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Abstract

Since Bustince et al. introduced the concepts of overlap and grouping functions, these two types of aggregation

functions have attracted a lot of interest in both theory and applications. In this paper, the depiction of (O,G)-

granular variable precision fuzzy rough sets ((O,G)-GVPFRSs for short) is first given based on overlap and grouping

functions. Meanwhile, to work out the approximation operators efficiently, we give another expression of upper and

lower approximation operators by means of fuzzy implications and co-implications. Furthermore, starting from the

perspective of construction methods, (O,G)-GVPFRSs are represented under diverse fuzzy relations. Finally, some

conclusions on the granular variable precision fuzzy rough sets (GVPFRSs for short) are extended to (O,G)-GVPFRSs

under some additional conditions.

Keywords: Grouping functions; Overlap functions; Granular variable precision fuzzy rough sets; Fuzzy rough sets;

1. Introduction

1.1. Brief review of fuzzy rough sets

Rough set, as a way to portray uncertainty problems, was originally proposed by Polish mathematician Pawlak

in 1982 [32, 33], and it has been extensively developed in the fields of knowledge discovery [39] and data mining.

Rough set theory uses indistinguishable relations to divide the knowledge of research domain, thus forming a system

of knowledge representation that approximates an arbitrary subset of the universe by defining upper and lower ap-

proximation operators [9]. As a generalization of the classical theory, Zadeh introduced the fuzzy set theory [47] in

1965, where objects can be owned by different sets with different membership functions. Since rough sets are defined

based on equivalence relations, they are mainly used to process qualitative (discrete) data [25], and there are greater

restrictions on the processing of real-valued data sets in the database. In particular, fuzzy sets can solve this problem

by dealing with fuzzy concepts. Therefore, complementing the features of rough sets and fuzzy sets with each other

constitutes a new research hotspot.

In 1990, Dubois and Prade [18] described fuzzy rough sets, which is the combination of two uncertainty models,

and then extended the fundamental properties to fuzzy rough sets. As another innovation of rough set, Ziarko presented

the variable precision rough set [48], which mainly solved the classification problem of uncertain and inaccurate

information with an effective error-tolerance competence. More details about variable precision rough sets can refer

to [30, 31, 49]. In addition, since the upper and lower approximation operators of fuzzy rough sets are defined

according to membership functions, while rough sets are described based on the union of some sets, there exists

significant difference in the granular structure of the two. To overcome this limitation, Chen et al. [10] explored

the concept and related properties of granular fuzzy sets based on fuzzy similarity relations. Furthermore, from

the perspective of granular computing, the granular fuzzy set is used to characterize the granular structure of upper
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and lower approximations. However, the above model cannot tolerate even small errors and is not suited to handle

uncertain information well. Some extended fuzzy rough sets are applied to solve these problem, but some studies

still have problems in dealing with mislabeled samples (see, e.g., [23, 24, 52]), and others have only considered the

relative error cases. [20, 30]).

To fill these loopholes, the model of variable precision (θ, σ)-fuzzy rough sets over fuzzy granules were presented

by Yao et al. [46]. However, the above model is based on fuzzy ∗-similarity relation, satisfying reflexivity, symmetry

and ∗-transitivity, which is too strict to facilitate generalized conclusions. Thus, Wang and Hu [42] studied the

GVPFRSs and then the equivalent expressions of the approximation operators are given with fuzzy implications and

co-implications over arbitrary fuzzy relations. Subsequently, they gave the properties of GVPFRSs on different fuzzy

relations. In addition, compared with unit interval, the complete lattice has a wider structure, so Qiao and Hu expanded

the content of [42] and [46], and further discussed the concept of granular variable precision L-fuzzy rough sets based

on residuated lattices.

In fact, both [35] and [42] are based on t-norm (t-conorm), which satisfying associative, commutative, increasing

in each argument and has a identity element 1 (resp. 0). However, there are various applications [7, 8, 21] in which the

associativity property of the t-norm (resp. t-conorm) is not necessary, such as classification problems, face recognition

and image processing.

1.2. Brief analysis of overlap and grouping functions

Bustince et al. described the axiomatic definitions of overlap and grouping functions [6, 8], which stem from

some practical problems in image processing and classification. In fact, in some situations, the associativity of t-norm

and t-conorm usually does not work. Therefore, as two types of noncombining fuzzy logic connectives, overlap and

grouping functions have made rapid development in theoretical research and practical applications.

In theory, there exists many studies involving overlap and grouping functions, such as crucial properties [3, 13,

43], corresponding implications [14, 15, 41], additive generator pairs [16], interval overlap functions and grouping

functions [4, 36], distributive equations [27, 50, 51] and concept extensions [17, 53]. From an application point of

view, overlap and grouping functions can find interesting applications in classifications [28, 34], image processing

[5, 7, 26], fuzzy community detection problems [5] and decision making [8, 19].

1.3. The motivation of this paper

overlap functionst-norms continuous t-norms with
no non-trivial zero divisors

Figure 1: The relationship between t-norms and overlap functions [37]

In [1], the authors have pointed out that O : [0, 1]2 −→ [0, 1] is an associative overlap function (resp. grouping

function) if and only if O is a continuous and positive t-norm (resp. t-conorm). On the other side, we note that overlap

and grouping functions can be considered as another extension of classical logical connective ∧ and ∨ on the unit

interval, which differ from t-norms and t-conorms. Hence, we can use them to replace the classical logical operators

and then define the granular variable precision approximation operators. Meanwhile, from the application aspect, the

study of fuzzy rough sets based on overlap and grouping functions has a pivotal role in practical problems. Therefore,

based on aforementioned consideration, and as a supplement of the GVPFRSs [42], this paper continues the studies

in (O,G)-GVPFRSs based on overlap and grouping functions instead of t-norm and t-conorm. It should be pointed

out that the present paper further enriches the application of overlap and grouping functions. In addition, it makes the

research on fuzzy rough sets more complete.
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The rest of this paper is arranged as follows. Section 2 enumerates some fundamental concepts that are necessary to

understand this paper. Section 3 proposes the (O,G)-GVPFRSs with general fuzzy relations and gives an alternative

expression for efficient computation of the approximation operators. Furthermore, we study the (O,G)-GVPFRSs

under the conditions of crisp relations and crisp sets and draw the corresponding conclusions. Section 4 represents the

(O,G)-GVPFRSs on diverse fuzzy relations. In particular, some special conclusions are given under some additional

conditions. Section 5, conclusions on our research are given.

2. Preliminaries

In this section, we recapitulate some fundamental notions which shall be used in the sequel.

Definition 2.1. ([7]) An overlap function is a binary function O : [0, 1]2 −→ [0, 1] which satisfies the following

conditions for all x, y ∈ [0, 1]:

(O1) O(x, y) = O(y, x);

(O2) O(x, y) = 0 iff xy = 0;

(O3) O(x, y) = 1 iff xy = 1;

(O4) O is non-decreasing;

(O5) O is continuous.

Furthermore, an overlap function O fulfills the exchange principle ([15]) if

(O6) ∀x, y, u ∈ [0, 1] : O(x,O(y, u)) = O(y,O(x, u)).

Definition 2.2. ([8]) A grouping function is a binary function G : [0, 1]2 −→ [0, 1] which satisfies the following

conditions for all x, y ∈ [0, 1]:

(G1) G(x, y) = G(y, x);

(G2) G(x, y) = 0 iff x = y = 0;

(G3) G(x, y) = 1 iff x = 1 or y = 1;

(G4) G is non-decreasing;

(G5) G is continuous.

Furthermore, a grouping function G fulfills the exchange principle ([15]) if

(G6) ∀x, y, u ∈ [0, 1] : G(x,G(y, u)) = G(y,G(x, u)).

Remark 2.1. ([15]) Notice that a commutative function H : [0, 1]2 −→ [0, 1] is associative if and only if H satisfies

the exchange principle. It is obvious that an overlap function O (resp. a grouping function G) is associative if and

only if it satisfies (O6) (resp. (G6)).

Remark 2.2. ([15, 16]) Suppose overlap function O satisfies (O6), then 1 is the identity element of O, similarly, when

a grouping function G satisfies (G6), then 0 is the identity element of G.

Next, some common overlap and grouping functions are listed in [3, 16].

Example 2.1. (1) Any continuous t-norm with no non-trivial zero divisors is an overlap function.

(2) The function Op : [0, 1]2 −→ [0, 1] given by

Op(x, y) = xpyp

is an overlap function for any p > 0 and p , 1. Since it neither satisfies the associative law nor takes 1 as identity

element, it is not a t-norm.

(3) The function ODB : [0, 1]2 −→ [0, 1] given by

ODB =

{ 2xy

x+y
, if x + y , 0,

0, if x + y = 0

is an overlap function.
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(4) Any continuous t-conorm with no non-trivial one divisors is a grouping function.

(5) The function Gp : [0, 1]2 −→ [0, 1] given by

Gp(x, y) = 1 − (1 − x)p(1 − y)p

is a grouping function for p > 1. Since it neither satisfies the associative law nor takes 0 as identity element, it is

not a t-conorm.

In the following, we give the definitions of fuzzy implication and fuzzy co-implication on the basis of overlap and

grouping function.

A fuzzy implication IO : [0, 1]2 −→ [0, 1] given by

IO(x, y) = max{z ∈ [0, 1] : O(x, z) ≤ y}

for all x, y ∈ [0, 1]. In [15], Dimuro et al. have proved O and IO form an adjoint pair, if they satisfy the residuation

property:

∀x, y, u ∈ [0, 1] : O(x, u) ≤ y⇔ IO(x, y) ≥ u.

Furthermore, IO satisfies the exchange principle [15] if and only if

∀x, y, z ∈ [0, 1], IO(x, IO(y, z)) = IO(y, IO(x, z)).

Fuzzy implication IO was introduced in [15] and fuzzy co-implication IG was discussed in [2]. Furthermore, since

O and G are dual w.r.t. N, we can deduce the properties of fuzzy co-implication IG easily.

A fuzzy co-implication IG : [0, 1]2 −→ [0, 1] given by

IG(x, y) = min{z ∈ [0, 1] : y ≤ G(x, z)}

for all x, y ∈ [0, 1]. Similarly, the following hold:

∀x, y, u ∈ [0, 1] : y ≤ G(x, u)⇔ IG(x, y) ≤ u.

Furthermore, IG satisfies the exchange principle if and only if

∀x, y, z ∈ [0, 1], IG(x, IG(y, z)) = IG(y, IG(x, z)).

If O and G are dual w.r.t. N, then for all x, y ∈ [0, 1],

IO(x, y) = N(IG(N(x),N(y))),

IG(x, y) = N(IO(N(x),N(y))).

According to the definition of IO that for all x, y ∈ [0, 1],

IO(x, y) = max{z ∈ [0, 1] : O(x, z) ≤ y}

= max{z ∈ [0, 1] : N(G(N(x),N(z))) ≤ y}

= max{z ∈ [0, 1] : G(N(x),N(z)) ≥ N(y)}

= max{N(z) ∈ [0, 1] : G(N(x), z) ≥ N(y)}

= N(min{z ∈ [0, 1] : G(N(x), z) ≥ N(y)})

= N(IG(N(x),N(y))).

Similarly, the following equation can be obtained.

IG(x, y) = min{z ∈ [0, 1] : y ≤ G(x, z)}

= min{z ∈ [0, 1] : y ≤ N(O(N(x),N(z)))}

= min{z ∈ [0, 1] : N(y) ≥ O(N(x),N(z))}

= min{N(z) ∈ [0, 1] : N(y) ≥ O(N(x), z)}

= N(max{z ∈ [0, 1] : N(y) ≥ O(N(x), z)})

= N(IO(N(x),N(y))).
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Remark 2.3. ([15]) IO satisfies the exchange property if and only if O satisfies (O6), similarly, IG satisfies the

exchange property if and only if G satisfies (G6).

Lemma 2.1. ([38]) Let x, y, z ∈ [0, 1] and {xi}i∈I ⊆ [0, 1]. Then

(1) O(x, IO(x, y)) ≤ y and y ≤ G((IG(x, y), x));

(2) IO(y, (
∧

i∈I xi)) =
∧

i∈I(IO(y, xi)) and IG(y, (
∨

i∈I xi)) =
∨

i∈I IG(y, xi);

(3) IO(y,
∨

i∈I xi) =
∨

i∈I IO(y, xi) and IG(y,
∧

i∈I xi) =
∧

i∈I IG(y, xi);

(4) IO(
∨

i∈Λ xi, y) =
∧

i∈Λ IO(xi, y) and IG(
∧

i∈Λ xi, y) =
∨

i∈Λ IG(xi, y);

(5) IO(x, IO(y, z)) = IO(O(x, y), z) iff O satisfies (O6) and IG(x, IG(y, z)) = IG(G(x, y), z) iff G satisfies (G6).

Lemma 2.2. ([15]) Let overlap function O have identity element 1, and grouping function G have identity element 0.

For any x, y, z ∈ [0, 1], the following statements hold.

(1) IO(1, x) = x and IG(0, x) = x;

(2) x ≤ y if f IO(x, y) = 1 if f IG(y, x) = 0;

(3) x ≤ IO(y, x) and x ≥ IG(y, x).

Lemma 2.3. Let overlap function O : [0, 1]2 → [0, 1](resp. grouping function G : [0, 1]2 → [0, 1]) satisfies (O6)

(resp. (G6)). For any x, y, z ∈ [0, 1], the following statements hold.

(1) O(x, IO(y, z)) ≤ IO(y,O(x, z)) and IG(y,G(x, z)) ≤ G(x, IG(y, z));

(2) IO(y, z) ≤ IO(IO(x, y), IO(x, z)) and IG(IG(x, y), IG(x, z)) ≤ IG(y, z).

Proof. It is obvious that O becomes a t-norm when it satisfies (O6), we can immediately obtain that O(x, IO(y, z)) ≤

IO(y,O(x, z)) and IO(y, z) ≤ IO(IO(x, y), IO(x, z)). The equations about G can be derived similarly.

In the following, some basics about fuzzy sets are given.

Let finite set X be universe, and the family of all fuzzy sets on X is denoted F (X). The fuzzy set A defined as

A(x) = α for any A ∈ F (X) and x ∈ X, is a constant and further called αX . In addition, a fuzzy point A is tagged with

yα, if for all x ∈ X,

A(x) =

{

α, x = y;

0, x , y;

Furthermore, |A| notes the cardinality of the set A for all crisp sets A.

Definition 2.3. A function N : [0, 1] −→ [0, 1] is a fuzzy negation, if it satisfies the following conditions:

(1) If x < y, then N(x) > N(y), for all x, y ∈ [0, 1].

(2) N(0) = 1 and N(1) = 0.

Further, N is called an involutive negation, if N(N(x)) = x holds for all x ∈ [0, 1] and the standard negation, N(x) =

1 − x for all x ∈ [0, 1], is a special case of involutive negation N.

The operations on fuzzy sets are defined as follows: for all A, B ∈ F (X) and x ∈ X,

(1) AN(x) = N(A(x)),

(2) O(A, B)(x) = O(A(x), B(x)),

(3) G(A, B)(x) = G(A(x), B(x)),

(4) IO(A, B)(x) = IO(A(x), B(x)),

(5) IG(A, B)(x) = IG(A(x), B(x)).

If for all x, y ∈ [0, 1],N(x ⊕ y) = N(x) ⊙ N(y), then the two binary operations ⊕ and ⊙ are said to be dual with

respect to (w.r.t., for short) N. Especially, (Ac)(x) = 1 − A(x) and A ⊆ B defined as A(x) ≤ B(x) for all x ∈ X. In

addition, a fuzzy relation on X is a fuzzy set R ∈ F (X × X) and R−1 is defined as R−1(x, y) = R(y, x) for all x, y ∈ X.

Definition 2.4. Let R be a fuzzy relation on X and for all x, y, z ∈ X, R satisfies

5



(1) seriality:
∨

y∈X R(x, y) = 1;

(2) reflexivity: R(x, x) = 1;

(3) symmetry: R(x, y) = R(y, x);

(4) O-transitivity: O(R(x, y),R(y, z)) ≤ R(x, z).

For sake of simplicity, ∧-transitive is called transitive. R ia a fuzzy O-preorder relation when it satisfies reflexivity

and O-transitivity and a fuzzy O-similarity relation when it satisfies reflexivity, symmetry and O-transitivity.

Next, the model of GVPFRSs which proposed by Wang and Hu [42] will be given below.

Definition 2.5. ([42]) Let R be a fuzzy relation on X, β ∈ [0, 1] and Fβ(X) = {Xi ⊆ X : |Xi| ≥ β|X|}. Then for all

A ∈ F (X), two fuzzy operators Rβ and R
β

are defined as follows.

Rβ(A) =
⋃

{[xγ]
△
R : x ∈ X, γ ∈ [0, 1], {y ∈ X : [xγ]

△
R(y) ≤ A(y)} ∈ Fβ(X)},

R
β
(A) =

⋂

{[xγ]
▽
R : x ∈ X, γ ∈ [0, 1], {y ∈ X : A(y) ≤ [xγ]

▽
R(y)} ∈ Fβ(X)},

Then Rβ (resp. R
β
) is the generalized granular variable precision lower (resp. upper) approximation operator and the

pair (Rβ(A),R
β
(A)) is GVPFRSs of fuzzy set A.

3. (O,G)-granular variable precision fuzzy rough sets based on overlap and grouping functions

In the following, we give the model of (O,G)-GVPFRSs and then utilize fuzzy implication and co-implication

to compute the approximation operators more efficiently. In addition, we continue to study the related properties of

degenerated (O,G)-GVPFRSs under the condition of crisp relations and crisp sets, respectively.

Definition 3.1. Let R be a fuzzy relation on X. Then define the fuzzy granules [xλ]
O
R

and [xλ]
G
R

by

[xλ]
O
R

(y) = O(R(x, y), λ) and [xλ]
G
R

(y) = G(RN(x, y), λ),

where x, y ∈ X, λ ∈ [0, 1] and N is an involutive negation.

In [14], Dimuro et al. have defined the class of fuzzy implications called (G,N)-implications, where G and N are

grouping functions and fuzzy negations respectively. Detailed definition is introduced as follows:

For grouping function G : [0, 1]2 −→ [0, 1] and fuzzy negation N : [0, 1] −→ [0, 1], the function IG,N , denoted by

IG,N(a, b) = G(N(a), b),

is a (G,N)-implications, where a, b ∈ [0, 1].

Then, from the definition of IG,N and Definition 3.1, one concludes that

[xλ]
G
R (y) = G(RN(x, y), λ) = IG,N (R(x, y), λ).

3.1. (O,G)-granular variable precision fuzzy rough sets based on overlap and grouping functions

Definition 3.2. Let R be a fuzzy relation on X, β ∈ [0, 1] and Fβ(X) = {Xi ⊆ X : |Xi| ≥ β|X|} such that for all

A ∈ F (X),

R
β

O
(A) =

⋃

{[xλ]
O
R : x ∈ X, λ ∈ [0, 1], {y ∈ X : [xλ]

O
R (y) ≤ A(y)} ∈ Fβ(X)},

R
β

G(A) =
⋂

{[xλ]
G
R : x ∈ X, λ ∈ [0, 1], {y ∈ X : A(y) ≤ [xλ]

G
R (y)} ∈ Fβ(X)},

then R
β

O
(resp. R

β

G) is denoted the O-granular (resp. O-granular) variable precision lower (resp. upper) approximation

operator and the pair (R
β

O
(A),R

β

G(A)) is denoted the (O,G)-granular variable precision fuzzy rough set of fuzzy set A.

6



Remark 3.1. If t-norm (resp. t-conorm) is continuous and positive, then Definition 3.2 in [42] is equal to O-granular

(resp. G-granular ) variable precision lower (resp. upper) approximation operator defined above. In this paper, (O,G)-

GVPFRSs are defined on arbitrary fuzzy relations, where O and G do not need to be dual w.r.t. the standard negation

N.

In the next propositions, the equivalent statements of the O-granular (resp. G-granular) variable precision lower

(resp. upper) approximation operator will be given.

Proposition 3.1. Let R be a fuzzy relation on X. For all A ∈ F (X), x ∈ X and Xi ∈ Fβ(X), define

g
(i)

A
(x) =

∧

y∈Xi

IO(R(x, y), A(y))

gA(x) =
∨

Xi∈Fβ(X)

g
(i)

A
(x).

Then, it always holds

R
β

O
(A) =

⋃

{[xgA(x)]
O
R : x ∈ X} and {y : [xgA(x)]

O
R (y) ≤ A(y)} ∈ Fβ(X),

where x ∈ X and A ∈ F (X).

Proof. Let x ∈ X, λ ∈ [0, 1], and {y ∈ X : [xλ]
O
R

(y) ≤ A(y)} be written as Y, while {y ∈ X : [xλ]
O
R

(y) ≤ A(y)} ∈ Fβ(X).

Then for all y ∈ Y, consider the following equivalences,

[xλ]
O
R (y) ≤ A(y)⇐⇒ O(R(x, y), λ) ≤ A(y)⇐⇒ λ ≤ IO(R(x, y), A(y)),

that is λ ≤ gA(x). Hence, for all A ∈ F (X), it always holds R
β

O
(A) ⊆

⋃

{[xgA(x)]
O
R

: x ∈ X} by Definition 3.2.

Another side, for all x ∈ X, there exists Xi ∈ Fβ(X) such that gA(x) = g
(i)

A
(x). For all y ∈ Xi, we get that

[xgA(x)]
O
R (y) = O(R(x, y), g

(i)

A
(x))

= O(R(x, y),
∧

z∈Xi

IO(R(x, z), A(z)))

≤ O(R(x, y), IO(R(x, y), A(y)))

≤ A(y).

Thus, Xi ⊆ {y ∈ X : [xgA(x)]
O
R

(y) ≤ A(y)} and R
β

O
(A) ⊇

⋃

{[xgA(x)]
O
R

: x ∈ X} hold.

In summary, R
β

O
(A) =

⋃

{[xgA(x)]
O
R

: x ∈ X} and {y : [xgA(x)]
O
R

(y) ≤ A(y)} ∈ Fβ(X) hold for all x ∈ X and

A ∈ F (X).

Proposition 3.2. Let R be a fuzzy relation on X. For all A ∈ F (X), x ∈ X and Xi ∈ Fβ(X), define

h
(i)

A
(x) =

∨

y∈Xi

IG(RN(x, y), A(y))

hA(x) =
∧

Xi∈Fβ(X)

h
(i)

A
(x).

Then, it always holds

R
β

G(A) =
⋂

{[xhA(x)]
G
R : x ∈ X} and {y : A(y) ≤ [xhA(x)]

G
R (y)} ∈ Fβ(X),

where x ∈ X and A ∈ F (X).
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Proof. Let x ∈ X, λ ∈ [0, 1] and {y ∈ X : A(y) ≤ [xλ]
G
R

(y)} be written as Y, while {y ∈ X : A(y) ≤ [xλ]
G
R

(y)} ∈ Fβ(X).

Then for all y ∈ Y, consider the following equivalences,

A(y) ≤ [xλ]
G
R (y)⇐⇒ A(y) ≤ G(RN(x, y), λ)⇐⇒ IG(RN(x, y), A(y)) ≤ λ,

that is hA(x) ≤ λ. Hence, for all A ∈ F (X), it always holds R
β

G(A) ⊇
⋂

{[xhA(x)]
G
R

: x ∈ X} by Definition 3.2.

Another side, for all x ∈ X, there exists Xi ∈ Fβ(X) such that hA(x) = h
(i)

A
(x). For all y ∈ Xi, we get that

[xhA(x)]
G
R (y) = G(RN(x, y), h

(i)

A
(x))

= G(RN(x, y),
∨

z∈Xi

IG(RN(x, z), A(z)))

≥ G(RN(x, y), IG(RN(x, y), A(y)))

≥ A(y).

Thus, Xi ⊆ {y ∈ X : A(y) ≤ [xhA(x)]
G
R

(y)} and R
β

G(A) ⊆
⋂

{[xhA(x)]
G
R

: x ∈ X} hold.

In summary, R
β

G(A) =
⋂

{[xhA(x)]
G
R

: x ∈ X} and {y : A(y) ≤ [xhA(x)]
G
R

(y)} ∈ Fβ(X) hold for all x ∈ X and

A ∈ F (X).

Remark 3.2. The above propositions provide the equivalent expressions for R
β

O
and R

β

G with gA and hA on arbitrary

fuzzy relation. It is no longer need to consider fuzzy granule [xλ]
O
R

or [xλ]
G
R

for all x ∈ X, which facilitates more

efficient computation of the approximation operators. Note that the proofs of Proposition 3.2 and Proposition 3.1 are

similar. Therefore, in the following we only give the proof of the R
β

O
, and the proof of the R

β

G can be derived in a

similar way.

Proposition 3.3. Let R be a fuzzy relation on X. If overlap function O and grouping function G are dual w.r.t. N, then

for all A ∈ F (X), we obtain that

(gA)N = hAN and (hA)N = gAN .

Further, we get

(R
β

O
(A))N = R

β

G(AN) and (R
β

G(A))N = R
β

O
(AN).

Proof. If the operations O and G are dual w.r.t. N, then

(gA)N(x) =
∧

Xi∈Fβ(X)

N(g
(i)

A
(x))

=
∧

Xi∈Fβ(X)

∨

y∈Xi

N(IO(R(x, y), A(y)))

=
∧

Xi∈Fβ(X)

∨

y∈Xi

IG(RN(x, y), AN(y))

=
∧

Xi∈Fβ(X)

h
(i)

AN (x)

= hAN (x),

where for all A ∈ F (X) and x ∈ X. Hence, it always holds (gA)N = hAN . In a similar way, we obtain (hA)N = gAN .

For any A ∈ F (X) and y ∈ X, the following equations hold by Propositions 3.1 and 3.2.

(R
β

O
(A))N(y) =

∧

x∈X

N([xgA(x)]
O
R (y))
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=
∧

x∈X

N(O(R(x, y), gA(x)))

=
∧

x∈X

G(RN(x, y), (gA(x))N)

=
∧

x∈X

G(RN(x, y), hAN (x))

=
∧

x∈X

[xh
AN (x)]

G
R (y)

= R
β

G(AN)(y).

Therefore, we know that (R
β

O
(A))N = R

β

G(AN). Similarly, (R
β

G(A))N = R
β

O
(AN) holds.

The comparable property, as a fundamental property between upper and lower rough approximation operator is

discussed in literature [11, 12, 45]. Next, we study several situations where (O,G)-GVPFRSs satisfy comparable

property.

Remark 3.3. Based on the variable precision β, the comparable property of O-granular variable precision lower

approximation operator and G-granular variable precision upper approximation operator are discussed below in three

cases.

• (1) Variable precision β = 1

In particular, when the value of β is 1, we have Fβ(X) = {X}. Then for all A ∈ F (X) and x ∈ X,

gA(x) =
∧

y∈X

IO(R(x, y), A(y)).

According to Proposition 3.1, we obtain that for all z ∈ X,

R
β

O
(A)(z) =

∨

x∈X

O(R(x, z), gA(x))

=
∨

x∈X

O(R(x, z),
∧

y∈X

IO(R(x, y), A(y)))

≤
∨

x∈X

O(R(x, z), IO(R(x, z), A(z)))

≤ A(z).

Hence, if β = 1, it always holds that R
β

O
(A) ⊆ A. In a similar way, R

β

G(A) ⊇ A can be proved.

Furthermore, let R be a fuzzy O-similarity relation and O (resp. G) satisfy (O6) (resp.(G6)), then by Theorem

4.1.3 in [10], we can obtain that

R
β

O
(A)(x) =

∧

y∈X

IO(R(x, y), A(y)) and R
β

G(A) =
∨

y∈X

IG(RN(x, y), A(y)),

for all A ∈ F (X) and x ∈ X.

It follows from the reflexivity of R and Lemma 2.2 (1) that for all A ∈ F (X) and x ∈ X,

R
β

O
(A)(x) ≤ IO(R(x, x), A(x)) = IO(1, A(x)) = A(x),

R
β

G(A)(x) ≥ IG(RN(x, x), A(x)) = IG(0, A(x)) = A(x).

Hence, R
β

O
(A) ⊆ A ⊆ R

β

G(A) holds for all A ∈ F (X). As X is finite, then R
β

O
(A) ⊆ A ⊆ R

β

G(A) holds for all

A ∈ F (X) and
|X |−1

|X |
< β ≤ 1.

9



• (2) Arbitary variable precision β and fuzzy O-similarity relation R

Even if overlap function O and grouping function G are dual w.r.t the standard negation N(x) = 1 − x for all

x ∈ [0, 1], R
β

O
(A) and R

β

G(A) do not have comparable properties. A specific example is given below.

Let X = {x1, x2, x3} and fuzzy relation R on X as

R =





















1 0.6 1

0.6 1 0.6

1 0.6 1





















Here, we use overlap function O and fuzzy implication IO defined as, respectively,

O(x, y) = xy and IO(x, y) =















y

x
∧ 1, x , 0

1, x = 0
for all x, y ∈ [0, 1].

It is easy to see that fuzzy relation R is a fuzzy O-similarity relation for overlap function O. Let A = 0.8
x1
+ 0.1

x2
+ 0.6

x3

and β = 0.5. By Theorem 2 in [46], it holds that

R
β

O
(A) = g(A) =

0.6

x1

+
1

x2

+
0.6

x3

.

According to Theorem 3(1)in [46] or Proposition 3.3, we can obtain

R
β

G(A) = (R
β

O
(AN))N =

0.4

x1

+
0

x2

+
0.4

x3

,

where N is standard negation N(x) = 1 − x for all x ∈ [0, 1] and grouping function G takes G(x, y) = 1 − (1 −

x)(1 − y) for all x, y ∈ [0, 1].

• (3) Arbitary variable precision β and fuzzy relation R

Let X = {x1, x2, x3} and fuzzy relation R on X as

R =





















0 0.2 0.8

1 0 1

0 0.1 0





















.

Since
∨

y∈X

{O(R(x1, y),R(y, x1)} = 0.2 > R(x1, x1), R is not O-transitive. It is obvious that R is not fuzzy O-

similarity relation. Here, the overlap function O and the fuzzy implication IO from Case(2) continue to be

followed. Let A = 0.2
x1
+ 0

x2
+ 0.6

x3
and β = 0.5, By Proposition 3.1, it holds that

gA =
0.75

x1

+
0.6

x2

+
1

x3

.

Furthermore, we conclude that

R
β

O
(A) =

0.6

x1

+
0.15

x2

+
0.6

x3

.

Next, we reckon the G-granular variable precision upper approximation operator with N(x) = 1 − x, G(x, y) =

max{x, y} and IG(x, y) =











y, x < y

0, x ≥ y
for all x, y ∈ [0, 1]. It follows from Proposition 3.2 that

R
β

G(A) =
0.2

x1

+
0.8

x2

+
0.2

x3

.

Hence, R
β

O
and R

β

G are not comparable, where R
β

O
(A) and R

β

G(A) are not dual w.r.t. the standard negation N.
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3.2. The degenerated (O,G)-granular variable precision fuzzy rough sets

We define [x]R = {y : R(x, y) = 1} when R is a crisp relation on X. In particular, if fuzzy relations R and fuzzy sets

A take crisp relations and crisp sets, we call the existing models as the degenerated (O,G)-GVPFRSs.

Lemma 3.1. Let R be a crisp relation on X, then it holds that for all A ∈ F (X),

(R
β

O
(A))N = R

β

G(AN) and (R
β

G(A))N = R
β

O
(AN).

Proof. According to the character of crisp relation, then [xλ]
O
R
= [xλ]

∧
R

and [xλ]
G
R
= [xλ]

∨
R

hold for all x ∈ X and

λ ∈ [0, 1]. Due to the duality of minimum and maximum w.r.t. N and Proposition 3.3, for all A ∈ F (X), it holds that

(R
β

O
(A))N = R

β

G(AN) and (R
β

G(A))N = R
β

O
(AN).

Proposition 3.4. Let R be a crisp relation on X and A ⊆ X be a crisp set, then

R
β

O
(A) =

⋃

{[x]R : x ∈ X, |[x]R ∩ Ac| ≤ (1 − β)|X|},

R
β

G(A) =
⋂

{[x]c
R : x ∈ X, |[x]R ∩ A| ≤ (1 − β)|X|}.

Proof. For any λ ∈ (0, 1] and crisp sets A ⊆ X, we will prove the following holds.

{y : [x]O
R (y) ≤ A(y)} = {y : [x]R(y) ≤ A(y)}.

Let O(R(x, y), λ) ≤ A(y). If A(y) = 1, it is clear that R(x, y) ≤ A(y). If A(y) = 0, we can get that R(x, y) = 0,

otherwise, O(R(x, y), λ) = λ ≤ 0, which contradicts with λ ∈ (0, 1]. Thus, {y : [x]O
R

(y) ≤ A(y)} ⊆ {y : [x]R(y) ≤ A(y)}.

On the other side, {y : {[x]O
R

(y) ≤ A(y)} ⊇ {y : [x]R(y) ≤ A(y)} can hold apparently. Hence, it always holds that

{y : [x]O
R

(y) ≤ A(y)} = {y : [x]R(y) ≤ A(y)} for any crisp sets A. Then it follows Definition 3.2 that

R
β

O
(A) =

⋃

{[x]O
R : x ∈ X, λ ∈ [0, 1], {y : [xλ]

O
R (y) ≤ A(y)} ∈ Fβ(X)}

=
⋃

{[x]R : x ∈ X, {y : [x]R(y) ≤ A(y)} ∈ Fβ(X)}.

Further, we have the following equivalences,

{y : [x]R(y) ≤ A(y)} ∈ Fβ(X) ⇐⇒ A ∪ (Ac ∩ [x]c
R) ∈ Fβ(X)

⇐⇒ |A ∪ (Ac ∩ [x]c
R)| ≥ β|X|

⇐⇒ |Ac ∩ [x]R| ≤ (1 − β)|X|,

then R
β

O
(A) =

⋃

{[x]R : x ∈ X, |Ac ∩ [x]R| ≤ (1 − β)|X|} for all crisp sets A. In addition, RN = Rc and AN = Ac hold

when R and A are crisp relation and crisp set. The other equation can be obtained by Lemma 3.1.

Proposition 3.5. Let R and A be crisp relation and crisp subset on X, the following statements hold.

(1) Assuming that R is reflexive, then

{x : |[x]R ∩ Ac| ≤ (1 − β)|X|} ⊆ R
β

O
(A) and R

β

G(A) ⊆ {x : |[x]R ∩ A| > (1 − β)|X|}.

(2) Assuming that R is transitive, then

R
β

O
(A) ⊆ {x : |[x]R ∩ Ac| ≤ (1 − β)|X|} and {x : |[x]R ∩ A| > (1 − β)|X|} ⊆ R

β

G(A).

(3) Assuming that R is a preorder relation, then

R
β

O
(A) = {x : |[x]R ∩ Ac| ≤ (1 − β)|X|} and R

β

G(A) = {x : |[x]R ∩ A| > (1 − β)|X|}.
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Proof. (1) Since R is reflexive, then it follows Proposition 3.4 that

{x : |[x]R ∩ Ac| ≤ (1 − β)|X|} ⊆
⋃

{x : |[x]R ∩ Ac| ≤ (1 − β)|X|} = R
β

O
(A).

Further according to Lemma 3.1, one has that

R
β

G(A) = (R
β

O
(Ac))c ⊆ {x : |[x]R ∩ A| ≤ (1 − β)|X|}c = {x : |[x]R ∩ A| > (1 − β)|X|}.

(2) For any w ∈ R
β

O
(A), there exits an x ∈ X such that w ∈ [x]R and |[x]R ∩ Ac| ≤ (1 − β)|X|. Due to the transitivity

of R, R(w, y) ≤ R(x, y) holds for all y ∈ X. Therefore, we obtain [w]R ∩ Ac ⊆ [x]R ∩ Ac. Furthermore, it follows

Proposition 3.4 that

w ∈ {x : |[x]R ∩ Ac| ≤ (1 − β)|X|}.

So R
β

O
(A) ⊆ {x : |[x]R ∩ Ac| ≤ (1 − β)|X|}. According to Lemma 3.1 that

R
β

G(A) = (R
β

O
(Ac))c ⊇ ({x : |[x]R ∩ A| ≤ (1 − β)|X|})c = {x : |[x]R ∩ A| > (1 − β)|X|}.

(3) It can be proved by item (1) and item (2).

4. Characterizations of the (O,G)-granular variable precision fuzzy rough sets

By Remark 3.2, we realise that two fuzzy sets gA and hA are vital to calculate the R
β

G and R
β

O
, respectively. Thus,

we start this section with discussing their relevant properties. And then, some conclusions are drawn under diverse

conditions.

4.1. Some conclusions based on general fuzzy relations

Lemma 4.1. Let R be a fuzzy relation on X, then the following statements hold.

(1) g
(i)

(∩k∈I Ak)
=
⋂

k∈I g
(i)

Ak
and h

(i)

(∪k∈I Ak)
=
⋃

k∈I h
(i)

Ak
for all Xi ∈ Fβ(X) and {Ak}k∈I ⊆ F (X).

(2) A ⊆ B implies gA ⊆ gB and hA ⊆ hB f or all A, B ∈ F (X).

Proof. (1) By Lemma 2.1(2), it holds that

g
(i)

(
⋂

k∈I Ak)
(x) =

∧

y∈Xi

IO(R(x, y), (
∧

k∈I

Ak(x)))

=
∧

y∈Xi

∧

k∈I

IO(R(x, y), Ak(x))

=
∧

k∈I

∧

y∈Xi

IO(R(x, y), Ak(x))

=
∧

k∈I

g
(i)

Ak
(x)

=















⋂

k∈I

g
(i)

Ak















(x).

where x ∈ X and Xi ∈ Fβ(X). Hence, we get g
(i)

(
⋂

k∈I Ak)
=
⋂

k∈I g
(i)

Ak
. In a similar way, h

(i)

(
⋃

k∈I Ak)
=
⋃

k∈I h
(i)

Ak
can be

obtained for all Xi ∈ Fβ(X) and {Ak}k∈I ⊆ F (X).

(2) According to item (1), it can be directly proved.
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Lemma 4.2. Let R be a fuzzy relation on X, 1 and 0 be the identity element of overlap function O and grouping

function G, respectively. Then the following statements hold.

(1) gX = X and h∅ = ∅.

(2) αX ⊆ gαX
and hαX

⊆ αX f or all α ∈ [0, 1].

(3) If A = IO(yγ, αX) and γ = 1, then

gA(x) =































1, 0 ≤ β ≤
|X| − 1

|X|
,

IO(R(x, y), α),
|X| − 1

|X|
< β ≤ 1.

(4) If A = yα, then

hA(x) =































0, 0 ≤ β ≤
|X| − 1

|X|
,

IG(RN(x, y), α),
|X| − 1

|X|
< β ≤ 1.

Proof. (1) It follows Lemma 2.2(1) that IO(α, 1) = 1 and IG(α, 0) = 0 for all α ∈ [0, 1]. Then for all x ∈ X,

gX(x) =
∨

Xi∈Fβ(X)

∧

y∈Xi

(IO(R(x, y), X(y))) =
∨

Xi∈Fβ(X)

∧

y∈Xi

(IO(R(x, y), 1)) = 1,

h∅(x) =
∧

Xi∈Fβ(X)

∨

y∈Xi

(IG(RN(x, y), ∅(y))) =
∧

Xi∈Fβ(X)

∨

y∈Xi

(IG(RN(x, y), 0)) = 0.

Hence, we get that gX = X and h∅ = ∅.

(2) From Lemma 2.2(3), it follows that

gαX
(x) =

∨

Xi∈Fβ(X)

∧

y∈Xi

IO(R(x, y), αX(x))

=
∨

Xi∈Fβ(X)

∧

y∈Xi

IO(R(x, y), α)

≥ αX(x).

Hence, we get αX ⊆ gαX
. In a similar way, hαX

⊆ αX holds.

(3) It is easy to get Fβ(X) = {X} when
|X |−1

|X |
< β ≤ 1. Let A = IO(yγ, αX) and γ = 1, for any x ∈ X,

gA(x) =
∧

z∈X

IO(R(x, z), A(z))

= IO(R(x, y), IO(yγ(y), αX(y)))

= IO(R(x, y), IO(1, α))

= IO(R(x, y), α).

Otherwise, if 0 ≤ β ≤
|X |−1

|X |
, we obtain X − {y} ∈ Fβ(X). Then for all x ∈ X,

gA(x) ≥
∧

z∈ X−{y}

IO(R(x, z), A(z))

=
∧

z∈ X−{y}

IO(R(x, z), IO(yγ(z), α))

= 1.

(4) The proof is similar as item (3).
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Lemma 4.3. Let R be a fuzzy relation on X, overlap function O and grouping function G satisfy (O6) and (G6),

respectively. Then the following statements hold.

(1) g(IO(αX ,A)) = IO(αX , gA) and h(IG (αX , A)) = IG(αX , hA) f or all α ∈ [0, 1] and A ∈ F (X).

(2) O(αX , gA) ⊆ g(O(αX ,A)) and G(αX , hA) ⊇ h(G(αX ,A)) f or all α ∈ [0, 1] and A ∈ F (X).

Proof. (1) According to Lemma 2.1(2) and Lemma 2.1(2), one has that

g
(i)

(IO(αX ,A)
(x) =

∧

y∈Xi

IO(R(x, y), IO(α, A(y)))

=
∧

y∈Xi

IO(O(α,R(x, y)), A(y))

=
∧

y∈Xi

IO(α, IO(R(x, y), A(y)))

= IO(α,
∧

y∈Xi

(IO(R(x, y), A(y))))

= IO(α, g
(i)

A
(x))

= IO(αX , g
(i)

A
)(x).

where x ∈ X, α ∈ [0, 1] and Xi ∈ Fβ(X). Since Fβ(X) is finite, by Lemma 2.1(3), then for all A ∈ F (X),

g(IO(αX ,A)(x) =
∨

Xi∈Fβ(X)

g
(i)

(IO(αX , A))
(x)

=
∨

Xi∈Fβ(X)

IO(α, g
(i)

A
(x))

= IO(α,
∨

Xi∈Fβ(X)

g
(i)

A
(x))

= IO(α, gA(x))

= IO(αX , gA)(x).

Hence ,we get gIO(αX ,A) = IO(αX , gA). In a similar way, h(IG(αX ,A)) = IG(αX , hA) holds .

(2) According to Lemma 2.3(1) that for any x ∈ X,

g(O(αX ,A))(x) =
∨

Xi∈Fβ(X)

∧

y∈Xi

IO(R(x, y),O(α, A(y)))

≥
∨

Xi∈Fβ(X)

∧

y∈Xi

O(α, IO(R(x, y), A(y)))

= O(α,
∨

Xi∈Fβ(X)

∧

y∈Xi

IO(R(x, y), A(y)))

= O(αX , gA)(x).

Then we conclude O(αX , gA) ⊆ g(O(αX ,A)). In a similar way, G(αX , hA) ⊇ h(G(αX ,A)) holds.

Proposition 4.1. Let R be a fuzzy relation on X. Then the following statements hold.

(1) A ⊆ B implies R
β

O
(A) ⊆ R

β

O
(B) and R

β

G(A) ⊆ R
β

G(B) f or all A, B ∈ F (X).

(2) I f β > 0.5, then f or all A, B ∈ F (X),

R
β

O
(A) ∪ R

β

O
(B) ⊆ R

2β−1

O
(A ∪ B) and R

2β−1

G (A ∩ B) ⊆ R
β

G(A) ∩ R
β

G(B).
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Proof. (1) According to Proposition 3.1, 3.2 and Lemma 4.1(2), it can be directly proved.

(2) According to Proposition 3.1, it always holds that for all A, B ∈ F (X),

R
β

O
(A) ∪ R

β

O
(B) =

⋃

{[xgA(x)]
O
R ∪ [xgB(x)]

O
R : x ∈ X}.

there exist Xi , X j ∈ Fβ(X) such that gA(x) = g
(i)

A
(x) and gB(x) = g

(i)

B
(x). Hence, we have |Xi ∩ X j| ≥ (2β −

1)|X|, i.e., Xi ∩ X j ∈ F(2β−1)(X). Then for any y ∈ Xi ∩ X j,

([xgA(x)]
O
R ∪ [xgB(x)]

O
R )(y) = (O(R(x, y), g

(i)

A
(x))) ∨ (O(R(x, y), g

(i)

B
(x))) ≤ A(y) ∨ B(y).

So we obtain R
β

O
(A) ∪ R

β

O
(B) ⊆ R

(2β−1)

O
(A ∪ B). In a similar way, R

2β−1

G (A ∩ B) ⊆ R
β

G(A) ∩ R
β

G(B) holds.

Proposition 4.2. Let R be a fuzzy relation on X, 1 and 0 be the identity element of overlap function O and grouping

function G, respectively. Then the following statements hold.

(1) O(α,
∨

x∈X R(x, z)) ≤ R
β

O
(αX)(z) and R

β

G(αX)(z) ≤ G(α,
∧

x∈X RN(x, z)) for all α ∈ [0, 1] and z ∈ X.

(2) If a crisp set Y ⊆ X and β =
|Y |

|X |
, then f or all y ∈ X,

R
β

O
(Y)(z) ≥

∨

x∈X

R(x, z) and R
β

G(Yc)(z) ≤
∧

x∈X

RN(x, z).

(3) If A = IO(yγ, αX) and γ = 1, then

R
β

O
(A)(z) =



































∨

x∈X

R(x, z), 0 ≤ β ≤
|X| − 1

|X|
,

∨

x∈X

O(R(x, z), IO(R(x, y), α)),
|X| − 1

|X|
< β ≤ 1.

(4) I f A = yα, then

R
β

G(A)(z) =



































∧

x∈X

RN(x, z), 0 ≤ β ≤
|X| − 1

|X|
,

∧

x∈X

(G(RN(x, z), IG(RN(x, y), α))),
|X| − 1

|X|
< β ≤ 1.

Proof. (1) According to Lemma 4.2(2), it can be directly proved.

(2) If β = |Y |
|X |

, then Y ∈ Fβ(X) and for all x ∈ X,

gY (x) ≥
∧

y∈Y

IO(R(x, y), Y(y)) = 1.

Furthermore, for any z ∈ X,

R
β

O
(Y)(z) =

∨

x∈X

O(R(x, z), gY(x))

=
∨

x∈X

O(R(x, z), 1)

=
∨

x∈X

R(x, z).

(3) According to Lemma 4.2(3), it can be directly proved.
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(4) According to Lemma 4.2(4), it can be directly proved.

Remark 4.1. Consider X = {x1, x2, x3} and the fuzzy relation R on X as

R =





















0 0.4 0.4

0.2 0 0.2

0.2 0.2 0





















Here, we use overlap function ODB and fuzzy implication IO defined as, respectively,

ODB(x, y) =























2xy

x + y
, i f x + y , 0

0 , i f x + y = 0

IO(x, y) =



























xy

2x − y
, i f y <

2x

x + 1

1 , i f y ≥
2x

x + 1

for all x, y ∈ [0, 1]. Let A = 0.2
x1
+ 0.4

x2
+ 0

x3
, α = 1 and β = 0.5. Then from Proposition 3.1 that

R
β

O
(O(αX , A)) =

1
3

x1

+

4
7

x2

+

4
7

x3

,

and

O(αX ,R
β

O
(A)) =

1
2

x1

+

4
7

x2

+

4
7

x3

.

By comparison, we get O(αX ,R
β

O
(A)) ⊇ R

β

O
(O(αX , A)). In this example, the overlap function ODB does not satisfy

the associative law. Furthermore, according to the above conditions, we get R
β

O
(A) =

1
3

x1
+

2
5

x2
+

2
5

x3
. In particular, we

take α = 1. It follows from Proposition 3.1 that

IO(αX ,R
β

O
(A)) =

1
5

x1

+

1
4

x2

+

1
4

x3

,

and

R
β

O
(IO(αX , A)) =

1
4

x1

+

1
4

x2

+

1
4

x3

.

Hence, R
β

O
(IO(αX , A)) ⊇ IO(αX ,R

β

O
(A)).

In particular, the following conclusions can be given when overlap and grouping functions satisfy the associative

law.

Proposition 4.3. Let R be a fuzzy relation on X, overlap function O and grouping function G satisfy (O6) and (G6),

respectively. For all α ∈ [0, 1] and A ∈ F (X), the following statements hold.

(1) R
β

O
(IO(αX , A)) ⊆ IO(αX ,R

β

O
(A)) and IG(αX ,R

β

G(A)) ⊆ R
β

G(IG(αX , A)). Especially,

R
β

O
(IO(αX , ∅)) = IO(αX , ∅) implies R

β

O
(∅) = ∅;

R
β

G(IG(αX , X)) = IG(αX , X) implies R
β

G(X) = X.

(2) O(αX ,R
β

O
(A) ⊆ R

β

O
(O(αX , A)) and R

β

G(G(αX , A)) ⊆ G(αX ,R
β

G(A)).
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Proof. (1) By Lemma 4.3(1), 2.1(3) and 2.3(1), it holds that for all z ∈ X,

R
β

O
(IO(αX , A))(z) =

∨

x∈X

O(R(x, z), g(IO(αX ,A))(x))

=
∨

x∈X

O(R(x, z), IO(α, gA(x))

≤
∨

x∈X

IO(α,O(R(x, z), gA(x)))

= IO(α,
∨

x∈X

O(R(x, z), gA(x)))

= IO(α,R
β

O
(A)(z)).

Hence, we get R
β

O
(IO(αX , A)) ⊆ IO(αX ,R

β

O
(A)). In a similar way, IG(αX ,R

β

G(A)) ⊆ R
β

G(IG(αX , A)) holds.

(2) It follows from Lemma 4.3(2) and the associativity of the overlap function that

R
β

O
(O(αX , A))(z) =

∨

x∈X

O(R(x, z), g(O(αX ,gA(x))))

≥
∨

x∈X

O(R(x, z),O(α, gA(x))

=
∨

x∈X

O(α,O(R(x, z), gA(x)))

= O(α,
∨

x∈X

O(R(x, z), gA(x)))

= O(αX ,R
β

O
(A))(z).

Hence, we get R
β

O
(O(αX , A)) ⊇ O(αX ,R

β

O
(A)). In a similar way, R

β

G(G(αX , A)) ⊆ G(αX ,R
β

G(A)) holds for all

α ∈ [0, 1] and A ∈ F (X).

4.2. Some new conclusions based on special fuzzy relations

Proposition 4.4. Let R be a fuzzy relation on X, 1 and 0 be the identity element of overlap function O and grouping

function G, respectively. For all α ∈ [0, 1], the following statements are equivalent.

(1) R−1 is serial.

(2) X = R
β

O
(X).

(3) ∅ = R
β

G(∅).

(4) αX ⊆ R
β

O
(αX).

(5) R
β

G(αX) ⊆ αX .

(6) A crisp set Y ⊆ X and β =
|Y |

|X |
imply R

β

O
(Y) = X.

(7) A crisp set Y ⊆ X and β =
|Y |

|X |
imply R

β

G(Yc) = ∅.

(8) R
β

O
(IO(yγ, αX)) = X for all y ∈ X, if β ≤

|X |−1

|X |
and γ = 1.

(9) R
β

G(yα) = ∅ for all y ∈ X, if β ≤
|X |−1

|X |
.

Proof. By Proposition 4.2(2), (3) and (4), it holds that

(1)⇐⇒ (6)⇐⇒ (7)⇐⇒ (8)⇐⇒ (9).

Furthermore, we can obtain (1)⇒(4)⇒(2) by Proposition 4.2(3). The next will prove (2)⇒(1). Suppose R−1 is not

serial, then the existence of z0 ∈ X leads to
∨

x∈X R(x, z0) < 1. Further, from Lemma 4.2(1), one concludes that

R
β

O
(X)(z0) =

∨

x∈X

O(R(x, z0), gX(x))
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=
∨

x∈X

O(R(x, z0), 1)

= O(
∨

x∈X

R(x, z0), 1)

< O(1, 1) = 1,

which contradicts with X = R
β

O
(X). Therefore R−1 is serial. In a similar way, we obtain (1)⇒(5)⇒(3)⇒(1).

Furthermore, the equivalent conditions related to the seriality property of R can be easily obtained by exchanging

the positions of R and R−1.

Proposition 4.5. Let R satisfy reflexivity, then the following statements hold.

(1) gA ⊆ R
β

O
(A) and R

β

G(A) ⊆ hA f or all A ∈ F (X).

(2) R
β

O
(X) = X and R

β

G(∅) = ∅.

(3) αX ⊆ R
β

O
(αX) and R

β

G(αX) ⊆ αX f or all α ∈ [0, 1].

(4) R
β

O
(Y) = X and R

β

G(Yc) = ∅, where Y is a crisp set on X and β =
|Y |

|X |
.

(5) R
β

O
(IO(yγ, αX)) = X and R

β

G(yα) = ∅, if β ≤
|X |−1

|X |
, γ = 1 and α ∈ [0, 1].

Proof. According to Proposition 3.1, 3.2 and 4.4, it can be directly proven.

Proposition 4.6. Let R satify symmetry. For all A ∈ F (X), the following statements hold.

R
β

O
(A) = (R−1)

β

O
(A) and R

β

G(A) = (R−1)
β

G(A).

Proof. It can be easily derived from the symmetry of R.

Remark 4.2. Consider X = {x1, x2, x3} and crisp relation R on X as

R =





















1 0 1

0 1 0

1 0 1





















It is easy to conclude that crisp relation R is a fuzzy O-similarity relation for any overlap function O.

Here, we apply overlap function ODB and its residual implication IO defined as Remark 4.1. Let A = 0.2
x1
+ 0

x2
+

0.5
x3
, α =

∧

x∈X R(x, x) and β = 0.5. By Proposition 3.1, we conclude that

gA =

1
3

x1

+
1

x2

+

1
3

x3

.

Hence, the O-granular variable precision lower approximation operator is

R
β

O
(A) =

1
2

x1

+
1

x2

+

1
2

x3

.

Furthermore, we obtain the following conclusions,

O(αX ,R
β

O
(A)) =

2
3

x1

+
1

x2

+

2
3

x3

,

and

R
β

O
(R
β

O
(A)) =

1
2

x1

+
1

x2

+

1
2

x3

.

It indicates that gA ⊆ R
β

O
(A) and O(αX ,R

β

O
(A)) ⊇ R

β

O
(R
β

O
(A)). However, the following conclusions can be obtained

when O satisfies (O6).
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Proposition 4.7. Let R satisfy O-transitivity, α =
∧

x∈X R(x, x), overlap function O and grouping function G satisfy

(O6) and (G6), respectively. For all A ∈ F (X), the following statements hold.

(1) R
β

O
(A) ⊆ gA and O(αX ,R

β

O
(A)) ⊆ R

β

O
(R
β

O
(A)).

(2) hA ⊆ R
β

G(A) and R
β

G(R
β

G(A)) ⊆ G((αX)N ,R
β

G(A)), if O and G are dual w.r.t. N.

Proof. (1) For any z ∈ X, there exist x ∈ X and Xi ∈ Fβ(X) such that

R
β

O
(A)(z) = O(R(x, z), g

(i)

A
(x)).

Furthermore, according to Lemma 2.1(1) and (O6), one concludes that for all y ∈ Xi,

O(R(z, y),R
β

O
(A)(z)) = O(R(z, y),O(R(x, z), g

(i)

A
(x)))

= O(O(R(z, y),R(x, z)), g
(i)

A
(x))

≤ O(R(x, y), g
(i)

A
(x))

≤ O(R(x, y), IO(R(x, y), A(y)))

≤ A(y).

Hence, we know that R
β

O
(A)(z) ≤ g

(i)

A
(z) ≤ gA(z), that is to say, R

β

O
(A) ⊆ gA holds.

Let B = R
β

O
(A). By Proposition 3.1, then it follows that for all y ∈ X and Xi ∈ Fβ(X),

B(y) = R
β

O
(A)(y)

=
∨

x∈X

O(R(x, y), gA(x))

≥ O(R(y, y), gA(y))

= O(R(y, y),
∨

Xi∈F (X)

g
(i)

A
(y))

≥ O(R(y, y), g
(i)

A
(y)).

According to Lemma 2.3(1) and (2), the following holds for all x ∈ X and Xi ∈ Fβ(X),

g
(i)

B
(x) =

∧

y∈Xi

IO(R(x, y), B(y))

≥
∧

y∈Xi

IO(R(x, y),O(R(y, y), g
(i)

A
(y)))

≥
∧

y∈Xi

O(R(y, y), IO(R(x, y), g
(i)

A
(y)))

=
∧

y∈Xi

O(R(y, y),
∧

z∈Xi

IO(R(x, y), IO(R(y, z), A(z)))

=
∧

y∈Xi

O(R(y, y),
∧

z∈Xi

IO(O(R(x, y),R(y, z)), A(z)))

≥
∧

y∈Xi

O(R(y, y),
∧

z∈Xi

IO(O(R(x, z), A(z))))

=
∧

y∈Xi

O(R(y, y), g
(i)

A
(x))

= O(
∧

y∈Xi

R(y, y), g
(i)

A
(x))

≥ O(α, g
(i)

A
(x)).
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Further, gB(x) ≥ O(α, g
(i)

A
(x)) can be derived, then

O(R(x, y), g
R
β

O
(A)(x)

) ≥ O(R(x, y),O(α, g
(i)

A
(x))) = O(α,O(R(x, y), g

(i)

A
(x))).

So we obtain

R
β

O
(R
β

O
(A)) ⊇ O(αX ,R

β

O
(A)).

(2) According to item (1) and Proposition 3.3, it can be directly proved.

When R takes the fuzzy O-preorder relation, we get the following conclusions.

Proposition 4.8. Let R satisfy fuzzy O-preorder relation, overlap funtion O and grouping function G satisfy (O6) and

(G6), respectively. For any A ∈ F (X), the following statements hold.

(1) R
β

O
(A) = gA and R

β

O
(A) ⊆ R

β

O
(R
β

O
(A)).

(2) R
β

G(A) = hA and R
β

G(R
β

G(A)) ⊆ R
β

G(A), if O and G are dual w.r.t. N.

Proof. According to Proposition 3.3, 4.5 and 4.7, it can be directly proven.

Proposition 4.9. Let R satisfy fuzzy O-preorder relation, overlap funtion O and grouping function G satisfy (O6) and

(G6), respectively. If O and G are dual w.r.t. N, then the following statements hold.

(1) R
β

O
(IO(αX , A)) = IO(αX ,R

β

O
(A)) and R

β

G(IG(αX , A)) = IG(αX ,R
β

G(A)) for all α ∈ [0, 1] and A ∈ F (X).

(2) R
β

O
(∅) = ∅ i f and only i f R

β

O
(IO(αX , ∅)) = IO(αX , ∅) f or all α ∈ [0, 1].

(3) R
β

G(X) = X i f and only i f R
β

G(IG(αX , X)) = IG(αX , X) f or all α ∈ [0, 1].

(4) If β > 0.5, then f or all A, B ∈ F (X),

R
β

O
(A) ∩ R

β

O
(B) ⊆ R

(2β−1)

O
(A ∩ B), R

(2β−1)

G (A ∩ B) ⊆ R
β

G(A) ∩ R
β

G(B);

R
β

O
(A) ∪ R

β

O
(B) ⊆ R

(2β−1)

O
(A ∪ B), R

(2β−1)

G (A ∪ B) ⊆ R
β

G(A) ∪ R
β

G(B).

Proof. (1) Let x ∈ X and λ = IO(α,R
β

O
(A)(x)), then we get O(α, λ) ≤ R

β

O
(A)(x). According to Proposition 3.1 and

4.8(1), there exists an Xi ∈ Fβ(X) such that

O(α, λ) ≤ R
β

O
(A)(x) = gA(x) = g

(i)

A
(x) =

∧

y∈Xi

IO(R(x, y), A(y)).

Then for all y ∈ Xi,

O(α, λ) ≤ IO(R(x, y), A(y)) ⇐⇒ O(O(α, λ),R(x, y)) ≤ A(y)

⇐⇒ O(α,O(λ,R(x, y))) ≤ A(y)

⇐⇒ [xλ]
O
R (y) ≤ IO(α, A(y)).

According to Definition 3.2, it holds that [xλ]
O
R
⊆ R

β

O
(IO(αX , A)). On the other hand, λ = [xλ]

O
R

(x) ≤ R
β

O
(IO(αX , A))(x),

since R is the fuzzy O-preorder relation. Furthermore, according to Proposition 4.3(1), we obtain that R
β

O
(IO(αX , A)) =

IO(αX ,R
β

O
(A)) for any α ∈ [0, 1] and A ∈ F (X). In a similar way, R

β

G(IG(αX , A)) = IG(αX ,R
β

G(A)) holds.

(2) According to item (1) and Proposition 4.3(1), it can be directly proved.

(3) According to item (1) and Proposition 4.3(1), it can be directly proved.
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(4) Let x ∈ X, by Proposition 4.8(1), we get R
β

O
(A)(x) = gA(x) and R

β

O
(B)(x) = gB(x), then

Xi = {y : [xgA(x)]
O
R (y) ≤ A(y)} and X j = {y : [xgB(x)]

O
R (y) ≤ B(y)}.

Hence, Xi , X j ∈ Fβ(X) by Proposition 3.1, we have Xi ∩ X j ∈ F(2β−1)(X). It holds that for all y ∈ Xi ∩ X j,

[x(gA(x)∧gB(x))]
O
R (y) = O(R(x, y), gA(x)) ∧ O(R(x, y), gB(x)) ≤ A(y) ∧ B(y).

So [x(gA(x)∧gB(x))]
O
R
⊆ R

(2β−1)

O
(A ∩ B). Since O has 1 as identity element and R is reflexive, we conclude that,

R
β

O
(A)(x) ∧ R

β

O
(B)(x) = gA(x) ∧ gB(x) = [x(gA(x)∧gB(x))]

O
R (x) ≤ R

(2β−1)

O
(A ∩ B)(x),

then R
β

O
(A) ∩ R

β

O
(B) ⊆ R

(2β−1)

O
(A ∩ B). In a similar way, we get that R

(2β−1)

G (A ∪ B) ⊆ R
β

G(A) ∪ R
β

G(B). The rest can

be proved from Proposition 4.1(2).

Considering special fuzzy relations, we will further explore the characteristics of R
β

O
(R
β

O
(A)) and R

β

G(R
β

G(A)).

Proposition 4.10. Let α =
∧

x∈X R(x, x), overlap funtion O and grouping function G satisfy (O6) and (G6), respec-

tively. For any A ∈ F (X), the following statements hold.

(1) If R(x, y) ≤ IO(A(x), A(y)) f or all x, y ∈ X, then

R
β

O
(O(αX , A)) ⊆ R

β

O
(R
β

O
(A)).

(2) If O and G are dual w.r.t. N, and RN(x, y) ≥ IG(A(x), A(y)) f or all x, y ∈ X, then

R
β

G(R
β

G(A)) ⊆ R
β

G(G((αX)N , A)).

Proof. (1) Let Xi ∈ Fβ(X), B = O(αX , A) and C = R
β

O
(A). From Lemma 2.1(2) and 2.3(2) that for any x ∈ X,

IO(g
(i)

B
(x), g

(i)

C
(x)) = IO(g

(i)

B
(x),
∧

y∈Xi

IO(R(x, y),C(y)))

=
∧

y∈Xi

IO(g
(i)

B
(x), IO(R(x, y),C(y)))

≥
∧

y∈Xi

IO(IO(R(x, y),O(α, A(y))), IO(R(x, y),C(y)))

≥
∧

y∈Xi

IO(O(α, A(y)),C(y)))

≥
∧

y∈Xi

IO(O(α, A(y)),O(R(y, y), g
(i)

A
(y)))

≥
∧

y∈Xi

IO(O(R(y, y), A(y)),O(R(y, y), g
(i)

A
(y)))

≥
∧

y∈Xi

IO(A(y), g
(i)

A
(y))

=
∧

y∈Xi

∧

z∈Xi

IO(A(y), IO(R(y, z), A(z)))

=
∧

y∈Xi

∧

z∈Xi

IO(R(y, z), IO(A(y), A(z)))

= 1.

It follows Lemma 2.2(2) that g
(i)

B
(x) ⊆ g

(i)

C
(x). Thus we have R

β

O
(O(αX , A)) ⊆ R

β

O
(R
β

O
(A)).
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(2) According to item (1) and Proposition 3.3, it can be directly proved.

At the end of this section, sufficient and necessary conditions for (O,G)-GVPFRSs to be equal under two different

fuzzy relations are given.

Lemma 4.4. Let S ,R be fuzzy O-preorder relations, S ⊆ R, overlap funtion O and grouping function G satisfy (O6)

and (G6), respectively. If O and G are dual w.r.t. N, then the following statements hold.

R
β

O
(A) ⊆ S

β

O
(A) and S

β

G(A) ⊆ R
β

G(A).

Proof. According to Lemma 2.1(4) and Proposition 4.8, it can be directly proved.

Proposition 4.11. Let R satisfy fuzzy O-transitivity, overlap function O and grouping function G satisfy (O6) and

(G6), respectively. If O and G are dual w.r.t. N, then the following statements hold.

(1) If S
β

O
(A)(x) = R

β

O
(A)(x), then {y : [x

S
β

O
(A)(x)

]O
R

(y) ≤ A(y)} ∈ Fβ(X).

(2) If S
β

G(A)(x) = R
β

G(A)(x), then {y : A(y) ≤ [x
S
β

G(A)(x)
]G
R

(y)} ∈ Fβ(X).

Proof. (1) Combining Proposition 4.7(1) and S
β

O
(A)(x) = R

β

O
(A)(x), we conclude that

{y : [x
S
β

O
(A)(x)

]O
R (y) ≤ A(y)} = {y : [x

R
β

O
(A)(x)

]O
R (y) ≤ A(y)} ⊇ {y : [xgA(x)]

O
R (y) ≤ A(y)}.

Hence, it follows Proposition 3.1 that {y : [x
S
β

O
(A)(x)

]O
R

(y) ≤ A(y)} ∈ Fβ(X).

(2) The proof is similar as item (1).

Proposition 4.12. Let S ,R be fuzzy O-preorder relations, S ⊆ R, overlap function O and grouping function G satisfy

(O6) and (G6), respectively. If O and G are dual w.r.t. N, then the following statements hold.

(1) If {y : [x
S
β

O
(A)(x)

]O
R

(y) ≤ A(y)} ∈ Fβ(X) f or all x ∈ X, then S
β

O
(A) = R

β

O
(A).

(2) If {y : A(y) ≤ [x
S
β

G(A)(x)
]G
R

(y)} ∈ Fβ(X) f or all x ∈ X, then S
β

G(A) = R
β

G(A).

Proof. (1) Let Xi = {y : [x
S
β

O
(A)(x)]

O
R

(y) ≤ A(y)}, then Xi ∈ Fβ(X) and for all x ∈ X,

S
β

O
(A)(x) ≤

∧

y∈Xi

IO(R(x, y), A(y)) = g
(i)

A
(x) ≤ gA(x) = R

β

O
(A)(x).

Hence, we obtain S
β

O
(A) = R

β

O
(A) by Lemma 4.4.

(2) The proof is similar as item (1).

Combining the two propositions above, the following conclusion holds.

Proposition 4.13. Let S ,R be fuzzy O-preorder relations, S ⊆ R, overlap function O and grouping function G satisfy

(O6) and (G6), respectively. If O and G are dual w.r.t. N, then the following statements hold.

S
β

O
(A) = R

β

O
(A) ⇐⇒ {y : [x

S
β

O
(A)(x)

]O
R (y) ≤ A(y)} ∈ Fβ(X),

S
β

G(A) = R
β

G(A) ⇐⇒ {y : A(y) ≤ [x
S
β

G(A)(x)
]G
R (y)} ∈ Fβ(X).

Furthermore, when fuzzy sets are taken as crisp sets, the following conclusions hold.
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Proposition 4.14. Let S ,R be fuzzy O-preorder relation, S ⊆ R, overlap function O and grouping function G satisfy

(O6) and (G6). If O and G are dual w.r.t. N, for all crisp set A, the following statements hold .

S
β

O
(A) = R

β

O
(A) ⇐⇒ |{y : y < A, [x

S
β

O
(A)(x)

]O
R (y) = 0}| ≥ β|X| − |A|,

S
β

G(A) = R
β

G(A) ⇐⇒ |{y : y ∈ A, [x
S
β

G(A)(x)
]G
R (y) = 1}| ≥ |A| + (β − 1)|X|.

Proof. For any crisp set A, we can conclude that,

{y : [x
S
β

O
(A)(x)

]O
R (y) ≤ A(y)} = A

⋃

{y : y < A, [x
S
β

O
(A)(x)

]O
R (y) = 0}.

Hence, according to Proposition 4.13 that

S
β

O
(A) = R

β

O
(A) ⇐⇒ |{y : y < A, [x

S
β

O
(A)(x)

]O
R (y) = 0} ≥ β|X| − |A|.

The equivalent expression about G can be proven in a similar way.

5. Conclusions

In this paper, a new type of fuzzy rough set model on arbitrary fuzzy relations was defined by using overlap and

grouping functions, which called (O,G)-GVPFRSs. Meanwhile, we gave two equivalent expressions of the upper

and lower approximation operators applying fuzzy implications and co-implications, which facilitate more efficient

calculations. In particular, some special conclusions were further discussed, when fuzzy relations and sets degenerated

to crisp relations and sets. In addition, we characterized the (O,G)-GVPFRSs based on diverse fuzzy relations.

Finally, the richer conclusions about (O,G)-GVPFRSs were gave under some addtional conditions. In general, this

paper further explored the GVPFRSs from a theoretical perspective based on overlap and grouping functions.
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