the threshold number, if R0 > 1. Evaluating the Jacobian at E∗

0 one gets the characteristic
polynomial:

P(λ) =

∣∣∣∣∣∣∣∣

−βO∗ − μ − γ − λ − μ − βS∗ 0
βO∗ − α − λ βS∗ 0
0 k − μ0 − λ 0
0 0 0 − βmO∗ − λ

∣∣∣∣∣∣∣∣
Clearly, one gets that one eigenvalue is given by λ1 = −βmO∗, which is negative. The rest
of the eigenvalues are the roots of the third degree polynomial given by

λ3 + (p0 + α + μ0) λ2 + (p0 (α + μ0) + βO∗μ) λ + β O∗(μμ0 + αμ0) = 0. (13)

where p0 = βO∗ + γ + μ. We can rewrite this characteristic equation as:

λ3 + Aλ2 + Bλ + C = 0 (14)

where

A = (βO∗ + γ + μ) + α + μ0,

B = (βO∗ + γ + μ) (α + μ0) + β O∗μ,

C = βO∗(μμ0 + αμ0).

By Routh–Hurwitz theorem (Routh 1877), the roots of Eq. (14) has all roots in the open left
half plane if and only if A,C are positive and A B > C . It is clear that A, B,C > 0 since
O∗ > 0. Moreover, the following calculation shows that

AB − C =
(
βO∗ + γ + μ + α + μ0

) (
(βO∗ + γ + μ) (α + μ0) + β O∗μ

)

− βO∗(μμ0 + αμ0)
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=
(
βO∗ + γ + μ + α + μ0

) [
(βO∗ + γ + μ) (α + μ0)

]

+
(
βO∗ + γ + μ + α + μ0

)
β O∗μ − βO∗(μμ0 + αμ0)

=
(
βO∗ + γ + μ + μ0

) [
(βO∗ + γ + μ) (α + μ0)

]

+ α
[
(βO∗ + γ + μ) (α + μ0)

]

+
(
βO∗ + γ + μ + α

)
βO∗μ + βO∗μ0μ − βO∗μμ0 − βO∗αμ0

=
(
βO∗ + γ + μ + μ0

) [
(βO∗ + γ + μ) (α + μ0)

]
+ α2 (βO∗ + γ + μ)

+ αμ0 (βO∗ + γ + μ) +
(
βO∗ + γ + μ + α

)
βO∗μ − βO∗αμ0

=
(
βO∗ + γ + μ + μ0

) [
(βO∗ + γ + μ) (α + μ0)

]
+ α2 (βO∗ + γ + μ)

+ αμ0 (γ + μ) +
(
βO∗ + γ + μ + α

)
βO∗μ > 0,

then by Routh-Hurwitz theorem, the roots of equation (14) all have negative real parts. Thus,
we have the following theorem,

Theorem 3 IfR0 > 1, then the unique endemic equilibriumpoint E∗
0 is locally asymptotically

stable.

Now, the analysis of the global stability of the endemic point is given by the following
theorem:

Theorem 4 For R0 > 1 the unique endemic equilibrium E∗
0 of the model (3), is globally

asymptotically stable with respect to Ω0\J whenever R0 > 1.

Proof We analyze the global stability at the endemic equilibrium E∗
0 , using the following

function L,
L(X(t)) = Sm(t) (15)

The function L satisfies

L(E∗
0 ) = 0,

L(X(t)) > 0, for all X(t) 
= E∗
0 (positive definite)

‖(X(t)‖ → ∞ �⇒ L(X(t)) → ∞. (16)

The time derivative of L(X(t)) along the solutions of (3) is

dL(X(t))

dt
= −βm Sm(t) O(t).

Thus,
dL(X(t))

dt
≤ 0 and

dL(X(t))

dt
= 0 if and only if Sm(t) = 0 or O(t) = 0. Then, apply-

ing LaSalle’s invariance principle, the endemic equilibrium E∗
0 is globally asymptotically

stable with respect to Ω0\J if R0 > 1. ��
Based on the previous results the basic reproduction number R0 is a unique threshold

parameter that determines the long term qualitative behavior of the system. From to the
global stability analysis, we expect that the disease will die out for any initial conditions
whenever R0 ≤ 1. On the other hand, if R0 > 1, then we expect the disease would become
endemic for any initial conditions such that at least one infectious cat or oocysts exists.
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4 Numerical simulations

In this section, we will perform some numerical simulations of the mathematical model
(3) varying the scenarios related to the toxoplasmosis disease. We consider scenarios with
R0 < 1 andR0 > 1 in order to support the theoretical results. Twomain public health control
interventions that can be done in order to reduce toxoplasmosis prevalence are vaccination
and removing oocysts from the environment. Therefore, for the numerical simulation we vary
the vaccination rate and the removal rate of oocysts. In addition, we use several values for
the transmission rates between oocysts and both populations of cat and mouse. Finally, the
vaccination rate γ is varied to obtain different situations related to the vaccination program.

For each numerical simulation we compute the steady states in order to corroborate the
global theoretical stability results obtained in the previous section. One important key param-
eter is the transmissibility of the toxoplasmosis through the oocysts, since it is related to the
basic reproduction number R0 (Hethcote 2005; van den Driessche and Watmough 2002;
Van den Driessche and Watmough 2008). For the initial environment load of oocysts we use
an approximation based on an adapted equation from (Mateus-Pinilla et al. 2002).

Most of the numerical simulations are performed using the parameter values given in
Table 1, which are approximations of the real world values and some of them have more
uncertainty than others. For instance, we use the fact that usually the cats only shed oocysts
for 3–10 days after ingestion of tissue cysts (Hartmann et al. 2013). We also use the fact that
cats are immune to toxoplasma and can eject more than 20 million oocysts between 4 and 13
days after infection (Dubey 1995). As it has been aforementioned we also consider that in the
cats, T. gondii can be passed to the fetus via the placenta (Sibley and Boothroyd 1992). We
also take into account that feces of cats shedding T. gondiimay contain 2.5× 106 oocysts/gr
and that a single cat may shed as many as 20 million oocysts per day in about 20g. of feces
(Fayer 1981).

Table 1 Model parameters and variables

Parameter Description Value

μ Birth/Death rates (cats) 1/260 (1/weeks) (Berthier et al. 2000)

α Shedding period 1/2 (1/weeks) (Dubey 1995; Hartmann et al.
2013)

μ0 Clearance rate 1/26 (1/day) (Dubey 1995; Mateus-Pinilla
et al. 2002)

k Oocysts per day (cat) 20 × 106 (1/day)(Fayer 1981)

β Transmission rate Varied

βm Transmission rate 0.1 × 10−8

γ Vaccination rate Varied

Proportions Description Initial value at t = 0

S Susceptible cats Varied (Mateus-Pinilla et al. 2002; Dubey
and Beattie 1988; Dubey et al. 2002)

I Infected cats Varied (Mateus-Pinilla et al. 2002; Dubey
and Beattie 1988; Dubey et al. 2002)

O Oocysts Varied

Sm Susceptible mice Varied
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Fig. 2 Dynamics of the different subpopulations when β = 0.15 × 10−9, γ = 0.001 and R0 = 0.98. On
the left-hand side the initial conditions are close to the steady state F∗

0 and on the right-hand side the initial
conditions are far from F∗

0

4.1 Disease free scenario (R0 < 1)

First we consider a scenario whereR0 < 1 and a vaccination programwith a low vaccination
rate γ = 0.001. Figure 2 shows the dynamics of the subpopulations and the caption gives
the values of the parameters used. On the left-hand side we can see that the infected cat
population becomes extinct when the initial conditions are close to the steady state F∗

0 . The
right-hand side simulation just starts with initial conditions far from the steady state F∗

0 .
Thus, we can observe that even with a low vaccination rate the disease disappears. These
numerical results are in agreement with the theoretical stability analysis.

4.2 Endemic scenario (R0 > 1)

Let’s consider a transmission rate β such that R0 > 1. Figure3, shows that the disease
becomes endemic since the infected cats reach a steady state different than zero. Thus,
increasing the transmission rate β such that R0 > 1 allows the system to reach the endemic
equilibrium point E∗

0 .

4.3 Efficacy of a cat’s vaccination program

Here we study the effect of a vaccination program on the dynamics of the cat and mouse
populations.We consider a scenariowith a high infectivity from the oocysts to the cats. Notice
that cats get the T. gondii parasite by eating anything contaminated with feces from another
cat that is shedding the microscopic parasite in its feces. We set the value of the transmission
rate β such that R0 = 10.4 and then increase the vaccination rate to γ = 0.1 such that the
basic reproduction numberR0 becomes less than one. In addition, we set the initial conditions
far from the disease free equilibrium F∗

0 . Figure4 shows that the the proportion of infected
cats and the number of oocysts become extinct, despite the fact that the oocysts present a
high infectivity. This particular result shows the effectiveness of a vaccination program for
cats in order to eradicate the disease by making the basic reproduction number R0 < 1.

4.4 Effect of oocysts clearance in the environment

Nowweconsider a scenariowithout vaccination and only a public health program that reduces
the amount of oocysts in the environment. We choose a high infectivity from the oocysts to
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Fig. 3 Dynamics of the different subpopulations when β = 0.18 × 10−9, γ = 0.001 and R0 = 1.04. The
initial conditions are far from the endemic steady state E∗

0

Fig. 4 Dynamics of the different subpopulations when β = 0.15 × 10−9 (high infectivity), γ = 0.1 and
R0 = 0.9. The initial conditions are far from the disease free steady state F∗

0

the cats (R0 ≈ 13.1) and then we set the clearance rate of oocysts in the environment such
thatR0 < 1. In addition, we set the initial conditions far from the disease free equilibrium F∗

0
in order to also show the global stability feature of the endemic state E∗

0 . Figure5 shows that
increasing the clearance rate of oocysts from the environment allows the system to approach to
the disease free steady state. Thus, we can conclude that it is possible to reduce the prevalence
of the toxoplasmosis even without a vaccination program, but this would require an excellent
oocysts-environment cleaning program.
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Fig. 5 Dynamics of the different subpopulations when there is high infectivity (high β), γ = 0.001, μ0 =
14/26 andR0 = 0.9. The initial conditions are far from the disease free steady state F∗

0

4.5 Sensitivity analysis for the basic reproduction numberR0

The aim here is to perform sensitivity analysis of the basic reproduction number R0. The
idea is to determine how sensitiveR0 is to each of the parameters. Sensitivity analysis allow
us to estimate or measure the relative importance of the different parameters responsible
for the disease transmission related to the basic reproduction number (Castillo-Garsow and
Castillo-Chavez 2020; Chitnis et al. 2008; Florian and Vermiglio 2020; Samsuzzoha et al.
2013; van den Driessche and Watmough 2002; Vermiglio and Zamolo 2022).

There are various methods to perform sensitivity analysis (Castillo-Garsow and Castillo-
Chavez 2020; Chitnis et al. 2008; Florian and Vermiglio 2020; Samsuzzoha et al. 2013;
Vermiglio and Zamolo 2022). These analyses allow us to measure how a change in the values
of the parameters impact the dynamical behavior of the system or model. It is important to
remark that in the model (3) the long-term behavior is completely determined by the values
of R0. Thus, it make sense to perform sensitivity analysis of the basic reproduction number
R0. Here the crucial idea of sensitivity analysis is to see how a small change in one parameter
modifies the corresponding percentage change in the basic reproduction numberR0. Usually,
it is better to perform the sensitivity analysis using percentages instead of absolute changes,
Thus, the parameters with different units can have a fair comparison. The sensitivity index
of R0 with respect to a parameter ξ is given by

φξ = ∂R0

∂ξ

ξ

R0
. (17)

Therefore, in order to compute the normalized sensitivity index ofR0, we need to compute the
partial derivatives ofR0 respect to each of the parameters that affectR0. In order to evaluate
these partial derivatives it is necessary to use particular or estimated parameter values. In
this section, we use the related parameters’ values given in Table 1. Sensitivity indices for
the basic reproduction number change with the change in parameter values. However, the
parameters of the model (3) that affect R0 are extremely difficult to estimate correctly and
vary depending on the region where the toxoplasmosis epidemic is being studied. Even
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Table 2 Sensitivity indices ofR0 Parameter Sensitivity indices ofR0 Value

μ φμ = γ
μ+γ ≈ 0.79

α φα −1

μ0 φμ0 −1

k φk 1

β φβ 1

γ φγ = − γ
μ+γ ≈ −0.79

for the very well studied influenza epidemics the estimation of parameters is challenging
(Samsuzzoha et al. 2013).

The particular values of the sensitivity indices ofR0 are shown in Table 2. The sensitivity
indices φβ, φk and φμ are positive and the indices φμ0 , φγ and φα are negative. The indices
φμ and φν are functions ofμ and γ parameters. Therefore, the sensitivity indices will change
when the values of these parameters change. The sensitivity index φβ indicates that in order
to decrease 1% the value of R0 a 1% decrease is needed in the value of β. In a similar way
we can interpret the other indices for each parameter in Table 2. In particular, if we increase
the vaccination rate γ in 1% one gets thatR0 would decrease in approximately 0.79%. This
means that increasing the vaccination rate has a good effect to reduce the prevalence of
toxoplasmosis (recall that the endemic point depends onR0), but for instance increasing the
removal rate of the oocysts in 1% would reduceR0 in approximately 1%, which seems more
effective. However, the public health intervention would depend on how difficult would be
to achieve these aforementioned percentage changes on the parameters. It is important to
remark that in order to calculate the sensitivity analysis, we have the values of the parameters
shown in Table 2.

5 Conclusions

In this paper, we proposed an epidemiological type mathematical model to study toxoplas-
mosis dynamics with multiple hosts and considering vertical transmission in both cat and
mouse populations. We investigate under what conditions the T. gondii parasite can be erad-
icated and the impact of some parameters related to the vaccination rate, clearance of the
oocysts in the environment and oocysts’ transmissibility on the dynamics. We include the
mouse population as an intermediate host. We prove that the basic reproduction number R0

completely determines the global dynamics of the toxoplasmosis and the final outcome of the
disease. We found that ifR0 ≤ 1, then the solutions approach to the set composed by all the
disease-free equilibrium points regardless of the initial conditions. Thus, the toxoplasmosis
disease would be eradicated from the cat’s population. IfR0 > 1, we found that there is only
one biological feasible endemic equilibrium and we proved that is globally asymptotically
stable. This translates in that under this situation the toxoplasmosis will become endemic for
both populations and would persist over the time wheneverR0 > 1. Moreover, the larger the
basic reproduction number R0 the higher toxoplasmosis would be since the endemic point
depends on the basic reproduction number R0.

We performed numerical simulations that support the theoretical results obtained in this
study. We used some parameter values that are not fully well-known and provided in silico
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simulations that allow to get deeper insight on the toxoplasmosis dynamics. This study pro-
vides helpful information to health institutions in order to deal or reduce the burden caused by
toxoplasmosis. From the basic reproduction number of the constructed model we can deduce
that increasing the vaccination rate reduces the toxoplasmosis prevalence and the parasite T.
gondii can disappear. This is analogous to the situationwith the clearance rate of oocysts from
the environment. Numerical simulations show that vaccination of cats and oocysts removal
are efficient ways to reduce the prevalence of toxoplasmosis and therefore useful for the
public health. Furthermore, we performed sensitivity analysis and computed the normalized
sensitivity indices. This shows what are the impacts of changes of all parameters on chang-
ing the basic reproduction number R0. The results show that public health interventions
such as vaccination or the removal of oocysts for the environment would reduce the basic
reproduction number R0 and therefore the prevalence of toxoplasmosis.

As anymathematical modeling study of epidemics there are limitations. For instance, reli-
able estimation of some parameter values are not yet available. Therefore, specific values for
themodel such thatR0 < 1 are not possible in an accurate way. Therefore, we cannot provide
these values to health institutions in order to eliminate toxoplasmosis in cat populations. The
model also considers a constant population for the cats which might not be realistic in many
places. In addition, we used a life expectancy for the cats of five years, but this varies for
domestic cats and depends on several factors (Berthier et al. 2000). In both populations of
cats and mice the model includes full vertical transmission and a relative proportion might
be more accurate, but the models becomes more complex to analyze. Another important
limitation of the developed model is that it does not consider other intermediate hosts such as
humans, birds, pigs, sheep, etc (Dubey 2020; Dubey et al. 2020; Dubey 1996; Williams et al.
2005). This, could greatly affect the dynamics of toxoplasmosis as well the prey-predator
effects.

Finally, from this study we have seen that the health authorities have two clear options to
reduce the disease. One is to implement a vaccination program for cats and the other option
is to develop cleaning activities regarding the amount of oocysts in the environment. Further,
studies related to optimal control are necessary assess which strategy is better taking into
account economic and social factors related to both options. Based on the results of those type
of studies we can see which strategy is the optimal in terms of economical costs and efficacy
related to the vaccines. In addition, the costs of oocysts-environmental removing activities
should be taken into account. Future research works can include a variety of models that
consider other hosts, different assumptions regarding vertical transmission, different type
of vaccination program and prey-predator effects. Also more complex models that integrate
between-hosts and within-hots can be studied.

Acknowledgements The second author gratefully acknowledge the partial funding from Universidad de Cór-
doba, Colombia, for this research.

Funding Open access funding provided by SCELC, Statewide California Electronic Library Consortium

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


88 Page 18 of 20 G. González-Parra et al.

References

Aramini J, Stephen C, Dubey JP, Engelstoft C, Schwantje H, Ribble CS (1999) Potential contamination of
drinkingwaterwith toxoplasma gondii oocysts. Epidemiology and Infection, CambridgeUniversity Press
122:305–315

Arenas AJ, González-Parra G, Micó RJV (2010) Modeling toxoplasmosis spread in cat populations under
vaccination. Theor Pop Biol 77(4):227–237

Attias M, Teixeira DE, Benchimol M, Vommaro RC, Crepaldi PH, De Souza W (2020) The life-cycle of
toxoplasma gondii reviewed using animations. Parasit Vect 13(1):1–13

Beaver P, Jung R, Cupp E (1984) Clinical Parasitology, 9th edn. Lea & Febiger, Philadelphia
Bedson J, Skrip LA, Pedi D, Abramowitz S, Carter S, JallohMF, Funk S, Gobat N, Giles-Vernick T, Chowell G

et al (2021) A review and agenda for integrated disease models including social and behavioural factors.
Nat Hum Behav 5(7):834–846

Berthier K, Langlais M, Auger P, Pontier D (2000) Dynamics of a feline virus with two transmission modes
within exponentially growing host populations. Proc R Soc B Biol Sci 267(1457):2049–2056

Bierly AL, Shufesky WJ, Sukhumavasi W, Morelli AE, Denkers EY (2008) Dendritic cells expressing
plasmacytoid marker PDCA-1 are Trojan horses during Toxoplasma gondii infection. J Immunol
181(12):8485–8491

Bigna JJ, Tochie JN, Tounouga DN, Bekolo AO, Ymele NS, Youda EL, Sime PS, Nansseu JR (2020) Global,
regional, and country seroprevalence of Toxoplasma gondii in pregnant women: a systematic review,
modelling and meta-analysis. Sci Rep 10(1):1–10

Brauer F, Castillo-Chavez C (2001) Mathematical models in population biology and epidemiology. Springer,
Berlin

Castillo-GarsowCW,Castillo-ChavezC (2020)A tour of the basic reproductive number and the next generation
of researchers. In: An Introduction to Undergraduate Research in Computational and Mathematical
Biology, pp. 87–124. Springer

CDC: Center for disease control and prevention, toxoplasmosis (2022). Available from: https://www.cdc.gov/
parasites/toxoplasmosis/

Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through
the sensitivity analysis of a mathematical model. Bull Math Biol 70(5):1272–1296

Chowell G, Hyman JM (2016)Mathematical and statistical modeling for emerging and re-emerging infectious
diseases. Springer

Chowell G, Sattenspiel L, Bansal S, Viboud C (2016) Mathematical models to characterize early epidemic
growth: a review. Phys Life Rev 18:66–97

Darcy F, Zenner L (1993) Experimental models of toxoplasmosis. Res Immunol 144(1):16–23
Deng H, Cummins R, Schares G, Trevisan C, Enemark H, Waap H, Srbljanovic J, Djurkovic-Djakovic O,

Pires SM, van der Giessen JW et al (2021) Mathematical modelling of toxoplasma gondii transmission:
a systematic review. Food Waterborne Parasitol 22:e00102

Dubey J (1995) Duration of immunity to shedding of toxoplasma gondii oocysts by cats. J Parasitol 81(3):410–
415

Dubey JP (1996) Strategies to reduce transmission of toxoplasma gondii to animals and humans. Vet Parasitol
64(1–2):65–70

Dubey JP (2008) The history of Toxoplasma gondii-the first 100 years. J Eukaryotic Microbiol 55(6):467–475
Dubey JP (2020) The history and life cycle of Toxoplasma gondii. In: Toxoplasma gondii, pp. 1–19. Elsevier
Dubey J, Beattie C (1988) Toxoplasmosis of animals and man. CRC Press, Boca Raton
Dubey J, Frenkel J (1976) Feline toxoplasmosis fromacutely infectedmice and the development of Toxoplasma

cysts. J Protozool 23(4):537–546
Dubey J,MillerNL, Frenkel J (1970) TheToxoplasma gondii oocyst from cat feces. J ExpMed 132(4):636–662
Dubey J, Lappin M, Thulliez P (1995) Diagnosis of induced toxoplasmosis in neonatal cats. J Am Vet Med

Assoc: 207
Dubey J, Mattix M, Lipscomb T (1996) Lesions of neonatally induced toxoplasmosis in cats. Vet Pathol 33
Dubey J, Lindsay D, Speer C (1998) Structures of toxoplasma gondii tachyzoites, bradyzoites, and sporozoites

and biology and development of tissue cysts. Clin Microbiol Rev 11(2):267–299
Dubey JP, Thayer DW, Speer CA, Shen SK (1998) Effect of gamma irradiation on unsporulated and sporulated

toxoplasma gondii oocysts. Int J Parasitol 28(3):369–375
Dubey JP, Graham DH, Blackston CR, Lehmann T, Gennari SM, Ragozo AMA, Nishi SM, Shen SK, Kwok

OCH, Hill DE, Thulliez P (2002) Biological and genetic characterisation of Toxoplasma gondii isolates
from chickens (Gallus domesticus) from São Paulo, Brazil: unexpected findings. Int J Parasitol 32(1):99–
105

123

https://www.cdc.gov/parasites/toxoplasmosis/
https://www.cdc.gov/parasites/toxoplasmosis/


Mathematical modeling of toxoplasmosis... Page 19 of 20 88

Dubey J, SuC, Cortés J, Sundar N,Gomez-Marin J, Polo L, Zambrano L,Mora L, Lora F, Jimenez J et al (2006)
Prevalence of Toxoplasma gondii in cats from Colombia, South America and genetic characterization of
T. gondii isolates. Vet Parasitol 141(1–2):42–47

Dubey JP, Cerqueira-Cézar CK, Murata FH, Kwok OC, Hill D, Yang Y, Su C (2020) All about Toxoplasma
gondii infections in pigs: 2009–2020. Vet Parasitol 288:109185

Dumètre A, Dardé ML (2003) How to detect toxoplasma gondii oocysts in environmental samples? FEMS
Microb Rev 27(5):651–661

Fayer R (1981) Toxoplasma gondii: transmission, diagnosis and prevention. Can Vet 22:344–352
Ferreira JD, Echeverry LM, Rincon CAP (2017) Stability and bifurcation in epidemic models describing the

transmission of toxoplasmosis in human and cat populations. MathMethods Appl Sci 40(15):5575–5592
Florian F, Vermiglio R (2020) Pc-based sensitivity analysis of the basic reproduction number of population

and epidemic models. In: Current Trends in Dynamical Systems in Biology and Natural Sciences, pp.
205–222. Springer

Frenkel J (1990) Transmission of toxoplasmosis and the role of immunity in limiting transmission and illness.
J Am Vet Med Assoc 196(2):233–240

Frenkel J, Dubey J, Miller NL (1970) Toxoplasma gondii in cats: fecal stages identified as coccidian oocysts.
Science 167(3919):893–896

Freyre A, Choromanski L, Fishback J, Popiel I (1993) Immunization of cats with tissue cysts, bradyzoites,
and tachyzoites of the T-263 strain of Toxoplasma gondii. J Parasitol 79(5):716–719

González-Parra GC, Arenas AJ, Aranda DF, Villanueva RJ, Jódar L (2009) Dynamics of a model of toxoplas-
mosis disease in human and cat populations. Comput Math Appl 57(10):1692–1700

González-Parra G, Sultana S, Arenas AJ (2022) Mathematical modeling of toxoplasmosis considering a time
delay in the infectivity of oocysts. Mathematics 10(3):354

Guckenheimer J, Holmes P (2013)Nonlinear oscillations, dynamical systems, and bifurcations of vector fields,
vol. 42. Springer Science & Business Media

Hale J (1969) Ordinary Differential Equations. Wiley, New York
Hartmann K, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hosie MJ,

Lloret A, Lutz H et al (2013) Toxoplasma gondii infection in cats: ABCD guidelines on prevention and
management. J Feline Med Surg 15(7):631–637

Hethcote H (2005) Mathematics of infectious diseases. SIAM Rev 42(4):599–653
Hide G (2016) Role of vertical transmission of Toxoplasma gondii in prevalence of infection. Expert Rev

Anti-infective Therapy 14(3):335–344
Hill D, Dubey J (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect

8(10):634–640
Innes EA (1997) Toxoplasmosis: comparative species susceptibility and host immune response. Comp

Immunol Microbiol Infect Dis 20(2):131–138
Khalil HK (2002) Nonlinear systems. Prentice Hall
Lakshmikantham V, Leela S, Martynyuk A (1989) Stability analysis of nonlinear systems. Marcel Dekker Inc,

NewYork, Basel
Lappin M (1999) Feline toxoplasmosis. Practice 21(10):578–589
Lélu M, Langlais M, Poulle ML, Gilot-Fromont E (2010) Transmission dynamics of toxoplasma gondii along

an urban-rural gradient. Theor Pop Biol 78(2):139–147
Marinović AAB, Opsteegh M, Deng H, Suijkerbuijk AW, van Gils PF, Van Der Giessen J (2020) Prospects of

toxoplasmosis control by cat vaccination. Epidemics 30:100380
Markell E, Voge M, David J (1990) Parasitología Médica (in Spanish). Mc Graw-Hill
Marshall P, Hughes J, Williams R, Smith J, Murphy R, Hide G (2004) Detection of high levels of congen-

ital transmission of Toxoplasma gondii in natural urban populations of Mus domesticus. Parasitology
128(1):39–42

Mateus-Pinilla N, Hannon B, Weigel R (2002) A computer simulation of the prevention of the transmission
of toxoplasma gondii on swine farms using a feline t. gondii vaccine. Prevent Vet Med 55(1):17–36

Matta SK, Rinkenberger N, Dunay IR, Sibley LD (2021) Toxoplasma gondii infection and its implications
within the central nervous system. Nat Rev Microbiol 19(7):467–480

Melchor SJ, Ewald SE (2019) Disease tolerance in Toxoplasma infection. Front Cell Infect Microbiol 9:185
Montazeri M, Galeh TM, Moosazadeh M, Sarvi S, Dodangeh S, Javidnia J, Sharif M, Daryani A (2020) The

global serological prevalence of toxoplasma gondii in felids during the last five decades (1967–2017): a
systematic review and meta-analysis. Parasit Vect 13(1):1–10

Murphy RG, Williams RH, Hughes JM, Hide G, Ford NJ, Oldbury DJ (2008) The urban house mouse (mus
domesticus) as a reservoir of infection for the human parasite toxoplasma gondii: an unrecognised public
health issue? Int J Environ Health Res 18(3):177–185

123



88 Page 20 of 20 G. González-Parra et al.

Ndao O, Puech PH, Bérard C, Limozin L, Rabhi S, Azas N, Dubey JP, Dumètre A (2020) Dynamics of
toxoplasma gondii oocyst phagocytosis by macrophages. Front Cell Infect Microbiol:207

Pezerico SB, Langoni H, Da Silva AV, Da Silva RC (2009) Evaluation of Toxoplasma gondii placental trans-
mission in BALB/c mice model. Exp Parasitol 123(2):168–172

Powell CC, Lappin MR (2001) Clinical ocular toxoplasmosis in neonatal kittens. Vet Ophthalmol 4(2):87–92
Powell CC, Brewer M, Lappin MR (2001) Detection of toxoplasma gondii in the milk of experimentally

infected lactating cats. Vet Parasitol 102(1–2):29–33
Rejmanek D, Vanwormer E, Mazet JA, Packham AE, Aguilar B, Conrad PA (2010) Congenital transmission

of toxoplasma gondii in deer mice (peromyscus maniculatus) after oral oocyst infection. J Parasitol
96(3):516–520

Remington JS,Krahenbuhl JL (1982) Immunology of Toxoplasma gondii. In: Immunology of human infection,
pp. 327–371. Springer

Reyes-Lizano L, Chinchilla-Carmona M, Guerrero-Bermúdez O, Arias-Echandi M, Castro-Castillo A (2001)
Trasmisión de Toxoplasma gondii en Costa Rica: un concepto actualizado. Acta Médica Costarric.
43(1):36–38 ((in Spanish))

Robert-Gangneux F, Murat JB, Fricker-Hidalgo H, Brenier-Pinchart MP, Gangneux JP, Pelloux H (2011) The
placenta: a main role in congenital toxoplasmosis? Trends Parasitol 27(12):530–536

Routh EJ (1877) A treatise on the stability of a given state of motion: particularly steady motion. Being the
essay to which the adams prize was adjudged in 1877, in the University of Cambridge. Macmillan and
Company

SamsuzzohaM, SinghM, LucyD (2013) Uncertainty and sensitivity analysis of the basic reproduction number
of a vaccinated epidemic model of influenza. Appl Math Model 37(3):903–915

Sato K, Iwamoto I, Yoshiki K (1993) Experimental toxoplasmosis in pregnant cats. Vet Ophthalmol 55
Shiono Y,MunHS, He N, Nakazaki Y, Fang H, FuruyaM, Aosai F, Yano A (2007)Maternal-fetal transmission

of toxoplasma gondii in interferon-γ deficient pregnant mice. Parasitol Int 56(2):141–148
Sibley L, Boothroyd J (1992) Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature

359:82–85
Torda A (2001) Toxoplasmosis. Are cats really the source? Aust Fam Phys 30(8):743–747
Trejos D, Duarte I (2005) A mathematical model of dissemination of Toxoplasma gondii by cats. Actu Biol

27(83):143–149
Trejos DY, Duarte IG (2010) Contribution of waterborne transport in the spread of infection with Toxoplasma

gondii. In: BIOMAT 2009, pp. 366–376. World Scientific
Turner M, Lenhart S, Rosenthal B, Zhao X (2013) Modeling effective transmission pathways and control of

the world’s most successful parasite. Theor Pop Biol 86:50–61
van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Math Biosci 180(12):29–48
Van den Driessche P, Watmough J (2008) Further notes on the basic reproduction number. In: Mathematical

Epidemiology, pp. 159–178. Springer
Vargas-Villavicencio JA, Cedillo-Peláez C, Rico-Torres C, Besne-Merida A, Garcia-Vazquez F, Saldana J,

Correa D (2016) Mouse model of congenital infection with a non-virulent Toxoplasma gondii strain:
vertical transmission,"sterile" fetal damage, or both? Exp Parasitol 166:116–123

Vermiglio R, Zamolo A (2022) Sensitivity analysis for stability of uncertain delay differential equations using
polynomial chaos expansions. In: Accounting for Constraints in Delay Systems, pp. 151–173. Springer

Wang JL, Zhang NZ, Li TT, He JJ, Elsheikha HM, Zhu XQ (2019) Advances in the development of anti-
Toxoplasma gondii vaccines: challenges, opportunities, and perspectives. Trends Parasitol 35(3):239–253

Webster JP (2007) The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizoph
Bull 33(3):752–756

Williams R, Morley E, Hughes J, Duncanson P, Terry R, Smith J, Hide G (2005) High levels of congenital
transmission of toxoplasma gondii in longitudinal and cross-sectional studies on sheep farms provides
evidence of vertical transmission in ovine hosts. Parasitology 130(3):301–307

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Mathematical modeling of toxoplasmosis with multiple hosts, vertical transmission and cat vaccination
	Abstract
	1 Introduction
	2 Mathematical model
	3 Stability analysis of the model
	3.1 Disease free equilibrium points
	3.2 Global stability of disease-free equilibrium point 
	3.3 Endemic equilibrium point

	4 Numerical simulations
	4.1 Disease free scenario (mathcalR0<1)
	4.2 Endemic scenario (mathcalR0>1)
	4.3 Efficacy of a cat's vaccination program
	4.4 Effect of oocysts clearance in the environment
	4.5 Sensitivity analysis for the basic reproduction number mathcalR0

	5 Conclusions
	Acknowledgements
	References




