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Abstract
The COVID-19 pandemic revealed the necessity of measuring the statistical relationship
between the transmission rate of epidemic diseases and the social/behavioral, logistical,
and economic variables of the affected region. This paper introduces a regression model
to estimate the impact of such covariates on the infectious rate of epidemiological agents.
Hidden logistical predictor components, such as weekly seasonality of reported data, can
also be accessed with the proposed methodology. For this, we assume that the dynamics
of officially reported data of emerging pandemics, related to infected groups, follows a
stochastic SEIR model. The main advantage of our method is that it is based on a new three-
step algorithm that combines the classical likelihood principle, the minimization of the mean
squared error, and a tri-section algorithm to estimate, simultaneously, the coefficients of the
covariates and the parameters of the compartmental model. Simulation studies are provided
to certify the accuracy of the proposed inference methodology. The model is further applied
to analyze the official statistical reports of COVID-19 data in the state of São Paulo, Brazil.

Keywords COVID-19 · Social isolation · Reported infected · SEIR · Social isolation
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1 Introduction

On the study of emerging epidemics, the statistical modeling can be focused on the total
number of infected (reported+unreported) individuals, or on the number of reported infected.
To model the total number of infections, data information from reported cases, hospital
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admissions, and reported deaths, infection fatality rates, and life tables are often used. Bohk-
Ewald et al. (2020) developed a demographic scaling model to estimate the total number
of COVID-19 infections, based on data from COVID-19-related deaths, infection fatality
rates, and life tables. Reed et al. (2022) used the Bayesian regression framework and other
time series analysis to produce global and location-specific estimates of daily and cumulative
SARS-CoV-2 infections using data largely from Johns Hopkins University (Baltimore, MD,
USA) and national databases for reported cases, hospital admissions, and reported deaths,
as well as seroprevalence surveys identified through previous reviews, SeroTracker, and
governmental organizations. While both approaches are important for decision-making, the
latter, as by definition, is a function of the patients arriving at the hospitals, the demand for
tests on drugstores, laboratories, and the number of people seeking health care assistance and
medical consultation. That is, the modeling of reported data has a practical appeal. It reflects
the number of people using the health care system as a whole since this is the principal
way they become officially reported. As such, having an estimate of the overall population’s
demand for health care, due to an emerging pandemic, is useful to optimize the distribution
of resources among the hospitals, clinics and related acute health care facilities.

The acquisition of equipment, hospital materials, and the recruitment of health profession-
als, all require a realistic prediction on the number of patients using such resources, especially
because they become scarce and rationed during the most critical moments of a pandemic.
For example, since March 2020, the U.S. Department of Health and Human Services (HHS)
is collecting data from hospitals and states to monitor the stress on the health care system in
terms of its capacity, and capabilities, as well as the number of patients hospitalized due to
COVID-19 (HHS 2022). In addition, reported data have been modeled and predicted by the
Institute for Health Metrics and Evaluation (IHME) to study the evolution of the pandemic
and the vaccine coverage (IHME 2022).

The present paper introduces an easily amenable and interpretable regression model for
the number of reported infected in emerging pandemics, which is a stochastic version of the
conventional compartmental disease transmission approach. In face of the terrible impacts of
the COVID-19 pandemic, this model is offered as another tool to combat future pandemics.
The proposed model, among other features, is useful to understand the statistical relationship
between the transmission rate of contagious diseases with social, behavioral, logistical, and
economic variables of the affected region.

Compartmental disease transmission models are characterized by the subdivision of the
population into compartments. The dynamics behind the transition of individuals from a
compartment to another can bemodeled as a deterministic pattern (e.g. differential equations)
or according to a stochastic law.Kermack andMckendrick (1927) established the foundations
of using compartmental models to epidemiology, arguing that an epidemic may result from a
particular relation between the population density, the infectivity, recovery, and death rates.

Since then, compartmental models have been widely used to study the evolution of several
recent disease outbreaks, such as the SARS epidemic in 2002–2003 by Chowell et al. (2003),
the H1N1 influenza in 2009–2010 by Prosper et al. (2011), and the Ebola outbreak in 2014 by
Feng et al. (2016). Most recently, since the COVID-19 pandemic, many researchers studied
compartmental models to understand the COVID-19 pandemic. Calafiore et al. (2020) devel-
oped a modified Susceptible-Infected-Recovered (SIR) model to understand the COVID-19
contagion in Italy. Wu et al. (2020) used Susceptible-Exposed-Infectious-Removed (SEIR)
model to provide an estimate of the size of the epidemic in Wuhan and forecast the extent
of the domestic and global public health risks of epidemics, while taking social and non-
pharmaceutical prevention interventions into account. Hou et al. (2020) employed SEIR
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compartmental model to describe the dynamics of the COVID-19 epidemic based on epi-
demiological characteristics of individuals, clinical progressionofCOVID-19, andquarantine
intervention measures of the authority.

The number of individuals infected at a given time is an important variable in epidemic
models. However, in real epidemic scenarios, only the number of individuals that have been
detected “positive” would be counted. As pointed by Calafiore et al. (2020), literature often
assumes that the observed cases are the actual ones, which is unrealistic and may lead to
wrong epidemiological interpretations and conclusions. In the present paper, we model the
number of officially reported infected individuals.

For a discrete calendar time, say day t , based on the four compartments from the population
in the stochastic SEIRmodel, we define: S(t), the number of susceptible to become officially
reported infected at day t after the exposure period; E(t), the number of exposed at day t
before becoming officially reported infected; I (t), the number of officially reported infected
at day t ; R(t), the number of removed (deaths + recovered) individuals at day t from the
officially reported infected.

Then, we further define: r(t), the number of individuals removed on day t ; i(t), the
number of officially newly reported infected individuals on day t ; d, the average number of
days of an individual in E(t) before moving to I (t); q, the average number of days of an
individual in I (t) before being removed to R(t); S(0), the number of individuals susceptible
to become officially reported infected, before the first infected is reported.

The compartment of infected is calculated as following:

I (t) = I (t − 1) − r(t) + i(t), (1)

for t ≥ 2. We emphasize that i(t) here denotes the officially reported infected group instead
of the actual, unknown, number of new infected individuals at day t .

In a SEIR compartmental model, on the first day, say t = 1, when the official report
starts to record the data, some individuals will move from S(0) to the exposure compartment
E(1). And they will stay inside the exposure compartment for d days. Therefore, only on day
t = d+1 they will move and be reported as newly infectious individuals, i(1+d). Although
we cannot know the amount of individuals leaving S(0) to E at t = 1, we assume that they
will be reported as newly infectious individuals at time t = d + 1. And it can be denoted
mathematically as S(0) − S(1) = i(d + 1). Similarly for any given day after t = d + 1, we
have S(t − d − 1) − S(t − d) = i(t). Therefore, we would denote the relationship as the
following:

For t > d:

S(t − d) = S(t − d − 1) − i(t). (2)

Assuming it takes d days on average for an individual in E(t) moving to I (t) and it takes
q days on average for an individual in I (t) moving to R(t), thus, for t ≥ 1, the time specific
removed individuals is elicited in the follow way:

r(t + q) = i(t), (3)

and r( j) = 0 for j = 1, . . . , q .
Following the reasoning of Li et al. (2018), given S(t − d), the number of newly infected

individuals, i(t) with t > d , follows a binomial distribution with parameters S(t − d − 1)
and φ(t). That is,

i(t) ∼ binomial (S(t − d − 1), φ(t)) , (4)
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where,

φ(t) = 1 − e−ψ(t) I (t−d)
N . (5)

Here, φ(t) denotes the probability that a susceptible individual gets infected on day t .
According to the derivations by Li et al. (2018) the function ψ(t) may be given by,

ψ(t) = βe−λ
I (t−d)

N , (6)

where N is the population size, and the termsβ andλwere interpreted as transmission rate and
media impact, respectively. The idea was to capture the reaction of the population after being
informedby themedia about the epidemic evolution,which can lead the individuals of a region
to take protective actions. Thus, Li et al. (2018) used β to represent the baseline transmission

rate before the media effect. With media impact, the transmission rate is βe−λ
I (t−d)

N . Note
that λ(> 0) can also be interpreted as a coefficient that captures the effect of the integrated
auto-regressive covariate I (t−d)

N on the response variable i(t).
In this paper, we extend this notion by considering a multiple regression structure for

ψ(t). This new approach allows including observable covariates of interest to the model to
precisely capture the transmission rate. The main novelty is the estimation procedure, which
is based on a new three-steps algorithm that combines the maximum likelihood method
with the minimization of the mean squared error through a tri-section algorithm. This way,
the coefficients of the regression model and the parameters d , q and S(0) are estimated
simultaneously.

The remainder of this paper is organized as the following: Sect. 2 introduces the SEIR
compartmental regression model with a newly constructedψ(t). The likelihood function and
the estimators are derived for all coefficients and unknown parameters. Confidence intervals
and hypothesis testings are further provided for statistical inference purposes. We include a
thorough simulation study on themodels andmethodologies in Sect. 3. Prediction estimations
are discussed in Sect. 4. The supplementary material addresses model identification and
diagnosis. Section5 analyzes the effect of social mobility on the COVID-19 transmission
rate for the state of São Paulo in Brazil. Concluding remarks are briefly made in Sect. 6.

2 Regressionmodel

Let x1,t , . . . , xk,t denote a sequence of covariates actually observed in the target population
for day t . Thus, in the spirit of the generalized linear models, we connect the probability
parameter in (5) with these measurements through the following linear functional:

lnψ(t) = δ0 + δ1x1,t + · · · + δk xk,t . (7)

This way, the baseline component for the non-constant transmission rate over time is
β = eδ0 when there are no covariates in the model. For the estimation procedure, one needs
to consider the auxiliary constant covariate x0,t = 1 for each t . For j > 0, x j,t can be any
potential construct associated with the infection rates namely, (a) a measurable covariate,
such as discrete and continuous time-dependent variables, (b) an indicator or deterministic
functional, like dummy variables, seasonal or some sort periodic component, and (c) an
auto-regressive component for capturing the auto-correlation and moving average structures.
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Therefore, the time non-constant transmission rate, among the individuals to appear in the
reported statistics, is given by:

ψ(t) = eδ0+δ1x1,t+···+δk xk,t ≡ eδ0eδ1x1,t+···+δk xk,t . (8)

Thus, here we model i(t) ∼ binomial (S(t − d − 1), p(t)), where:

p(t) = 1 − e− I (t−d)
N eδ0+δ1x1,t+···+δk xk,t

. (9)

One may note that i(t), t > d , now follows a binomial distribution with parameters being
S(t−d−1) and p(t), where p(t) is a revised probability from q(t) in (5) to include the more
general real-valued function λ(X , t) = δ1x1,t + · · · + δk xk,t instead of the univariate term
λ
I (t−d)

N , and to consider the reparametrization β = eδ0 . It merits to reinforce that we still can
consider auto-regressive components when selecting x j,t covariates to include in the model,
such as I (t−d)

N for example.With this extended approach, one can insert multiple independent
variables representing different auto-regressive lags in time along with, if desirable, other
types of predictors, periodic indicators, dummy variables, etc.

An important property of the present regression construction is the interpretability of the
coefficients. Here, eηδ j is the relative change in the transmission rate, denoted by Δψ( j, η),
when only the j th covariate is changed by η units, while the other covariates are held fixed.
To show this, consider to change the state xl to xl + η for some 1 ≤ l ≤ k. From (8), we
have:

Δψ(l, η) = eδ0+δ1x1,t+···+δl (xl,t+η)+δk xk,t

eδ0+δ1x1,t+···+δl xl,t+···+δk xk,t

= eδlη. (10)

Naturally, if the support of the covariate is the real line, then η can be any point of the real
set, but it can assume 0 or 1 values only for dummy covariates.

2.1 Likelihood

For the actually reported number of new infected individuals at days t = d + 1, · · · , T ,
denoted by ĩ(t), the likelihood function is given by:

L
(
θ |ĩ(d + 1), · · · , ĩ(T )

)
=

T∏
t=d+1

(
S(t − d − 1)

ĩ(t)

)

×[p(t)]ĩ(t)[1 − p(t)]S(t−d−1)−ĩ(t), (11)

where θ = (S(0), δ0, δ1, . . . , δk, d, q)T is the unknown vector of parameters to be estimated.
Let l(θ) denote the log-likelihood based on the observations ĩ(t). With this, we have:

l(θ) =
T∑

t=d+1

(
ln

(
S(t − d − 1)

ĩ(t)

)
+ ĩ(t) ln p(t)

+
[
S(t − d − 1) − ĩ(t)

]
ln(1 − p(t))

)
. (12)

Although θ is not explicit in the right-hand side of (12), it is present in the calculations of
S(t − d − 1) in (2), and that of p(t) in (9).
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The point estimation is divided in three algorithms which are discussed in Sects. 2.2, 2.3,
and 2.4 respectively. Section2.2 addresses estimating the parameters δ j , j = 0, 1, . . . , k,
through the Newton–Raphsonmethod for fixed S(0), d and q . Section2.3 is to estimate d and
q for fixed S(0) by maximizing the likelihood with a direct evaluation of a two-dimensional
integer grid of meaningful values of d and q . Section2.4 is based on a tri-section algorithm
for estimating S(0) and the implied estimates for the other parameters.

2.2 Estimating ıj for fixed S(0), d and q

In this section, we use the Newton–Raphson procedure for maximizing the log-likelihood
function l(θ) from (12). Note that l(θ) is twice differentiable in δ j . Hence, a Taylor expansion
of l(θ) around the nth iterate θn gives,

l(θ) ≈ l(θn) + ∇T
n (θ − θn) + 1

2
(θ − θn)

THn(θ − θn) (13)

where, the gradient vector ∇n and the Hessian matrix Hn , evaluated at θn are, respectively,
given by,

∇n =
(

∂

∂δ0
l(θn),

∂

∂δ1
l(θn) . . .

∂

∂δk
l(θn)

)
and Hn =

((
∂2

∂δu∂δ j
l(θn)

))

(k+1)×(k+1)

with,

∂

∂δ j
l(θ) =

T∑
t=d+1

(
ĩ(t)

x j,tψ(t) I (t−d)
N [1 − p(t)]

p(t)
−

[
S(t − d − 1) − ĩ(t)

]
x j,tψ(t)

I (t − d)

N

)
.

and,

∂2

∂δ j∂δu
l(θ) =

T∑
t=d+1

(
ĩ(t)

x j,t xu,tψ(t) I (t−d)
N [1 − p(t)]

(
p(t) − ψ(t) I (t−d)

N

)

(p(t))2

−
[
S(t − d − 1) − ĩ(t)

]
x j,t xu,tψ(t)

I (t − d)

N

)
.

Here, we define x0,t = 1 for each t and j, u = 0, 1, . . . , k. Then, for fixed S(0), d and q ,
possible candidates for the maximum likelihood estimators of δ j are obtained by equating
the gradient of right hand side of (13) to 0 and solving for the next iterate

θn+1 = θn − H−1
n ∇n (14)

As the extreme points of binomial likelihoods are not located in the boundaries of the
parameter space, the roots of (14) are the maximum likelihood estimators of δ j if the Hessian
matrix is a negative definite matrix. This conditions must be checked for each application.

Hereinafter, δ̂ j denote the maximum likelihood estimator of δ j for fixed S(0), d and q .
This notion is important for the next section.

2.3 Estimating d and q for fixed S(0)

In practice, the range of candidates for d and q will be narrow for most of the pandemic
dynamics. For example, it is sufficient to evaluate ordered pairs (di , qi ), where di = 1, . . . , 20
and qi = 2, . . . , 20. In general, such a two-dimensional grid is supposed to follow the
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characteristics of each specific pandemic phenomenon. With that in hand, one can simply
apply steps described in Sect. 2.2 to each of the ordered pairs and take the pair of maximum
likelihood in the selected grid as the estimate for d and q given S(0).

2.4 Estimating S(0)

In order to estimate S(0), we propose to obtain an accurate estimator through minimization
of themean squared error for the fitted transmission rate over the feasible candidates for S(0).
For a fixed value S(0) = s, the mean squared error, as a function of s, denoted by MSE(s),
is given by:

MSE(s) =
T∑
t=1

(
ψ̂(t) − ψ̃(t)

)2
/T , (15)

where ψ̂(t) is the fitted value for ψ(t) based on the maximum likelihood estimates of δ j ,
j = 1, . . . , k, d , and q , and ψ̃(t) is the observed rate. The observed transmission rate is

calculated using the observed proportion of new infected in day t , given by ĩ(t)
S(t−d−1) , where

ĩ(1) = ĩ(2) = · · · = ĩ(d) = 0. Then, from (5), we can derive:

ψ̃(t) = − N

I (t − d)
ln

(
1 − ĩ(t)

S(t − d − 1)

)
. (16)

For finding the estimator of S(0), say Ŝ(0), one may want to use a naive approach based
on running MSE(s) over a small grid of meaningful candidates for S(0), such as a, a +
f N , a + 2 f N , . . . , N , where a = ∑T

t=1 ĩ(t), and f ∈ (0, 1) is and arbitrary fraction of N .
The disadvantage of such naive method is that it lacks in precision depending on the choice
of f , that is, the difference between the solution and the actual argument of minimum of
MSE(s) can reach the magnitude of f × N . On the other hand, this approach is general as
it does not require assumptions on the behavior of MSE(s).

Under the assumption that MSE(s) is convex, or monotonous (increasing or decreasing),
in the set of feasible candidates for S(0), a more precise estimator can be obtained through
a trisection routine. For this, we define the starting tuning parameter S4 = ∑T

t=1 ĩ(t) + 1,
and the starting objective function y = MSE(S4). This will be updated according to the
following trisection routine:

– Step (i) While MSE(S4) ≤ y and S4+ I (T ) ≤ N , update S4 := S4+ I (T ) and calculate
the new y = MSE(S4).

– Step (ii) If (i) was finished, because S4 + I (T ) > N , then set S1 := S4 and update
S4 := N , otherwise, make S1 = S4 − I (T ). Then, calculate S2 = S1 + 	(S4 − S1)/3
,
and S3 = S2 + �(S4 − S1)/3�.

– Step (iii) For i = 1, 2, 3, 4, if mini MSE(Si ) = MSE(S1), then update S4 as S4 := S2.
If ∈i MSE(Si ) = MSE(S2), then update S4 := S3. If mini MSE(Si ) = MSE(S3),
then update S1 as S1 := S2. But, if mini MSE(Si ) = MSE(S4), then update S1 := S3.

– Step (iv) Update S2 := S1 + 	(S4 − S1)/3
, and S3 := S2 + �(S4 − S1)/3�.
– Step (v) If S4 − S1 ≤ 6, then stop the iterations and go to Step (vi) below. Otherwise,

run Step (iii) again.
– Step (vi) Take Ŝ(0) = argminS∗∈{S1,S1+1,...,S4}MSE(Si ).

This algorithm is a version of the conventional bisectionmethod (Burden and Faires 1985).
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The correct interpretation of the estimated S(0) is crucial. Unlike the actual number of
people that can be affected by the disease in a population, here S(0) represents the number
of individuals susceptible to become reported infected. Note that this number may be much
smaller than the overall number of infected persons. For example, the study by Fenga (2021)
showed thatwhile therewere 12,839 officially reportedCOVID-19 cases on 12thMarch, 2020
in Italy, the number of infected could be as high as 105,789, about eight times the reported
data. But, the present S(0) parameter has important practical usage because it represents
the potential number of people that will actually be need health care assistance, which is a
necessary condition to have them among the officially reported cases.

2.5 Confidence intervals and testing

Wenote that the asymptotic variance-covariancematrix of themaximum likelihood estimator
θ̂ is estimated by computing the inverse of the Fisher Information matrix. Theoretically, the
Fisher Information matrix can be obtained through the Hessian as,

I (θ) = −E[Hn]
Hence, the inversion of theWald’s test promotes an approximate 100×(1−2α)%confidence
interval of δ j , as

[
δ̂ j − I−1/2

j j (θ̂)zα, δ̂ j + I−1/2
j j (θ̂)zα

]
, (17)

where I−1/2
j j (θ̂) is the inverse of the squared root of the j th, j = 0, . . . , k, diagonal element

of the observed Fisher Information matrix, since the observed matrix is a consist estimate for
the Fisher information matrix.

Note that, due to the duality between a confidence interval and the related hypothesis
testing, and for a fixed value φ, an α-level test for

H0 : δ j = φ versus H1 : δ j �= φ, (18)

is obtained by rejecting H0 if the point φ is not covered by the confidence interval in (17).

3 Simulation study

In this section, we provide the results of a simulation study designed to evaluate the perfor-
mance of the proposed inference methodology under meaningful tuning parameters choices.
Each configuration counted with one thousand Monte Carlo databases generated under the
proposed regression structure. For N , we selected the small and the big optionsN = 5,000,000
and N = 30,000,000. For each choice of N , we also considered S(0) = N and S(0) = 0.8N .
The choice of scenarios for S(0) was a highly subjective step. This parameter may vary a
lot depending on the capacity of the health system to serve the population of a country, on
the demographic structure of the population that may impede or favor one to have contact
with the virus, and on other factors such as culture and political organization. Thus, we used
S(0) = 0.8N as a possible value that may occur in some regions of the world, but that is just
one example that differs from the extreme case where S(0) = N . Although arbitrary, these
choices are useful to illustrate the performance of the proposed methodology. For N , we
used the values N = 3,000,000 and N = 30,000,000 to show that the method works for very
different population sizes.While one can apply themethod to analyze the data of ametropolis
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of a regular sized population, like the city of Salvador, BA, Brazil, it is also applicable for a
huge population, such as that from the São Paulo state, Brazil.

Regarding d and q , we chose d = 5, 7, 10 and q = 5, 7, 10 based on a thorough literature
review. Rǎdulescu et al. (2020) mentioned that the incubation period (the time from exposure
to development of symptoms) of SARS-CoV-2 ranges typically from 2 to 14 days, with a
mean of 5.2 days. Feng et al. (2021) chose the midpoint of 7 days because the incubation
period of COVID-19 has been reported to be between 2 and 14 days. Udomsamuthirun et al.
(2020) discussed average incubation period of 5 days and the average infection period of 10
days. Lai et al. (2021) incorporated in their work with the mean duration from exposed to
infectious and from infection to recovery for 5.25 and 7 days, respectively. It is fair to say
that our simulation study regarding three choices for d and q , 5, 7, 10 days, is general and
representative.

Since we conducted this study in the presence of one covariate, we needed to run config-
urations for δ0 and δ1 only. In order to analyze the performance of the method using near
realistic conditions, we used the data of social mobility in the São Paulo state, Brazil, for the
covariate, observed from 02-26-2020 to 07-31-2020 (T = 157). More details on the social
mobility data used here are given in Sect. 5. The usage of an actually observed covariate in
the simulation study favored a practical perspective about the size of the effect of a change
on δ1 in terms of effective transmission rate when δ0 is kept the same, and vice-verse. The
effective transmission rate is calculated in the following way:

βe(t) = q × ψ(t) × S(0)

N
. (19)

The effective transmission rate represents the expected number of individuals that can be
contaminated by a person, during its infectious period, taking in account the fraction of
susceptible individuals in the population, in contrast to the basic transmission rate, given by
R0 = qψ(t). To see the impact of changes in δ0 and δ1 on βe(t), we fixed N = 30,000,000,
d = 3 andq = 7, fromwhichweevaluated the evolutionofβe(t)with t for three combinations
of δ0 and δ1. We noted that the βe(t) is highly impacted, e.g. changing in average from the
intermediate magnitude of 2 to the high value of 6, or even of 11, when δ0 or δ1 jumps from
values around 0.01 or 0.1 to 1 as well as to −1. Therefore, the performance of the testing
procedure could be considered satisfactory in case of presenting an elevated statistical power
for δ0 and δ1 between −0.1 and 0.1. If it happens, then the power would be even higher
for the relevant values (in terms of βe(t) changes) greater than 0.1 and smaller than −0.1.
For this reason, considering the exhaustive number of scenarios to simulate given the many
tuning parameters to consider, for parsimony we selected the options δ0 = −0.1, 0.1 and
δ1 = −0.1, 0, 0.1. Note that the option δ0 = 0 would not make practical sense as it would
imply a zero baseline rate when no covariates are present, that is, there would not exist an
epidemic to analyze.

3.1 Accuracy, coverage probability and power

In this section, we discuss the results of our simulation study in terms of the point estima-
tion accuracy, coverage probability of the confidence intervals, and statistical power of the
hypotheses tests. The estimates for these three performance measures are summarized in
three tables for δ0 = −0.1 and S(0) = N as the results with the combinations δ0 = 0.1
and S(0) = 0.8N are fairly similar. The choices of the parameters are also given in the table
headings.
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Table 1 Estimated averages
Ê[δ̂0], Ê[δ̂1], Ê[d̂], Ê[q̂], and
Ê[Ŝ(0)] of the estimators for δ0,
δ1, d, q, and S(0), with
N = S(0) = 5 × 106 and
δ0 = −0.1

δ1 d q Ê[δ̂0] Ê[δ̂1] Ê[d̂] Ê[q̂] Ê[Ŝ(0)]
−0.1 5 5 −0.100 −0.100 5.00 5.00 5 × 106

7 −0.100 −0.100 5.00 7.00 5 × 106

10 −0.100 −0.100 5.00 10.00 5 × 106

7 5 −0.100 −0.100 7.00 5.00 5 × 106

7 −0.100 −0.100 7.00 7.00 5 × 106

10 −0.100 −0.100 7.00 10.00 5 × 106

10 5 −0.100 −0.100 10.00 5.01 5 × 106

7 −0.097 −0.091 10.04 6.86 5 × 106

10 −0.073 −0.069 10.19 8.67 5 × 106

0 5 5 −0.100 0.000 5.00 5.00 5 × 106

7 −0.100 0.000 5.00 7.00 5 × 106

10 −0.100 0.000 5.00 10.00 5 × 106

7 5 −0.094 0.000 6.57 4.69 5 × 106

7 −0.100 0.000 7.00 7.00 5 × 106

10 −0.100 0.000 10.00 9.99 5 × 106

10 5 −0.100 0.005 10.02 4.99 5 × 106

7 −0.085 0.023 10.14 6.48 5 × 106

10 −0.061 0.027 10.24 8.36 5 × 106

0.1 5 5 −0.100 0.100 5.00 5.00 5 × 106

7 −0.100 0.100 5.00 7.00 5 × 106

10 −0.100 0.100 5.00 10.00 5 × 106

7 5 −0.100 0.100 7.00 5.00 5 × 106

7 −0.098 0.098 7.01 6.99 5 × 106

10 −0.098 0.098 7.01 6.99 5 × 106

10 5 −0.096 0.114 10.07 4.90 5 × 106

7 −0.074 0.128 10.20 6.20 5 × 106

10 −0.057 0.123 10.24 8.32 5 × 106

Table 1 provides the average values from the simulated estimators of δ0, δ1, d , q , and S(0)
with N = 5,000,000 and δ0 = −0.1. With an exception of a few results under d = 10, we
see that the MLE is practically unbiased.

We summarize the results on coverage probability and power for δ0 and δ1 in Tables 2
and 3, respectively. The results are satisfactory in most cases. The coverage probability falls
around the target significantly, except that the test size is higher than 0.05 when d = 10 and
q = 7 and 10. The statistical power hangs tightly around 1 for all scenarios, as is shown in
Table 3.
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Table 2 Coverage probability
estimates of the 95% confidence
intervals for δ0 and δ1

d q δ1 = −0.1 δ1 = 0 δ1 = 0.1

Coverage prob. Coverage prob. Coverage prob.

for δ0 for δ1 for δ0 for δ1 for δ0 for δ1

5 5 0.949 0.950 0.957 0.955 0.946 0.947

7 0.957 0.963 0.956 0.956 0.963 0.962

10 0.949 0.955 0.957 0.960 0.921 0.928

7 5 0.950 0.954 0.965 0.963 0.947 0.948

7 0.957 0.956 0.949 0.948 0.941 0.942

10 0.910 0.902 0.854 0.858 0.804 0.847

10 5 0.945 0.941 0.937 0.939 0.930 0.929

7 0.880 0.904 0.825 0.848 0.755 0.784

10 0.724 0.760 0.678 0.719 0.713 0.747

Table 3 Statistical power
estimates of the 0.05-level test for
δ0 and δ1 with N = 5,000,000 and
δ0 = −0.1

d q δ1 = −0.1 δ1 = 0 δ1 = 0.1

Power of test Power of test Power of test

for δ0 for δ1 for δ0 for δ1 for δ0 for δ1

5 5 1.000 1.000 1.000 0.045 1.000 1.000

7 1.000 1.000 1.000 0.044 1.000 1.000

10 1.000 1.000 1.000 0.040 1.000 1.000

7 5 1.000 1.000 1.000 0.037 1.000 1.000

7 1.000 1.000 1.000 0.052 1.000 1.000

10 1.000 1.000 1.000 0.142 1.000 0.945

10 5 1.000 0.998 1.000 0.061 0.999 1.000

7 0.972 0.998 0.926 0.152 0.860 0.998

10 0.992 0.957 0.994 0.281 0.997 0.997

4 Predictions

Once the unknown vector of parameters, θ = (S(0), δ0, δ1, . . . , δk, d, q)T , is estimated,
one may continue to conduct prediction estimations on the transmission rate, say h days
forward. This can be done by means of selected scenarios for the predictors. In situations
where auto-regressive predictors are present in the regression model, it will also be necessary
to obtain the predictions on the number of officially newly reported infected individuals. For
an arbitrary h ∈ {0, 1, . . .}, let î(t +h) denote the predicted number of new reported infected
at time (t + h). For h = 1, we define:

î(t + 1) = p̂(t + 1)S(t − d), (20)

where:

p̂(t + 1) = 1 − e− I (t−d+1)
N ψ̂(t+1), (21)

and ψ̂(t + 1) is the estimate of ψ(t + 1) given the values of the covariates at time (t + 1),
and calculated with the estimator of θ with the information up to time T .
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The prediction î(t +1) is then used to calculate the time specific fitted removed r̂(t +d +
q+1) following (3), and the fitted susceptible compartment, Ŝ(t−d+1), for time t−d+1:

Ŝ(t − d + 1) = S(t − d) − î(t + 1). (22)

The prediction for time (t + 2) is calculated as follows:

î(t + 2) = p̂(t + 2)Ŝ(t − d + 1), (23)

where:

p̂(t + 2) = 1 − e− I (t−d+2)
N ψ̂(t+2), (24)

This process is repeated for the consecutive horizons until reaching time t + h of interest. It
is important to note that, for h > d , I (t − d + h) is replaced by Î (t − d + h), where:

Î (t + 1) = I (t) − r(t + 1) + î(t + 1), (25)

Î (t + l) = Î (t + l − 1) − r∗(t + l) + î(t + l), forl ≥ 2 integer , (26)

r∗(t + l) = r(t + l) for l ≤ d + q, andr∗(t + l) = r̂(t + l) otherwise. (27)

This way, the fitted (h = 0) and the predicted (h > 0) values are calculated in general
with:

î(t + h) = p̂(t + h)Ŝ(t − d + h − 1). (28)

Finally, the predicted transmission rate h days forward, ψ̂(t + h), can be calculated using
the parameters estimates, reasonable scenarios on the values of predictors and, when present,
the predicted values for the autogressive terms based on (28) iteratively.

Using a Gaussian approximation for the distribution of the maximum likelihood estima-
tors, considering that ψ̂(t + h) is a linear combination of the parameters estimators, and for
fixed values of the predictors at time t + h, an approximate 100 × (1 − 2α)% predictive
interval can be calculated as follows:

[ψ̂(t + h) − σ̂ zα, ψ̂(t + h) + σ̂ zα], (29)

where σ̂ = ∑T
t=1(ψ̂(t) − ψ̄)2/T , and ψ̄ = ∑T

t=1 ψ̂(t)/T .

5 Analyzing the COVID-19 infection rate in the State of São Paulo, Brazil

We analyze the daily number of reported COVID-19 infections in the State of São Paulo
observed from 02-26-2020, when the Government started to make it publicly available, to
07-31-2020 (T = 157). This period was selected in order to avoid confounding information
on the infectious rate as the proposed regression model is not designed for reinfections,
which occurs when the surviving removed individuals return to the susceptible compartment.
According to Santos et al. (2021), the first reinfection in Brazil probably occurred in July,
2020. This data is freely available at https://www.seade.gov.br/coronavirus. Currently, the
population of São Paulo is about 46.6 millions.

An important aspect to investigate is the impact of the socialmobility on the infectious rate.
The reduction of the social mobility has been treated by governments as an effective public
policy to mitigate the risk of transmission in the current COVID-19 pandemic. Aiming to
capture such an effect in the State of São Paulo, we use the isolation index provided bymobile
telecommunication devices in the city of São Paulo as a proxy for the State. For this, we use
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Fig. 1 Reported number of daily-specific COVID-19 cases in the State of São Paulo, Brazil, from 02-26-2020
to 07-31-2020 (T = 157) and effective transmission rate using d = 3 and q = 7 and S(0) = N = 46,600,000

the SIMI (Information System and Intelligent Monitoring), which is formed by aggregated
anonymous information about mobility, health and other data of agencies and entities of the
State Public Administration (Palhares et al. 2020). The index produces a number in the [0, 1]
interval, which in practice represents the fraction of the population that is not moved from
the home Cell Site. Regarding the evolution of the isolation index in the city of São Paulo,
Brazil, from 02-26-2020 to 07-31-2020 (T = 157), we noted that it jumped from a baseline
of about 0.3 to an oscillation about 0.5 after the first 30 days of the pandemic in São Paulo.

5.1 Analyzes results

Figure 1A shows the daily evolution of ĩ(t). The observed effective transmission rate is shown
in Fig. 1B, which was calculated using d = 3 and q = 7, revealing a weekly seasonality.
This becomes more evident when we remove the first 30 days of data, as shown in Fig. 1C. It
merits to mention that the State of São Paulo started an official quarantine in May 24, 2020
(AL 2022).

Moreover, the permanent work for updating and informing the population on the pandemic
status, provided by the international and the Brazilian media, apparently favored a change
in the population’s behavior weeks earlier to the first day of the official quarantine. This
may explain the variation stability in the Fig. 1C in comparison to the first thirty days of
reported data shown in Fig. 1B. For this reason, we used the period 03-27-2020 to 07-31-2020
(T = 127) for the regression analysis.
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Now, we perform a descriptive exploration of the data to evaluate the existence of auto-
correlation structures in ψ̃(t). This demands a previous step for removing possible periodic
structures that may act as confounding components. Actually, the existence of a determin-
istic weekly seasonal component in the number of reported infections is a well-known fact
in Brazil, where the reported data for Saturday, Sunday and Monday are under-reported.
This may occur, because the public agencies are closed in the weekends (www.seade.gov.br/
covid-19). Only for this descriptive part, the week seasonality was removed using the ordi-
nary mean squares regression, which was handle through dummy variables for Tuesday to
Sunday. The autocorrelation function (ACF) of the seasonally natural log adjusted effective
rate revealed a relevant moving average component of lag 1, and the partial autocorrelation
function (PACF) indicated autocorrelation components of lags 1 and 7.

The impact of Governmental actions, such as the implementation of active social isolation,
may only take effect a few days after the moment of its implementation. We have explored
the delay that the social isolation index takes to impact the transmission rate for the lags
t − 2, t − 3, t − 4, t − 5, t − 6. It seemed that the effect of a variation in the logarithm of
the social isolation in time t is perceived in the reported transmission rate after four or five
days. This effect becomes more evident on the Sundays and Saturdays, which is an indication
of interaction between the weekend factor with the isolation index.

Naturally, these descriptive insights using d = 3 and q = 7 will not coincide exactly with
the predictors structure entering in the regression model estimate, but they are useful initial
steps for the model identification. Based on these exploratory evidences, we tried a series of
models with the following basic structure:

lnψ(t) = δ0 +
6∑
j=1

δ j D j (t) + δ8 l S I (t − l) + δ9 l S I (t − 4) D6(t) +

+ δ10 l S I (t − 4) D1(t) + δ11 ln ψ̃(t − 1) + δ12 ln ψ̃(t − 7), (30)

where, Dj (t) = 1 if t corresponds to the week day represented by j, j = 1, . . . , 6;
Dj (t) = −1 if t corresponds to Monday; and Dj (t) = 0 otherwise. The l S I (t) is the
natural logarithm of the social isolation index, and l S I (t − l) denotes the lag of (t − l) with
l = 3, 4, 5, 6, 7 denoting different models respectively. More details on this model and its
formulation is discussed in the following sequel. Here, we use j = 1 for Tuesday, j = 2
for Wednesday, . . ., j = 6 for Sunday. The coefficient of Dj (t) can be interpreted as the
average change promoted by the j th week day. This interpretation is possible by construction
because the format of Dj (t) ensures

∑7
j=1 δ j = 0, thus the average change of Monday is

given by δ7 = −∑6
j=1 δ j .

We emphasize that it is not indicated to use the social isolation index in its original (0, 1)
scale. This is so because the estimation of its coefficient would not take in account that
the range of variation is bounded by 0 and 1, which can lead to misleading interpretations.
This problem is solved by using the covariate l S I (t), which is the natural logarithm of the
social isolation index. The support of l S I (t) is the real line, a convenient scale choice for the
interpretation of its coefficient in the model.

The interaction terms l S I (t − 4) D6(t) and l S I (t − 4) D1(t) are meant to capture
the exceptions for the association between lnψ(t) and l S I (t − 4) as identified during our
descriptive analysis. The auto-correlation terms ln ψ̃(t − 1) and ln ψ̃(t − 7) follow from the
stylized ARMA process indicated by the ACF and PACF.

After running the model for l = 3, 4, 5, 6, 7 in the lagged term l S I (t − l), the observed
log-likelihoods were −43383.1 (l = 3), −42857.68 (l = 4), −43193.12 (l = 5), −43331.34
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Table 4 Point estimates, 95% confidence intervals, and standard errors for the coefficients of the model in (30)

Coefficients Point estimate Confidence interval Standard error

Lower bound Upper bound

Intercept −0.4944 −0.5367 −0.4521 0.0216

Dummy Tuesday 0.2788 0.2705 0.2872 0.0043

Dummy Wednesday −0.5396 −0.6241 −0.4552 0.0431

Dummy Thursday 0.6696 0.5825 0.7567 0.0444

Dummy Friday 0.9280 0.8434 1.0126 0.0432

Dummy Saturday 0.0032 −0.0042 0.0106 0.0038

Dummy Sunday −0.4342 −0.4427 −0.4256 0.0043

l S I (t − 4) −1.1542 −1.2108 −1.0976 0.0289

Dummy Saturday × l S I (t − 4) −1.1235 −1.2330 −1.0140 0.0559

Dummy Sunday × l S I (t − 4) 0.3622 0.2493 0.4751 0.0576

ln ψ̃(t − 1) 0.0425 0.0367 0.0483 0.0030

ln ψ̃(t − 7) −0.1133 −0.1186 −0.1080 0.0027

(l = 6), and−43744.85 (l = 7). Following the principle of parsimony, we adopted the model
with the single l S I (t − 4) as it was the one with the highest likelihood. The residuals of the
fitted model presented a regular behavior around a zero mean. Dispersion plots between
ln ψ̃(t) and ê(t − j), for j = 1, . . . , 7, dispensed the inclusion of more auto-regressive terms
in the model. Also, there is no clear association between the residuals with l S I (t −4), hence,
it is unnecessary to try other types of transformations in the social isolation covariate besides
the logarithm function. In addition, the periodogram of the residuals has not presented a
prominent value for a specific frequency, hence the seasonality is apparently well fitted with
the model.

Table 4 contains the point estimates and the 95% confidence intervals for the coefficients
of the model. The last column of this Table also contains the standard errors for the point
estimators. Note that the only confidence interval covering the zero point is the coefficient
for the dummy of Saturday, but we prefer to keep that in the model as its interaction with the
l S I (t − 4) is significant under a 0.05-level, just like the other coefficients of the model.

It is important to emphasize the estimated relative change in the transmission rate followed
by a change, say η, in the logarithm of the social isolation. From (10), and based on the
coefficients estimates shown in Table 4, such a relative change is given by Δψ(8, η) =
e(−1.1542−1.1235)η for Saturdays,Δψ(8, η) = e(−1.1542+0.3622)η for Sundays, andΔψ(8, η) =
e−1.1542η forMonday to Friday. For example, forMondays to Fridays, and holding everything
else constant, the state l S I (t − 4) = ln(0.3) provokes a transmission rate that is 80.33%
more than that with l S I (t−4) = ln(0.5) due to the fact that e−1.1542(ln(0.3)−ln(0.5)) = 1.8033.
Conversely, the transmission rate with the isolation of 0.5 is about 1/1.8033=0.555 that one
with an isolation of 0.3.

The estimates for d and q are d̂ = 3 and q̂ = 5, respectively. These estimates are consistent
with the results of many studies on the behavior of the COVID-19 pandemic as discussed in
the first paragraph of Sect. 3.

The estimated susceptible population is Ŝ(0) = 4,600,000. Again, we stress that S(0) here
represents the number of susceptible to become reported data. In Brazil, as well as in other
countries, the number of reported infected individuals is much smaller than the total number
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(reported+ non-reported) of infected. Li et al. (2020) estimated the ratio of confirmed cases to
actual cases to be only 14% during the early outbreak in China. Anand et al. (2020) estimated
that only 9.2% of actual infections were laboratory-confirmed in the U.S. until July 2020.
Jungsik and Gaudenz (2021) concluded that actual cumulative cases were estimated to be 5
to 20 times greater than the confirmed cases in 25 out of the 50 countries they studied. Hence,
the number of susceptible to become reported will be much smaller than the total number
of individuals susceptible to the disease as well. Although several confounding factors are
present in the reported data during the years of 2020 and 2021, such as reinfection, new
variants of the virus, and vaccination, it merits to mention that, by the moment at which
these authors are writing the present paper, January of 2022, the cumulative number of
reported infected individuals in the State of São Paulo is about 4,534,000 (https://github.
com/CSSEGISandData/COVID-19), which is very close to the estimate Ŝ(0) = 4,600,000.

Figure 2shows the observed and the fitted effective transmission rates. The vertical line
marks time T (July 31, 2020) in order to highlight the predictions from time T for the effective
transmission rate on time t+h, with h = 1, . . . , 30. The predictive 95% confidence intervals
are illustrated with the dashed line. Note that the predicted values are tight to the observed
effective transmission rates.

6 Concluding remarks

The stochastic SEIR regression proposed in this paper was designed to be very practical
as it only requires the actual reported number of infected individuals, the population size
of the target region, and the assumption that the dynamics of the transmissions follows a
SEIR model. The estimation of the key parameters of the SEIR structure, namely S(0), q ,
and d , are embedded in the estimation algorithm for the regression equation. The point and
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interval inference approaches has been proved to be fairly accurate. Another strength of
the proposed modeling is the practical interpretation of the regression coefficients, which
are easily convertible to the relative change in the transmission rate when only one of the
covariates is dislocated by arbitrary unities.

The proposed regression model is useful to identify effective actions to mitigate the trans-
missions when the disease is emerging and the SEIR model is a realistic assumption. As a
simple rule of thumb, we recommend the proposed methodology for applications where the
removed individuals can only be re-conducted to the susceptible compartment after a period
of time greater than T + h, where h is the desired horizon of time for forecasting. Caution is
also needed when a vaccination is administrated on the target population as this can greatly
influence the transmission rate. In such scenarios, the information on the periods at which
the vaccine was administrated, the rate of vaccine shots per day, and the percentage of the
population’s adherence to the vaccine campaign, could be considered as possible covariates
to the model.

We have used the proposedmodel to analyze the reported COVID-19 infections in the state
of São Paulo, Brazil, observed during the first four months of the pandemic in the state. The
results indicate that a social isolation of 0.5 could potentially reduce the transmission rate on
about a half of that under a isolation of 0.3. The identification of an autoregressive term of lag
7 is a novelty encountered with this analysis, which is useful to improve the performance of
short term forecasts. Still, future investigations could focus on using covariates missed by the
present study. Since the start, the pandemic situation keeps evolving. Besides emergence of
new variants, the scenario keeps changing particularly with vaccination (partial or complete)
and re-infection. Hence, caution is needed when interpreting these results based on the data
of São Paulo when so the inferences are not confounded by the above mentioned factors.
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