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Abstract

In this paper, for solving large-scale nonlinear equations we first pro-
pose a nonlinear sampling Kaczmarz-Motzkin (NSKM) method. Based
on the local tangential cone condition and the Jensen’s inequality,
we prove convergence of our method with two different assumptions.
Then, for solving nonlinear equations with the convex constraints
we propose two variants of the NSKM method: the projected sam-
pling Kaczmarz-Motzkin (PSKM) method and the accelerated pro-
jected sampling Kaczmarz-Motzkin (APSKM) method. With the use
of the nonexpansive property of the projection and the convergence
of the NSKM method, the convergence analysis is obtained. Numer-
ical results show that the NSKM method with the sample of the
suitable size outperforms the nonlinear randomized Kaczmarz (NRK)
method in terms of calculation times. The APSKM and PSKM methods
are practical and promising for the constrained nonlinear problem.

Keywords: Large-scale nonlinear equations, Finite convex constraints,

Sampling Kaczmarz-Motzkin method, Projection method, Randomized

accelerated projection method
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1 Introduction

Consider the nonlinear equations with finite convex constraints

f(x) = 0 subject to x ∈ C, (1)

where f : D(f) ⊆ R
n → R

m is a nolinear vector-valued function, x ∈ R
n is an

unknown vector and C is a nonempty intersection of finite nonempty closed

convex sets Ci, i.e. C =
kc⋂
i=1

Ci (kc is potentially a large number). If x∗ ∈ R
n

exists such that f(x∗) = 0 and x∗ ∈ C, then x∗ is a solution of (1). Such
problems arise from many practical applications, e.g., electrical impedance
tomography, circuit problems and chemical equilibrium systems.

When C = R
n, the system (1) is a unconstrained problem. This problem

has attracted widespread attention. Many computational methods have been
proposed, for example, Newton method [1], Quasi-Newton method [2], Gauss-
Newton method [3] and Levenberg-Marquardt method [4]. These methods
require the information of the whole nonlinear system, which may needs a large
amount of computation for solving a large-scale nonlinear system. Stochas-
tic gradient descent (SGD) method [5] requires only evaluating one randomly
selected nonlinear equation at each iteration, instead of the whole nonlinear
system, which substantially reduces the computational cost per iteration and
enables excellent to deal with the large-scale problems. Recently, Wang and
Li et al. [6] proposed a class of randomized Kaczmarz algorithms for solving
large-scale nonlinear equations with specific assumptions, which only needs to
calculate one row of the Jacobian matrix instead of the entire Jacobian matrix
at each iteration and reduced the amount of calculation and storage. In addi-
tion, numerical results showed that algorithms proposed in [6] are superior to
the SGD algorithm. However, in the nonlinear randomized Kaczmarz (NRK)
method [6], to determine the row index of the Jacobian matrix, all entries
of f(x) need to be calculated at each step, which is expensive and inefficient
when the size of f(x) is very large. In order to overcome the problem, Needell
et al. [7] presented the sampling Kaczmarz-Motzkin (SKM) method for solv-
ing large-scale systems of linear inequalities, which only needs to compute a
portion of the residuals at each step.

In general, the system (1) is a large-scale nonlinear problems with a large
number of convex constraints. Based the SGD method, Wang [8] studied the
stochastic gradient descent method with a single random projection (PSGD).
They randomly picked one out of all constraint sets and found the projection
onto it after using stochastic gradient descent at each iteration. Meanwhile,
using a linear combination of several projections, Qin and Etesami [9] devised a
randomized accelerated projection algorithm, which has the faster convergence
rate than the classic cyclic projection method.

In this paper, motivated by [7], we first present a nonlinear sampling
Kaczmarz-Motzkin (NSKM) method for a unconstrained problem (1) and
establish the corresponding convergence theory with two different assumptions.



Springer Nature 2021 LATEX template

On sampling Kaczmarz-Motzkin methods for solving large-scale nonlinear systems 3

Preliminary numerical results show that the NSKM method is more effective
to solve the large-scale nonlinear equations than the NRK method in terms of
calculation times. Then, inspired by the ideas in [8], [9] and the NSKMmethod,
for the system (1) with convex constraints we propose the projected sampling
Kaczmarz-Motzkin (PSKM) method and the accelerated projected sampling
Kaczmarz-Motzkin (APSKM) method. Applying the nonexpansive property of
the projection and the local tangential cone condition of the system, we obtain
the convergence analyses of the two new methods. The numerical results con-
firm the PSKM and APSKMmethods have advantages over the PSGD method
in terms of the number of iteration steps and calculation times .

The remaining part of the paper is organized as follows. In Section 2, we
present the NSKM method and analyzed its convergence. In Section 3, we
extend the NSKM method to get two variants of the NSKM method and prove
the convergences of these methods. In Section 4, we provide some numerical
experiments to display the practical performence of the proposed methods.
Finally, we finish this paper with a conclusion.

Throughout the paper, we use |·| to denote the scalar absolute value and ‖·‖
to denote the vector 2-norm. The set of natural numbers is defined as N. For
a matrix A ∈ R

m×n, we use ‖A‖F , σmin(A) and A(i, :) to denote the matrix
Frobenius norm, the smallest non-zero singular value of matrix A and the
ith row of the matrix A, respectively. Let PC represent the metric projection
onto the set C. We indicate by Ek−1[·] the expected value conditional on the
first k − 1th iterations, and from the law of the iterated expectation we have
E[Ek−1[·]] = E[·].

2 The nonlinear sampling Kaczmarz-Motzkin
method

In this section, we first present the NSKM method to solve the nonlinear
equations

f(x) = 0, (2)

where f : D(f) ⊆ R
n → R

m is a nolinear vector-valued function, x ∈ R
n is an

unknown vector. The system (2) can also be written in the following form:

fi(x) = 0, i = 1, 2, ...,m,

where at least one fi : D(fi) ⊆ R
n → R(i = 1, 2, ...,m) are nonlinear operators.

Then, the convergence analysis of the NSKM method is followed.

2.1 The NSKM method

In each iteration of the NRK method, we note that the NRK method needs
to calculate f(x), which is very expensive and inefficient when the size of
nonlinear equations is large. Thus, we eager to design a more cheap algorithm
at each update to avoid computing all f(x). Motivated by the SKM method
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in [7], we propose the NSKM method, in which, a sample of β constraints is
randomly selected from all entrys of f(x) according to uniform probability and
a portion of f(x) need to be calculated instead of all f(x). Moreover, in the
NSKM method, we choose indicator ik by the maximal-residual criterion from
the selected sample. The NSKM method can be formulated as follows.

Algorithm 1 The nonlinear sampling Kaczmarz-Motzkin (NSKM) method

Input: f(x), β, x0, k = 1, and maximum iteration steps T
Output: xk

1: while iteration termination criterion does not hold and k ≤ T do

2: Choose a sample of β constraints, τk, uniformly at random from all
entrys of f(x)

3: Compute residual of the selected sample rτk = −fτk(xk−1)
4: Set ik = argmax

i∈τk

| ri |
5: Compute gradient gik = ∇fik(xk−1)
6: Set xk = xk−1 +

rik
‖gik‖

2 g
T
ik

7: k = k + 1
8: end while

2.2 Convergence analysis of the NSKM method

In order to prove the convergence of Algorithm 1, we need to prepare some
definitions, lemmas and corollaries at the top of this section.

Definition 1 ([6]). A matrix A ∈ R
m×n is called row bounded below, if there

exists a positive number ε such that ‖A(i, :)‖ ≥ ε, for 1 ≤ i ≤ m.

Definition 2 ([10]). If there is a point x0 ∈ D(f) such that for every i ∈
{1, 2, ...,m} and ∀x1, x2 ∈ Bρ(x0) ⊂ D(f) (Bρ(x0) = {x|‖x−x0‖ ≤ ρ}), there
existis ηi ∈ [0, η) (η = max

i
ηi<

1
2 ) such that

|fi(x1)− fi(x2)−∇fi(x1)(x1 − x2)| ≤ ηi|fi(x1)− fi(x2)|, (3)

then the function f : D(f) ⊂ R
n → R

m is referred to satisfy the local tagential
cone condition in a ball Bρ(x0) of radius ρ around x0.

Lemma 1 ([6]). Let f(x) satisfy the local tangential cone condition in a ball
Bρ(x0). Then, for ∀x1, x2 ∈ Bρ(x0) ⊂ D(f), we have

| fi(x1)− fi(x2) |≥
1

1 + ηi
| ∇fi(x1)(x1 − x2) |, i ∈ {1, 2, ...,m}.

By Lemma 1, the following corollary is naturally followed.
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Corollary 1. Let f(x) satisfy the local tangential cone condition in a ball
Bρ(x0). Then, for ∀x1, x2 ∈ Bρ(x0) ⊂ D(f), we have

‖f(x1)− f(x2)‖2 ≥ 1

(1 + η)2
‖f ′(x1)(x1 − x2)‖2,

where η = max
i

ηi<
1
2 (i = 1, 2, ...,m).

Proof

‖f(x1)− f(x2)‖
2 = ‖(f1(x1)− f1(x2), f2(x1)− f2(x2), ..., fm(x1)− fm(x2))

T ‖2

= (f1(x1)− f1(x2))
2 + (f2(x1)− f2(x2))

2 + ...+ (fm(x1)− fm(x2))
2

≥
1

(1 + η1)2
(∇f1(x1)(x1 − x2))

2 +
1

(1 + η2)2
(∇f2(x1)(x1 − x2))

2 + ...

+
1

(1 + ηm)2
(∇fm(x1)(x1 − x2))

2

≥
1

(1 + η)2

m
∑

i=1

(∇fi(x1)(x1 − x2))
2

=
1

(1 + η)2
‖f ′(x1)(x1 − x2)‖

2
,

where the first inequality is obtained by Lemma 1. �

Lemma 2. Let f(x) satisfy the local tangential cone condition in a ball Bρ(x0)
with x∗ ∈ B ρ

2
(x0). Then the sequence {xk}∞k=0 generated by Algorithm 1 is

contained in Bρ(x0) ⊂ D(f). Furthermore, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− 2ηik+1
)

f2
ik+1

(xk)

‖∇fik+1
(xk)‖2

, (4)

where f(x∗) = 0.

Proof

‖xk+1 − x
∗‖2 − ‖xk − x

∗‖2

= ‖xk+1 − xk‖
2 + 2

〈

xk+1 − xk, xk − x
∗〉

= ‖ −
fik+1

(xk)

‖∇fik+1
(xk)‖2

∇fik+1
(xk)

T ‖2 + 2〈−
fik+1

(xk)

‖∇fik+1
(xk)‖2

∇fik+1
(xk)

T
, xk − x

∗〉

=
f2ik+1

(xk)

‖∇fik+1
(xk)‖2

− 2
fik+1

(xk)

‖∇fik+1
(xk)‖2

∇fik+1
(xk)(xk − x

∗)

=
f2ik+1

(xk)

‖∇fik+1
(xk)‖2

− 2
fik+1

(xk)

‖∇fik+1
(xk)‖2

fik+1
(xk)

+ 2
fik+1

(xk)

‖∇fik+1
(xk)‖2

(fik+1
(xk)− fik+1

(x∗)−∇fik+1
(xk)(xk − x

∗)).
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When k = 0, x0 ∈ Bρ(x0) and |fi(x0)−fi(x
∗)−∇fi(x0)(x0−x∗)| ≤ ηi|fi(x0)−

fi(x
∗)| (i = 1, 2, ..., m), then we have

‖x1 − x
∗‖2 − ‖x0 − x

∗‖2

=
f2i1(x0)

‖∇fi1 (x0)‖
2
+ 2

fi1(x0)

‖∇fi1 (x0)‖
2
(fi1(x0)− fi1 (x

∗)−∇fi1(x0)(x0 − x
∗))

− 2
fi1(x0)

‖∇fi1 (x0)‖
2
fi1(x0)

≤
f2i1(x0)

‖∇fi1 (x0)‖
2
+ 2ηi1

| fi1 (x0) |

‖∇fi1 (x0)‖
2
| fi1 (x0) | −2

f2i1(x0)

‖∇fi1 (x0)‖
2

= −(1− 2ηi1 )
f2i1(x0)

‖∇fi1(x0)‖
2
. (5)

Since x∗ ∈ Bρ/2(x0) and (5), we have

‖x1 − x0‖ = ‖x1 − x
∗ + x

∗ − x0‖ ≤ ‖x1 − x
∗‖+ ‖x∗ − x0‖ ≤ ρ.

Thus, x1 ∈ Bρ(x0).
We assume that when k ≤ n (n ∈ N), xk ∈ Bρ(x0) and (4) holds, then, for

k = n+ 1, similar to the derivation of k = 0, we have xn+1 ∈ Bρ(x0) and (4) holds.
�

Lemma 3 ([11]). A proper convex function is a function f : D(f) → R, where
D(f) ⊂ R

n is a nonempty convex set. Then Jensen’s inequality

f((1− α)x + αy) ≤ (1− α)f(x) + αf(y), ∀α ∈ [0, 1], ∀x, y ∈ D(f)

holds.

The following Lemma 4 is very important in the next convergence analysis,
so we review its proof in Appendix.

Lemma 4 ([11]). Let an convex set D(f) ⊂ R
n and a differentiable function

f : D(f) → R be given. If f is convex, then f(x) − f(y) ≥ f ′(y)(x− y) for all
x, y ∈ D(f).

Lemma 5 ([7]). Suppose {ai}ni=1 and {bi}ni=1 are real sequences and
ai+1>ai>0 and bi+1 ≥ bi ≥ 0. Then

n∑

i=1

aibi ≥
n∑

i=1

ābi,

where ā is the average ā = 1
n

∑n
i=1 ai.

Lemma 6 ([6]). Let a = {a1, a2, ..., an} and b = {b1, b2, ..., bn} be two arrays
with real components and satisfy aj ≥ 0, bj>0, j ∈ {1, 2, ..., n}, then the
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following inequality is established

n∑

j=1

aj

bj
≥

∑n
j=1 aj∑n
j=1 bj

.

2.2.1 Convergence analysis I

Assumption 1. The following assumptions hold.

(i) Nonlinear function f : D(f) ⊆ R
n → R

m satisfies the local tangential cone
condition in a ball Bρ(x0).

(ii) For ∀x ∈ D(f), f ′(x) is row bounded below and full column rank matrix.

Theorem 1. Assume that f(x) satisfies Assumption 1 and f(x) = 0 is solv-
able in B ρ

2
(x0). Then the iteration sequence {xk}∞k=0 generated by the NSKM

method converges to a solution x∗ ∈ B ρ
2
(x0) of f(x) in expectation. Moreover,

the mean squared iteration error satisfies

E‖xk − x∗‖2 ≤ (1 − (1− 2η)σ2
min(f

′(xk−1))

m(1 + η)2‖f ′(xk−1)‖2F
)E‖xk−1 − x∗‖2, k = 1, 2, ...

where η = max
i

ηi<
1
2 (i = 1, 2, ...,m).

Proof From Lemma 2, we have

‖xk − x
∗‖2 ≤ ‖xk−1 − x

∗‖2 − (1− 2ηik )
f2ik (xk−1)

‖∇fik (xk−1)‖2
.

By taking the conditional expectation on both sides of the above formula, we
obtain

Ek−1‖xk − x
∗‖2 ≤ ‖xk−1 − x

∗‖2 − Ek−1(1− 2ηik )
f2ik (xk−1)

‖∇fik (xk−1)‖2
.

Since ηik ∈ [0, η) (η = max
i

ηi<
1
2 ), we have that

Ek−1‖xk − x
∗‖2 ≤ ‖xk−1 − x

∗‖2 − (1− 2η)Ek−1

f2ik (xk−1)

‖∇fik (xk−1)‖2
. (6)

Next, we consider Ek−1
f2
ik

(xk−1)

‖∇fik (xk−1)‖2 . Let f
2
j (xk−1) denote the (j+ β)th small-

est entry of the {f2i (xk−1)}
m
i=1 (i.e., if we order all entries of {f2i (xk−1)}

m
i=1 from

smallest to largest, f2j (xk−1) is in the (j + β)th position). Each sample has equal

probability of being selected,
(m
β

)−1
. However, the selected frequency of each entry of

{f2i (xk−1)}
m
i=1 depends on its size. For example, the largest entry of {f2i (xk−1)}

m
i=1

can be selected from all samples in which it appears, while the βth smallest entry of
{f2i (xk−1)}

m
i=1 can be selected from only one sample. Therefore, we have that

Ek−1

f2ik (xk−1)

‖∇fik (xk−1)‖2
=

m−β
∑

j=0

(j+β−1
β−1

)

(m
β

)

f2j (xk−1)

‖∇fj(xk−1)‖2
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=
1
(m
β

)

m−β
∑

j=0

(

j + β − 1

β − 1

)

f2j (xk−1)

‖∇fj(xk−1)‖2

≥
1
(m
β

)

∑m−β
j=0

(j+β−1
β−1

)

f2j (xk−1)
∑m−β

j=0 ‖∇fj(xk−1)‖2

≥
1
(m
β

)

∑m−β
j=0

∑m−β
l=0

(l+β−1

β−1 )
m−β+1f

2
j (xk−1)

‖f ′(xk−1)‖
2
F

=

m−β
∑

j=0

1

m− β + 1

f2j (xk−1)

‖f ′(xk−1)‖
2
F

, (7)

where the first inequality comes from Lemma 6, the second inequality is from Lemma

5, because {
(j+β−1

β−1

)

}m−β
j=0 is strictly increasing and f2j (xk−1) is non-decreasing, and

the last equality follows from the fact that
∑m−β

l=0

(l+β−1
β−1

)

=
(m
β

)

, which is known
as the column-sum property of Pascal’s triangle.

Let sk−1 be the number of zero entries in f(xk−1) and Vk−1 = max{m −
sk−1,m− β + 1}, then from (7) we can derive

Ek−1

f2ik (xk−1)

‖∇fik (xk−1)‖2
≥

1

m− β + 1
min

{

m− β + 1

m− sk−1
, 1

}

‖f(xk−1)‖
2

‖f ′(xk−1)‖
2
F

=
1

Vk−1

‖f(xk−1)‖
2

‖f ′(xk−1)‖
2
F

. (8)

In accordance with formula (8), the formula (6) then further results in the
estimate

Ek−1‖xk − x
∗‖2

≤ ‖xk−1 − x
∗‖2 − (1− 2η)Ek−1

f2ik (xk−1)

‖∇fik (xk−1)‖2

≤ ‖xk−1 − x
∗‖2 − (1− 2η)

1

Vk−1

‖f(xk−1)‖
2

‖f ′(xk−1)‖
2
F

≤ ‖xk−1 − x
∗‖2 −

1− 2η

m

‖f(xk−1)‖
2

‖f ′(xk−1)‖
2
F

= ‖xk−1 − x
∗‖2 −

1− 2η

m

‖f(xk−1)− f(x∗)‖2

‖f ′(xk−1)‖
2
F

≤ ‖xk−1 − x
∗‖2 −

1− 2η

m‖f ′(xk−1)‖
2
F

1

(1 + η)2
‖f ′(xk−1)(xk−1 − x

∗)‖2

≤ ‖xk−1 − x
∗‖2 −

1− 2η

m‖f ′(xk−1)‖
2
F

1

(1 + η)2
σ
2
min(f

′(xk−1))‖xk−1 − x
∗‖2

= (1−
(1− 2η)σ2

min(f
′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

)‖xk−1 − x
∗‖2,

where the third inequality follows from the fact that Vk−1 ≤ m, the fourth inequality
comes from Corollary 1, the last inequality is from the fact that ‖f ′(xk−1)(xk−1 −
x∗)‖2 ≥ σ2

min(f
′(xk−1))‖(xk−1 − x∗)‖2 when f ′(xk−1) is full column rank.
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By taking full expectation on the both sides, we can further obtain

E‖xk − x
∗‖2 ≤ (1−

(1− 2η)σ2
min(f

′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

)E‖xk−1 − x
∗‖2.

Since σ2
min(f

′(xk−1))<‖f ′(xk−1)‖
2
F , and 0<1− 2η<(1 + η)2, we have

0<1−
(1− 2η)σ2

min(f
′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

<1.

Therefore, the iteration sequence {xk}
∞
k=0 generated by the NSKMmethod converges

to x∗ in expectation. �

Remark 1.

(1) To ensure that ‖∇fik+1
(xk)‖ 6= 0 in xk+1 = xk −

fik+1
(xk)

‖∇fik+1
(xk)‖2∇fik+1

(xk)
T

(k = 0, 1, 2, ...), we require that f ′(x) is row bounded below for every x ∈ D(f).
(2) For proving the desired convergence rate of the NSKM method, we need that
f ′(x) is full column rank matrix for every x ∈ D(f).

2.2.2 Convergence analysis II

Assumption 2. The following assumptions hold.

(i) fi : D(f) ⊆ R
n → R (i = 1, 2, ...,m) on the nonempty convex set D(f) are

convex functions.
(ii) For ∀x ∈ D(f), f ′(x) is row bounded below.
(iii) fi(x) ≥ 0 (i = 1, 2, ...,m) for ∀x ∈ D(f).

Theorem 2. Suppose that Assumption 2 holds and there exists x∗ such that
f(x∗) = 0. Then the iteration sequence {xk}∞k=0 generated by the NSKM
method converges to a solution x∗ of f(x). Moreover, iteration error satisfies

‖xk − x∗‖2 ≤ ‖xk−1 − x∗‖2 − f2
ik
(xk−1)

‖∇fik(xk−1)‖2
, k = 1, 2, ....

Proof

‖xk − x
∗‖2 − ‖xk−1 − x

∗‖2

=
f2ik (xk−1)

‖∇fik (xk−1)‖2
− 2

fik (xk−1)

‖∇fik (xk−1)‖2
∇fik (xk−1)(xk−1 − x

∗)

=
f2ik (xk−1)

‖∇fik (xk−1)‖2
+ 2

fik (xk−1)

‖∇fik (xk−1)‖2
(fik (xk−1) +∇fik (xk−1)(x

∗ − xk−1))

− 2
fik (xk−1)

‖∇fik (xk−1)‖2
fik (xk−1)

≤
f2ik (xk−1)

‖∇fik (xk−1)‖2
− 2

f2ik (xk−1)

‖∇fik (xk−1)‖2

= −
f2ik (xk−1)

‖∇fik (xk−1)‖2
,
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where the first equality is obtained by the proof of Lemma 2 and the first inequality
comes from Lemma 4 and (iii) of Assumption 2. �

Remark 2.

(1) When fi(x) is a convex function or satisfies (3) in a ball Bρ(x0) for
∀i ∈ {1, 2, ...,m}, by Theorem 1 and Theorem 2, we can get that the iteration
sequence generated by the NSKM method also converges to a solution of (2).
The result be stated in the following Corollary 2.
(2) When f(x) satisfies Assumption 2 or the conditions of Corollary 2,
the convergences of the NRK method and the NURK method can also be
guaranteed.

Corollary 2. Suppose that fi(x) : D(fi) → R satisfies (3) in a ball Bρ(x0) or
is a nonnegative convex function. Let f ′(x) is row bounded below for ∀x ∈ D(f)
and f(x) = 0 is solvable in B ρ

2
(x0). Then the iteration sequence {xk}∞k=0

generated by the NSKM method converges to a solution x∗ ∈ B ρ
2
(x0) of f(x).

3 The variants of the NSKM method

In this section, we will provide two variants of the NSKM method that
converge to a solution of (1). We note that a projection onto the closed convex
sets has one famous nonexpansive property, inspired by which, we present the
PSKM method. Furthermore, in [9], Qin and Etesami presented a randomized
accelerated projected algorithm which had the faster convergence rate com-
pared with the alternating projected method. Thus, we devise the APSKM
method.

3.1 The PSKM method

The PSKM method can be splited into two computational stages. The first
stage uses the one step NSKM update for the nonlinear equation f(x) = 0 and
gets xk− 1

2
, and the second stage outputs xk by utilizing one step randomized

projection onto the finite nonempty closed convex sets Ci (i = 1, 2, ..., kc). The
pseudo-code of the PSKM method is given in the following Algorithm 2.

3.1.1 Convergence analysis of the PSKM method

For proving the convergence of the PSKM method, we will first describe a
crucial lemma.

Lemma 7 ([9]). Given a nonempty closed convex set X ⊂ R
d and a point

y ∈ R
d, the following relations hold for the projection PX(y) of the point y on

X and for all x ∈ X,

〈PX(y)− y, x− PX(y)〉 ≥ 0,

‖PX(x) − PX(y)‖2 ≤ ‖x− y‖2 − ‖y − PX(y)‖2,
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Algorithm 2 The projected sampling Kaczmarz-Motzkin (PSKM) method

Input: f(x), β, x0, k = 1, number of the nonempty closed convex sets kc and
maximum iteration steps T

Output: xk.
1: while iteration termination criterion does not hold and k ≤ T do

2: Choose a sample of β constraints, τk, uniformly at random from all
entrys of f(x)

3: Compute residual of the selected sample rτk = −fτk(xk−1)
4: Set ik = argmax

i∈τk

| ri |
5: Compute gradient gik = ∇fik(xk−1).
6: Set xk− 1

2
= xk−1 +

rik
‖gik‖

2 g
T
ik

7: Choose a indicator, αk, uniformly at random from the set {1, 2, ..., kc}
8: xk = PCαk

(xk− 1
2
)

9: k=k+1
10: end while

with equality in the second relation if and only if x = PX(y) or y ∈ X.

Theorem 3. Suppose that f(x) satisfies Assumption 1 and (1) is solvable in
B ρ

2
(x0). Then the iteration sequence {xk}∞k=0 generated by the PSKM method

converges to a solution x∗ ∈ B ρ
2
(x0) of (1) in expectation. Moreover, the mean

squared iteration error satisfies

E‖xk − x∗‖2 ≤ (1 − (1− 2η)σ2
min(f

′(xk−1))

m(1 + η)2‖f ′(xk−1)‖2F
)E‖xk−1 − x∗‖2, k = 1, 2, ...

where η = max
i

ηi<
1
2 (i = 1, 2, ...,m).

Proof By Lemma 7, we have that

‖xk − x
∗‖2 = ‖PCαk

(xk− 1
2
)− PCαk

(x∗)‖2 ≤ ‖xk− 1
2
− x

∗‖2.

Since xk− 1
2
is generated by the NSKM method, from Theorem 1, we can get

E‖xk− 1
2

− x
∗‖2 ≤ (1−

(1− 2η)σ2
min(f

′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

)E‖xk−1 − x
∗‖2.

Thus,

E‖xk − x
∗‖2 ≤ E‖xk− 1

2
− x

∗‖2

≤ (1−
(1− 2η)σ2

min(f
′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

)E‖xk−1 − x
∗‖2.

By deducing in Theorem 1, we have

0<1−
(1− 2η)σ2

min(f
′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

<1.
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Therefore, the iteration sequence generated by the PSKM method converges to a
solution x∗ ∈ B ρ

2
(x0) of (1) in expectation. �

Similar to the proof of Theorem 3, we can get the following two theorems.

Theorem 4. Suppose that f(x) satisfies Assumption 2 and there exists x∗

such that f(x∗) = 0, x∗ ∈ C. Then the iteration sequence {xk}∞k=0 generated
by the PSKM method converges to a solution x∗ of (1). Moreover, iteration
error satisfies

‖xk − x∗‖2 ≤ ‖xk−1 − x∗‖2 − f2
ik
(xk−1)

‖∇fik(xk−1)‖2
, k = 1, 2, ...

Theorem 5. Assume that fi(x) : D(fi) → R satisfies (3) in a ball Bρ(x0) or
is a nonnegative convex function. Let f ′(x) is row bounded below for ∀x ∈ D(f)
and (1) is solvable in B ρ

2
(x0). Then the iteration sequence {xk}∞k=0 generated

by the PSKM method converges to a solution x∗ ∈ B ρ
2
(x0) of (1).

3.2 The APSKM method

The APSKM method also contains two computational stages. The first
stage is similar to that of the PSKM method. However, the second stage is
vastly different, which is divided into two cases to get xk. We give the APSKM
method in Algorithm 3.

3.2.1 Convergence analysis of the APSKM method

We will provide a lemma to prove the convergence of the APSKM method.

Lemma 8 ([9]). Given two closed convex sets Cαk
1
and Cαk

2
, with Cαk

1
∩Cαk

2
6=

∅. The parameter λk and the points xk− 3
5
, xk− 2

5
, xk− 1

5
, xk are generated accord-

ing to Step14, Step8, Step9, Step13, Step16 of Algorithm 3, respectively. Then
we have the following property:
for ∀x ∈ Cαk

1
∩ Cαk

2
,

‖xk − x‖2 ≤ ‖xk− 4
5
− x‖2. (9)

Proof See Appendix. �

Theorem 6. Suppose that f(x) satisfies Assumption 1 and (1) is solvable
in B ρ

2
(x0). Then the iteration sequence {xk}∞k=0 generated by the APSKM

method converges to a solution x∗ ∈ B ρ
2
(x0) of (1) in expectation. Moreover,

the mean squared iteration error satisfies

E‖xk − x∗‖2 ≤ (1 − (1− 2η)σ2
min(f

′(xk−1))

m(1 + η)2‖f ′(xk−1)‖2F
)E‖xk−1 − x∗‖2, k = 1, 2, ...
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Algorithm 3 The accelerated projected sampling Kaczmarz-Motzkin
(APSKM) method

Input: f(x), β, x0, k = 1, δ, number of the closed convex sets kc and
maximum iteration steps T

Output: xk

1: while iteration termination criterion does not hold and k ≤ T do

2: Choose a sample of β constraints, τk, uniformly at random from all
entrys of f(x)

3: Compute residual of the selected sample rτk = −fτk(xk−1)
4: Set ik = argmax

i∈τk

| ri |
5: Compute gradient gik = ∇fik(xk−1)
6: Set xk− 4

5
= xk−1 +

rik
‖gik‖

2 g
T
ik

7: Choose two indicators, αk
1 , αk

2 , uniformly at random from the set
{1, 2, ..., kc}

8: xk− 3
5
= PC

αk
1

(xk− 4
5
)

9: xk− 2
5
= PC

αk
2

(xk− 3
5
)

10: if ‖xk− 2
5
− xk− 3

5
‖∞<δ then

11: xk = xk− 2
5

12: else

13: xk− 1
5
= PC

αk
1

(xk− 2
5
)

14: Calculate λk =
‖x

k−

3
5

−x
k−

2
5

‖2

〈

x
k−

3
5

−x
k−

1
5

,x
k−

3
5

−x
k−

2
5

〉

15:

16: xk = xk− 3
5
+ λk(xk− 1

5
− xk− 3

5
)

17: end if

18: k=k+1
19: end while

where η = max
i

ηi<
1
2 (i = 1, 2, ...,m).

Proof If ‖xk− 2
5
− xk− 3

5
‖∞<δ, by Lemma 7, we have

‖xk − x
∗‖2 ≤ ‖xk− 4

5

− x
∗‖2.

If xk is obtained by Step16 of Algorithm 3, from Lemma 8, we obtain that

‖xk − x
∗‖2 ≤ ‖xk− 4

5

− x
∗‖2.

Since xk− 4
5

is obtained by one step update of the NSKM method, from Theorem 1,
we can get

E‖xk− 4
5

− x
∗‖2 ≤ (1−

(1− 2η)σ2
min(f

′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

)E‖xk−1 − x
∗‖2.

Thus,

E‖xk − x
∗‖2 ≤ E‖xk− 4

5
− x

∗‖2 ≤ (1−
(1− 2η)σ2

min(f
′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

)E‖xk−1 − x
∗‖2.
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By the derivation of Theorem 1, we have that

0<1−
(1− 2η)σ2

min(f
′(xk−1))

m(1 + η)2‖f ′(xk−1)‖
2
F

<1.

Thus, the iteration sequence {xk}
∞
k=0 generated by the APSKM method converges

to a solution x∗ ∈ B ρ
2
(x0) of (1) in expectation. �

Similar to the proof of Theorem 6, we can get the following two theorems.

Theorem 7. Suppose that f(x) satisfies Assumption 2 and there exists x∗

such that f(x∗) = 0, x∗ ∈ C. Then the iteration sequence {xk}∞k=0 generated
by the APSKM method converges to a solution x∗ of (1). Moreover, iteration
error satisfies

‖xk − x∗‖2 ≤ ‖xk−1 − x∗‖2 − f2
ik
(xk−1)

‖∇fik(xk−1)‖2
, k = 1, 2, ...

Theorem 8. Assume that fi(x) : D(fi) → R satisfies (3) in a ball Bρ(x0) or
is a nonnegative convex function. Let f ′(x) is row bounded below for ∀x ∈ D(f)
and (1) is solvable in B ρ

2
(x0). Then the iteration sequence {xk}∞k=0 generated

by the APSKM method converges to a solution x∗ ∈ B ρ

2
(x0) of (1).

4 Numerical experiments

In this section, firstly, on some given large-scale nonlinear equations, we
run the NSKM method while varying the sample size, β and compare the
NSKM method with the NRK method. Secondly, we investigate the perfor-
mances of the PSKM and APSKMmethods and compare them with the PSGD
method by testing some large-scale constrianed nonlinear equations. In our
implementations, the stopping criterion is

RSE =
‖xk − x∗‖2

‖x∗‖2 ≤ ε,

or the maximum iteration steps 500000 being reached. If the number of itera-
tion steps exceeds 500000, it is denoted as ”-”. IT and CPU denote the number
of iteration steps and CPU times (in seconds), respectively. IT and CPU are
the medians of the required iterations steps and the elapsed CPU times with
respect to 10 times repeated runs of the corresponding methods. All exper-
iments are carried out using MATLAB (version R2020b) on a laptop with
2.20-GHZ intel Core i7-10870H processor, 16 GB memory, and Windows 10
operating system.

4.1 Experiments on some large-scale nonlinear equations

Problem 1 The nonlinear equation is taken as

fi(x) = (exi−1 − 1)2, i = 1, 2, ...,m.
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Fig. 1: Pictures of the upper bound of the RSE versus CPU for the NRK
method and the NSKM method with different sample for Problem 1 (left) and
Problem 2 (right)

Obviously, the solution of the problem is x∗ = ones(n, 1) and the problem
satisfies (i), (iii) of Assumption 2. For (ii), it is possible that there exists 1 ≤
j ≤ m such that ‖∇fj(xk)‖2 = 0, but if the iteration don’t terminate, from the
construction of Algorithm 1, we can known that the probability of ‖∇fj(xk)‖ =
0 is very small when β has the right size. Similarly, the NRK method can also
be used to solve the problem. However, the nonlinear uniformly randomized
(NURK) method [6] don’t guarantee to solve the problem successfully. In our
experiments, we set m = 5000, the initial value x0 = 0.5 ∗ ones(n, 1).

Problem 2 The problem can be viewed as a modification of Chained
Powell singlar function in [12].

fk(x) = xi + 10xi+1 − 11, mod(k, 4) = 1,

fk(x) =
√
5(xi+2 − xi+3), mod(k, 4) = 2,

fk(x) = (xi+1 − 2xi+2 + 1)2, mod(k, 3) = 3,

fk(x) =
√
10(xi − xi+3)

2, mod(k, 4) = 0,

m = 2(n− 2), i = 2div(k + 3, 4)− 1,

where div(·) is the division operation. The function satisfies conditions of
Corollary 2 and for (ii) of Assumption 2, as stated in Problem 1. Thus, the
NSKM method and the NRK method can be utilized to solve the problem.
The problem has a solution x∗ = ones(n, 1). In our work, we set n = 5000,
m = 2(n− 2) = 9996, the initial value x0 = 0.5 ∗ ones(n, 1).

The numerical results for Problem 1 and Problem 2 are shown in Fig. 1.
Note that when β = 1 the NSKM method is the NURK method. From Fig.
1, we can find that the curves of the NSKM method with β = 10, 50, 100 are
decreasing much more quickly than that of the other methods with respect to
the increase of CPU times, which illustrates that the NSKM method with the
sample of the right size performs better than the NRK and NURK methods
in terms of CPU times.
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4.2 Experiments on some large-scale nonlinear equations

with finite convex constraints

To examine the convergence of the PSKM and APSKM methods, we use
Problem 1 and Problem 2 with C = {x : Ax = b} or {x : Ax ≤ b}. The
projector PCi

onto the nonempty closed set Ci can be defined as follows.

1) When C = {x : Ax ≤ b}, in [13], PCi
x = x− (〈ai,x〉−bi)

+

‖ai‖2 aTi , where (〈ai, x〉−
bi)

+ = max{〈ai, x〉 − bi, 0}.
2) When C = {x : Ax = b}, PCi

x = x+ bi−〈ai,x〉
‖ai‖2 aTi .

Thus, the constrained nonlinear equations are determined.
In all simulations, we choose β = 50, the initial guess x0 = 0.5 ∗ ones(n, 1)

and δ = 10−10. In the PSGD algorithm, we select a fixed step size, which is
the best experimental result by trial and error. In the first simulation, A is
randomly generated from the Guassian distribution, b = Ax∗ for equality con-
straints and b = Ax∗+abs(δ1) for inequality constraints where δ1 is generated
by the MATLAB function randn. The results are shown in Table 1 and Table
2, from which, we can clearly observe that the PSKM method requires less
computing time than the PSGD and APSKM methods. In the second simu-
lation, we consider C = {x : 〈A, x〉 = b} with coefficient matrix A ∈ R

kc×n

on [ξ,1], which is generated from the MATLAB function rand. Note that the
closer ξ tends to 1, the stronger the correlation of A is. Table 3 and Table
4 show that the APSKM method has a significantly better performance than
other methods. Moreover, iteration counts and CPU times are decreasing with
respect to the increase of ξ, which reveals that the stronger the correlation of
A is, the better performence the APSKM method has.

5 Conclusions

We have proposed the NSKM method for solving large-scale nonlinear
equations. At each step, only a part of residuals are computed. Furthermore,
we have developed two variants of the NSKM method for solving large-scale
nonlinear equations with finite convex constraints. Convergence analysis of the
proposed methods is given.

From the numerical point of view, some numerical results show that the
NSKMmethod with the sample of the right size is more effective than the NRK
method in terms of CPU times. Moreover, two variants of the NSKM method
can converge well to the solution of the constrained nonlinear problems and
the APSKM method is superior to the PSKM method for nonlinear problems
with large near-linear correlation equality constraints.

Acknowledgments. This work was supported by the Fundamental
Research Funds for the Central Universities(20CX05011A) and the Fundamen-
tal Research Funds for the Central Universities (grant number 18CX02041A).
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Table 1: IT and CPU of the PSGD, PSKM and APSKM methods for Problem
1 with C = {x : 〈A, x〉 ≤ b} and ε = 10−3

m 3000 5000 7000 9000

kc = 300

PSGD
IT 101567 98220 125724 220820

CPU 5.2485 6.6294 10.9787 25.8523

PSKM
IT 8832 15438 22055 28512

CPU 0.5189 1.2335 2.1537 3.6497

APSKM
IT 8855 15459 22024 28471

CPU 0.9579 2.1683 4.1890 6.5978

kc = 500

PSGD
IT 67795 195818 162349 198686

CPU 4.6462 16.4433 18.5343 29.8744

PSKM
IT 8765 15042 21599 28159

CPU 0.6111 1.5549 2.8039 4.6362

APSKM
IT 8882 15092 21604 28144

CPU 1.2722 2.5799 4.5439 8.7853

kc = 1000

PSGD
IT 87630 118458 238101 243719

CPU 7.6124 11.2738 24.3570 30.5528

PSKM
IT 7841 14140 20611 27055

CPU 0.7259 1.4688 2.3765 3.6959

APSKM
IT 7942 14338 20811 27165

CPU 1.4613 3.0045 4.7686 7.0546

Table 2: IT and CPU of the PSGD, PSKM and APSKM methods for Problem
2 with C = {x : 〈A, x〉 = b} and ε = 10−3

m 3000 5000 7000 9000

kc = 300

PSGD
IT 37830 71127 96602 130768

CPU 0.8371 2.9615 4.6478 7.5615

PSKM
IT 4545 7829 11179 14186

CPU 0.1401 0.3957 0.6233 1.0056

APSKM
IT 4580 7971 11343 14279

CPU 0.2518 0.8005 1.3630 2.1831

kc = 500

PSGD
IT 33483 65978 90915 119675

CPU 0.9642 3.4890 5.1170 8.8733

PSKM
IT 4066 7277 11009 13969

CPU 0.1459 0.4430 0.7782 1.2064

APSKM
IT 4096 7435 11151 14089

CPU 0.2586 1.0215 1.8487 2.6214

kc = 1000

PSGD
IT 19537 52287 80825 90823

CPU 0.6997 3.3525 4.7413 6.3426

PSKM
IT 3671 6614 9811 13178

CPU 0.1673 0.4941 0.6794 1.1053

APSKM
IT 3295 6410 9781 13391

CPU 0.3137 1.0498 1.4678 2.4749
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Table 3: IT and CPU of the PSGD, PSKM and APSKM methods for Problem
1 with C = {x : 〈A, x〉 = b}, m = 5000 and ε = 10−4

ξ 0.1 0.3 0.5 0.7 0.9

kc = 300

PSGD
IT - - 27253 46620 112430

CPU - - 1.6779 2.8708 6.8706

PSKM
IT 6390 6201 7512 7494 1860

CPU 0.8447 2.1523 2.6123 2.5642 0.6620

APSKM
IT 3107 2029 1287 693 117

CPU 1.0001 1.4160 0.9176 0.5032 0.1019

kc = 500

PSGD
IT - - 40275 78502 169179

CPU - - 2.7559 5.3622 11.4265

PSKM
IT 6966 8419 9328 8231 1862

CPU 2.4967 2.9682 0.7258 0.6372 0.1514

APSKM
IT 3488 3014 1784 1215 124

CPU 2.5679 2.2439 0.3219 0.2228 0.0352

kc = 1000

PSGD
IT - - 79079 142208 274670

CPU - - 6.1641 10.7412 20.9303

PSKM
IT 9208 9286 10695 8724 1894

CPU 0.7803 0.7830 0.9003 2.3935 0.1826

APSKM
IT 4675 3710 3245 1637 137

CPU 0.9159 0.7305 0.6383 0.9301 0.0553

Table 4: IT and CPU of the PSGD, PSKM and APSKM methods for Problem
2 with C = {x : 〈A, x〉 = b}, m = 10000 and ε = 10−4

ξ 0.1 0.3 0.5 0.7 0.9

kc = 300

PSGD
IT 40928 35472 38647 55725 18762

CPU 2.5224 2.1545 2.4500 3.3833 1.1458

PSKM
IT 10988 10661 9274 6993 2099

CPU 0.8504 0.7951 0.6914 0.5262 0.1611

APSKM
IT 3692 1807 1639 859 180

CPU 0.6274 0.3066 0.2738 0.1465 0.0350

kc = 500

PSGD
IT 42065 42246 56107 75285 20291

CPU 4.0855 4.1093 5.4494 7.2859 1.9886

PSKM
IT 11415 10690 9355 7103 2038

CPU 1.2713 1.2008 1.0503 0.8031 0.2384

APSKM
IT 5070 3611 2433 1248 118

CPU 1.0334 0.7475 0.5114 0.2642 0.0411

kc = 1000

PSGD
IT 61130 72535 88528 108304 21198

CPU 4.6189 5.4521 6.6552 8.1282 1.6060

PSKM
IT 11549 11170 9778 7273 2081

CPU 1.0210 1.0029 0.8732 0.6582 0.2052

APSKM
IT 6819 6746 3615 1924 151

CPU 1.3773 1.3554 0.7416 0.4027 0.0588
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Appendix

A Proof of Lemma 4

Proof Since f : D(f) → R is a convex function, we have that

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y),∀α ∈ [0, 1], ∀x, y ∈ D(f). (10)

By Taylor formula, it holds

f((1− α)x+ αy) = f(x) + αf
′(x)(y − x) + o(‖α(y − x)‖). (11)

Combining (10) and (11), we obtain that

f(y)− f(x) ≥ f
′(x)(y − x) +

o(‖α(y − x)‖)

α
.

Let α → 0,
f(y) ≥ f(x) + f

′(x)(y − x).

This completes the proof. �

B Proof of Lemma 8

Proof We first show that λk ≥ 1. Observe that

2〈xk− 3
5
− xk− 1

5
, xk− 3

5
− xk− 2

5
〉

= ‖xk− 3
5
− xk− 1

5
‖2 + ‖xk− 3

5
− xk− 2

5
‖2 − ‖xk− 1

5
− xk− 2

5
‖2

≤ 2(‖xk− 2
5
− xk− 3

5
‖2 − ‖xk− 1

5
− xk− 2

5
‖2),

where the last inequality follows from Lemma 7.
Hence 〈xk− 3

5
− xk− 1

5
, xk− 3

5
− xk− 2

5
〉 ≤ ‖xk− 2

5
− xk− 3

5
‖2, which implies that

λk =
‖xk− 3

5

− xk− 2
5

‖2

〈

xk− 3
5
− xk− 1

5
, xk− 3

5
− xk− 2

5

〉 ≥ 1. (12)

Next, we will prove that xk − xk− 2
5
and xk− 3

5
− xk− 2

5
are orthogonal.

〈xk − xk− 2
5
, xk− 3

5
− xk− 2

5
〉 = 〈(xk− 3

5
− xk− 2

5
) + λk(xk− 1

5
− xk− 3

5
), xk− 3

5
− xk− 2

5
〉

= ‖xk− 3
5
− xk− 2

5
‖2 + λk〈xk− 1

5
− xk− 3

5
, xk− 3

5
− xk− 2

5
〉

= ‖xk− 3
5

− xk− 2
5

‖2(1 +
〈xk− 1

5

− xk− 3
5

, xk− 3
5

− xk− 2
5

〉
〈

xk− 3
5
− xk− 1

5
, xk− 3

5
− xk− 2

5

〉 )

= 0. (13)

Finally, we utilize (12) and (13) to prove (9).
For every x ∈ Cαk

1
∩ Cαk

2
, we have

‖xk − x‖2 = ‖xk − xk− 1
5
‖2 + ‖xk− 1

5
− x‖2 + 2〈xk − xk− 1

5
, xk− 1

5
− x〉.

By writing 〈xk−xk− 1
5
, xk− 1

5
−x〉 = 〈xk−xk− 1

5
, xk− 1

5
−xk〉+〈xk−xk− 1

5
, xk−x〉,

we find that

‖xk − x‖2 = ‖xk− 1
5
− x‖2 − ‖xk − xk− 1

5
‖2 + 2〈xk − xk− 1

5
, xk − x〉.
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By the definition of xk, we obtain that

〈xk − xk− 1
5

, xk − x〉 = (1− λk)〈xk− 3
5

− xk− 1
5

, xk − x〉

= (1− λk)(〈xk− 3
5
− xk− 2

5
, xk − x〉+ 〈xk− 2

5
− xk− 1

5
, xk − x〉).

For the first inner product of the above formula, we have

〈xk− 3
5
−xk− 2

5
, xk−x〉 = 〈xk− 3

5
−xk− 2

5
, xk−xk− 2

5
〉+〈xk− 3

5
−xk− 2

5
, xk− 2

5
−x〉 ≥ 0,

where the inequality comes from Lemma 7 and (13).
For the second inner product, we can obtain

〈xk− 2
5
− xk− 1

5
, xk − x〉 = 〈xk− 2

5
− xk− 1

5
, xk − xk− 1

5
〉+ 〈xk− 2

5
− xk− 1

5
, xk− 1

5
− x〉

≥ 〈xk− 2
5
− xk− 1

5
, xk − xk− 1

5
〉

= (1− λk)〈xk− 2
5
− xk− 1

5
, xk− 3

5
− xk− 1

5
〉

≥ 0,

where the first inequality follows Lemma 7, the second equality comes from the
definition of xk and the second ineuality is from Lemma 7 and (12).

Thus,

‖xk − x‖2 ≤ ‖xk− 1
5
− x‖2 − ‖xk − xk− 1

5
‖2 ≤ ‖xk− 1

5
− x‖2. (14)

Since the iteration points xi (i = k− 3
5 , k− 2

5 , k− 1
5 ) are obtained by projecting

on the closed convex sets, by Lemma 7, it results in

‖xi − x‖2 ≤ ‖xi− 1
5

− x‖2 − ‖xi − xi− 1
5

‖2.

Thus,

‖xk− 1
5
− x‖2 ≤ ‖xk− 2

5
− x‖2 ≤ ‖xk− 3

5
− x‖2 ≤ ‖xk− 4

5
− x‖2. (15)

From (14) and (15), we get that

‖xk − x‖2 ≤ ‖xk− 4
5
− x‖2.

�
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