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Abstract
Atanassov presented the dominant notion of intuitionistic fuzzy sets which brought revolu-
tion in different fields of science since their inception. The operations of t-norm and t-conorm
introduced by Dombi were known as Dombi operations and Dombi operational parameter
possesses natural flexibility with the resilience of variability. The advantage of Dombi oper-
ational parameter is very important to express the experts’ attitude in decision-making. This
study aims to propose intuitionistic fuzzy rough TOPSISmethod based onDombi operations.
For this, first we propose some new operational laws based on Dombi operations to aggre-
gate averaging and geometric aggregation operators under the hybrid study of intuitionistic
fuzzy sets and rough sets. On the proposed concept, we present intuitionistic fuzzy rough
Dombi weighted averaging, intuitionistic fuzzy rough Dombi ordered weighted averaging,
and intuitionistic fuzzy rough Dombi hybrid averaging operators. Moreover, on the devel-
oped concept, we present intuitionistic fuzzy roughDombi weighted geometric, intuitionistic
fuzzy roughDombi orderedweighted geometric, and intuitionistic fuzzy roughDombi hybrid
geometric operators. The basic related properties of the developed operators are presented in
detailed. Then the algorithm for MCGDM based on TOPSIS method for intuitionistic fuzzy
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rough Dombi averaging and geometric operators is presented. By applying accumulated geo-
metric operator, the intuitionistic fuzzy rough numbers are converted into the intuitionistic
fuzzy numbers. The massive outbreak of the pandemic COVID-19 promoted the challeng-
ing scenario for the world organizations including scientists, laboratories, and researchers to
conduct special clinical treatment strategies to prevent the people fromCOVID-19 pandemic.
Additionally, an illustrative example is proposed to solve MCGDM problem to diagnose the
most severe patient of COVID-19 by applying TOPSIS. Finally, a comparative analysis of
the developed model is presented with some existing methods which show the applicability
and superiority of the developed model.

Keywords IFS · Rough sets · Dombi operations · Averaging and geometric aggregation
operators · TOPSIS · MCGDM

Mathematics Subject Classification 03E72 · 90B50 · 82B24

1 Introduction

The multi-criteria group decision-making (MCGDM) is the most significant and prominent
methodology, in which a team of professional specialist evaluate alternatives for the selec-
tion of best optimal object based on multiple criteria. Group decision-making (DM) has the
ability and capability to improve the assessment process by evaluating multiple conflicting
criteria based on the performance of alternatives from independent aspects. In DM, it is hard
to avoid the uncertainty due to the imprecise judgement by the professional specialist. The
process of DM has engaged the attention of scholars in diverse directions around the world
and gained the fruitful results by applying different approaches (Ishizaka and Nemery 2013;
Xu 2004). To cope with vague and uncertain data, Zadeh (1965) originated the prominent
concept of fuzzy sets (FS) and this concept has strong description of ambiguous information
in MCGDM problems. After the inception of FS, researchers carried out different methods
by applying the concept of FS in diverse directions (Biswas and Modak 2013; Debnath et al.
2018). Atanassov (1986) initiated the dominant notion of intuitionistic fuzzy set [IFS], having
the property which is incorporated by the membership degree (MeD) and nonmembership
degree (NonMeD) such that their sum belongs to [0, 1], which enables better description of
the imperfect and imprecise date in DM problems. Thao and Nguyen (2018) put forwarded
the concept of correlation coefficient and proposed for the same concept to determine the
variance and covariance in sense of IFS. Chen et al. (2016) presented new fuzzy DMmethods
based on evidential reasoning strategy. Chen and Chun (2016) put forwarded the technique
for TOPSIS method similarity measure based on intuitionistic fuzzy date. In DM, one of the
most serious issue is to aggregate the preferences reports presented by the several professional
experts to get a unique result. In this situation, aggregation operators (AO) play significant
role to aggregate the collective information presented from the different sources. Xu (2007),
Yager andXu (2006) developed the dominant concepts of IFWAand IFWGaggregation oper-
ators and discussed their fundamental properties. Garg (2016) built up some improvement in
averaging operators and proposed a series intuitionistic fuzzy interactive weighted averag-
ing operators. Li (2010) originated idea of the generalized OWAO to aggregate the decision
maker’s assessment by applying intuitionistic fuzzy information and solved MADM prob-
lems on the proposed concept.Wei (2010) investigated the concept of IFOWGAoperators and
interval-valued IFOWGA operators and presented an illustrateFd example on the proposed
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model. The concept of Einstein operators was proposed byWang and Liu (2012) by applying
intuitionistic fuzzy information. Huang (2014) originated the idea of some new Hamacher
operators by applying the idea of IFS and then applied the developed concept in DM. Hwang
and Yoon (1981) initiated the dominant and top most method technique for order preference
by similarity to ideal solution (TOPSIS). This model measures the shortest and farthest dis-
tance from PIS and NIS. Garg and Kumar (2018a) initiated the idea of exponential distance
measure by applying the technique of TOPSISmethod under interval-valued IFS and solve its
application in DM. The concept of new distance measure was proposed by Shen et al. (2018)
and by applying TOPSIS technique under intuitionistic fuzzy environment and studied its
desirable properties. Zeng and Xiao (2016) originated TOPSIS technique based on averaging
distance and initiated its desirable characteristics. Zeng et al. (2019) developed a new score
function and used VIKOR and TOPSIS for ranking intuitionistic fuzzy numbers. Zulqarnain
et al. (2021) proposed the model for TOPSIS approach using interval-valued intuitionistic
fuzzy soft set based on correlation coefficient to aggregate the expert’s decision by applying
soft aggregation operators. By applying the idea of cosine function, Ye (2016) discussed the
concept of two similarity measure. Garg and Kumar (2018b) proposed similarity measure
using set pair analysis theory. Using the concept of direct operation, Song et al. (2017) put
forward the notion of similarity measure under intuitionistic fuzzy environment. The geo-
metrical interpretation of entropy measure under IFS was proposed by Szmidt and Kacprzyk
(2001). A novel approach of entropy and similarity measure was proposed byMeng and Chen
(2016) which is based on fuzzy measure. Lin and Ren (2014) proposed a new approach for
entropy measure based on the weight determination. Garg (2018) made some improvement
in cosine similarity measure. Yager (2013) addressed the shortcoming in IFS and originated
the concept of Pythagorean fuzzy sets (PFS) which became a hot research area for scholars.
The notions of averaging and geometric operators were proposed by Yager (2014). Peng et al.
(2015) put forward some result in PFS. Hussain et al. (2020a, 2019) introduced the algebraic
structure of PFS in semigroup and further presented its combined studies with soft and rough
sets. Zhang (2014) proposed TOPSIS for PSF and described its application in DM. In spite
of these, the concept of q-rung orthopair fuzzy sets (qROFS) was delivered by Yager (2016).
Ali (2019) initiated the ideas of orbits and L-fuzzy sets in qROFS. Hussain et al. (2019a,
2020b; b) and Wang et al. (2020) proposed the combined study of qROFS with rough and
soft sets. Shahzaib et al. (2021) investigated Einstein averaging and geometric operations for
qROF rough sets through EDASmethod. Feng et al. (2020a) proposed the idea of problem of
ranking intuitionistic fuzzy values and presented Minkowski score functions of intuitionistic
fuzzy values which generalized the score function for intuitionistic fuzzy value. Feng et al.
(2020b) developed the idea of new extension of the PROMETHEE, by taking advantage of
intuitionistic fuzzy soft sets. Huang et al. (2019) developed the dominance-based rough sets
under intuitionistic fuzzy environment. Feng et al. (2018) improved the existing concepts and
related results to generalized intuitionistic fuzzy sets. Li et al. (2023) proposed the notion
of spherical fuzzy normalized projection for the dilemma of community-based epidemic
prevention and control assessment method selection.

In 1982, Dombi (1982) investigated Dombi t-norm and Dombi t-conorm based on Dombi
operational parameter. The concept of IFWAand IFWGoperators based onDombi operations
was proposed by Seikh et al. (2021). The idea of Bonferroni mean operations was proposed
by Lui et al. (2018) to aggregate the multi-attributes based on intuitionistic fuzzy aggregation
operators and proposed its application in DM. Later, Chen and Ye (2017) made an effort to
propose the Dombi operation in neurtrosophic information and constructed its application
in DM. Wei and Wei (2018) initiated the hybrid study of Dombi operation with prioritized
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aggregation operators. Jana et al. (2018) put forward the idea of arithmetic and geometric
operations based on bipolar fuzzy Dombi operations.

Pawlak (1982) initiated the prominent concept of rough set (RS) and this novel concept
generalized the crisp set theory. The developed notion of RS theory handles the uncertainty
and vagueness in more accurate way than classical set theory. From the inception, RS theory
has been presented in different directions and proposed its applications in both practical and
theoretical aspect as well. Dubois and Prade (1990) put forward the idea of fuzzy RS based on
fuzzy relation. Cornelis et al. (2003) developed the combined structure of RS and IFS to get
the dominant concept of intuitionistic fuzzy rough set (IFRS). The constrictive and axiomatic
studyof rough setwas presented byZhou andWu (2008) byutilizing intuitionistic fuzzy rough
aggregation operators. Zhou andWu (2011) developed the idea of rough IFS and intuitionistic
fuzzy rough soft (IFRS) by applying crisp and fuzzy relation. Bustince and Burillo (1996)
developed the notion of intuitionistic fuzzy relation. By applying the generalized intuitionistic
fuzzy relation, Zhang et al. (2012) proposed IFRS instead of intuitionistic fuzzy relation.
Moreover, the combine study of RS, soft set, and IFS was investigated by Zhang et al. (2014)
to obtaine the novel concepts of soft rough IFS and intuitionistic fuzzy soft RS based on crisp
and fuzzy approximation spaces. By applying the intuitionistic fuzzy soft relation, Zhang et al.
(2012) developed the concept of generalized intuitionistic fuzzy soft rough set. Chinram
et al. (2021) presented the concept of intuitionistic fuzzy rough aggregation operators to
aggregate the multi-assessment of experts to get a unique optimal option based on IFRWA,
IFRWG, IFROWA, IFROWG, IFRHA, and IFRHG operators and by applying EDASmethod
to illustrate the DM application. Later on, Yahya et al. (2021) developed the intuitionistic
fuzzy rough frank aggregation operators and discussed its basic properties. From the above
analysis and discussion, it is clear thatDombi operations have natural resilience and flexibility
to demonstrate the datum and questionable real-life issues more effectively. Furthermore, the
behavior of general operational parameter β in Dombi operations has more importance to
express the decision maker’s attitude. Different values are used for the operational parameter
β to judge the ranking results of the professional experts by applying the developed approach.
From the best of our knowledge and above analysis up-till now, no application of Dombi
operatorswith the hybrid study if IFS and rough sets by applying intuitionistic fuzzy averaging
and geometric aggregation operators is reported in intuitionistic fuzzy environment. The
performance of the developed intuitionistic fuzzy rough averaging and geometric operators
is illustrated through MCGDM. Therefore, this motivates the current research to investigate
averaging and geometric operators such as IFRWA, IFROWA, IFRHA, IFRWG, IFROWG,
and IFRHG aggregation operators and investigated their desirable properties with details.

The remaining portion of this work is managed as follows: In Sect. 2, of the manuscript,
some basic concepts are given which will be helpful for onward sections. Section 3, consists
of Dombi operations and proposed some new operational laws based on Dombi operations
to aggregate averaging operators and geometric operators. In Sect. 4, we investigated the
notion of IFRDWA, IFRDOWA, and IFRDHA operators. Moreover, in Sect. 5, we developed
the concept of IFRDWG, IFRDOWG, and IFRDHA operators. The fundamental related
characteristics of the developed operators are presented in detailed. Section 6 discusses a step
algorithm of TOPSIS method that was developed for MCGDM based on for intuitionistic
fuzzy rough Dombi averaging and geometric operators. In Sect. 7, an illustrative example
is proposed to solve MCGDM problem to diagnose the most severe patient of COVID-19
by applying TOPSIS technique. Finally, a comparative analysis of the developed model is
presented with different previous models in literature which presents that the investigated
concepts are more resilience and flexible than the developed models.
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2 Preliminaries

This section includes the review of some elementary definitions, operations and their score
values, which associate the existing literature with the developed concepts.

Definition 1 (Atanassov 1986). Consider K to be a universal set, and IFS Gon the set K is
given as;

G = {〈g,kG(g), δG(g)〉|g ∈ K },
where kG, δG : K → [0, 1],represent the MeD and NonMeD of an object g ∈ K , to the
set G with 0 ≤ kG(g) + δG(g) ≤ 1. Moreover, πG(g) = 1 − (kG(g) + δG(g))denotes the
hesitancy degree of an alternativeg ∈ K . For simplicity,G = 〈g,kG(g), δG(g)〉 is denoted
by G = (kG, δG) and is called an intuitionistic fuzzy number (IFN) forg ∈ K .

Let G = (kG, δG) and G1 = (
kG1 , δG1

)
be the intuitionistic fuzzy numbers, then some

fundamental operations on them are defined as:

(i) G ∪ G1 = (
max

(
kG(g),kG1(g)

)
,min

(
(δG(g), δG1(g)

))
;

(ii) G ∩ G1 = (
min

(
kG(g),kG1(g)

)
,max

(
δG(g), δG1(g)

))
;

(iii) G ⊕ G1 = (
kG + kG1 − kGkG1 , δGδG1

)
;

(iv) G ⊗ G1 = (
kGkG1 , δG + δG1 − δGδG1

)
;

(v) G ≤ G1i fkG(g) ≤ kG1(g), δG(g) ≥ δG1(g) for allg ∈ K ;
(vi) Gc = (δG,kG) where Gc represents the complement of G;
(vii) αG = (

1 − (1 − kG)α, δα
G

)
for α ≥ 1;

(viii) Gα = (
kα
G, 1 − (1 − δG)α

)
for α ≥ 1.

Definition 2 (Chen and Tan 1994) LetG = (kG, δG) be an IFN. Then the score function of
G is defined as:

S(G) = kG − δGforS(G) ∈ [−1, 1].

Greater the score, better the IFN is.

Definition 3 (Hong and Choi 2000) Let G = (kG, δG) be an IFN. Then the accuracy
function of G is defined as:

A(G) = kG + δGforA(G) ∈ [0, 1].

Definition 4 (Zhou andWu 2008) Assume a fixed set K and crisp intuitionistic fuzzy relation
ψ ∈ IFS(K × K ). Then

(i) For all g ∈ K , the relation ψ is reflexive, if kψ(g, g) = 1 and δψ(g, g) = 0.
(ii) For all (g, c) ∈ K × K , the relation ψ is symmetric, if kψ(g, c) = kψ(c, g) and

δψ(g, c) = δψ(c, g).
(iii) For all (g,𝒹) ∈ K × K , the relation ψ is transitive, if kψ(g,𝒹) ≥∨

c∈K
{
kψ(g, c) ∨ kψ(c,𝒹)

}
and δψ(g,𝒹) ≥ ∧

c∈K
{
δψ(g, c) ∧ δψ(c,𝒹)

}
.

Definition 5 (Chinram et al. 2021) Consider K as a universal of discourse such that ψ be
intuitionistic fuzzy relation over K , i.e., ψ ∈ IFS(K × K ). Then the order pair (K , ψ) is
known to be intuitionistic fuzzy approximation space. Now any normal decision objectB ⊆
IFS(K ), the lower and upper approximation of B w.r.t intuitionistic fuzzy approximation
space (K , ψ)are represented by ψ(B) and ψ(B) which is defined as:

ψ(B) =
{
〈g,kψ(B)(g), δψ(B)(g)〉|g ∈ K

}
,
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ψ(B) =
{
〈g,kψ(B)(g), δψ(B)(g)〉|g ∈ K

}
,

where

kψ(B)(g) =
∧

c∈K

{
kψ(g, c) ∧ kB(c)

}
, δψ(B)(g) =

∨

c∈K

{
δψ(g, c) ∨ δB(c)

}

kψ(B)(g) =
∨

c∈K

{
kψ(g, c)

∨
kB(c)

}
, δψ(B)(g) =

∧

c∈K

{
δψ(g, c)

∧
δB(c)

}

with 0 ≤ kψ(B)(g) + δψ(B)(g) ≤ 1 and 0 ≤ kψ(B)(g) + δψ(B)(g) ≤ 1.

As ψ(B) and ψ(B) are IFS, ψ(B), ψ(B) : IFS(K ) → IFS(K ) are lower and

upper approximation operators. Therefore, the pair ψ(B) =
(
ψ(B), ψ(B)

)
=

{(
g, 〈kψ(B)(g), δψ(B)(g)〉, 〈kψ(B)(g), δψ(B)(g)〉

)
|g ∈ K

}
is called intuitionistic fuzzy

rough set (IFRS). For simplicity, ψ(B) =
(
ψ(B), ψ(B)

)
=
(
〈k, δ〉, 〈k, δ〉

)
denotes

the intuitionistic fuzzy rough number (IFRN).

Definition 6 (Chinram et al. 2021) Let ψ(B) =
(
ψ(B), ψ(B)

)
=
(
〈k, δ〉, 〈k, δ〉

)
, be an

IFRN. Then the score function of ψ(B) is defined as:

S(B) = 1

4

(
2 + k + k − δ − δ

)
forS(B) ∈ [0, 1].

Greater the score better the IFRN is.

Definition 7 (Yahya et al. 2021) Let ψ(B) =
(
ψ(B), ψ(B)

)
=
(
〈k, δ〉, 〈k, δ〉

)
, be an

IFRN. Then the accuracy function of ψ(B) is defined as:

A(B) = 1

4

(
k + k + δ + δ

)
forA(B) ∈ [0, 1].

3 Dombi operations

Dombi presented the pioneer concept Dombi operations known asDombi product andDombi
sum, which are the special form of t-norms and t-conorms given in the following definition.

Definition 8 (Dombi 1982). Consider that ξ and υ belong to real numbers with β ≥ 1. Then
Dombi operations are elaborated as:

TD(ξ, υ) = 1

1 +
{(

1−ξ
ξ

)β + ( 1−υ
υ

)β
} 1

β

TD′ (ξ, υ) = 1 − 1

1 +
{(

ξ
1−ξ

)β +
(

υ
1−υ

)β
} 1

β

Definition 9 Let ψ(B1) =
(
ψ(B1), ψ(B1)

)
=

(
〈k1, δ1〉, 〈k1, δ1〉

)
and ψ(B2) =

(
ψ(B2), ψ(B2)

)
=
(
〈k2, δ2〉, 〈k2, δ2〉

)
be two IFRNs and α > 0. Then some basic

operations based on Dombi t-norms and t-conorms operations are given as:
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(i)

ψ(B1) ⊕ ψ(B2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜⎜
⎝
1 − 1

1 +
{(

k1

1−k1

)β +
(

k2

1−k2

)β
} 1

β

,
1

1 +
{(

1−δ1

δ1

)β +
(
1−δ2

δ2

)β
} 1

β

⎞

⎟
⎟⎟
⎠

,

⎛

⎜
⎜
⎜
⎝
1 − 1

1 +
{(

k1
1−k1

)β +
(

k2
1−k2

)β
} 1

β

,
1

1 +
{(

1−δ1
δ1

)β +
(
1−δ2
δ2

)β
} 1

β

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(ii)

ψ(B1) ⊗ ψ(B2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

1

1 +
{(

1−k1

k1

)β +
(
1−k2

k2

)β
} 1

β

, 1 − 1

1 +
{(

δ1

1−δ1

)β +
(

δ2

1−δ2

)β
} 1

β

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

1

1 +
{(

1−k1
k1

)β +
(
1−k2
k2

)β
} 1

β

, 1 − 1

1 +
{(

δ1
1−δ1

)β +
(

δ2
1−δ2

)β
} 1

β

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(iii) αψ(B1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜
⎜
⎝
1 − 1

1+
{

α

(
k1

1−k1

)β
} 1

β

, 1

1+
{

α

(
1−δ1
δ1

)β
} 1

β

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜
⎜
⎝
1 − 1

1+
{

α

(
k1

1−k1

)β
} 1

β

, 1

1+
{

α

(
1−δ1
δ1

)β
} 1

β

⎞

⎟⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(iv) (ψ(B1))
α =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

1

1+
{

α

(
1−k1
k1

)β
} 1

β

, 1 − 1

1+
{

α

(
δ1

1−δ1

)β
} 1

β

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

1

1+
{

α

(
1−k1
k1

)β
} 1

β

, 1 − 1

1+
{

α

(
δ1

1−δ1

)β
} 1

β

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Example 1 Let ψ(B1) =
(
ψ(B1), ψ(B1)

)
= (〈0.7, 0.3〉, 〈0.6, 0.4〉) and ψ(B2) =

(
ψ(B2), ψ(B2)

)
= (〈0.8, 0.1〉, 〈0.5, 0.2〉) be two IFRNs with β = 2 and α > 0. Then

some basic operations based on Dombi t-norms and t-conorms operations are given as:

ψ(B1) ⊕ ψ(B2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜
⎜
⎝
1 − 1

1 +
{(

0.7
1−0.7

)2 +
(

0.8
1−0.8

)2}
1
2

,
1

1 +
{( 1−0.3

0.3

)2 + ( 1−0.1
0.1

)2} 1
2

⎞

⎟⎟
⎟
⎠

,

⎛

⎜⎜⎜
⎝
1 − 1

1 +
{(

0.6
1−0.6

)2 +
(

0.5
1−0.5

)2}
1
2

,
1

1 +
{( 1−0.4

0.4

)2 + ( 1−0.2
0.2

)2} 1
2

⎞

⎟⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{(

1 − 1

1 + {5.444 + 16} 1
2

,
1

1 + {5.444 + 81} 1
2

)

,

(

1 − 1

1 + {2.25 + 1} 1
2

,
1

1 + {2.25 + 16} 1
2

)}

= {(1 − 0.1776, 0.09711), (1 − 0.3568, 0.1897)}
= {(0.8224, 0.09711), (0.6432, 0.1897)}

ψ(B1) ⊗ ψ(B2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜
⎜
⎝

1

1 +
{( 1−0.7

0.7

)2 + ( 1−0.8
0.8

)2} 1
2

, 1 − 1

1 +
{(

0.3
1−0.3

)2 +
(

0.1
1−0.1

)2}
1
2

⎞

⎟⎟
⎟
⎠

,
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⎛

⎜
⎜⎜
⎝

1

1 +
{( 1−0.6

0.6

)2 +
(
1−0.5
0.5

)2}
1
2

, 1 − 1

1 +
{(

0.4
1−0.4

)2 +
(

0.2
1−0.2

)2}
1
2

⎞

⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{(

1

1 + {0.1837 + 0.0625} 1
2

, 1 − 1

1 + {0.5124 + 0.1235} 1
2

)

,

(
1

1 + {0.4444 + 1} 1
2

, 1 − 1

1 + {1.1111 + 0.3215} 1
2

)}

= {(0.6684, 1 − 0.5564), (0.4542, 1 − 0.4552)}
= {(0.6684, 0.4436), (0.4542, 0.4558)}

Similarly, we can prove the parts (iii) and (iv).

Theorem 1 Let ψ(B1) =
(
ψ(B1), ψ(B1)

)
and ψ(B2) =

(
ψ(B2), ψ(B2)

)
be two IFRNs

and α1, α2 > 0. Then the following results are hold:

(i) ψ(B1) ⊕ ψ(B2) = ψ(B2) ⊕ ψ(B1),
(ii) ψ(B1) ⊗ ψ(B2) = ψ(B2) ⊗ ψ(B1),
(iii) α1(ψ(B1) ⊕ ψ(B2)) = α1ψ(B1) ⊕ α1ψ(B2),
(iv) (α1 + α2)ψ(B1) = α1ψ(B1) ⊕ α2ψ(B1),
(v) (ψ(B1) ⊗ ψ(B2))

α1 = (ψ(B1))
α1 ⊗ (ψ(B2))

α1 ,
(vi) (ψ(B1))

α1 ⊗ (ψ(B1))
α2 = (ψ(B1))

(α1+α2).

4 Average aggregation operators

The concept of aggregation operators has a significant role in DM to aggregate the multiple
input information of different specialists into a single value. Here, wewill address the concept
of IFRDWA, IFRDOWA, and IFRDHA aggregation operators and present the important
properties of these operators.

4.1 Intuitionistic fuzzy rough Dombi weighted averaging operators

Definition 10 Assume that ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs. Let ε =

(ε1, ε2, ε3, . . . , εn)
T be the weight vector (WV) such that

∑n
i=1εi = 1 and εi ∈ [0, 1]. Then

the IFRDWA operator is a mapping (ψ(B))n → ψ(B), which is given as:

IFRDWA(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊕n

i=1εiψ(Bi ),⊕n
i=1εiψ(Bi )

)
.

Theorem 2 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then using IFRDWA

operator, the aggregated result is described as:

IFRDWA(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊕n

i=1εiψ(Bi ),⊕n
i=1εiψ(Bi )

)
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=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝
1 − 1

1 +
{
∑n

i=1εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑n

i=1εi

(
1−δi

δi

)β
} 1

β

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝
1 − 1

1 +
{
∑n

i=1εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑n

i=1εi

(
1−δi
δi

)β
} 1

β

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Proof By applying induction method to prove the required result.
Let n = 2, and now using the Dombi operational laws, we get

IFRDWA(ψ(B1), ψ(B2)) =
(
⊕2

i=1εiψ(Bi ),⊕2
i=1εiψ(Bi )

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
ε1

(
k1

1−k1

)β + ε2

(
k2

1−k2

)β
} 1

β

,
1

1 +
{
ε1

(
1−δ1
δ1

)β + ε2

(
1−δ2
δ2

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
ε1

(
k1

1−k1

)β + ε2

(
k2

1−k2

)β
} 1

β

,
1

1 +
{
ε1

(
1−δ1
δ1

)β + ε2

(
1−δ2
δ2

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑2

i=1εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑2

i=1εi

(
1−δi

δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑2

i=1εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑2

i=1εi

(
1−δi
δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

The result is true for n = 2.
Assume that the required result holds for n = k, so we have

IFRDWA(ψ(B1), ψ(B2), . . . , ψ(Bk)) =
(

⊕k
i=1εi ψ

_
(Bi ),⊕k

i=1εi ψ̄(Bi )

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑k

i=1 εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑k

i=1 εi

(
1−δi

δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,
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⎛

⎜
⎜
⎜
⎜
⎝
1 − 1

1 +
{
∑k

i=1 εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑k

i=1 εi

(
1−δi
δi

)β
} 1

β

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Further, to prove n = k + 1, we have

IFRDWA{(ψ(B1), ψ(B2), . . . , ψ(Bk)), ψ(Bk+1)}
=
(
⊕k

i=1εiψ(Bi ),⊕k
i=1εiψ(Bi )

)
⊕
(
εk+1ψ(Bk+1), εk+1ψ(Bk+1)

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝
1 − 1

1 +
{
∑k

i=1εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑k

i=1εi

(
1−δi
δi

)β
} 1

β

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜⎜⎜
⎝
1 − 1

1 +
{
∑k

i=1εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑k

i=1εi

(
1−δi
δi

)β
} 1

β

⎞

⎟
⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⊕

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
εk+1

(
kk+1

1−kk+1

)β
} 1

β

,
1

1 +
{
εk+1

(
1−δk+1

δk+1

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 − 1

1 +
{
εk+1

(
kk+1

1−kk+1

)β
} 1

β

,
1

1 +
{

εk+1

(
1−δεk+1

δk+1

)β
} 1

β

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑k+1

i=1 εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑k+1

i=1 εi

(
1−δi

δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑k+1

i=1 εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑k+1

i=1 εi

(
1−δi
δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Hence, the condition is true for n ≥ k + 1. Therefore, by induction principle, the result
holds ∀ n ≥ 1.

As ψ
−
(B) and ψ(B) are IFRNs, this implies ⊕n

i=1εiψ(Bi ) and ⊕n
i=1εiψ(Bi ) is also

IFRNs. Therefore, from the above analysis, IFRDWA(ψ(B1), ψ(B2), . . . , ψ(Bn)) also
represents an IFRN based on IFR approximation space (K , ψ).

123



TOPSIS approach for MCGDM based on intuitionistic fuzzy rough … Page 11 of 33 176

Theorem 3 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then some elementary

properties are satisfied for IFRDWA operator.

(i) Idempotency Let ψ(Bi ) = E(B) ∀i = 1, 2, . . . , n with E(B) = (
E(B), E(B)

) =(
〈k, δ〉, 〈k, δ〉

)
. Then

IFRDWA(ψ(B1), ψ(B2), . . . , ψ(Bn)) = E(B).

(ii) Boundedness Let (ψ(Bi ))
− =

(
min
i

ψ(Bi ),min
i

ψ(Bi )

)
and (ψ(Bi ))

+ =
(
max
i

ψ(Bi ),max
i

ψ(Bi )

)
. Then

(ψ(Bi ))
− ≤ I FRDW A(ψ(B1), ψ(B2), . . . , ψ(Bn)) ≤ (ψ(Bi ))

+.

(iii) Monotonicity Consider the another family ψ
(
B

′
i

)
=
(
ψ
(
B

′
i

)
, ψ
(
B

′
i

))
of IFRNs,

such that ψ
(
B

′
i

)
≤ ψ(Bi ) and ψ

(
B

′
i

)
≤ ψ(Bi ). Then

IFRDWA
(
ψ
(
B

′
1

)
, ψ
(
B

′
2

)
, . . . , ψ

(
B

′
n

))
≤ IFRDWA(ψ(B1), ψ(B2), . . . , ψ(Bn)).

(iv) Shift invariance Assume that E
(
B

′) =
(
E
(
B

′)
, E
(
B

′)) =
(
〈k′

, δ
′ 〉, 〈k′

, δ
′ 〉
)
be

another IFRN. Then
IFRDWA

(
ψ(B1) ⊕ E

(
B

′)
, ψ(B2) ⊕ E

(
B

′)
, . . . , ψ(Bn) ⊕ E

(
B

′)) = IFRDWA

(ψ(B1), ψ(B2), . . . , ψ(Bn)) ⊕ E
(
B

′)
.

(v) Homogeneity For a real number α > 0,
IFRDWA(αψ(B1), αψ(B2), . . . , αψ(Bn)) = αIFRDWA(ψ(B1), ψ(B2), . . . , ψ(Bn)).

Proof

(i) IdempotencySinceψ(Bi ) = E(B)∀i = 1, 2, . . . , nwhere E(B) = (
E(B), E(B)

) =(
〈k, δ〉, 〈k, δ〉

)
, then by applying Theorem 2, we have

IFRDWA(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊕n

i=1εiψ(Bi ),⊕n
i=1εiψ(Bi )

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑n

i=1εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑n

i=1εi

(
1−δi

δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑n

i=1εi

(
ki

1−ki

)β
} 1

β

,
1

1 +
{
∑n

i=1εi

(
1−δi
δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{(

k
1−k

)β
} 1

β

,
1

1 +
{(

1−δ
δ

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,
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⎛

⎜
⎜
⎜
⎜
⎝
1 − 1

1 +
{(

k

1−k

)β
} 1

β

,
1

1 +
{(

1−δ

δ

)β
} 1

β

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= (
E(B), E(B)

)

= E(B)

(ii) Boundedness As (ψ(Bi ))
− =

((
ψ(Bi )

)−
,
(
ψ(Bi )

)−
)

=
[(

min
i

{
ki
}
,max

i

{
δi
}
)

,

(
min
i

{
ki

}
,max

i

{
δi
}
)]

and (ψ(Bi ))
+ =

((
ψ(Bi )

)+
,
(
ψ(Bi )

)+
)

=
[(

max
i

{
ki
}
,min

i

{
δi
}
)

,

(
max
i

{
ki

}
,min

i

{
δi
}
)]

and

ψ(Bi ) =
[(
ki , δi

)
,
(
ki , δi

)]
. To verify that

(ψ(Bi ))
− ≤ I FRDW A(ψ(B1), ψ(B2), . . . , ψ(Bn)) ≤ (ψ(Bi ))

+

Since for each i = 1, 2, . . . , n, we have

min
i
ki ≤ ki ≤ max

i
ki ⇒

min
i
ki

1 − min
i
ki

≤ ki

1 − ki
≤

max
i

ki

1 − max
i

ki

⇒ 1 +
min
i
ki

1 − min
i
ki

≤ 1 + ki

1 − ki
≤ 1 +

max
i

ki

1 − max
i

ki
⇒ 1

1 +
max
i

ki

1−max
i

ki

≤ 1

1 + ki

1−ki

≤ 1

1 +
min
i
ki

1−min
i
ki

⇒ 1 − 1

1 +
(
∑n

i=1εi

(
min
i
ki

1−min
i
ki

)β
) 1

β

≤ 1 − 1

1 +
(
∑n

i=1εi

(
ki

1−ki

)β
) 1

β

≤ 1 − 1

1 +
(
∑n

i=1εi

(
max
i

ki

1−max
i

ki

)β
) 1

β

⇒ 1 − 1

1 +
min
i
ki

1−min
i
ki

≤ 1 − 1

1 +
(
∑n

i=1εi

(
ki

1−ki

)β
) 1

β

≤ 1 − 1

1 +
max
i

ki

1−max
i

ki

⇒ min
i
ki ≤ 1 − 1

1 +
(
∑n

i=1εi

(
ki

1−ki

)β
) 1

β

≤ max
i

ki

Next consider for every i = 1, 2, . . . , n, consider that

max
i

{
δi
} ≥ δi ≥ min

i

{
δi
} ⇒ 1 − min

i

{
δi
} ≥ 1 − δi ≥ 1 − max

i

{
δi
}

⇒ 1 +
1 − min

i

{
δi
}

min
i

{
δi
} ≥ 1 + 1 − δi

δi
≥ 1 +

1 − max
i

{
δi
}

max
i

{
δi
}
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⇒ 1 +
⎛

⎜
⎝

n∑

i=1

εi

⎛

⎝
1 − min

i

{
δi
}

min
i

{
δi
}

⎞

⎠

β
⎞

⎟
⎠

1
β

≥ 1 +
⎛

⎝
n∑

i=1

εi

(
1 − δi

δi

)β
⎞

⎠

1
β

≥ 1 +
⎛

⎜
⎝

n∑

i=1

εi

⎛

⎝
1 − max

i

{
δi
}

max
i

{
δi
}

⎞

⎠

β
⎞

⎟
⎠

1
β

⇒ 1

1 +
⎛

⎝∑n
i=1εi

(
1−max

i

{
δi
}

max
i

{
δi
}

)β
⎞

⎠

1
β

≥ 1

1 +
(
∑n

i=1εi

(
1−δi

δi

)β
) 1

β

≥ 1

1 +
⎛

⎝∑n
i=1εi

(
1−min

i

{
δi
}

min
i

{
δi
}

)β
⎞

⎠

1
β

⇒ 1

1 +
1−max

i

{
δi
}

max
i

{
δi
}

≥ 1

1 +
(
∑n

i=1εi

(
1−δi

δi

)β
) 1

β

≥ 1

1 +
1−min

i

{
δi
}

min
i

{
δi
}

⇒ max
i

{
δi
} ≥ 1

1 +
(
∑n

i=1εi

(
1−δi

δi

)β
) 1

β

≥ min
i

{
δi
}

In the same way, we can prove that

⇒ min
i
ki ≤ 1 − 1

1 +
(
∑n

i=1εi

(
ki

1−ki

)β
) 1

β

≤ max
i

ki

and

max
i

{
δi
} ≥ 1

1 +
(
∑n

i=1εi

(
1−δi
δi

)β
) 1

β

≥ min
i

{
δi
}

Thus, from the above analysis, we have

(ψ(Bi ))
− ≤ IFRDWA(ψ(B1), ψ(B2), . . . , ψ(Bn)) ≤ (ψ(Bi ))

+.

The proofs of (iii), (iv), and (v) can be followed from (i) and (ii).

4.2 Intuitionistic fuzzy rough Dombi ordered weighted averaging operators

Definition 11 Assume that ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs. Let ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1 and εi ∈ [0, 1]. Then the aggregated

result for IFRDOWA operator is a mapping (ψ(B))n → ψ(B), which is given as:

IFRDOWA(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊕n

i=1εiψ(Bσ i ),⊕n
i=1εiψ(Bσ i )

)
.
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Theorem 4 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then using IFRDOWA

operator, the aggregated result is described as:

I FRDOW A(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊕n

i=1εiψ(Bσ i ),⊕n
i=1εiψ(Bσ i )

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎝
1 − 1

1 +
{
∑n

i=1εi

(
kσ i

1−kσ i

)β
} 1

β

,
1

1 +
{
∑n

i=1εi

(
1−δσ i

δσ i

)β
} 1

β

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎝
1 − 1

1 +
{
∑n

i=1εi

(
kσ i

1−kσ i

)β
} 1

β

,
1

1 +
{
∑n

i=1εi

(
1−δσ i
δσ i

)β
} 1

β

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where the IFRN ψ(Bσ i ) =
(
ψ(Bσ i ), ψ(Bσ i )

)
represents the largest permutation of the

collection ψ(Bi ).

Proof Proof is straightforward.

Theorem 5 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then some rudi-

mentary axioms are discussed for IFRDOWA operator.

(i) Idempotency. Let ψ(Bi ) = E(B) ∀i = 1, 2, . . . , n such that E(B) =
(
E(B), E(B)

) =
(
〈k, δ〉, 〈k, δ〉

)
. Then

IFRDOWA(ψ(B1), ψ(B2), . . . , ψ(Bn)) = E(B).

(ii) Boundedness Let (ψ(Bi ))
− =

(
min
i

ψ(Bi ),min
i

ψ(Bi )

)
and (ψ(Bi ))

+ =
(
max
i

ψ(Bi ),max
i

ψ(Bi )

)
. Then

(ψ(Bi ))
− ≤ IFRDOWA(ψ(B1), ψ(B2), . . . , ψ(Bn)) ≤ (ψ(Bi ))

+.

(iii) Monotonicity Consider another family ψ
(
B

′
i

)
=
(
ψ
(
B

′
i

)
, ψ
(
B

′
i

))
of IFRNs, such

that ψ
(
B

′
i

)
≤ ψ(Bi ) and ψ

(
B

′
i

)
≤ ψ(Bi ). Then

IFRDOWA
(
ψ
(
B

′
1

)
, ψ
(
B

′
2

)
, . . . , ψ

(
B

′
n

))
≤ IFRDOWA(ψ(B1), ψ(B2), . . . , ψ(Bn)).

(iv) Shift invariance Assume that E
(
B

′) =
(
E
(
B

′)
, E
(
B

′)) =
(
〈k′

, δ
′ 〉, 〈k′

, δ
′ 〉
)
be

another IFRN. Then
IFRDOWA

(
ψ(B1) ⊕ E

(
B

′)
, ψ(B2) ⊕ E

(
B

′)
, . . . , ψ(Bn) ⊕ E

(
B

′)) =
IFRDOWA(ψ(B1), ψ(B2), . . . , ψ(Bn)) ⊕ E

(
B

′)
.

(v) Homogeneity For a real number α > 0,
IFRDOWA(αψ(B1), αψ(B2), . . . , αψ(Bn)) = αIFRDOWA(ψ(B1), ψ(B2), . . . , ψ(Bn)).

Proof Proofs are straightforward.
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4.3 Intuitionistic fuzzy rough Dombi hybrid averaging operators

In this portion of the manuscript, to examine relation of the hybrid aggregation operators
with IFRDWA and IFRDOWA operators which weight both the ordered position and the
arguments value itself, IFRDHA generalized both the operations. This subsection consists
of the study of IFRDHA operator and discuss its rudimentary properties.

Definition 12 Assume that ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs such

that ρ = (ρ1, ρ2, . . . , ρn)
T be the WV such that

∑n
i=1ρi = 1 and ρi ∈ [0, 1]. Let

ε = (ε1, ε2, ε3, . . . , εn)
T be the associated WV such that

∑n
i=1εi = 1 and εi ∈ [0, 1].

Then the aggregated result for IFRDHA operator is a mapping (ψ(B))n → ψ(B), which is
given as:

IFRDHA(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊕n

i=1εiψ(Bσ̃ i ),⊕n
i=1εiψ(Bσ̃ i )

)
.

Theorem 6 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs such that ρ =

(ρ1, ρ2, . . . , ρn)
T be the WV such that

∑n
i=1ρi = 1and ∈ [0, 1]. Let ε =

(ε1, ε2, ε3, . . . , εn)
T be the associated WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then

using IFRDHA operator, the aggregated result is described as:

IFRDHA(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊕n

i=1εiψ(Bσ̃ i ),⊕n
i=1εiψ(Bσ̃ i )

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑n

i=1εi

(
kσ̃ i

1−kσ̃ i

)β
} 1

β

,
1

1 +
{
∑n

i=1εi

(
1−δσ̃ i

δσ̃ i

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜
⎝
1 − 1

1 +
{
∑n

i=1εi

(
kσ̃ i

1−kσ̃ i

)β
} 1

β

,
1

1 +
{
∑n

i=1εi

(
1−δσ̃ i
δσ̃ i

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where the IFRN ψ(Bσ̃ i ) = nρiψ(Bi ) = nρi

(
ψ(Bi ), ψ(Bi )

)
represents the largest per-

mutation of the collection ψ(Bi ).

Proof Proof is straightforward.

Theorem 7 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then some rudi-

mentary characteristics are discussed for IFRDHA operator.

(i) Idempotency Let ψ(Bi ) = E(B) ∀i = 1, 2, . . . , n such that E(B) =
(
E(B), E(B)

) =
(
〈k, δ〉, 〈k, δ〉

)
. Then

IFRDHA(ψ(B1), ψ(B2), . . . , ψ(Bn)) = E(B).

(ii) Boundedness Let (ψ(Bi ))
− =

(
min
i

ψ(Bi ),min
i

ψ(Bi )

)
and (ψ(Bi ))

+ =
(
max
i

ψ(Bi ),max
i

ψ(Bi )

)
. Then

(ψ(Bi ))
− ≤ IFRDHA(ψ(B1), ψ(B2), . . . , ψ(Bn)) ≤ (ψ(Bi ))

+.
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(iii) Monotonicity Consider another family ψ
(
B

′
i

)
=
(
ψ
(
B

′
i

)
, ψ
(
B

′
i

))
of IFRNs, such

that ψ
(
B

′
i

)
≤ ψ(Bi ) and ψ

(
B

′
i

)
≤ ψ(Bi ). Then

IFRDHA
(
ψ
(
B

′
1

)
, ψ
(
B

′
2

)
, . . . , ψ

(
B

′
n

))
≤ IFRDHA(ψ(B1), ψ(B2), . . . , ψ(Bn)).

(iv) Shift invariance Assume that E
(
B

′) =
(
E
(
B

′)
, E
(
B

′)) =
(
〈k′

, δ
′ 〉, 〈k′

, δ
′ 〉
)
be

another IFRN. Then
IFRDHA

(
ψ(B1) ⊕ E

(
B

′)
, ψ(B2) ⊕ E

(
B

′)
, . . . , ψ(Bn) ⊕ E

(
B

′)) =
IFRHWA(ψ(B1), ψ(B2), . . . , ψ(Bn)) ⊕ E

(
B

′)
.

(v) Homogeneity For a real number α > 0,
IFRDHA(αψ(B1), αψ(B2), . . . , αψ(Bn)) = αIFRDHA(ψ(B1), ψ(B2), . . . , ψ(Bn)).

Proofs are straightforward.

5 Geometric aggregation operators

Here, we will originate the novel notion of IFRDWG, IFRDOWG, and IFRDHG aggregation
operators and present the important properties of these operators.

5.1 Intuitionistic fuzzy rough Dombi weighted geometric operators

Definition 13 Assume that ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs. Let ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1 and εi ∈ [0, 1]. Then the aggregated

result for IFRDWG operator is a mapping (ψ(B))n → ψ(B), which is given as:

IFRDWG(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊗n

i=1

(
ψ(Bi )

)εi
,⊗n

i=1

(
ψ(Bi )

)εi
)
.

Theorem 8 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then using IFRDWG

operator, the aggregated result is described as:

IFRDWG(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊗n

i=1

(
ψ(Bi )

)εi
,⊗n

i=1

(
ψ(Bi )

)εi
)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝

1

1 +
{
∑n

i=1εi

(
1−ki

ki

)β
} 1

β

, 1 − 1

1 +
{
∑n

i=1εi

(
δi

1−δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,

⎛

⎜⎜⎜⎜
⎝

1

1 +
{
∑n

i=1εi

(
1−ki

ki

)β
} 1

β

, 1 − 1

1 +
{
∑n

i=1εi

(
δi

1−δi

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Proof Proof followed from Theorem 2.
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Theorem 9 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then the elemen-

tary result for IFRDWG operator are given as.

(i) Idempotency. Let ψ(Bi ) = E(B) ∀i = 1, 2, . . . , nsuch that E(B) =
(
E(B), E(B)

) =
(
〈k, δ〉, 〈k, δ〉

)
. Then

I FRDWG(ψ(B1), ψ(B2), . . . , ψ(Bn)) = E(B).

(ii) Boundedness. Let (ψ(Bi ))
− =

(
min
i

ψ(Bi ),min
i

ψ(Bi )

)
and (ψ(Bi ))

+ =
(
max

i
ψ(Bi ),max

i
ψ(Bi )

)
. Then

(ψ(Bi ))
− ≤ I FRDWG(ψ(B1), ψ(B2), . . . , ψ(Bn)) ≤ (ψ(Bi ))

+.

(iii) Monotonicity. Consider another family ψ
(
B

′
i

)
=
(
ψ
(
B

′
i

)
, ψ
(
B

′
i

))
of IFRNs, such

that ψ
(
B

′
i

)
≤ ψ(Bi )and ψ

(
B

′
i

)
≤ ψ(Bi ). Then

I FRDWG
(
ψ
(
B

′
1

)
, ψ
(
B

′
2

)
, . . . , ψ

(
B

′
n

))
≤ I FRDWG(ψ(B1), ψ(B2), . . . , ψ(Bn)).

(iv) Shift invariance. Assume that E
(
B

′) =
(
E
(
B

′)
, E
(
B

′)) =
(
〈k′

, δ
′ 〉, 〈k′

, δ
′ 〉
)
be

another IFRN. Then
I FRDWG

(
ψ(B1) ⊕ E

(
B

′)
, ψ(B2) ⊕ E

(
B

′)
, . . . , ψ(Bn) ⊕ E

(
B

′)) =
I FRDWG(ψ(B1), ψ(B2), . . . , ψ(Bn)) ⊕ E

(
B

′)
.

(v) Homogeneity. For a real number α > 0,
I FRDWG(αψ(B1), αψ(B2), . . . , αψ(Bn)) = α I FRDWG(ψ(B1), ψ(B2), . . . , ψ(Bn)).

Proof Proofs are easy and straightforward.

5.2 Intuitionistic fuzzy rough Dombi ordered weighted geometric operators

Definition 14 Assume that ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs. Let ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1 and εi ∈ [0, 1]. Then the aggregated

result for IFRDOWG operator is a mapping (ψ(B))n → ψ(B), which is given as:

IFRDOWG(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊗n

i=1

(
ψ(Bσ i )

)εi
,⊗n

i=1

(
ψ(Bσ i )

)εi
)
.

Theorem 10 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be theWV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then using IFRDOWG

operator, the aggregated result is described as:

I FRDOWG(ψ(B1), ψ(B2), . . . , ψ(Bn)) =
(
⊗n

i=1

(
ψ(Bσ i )

)εi
,⊗n

i=1

(
ψ(Bσ i )

)εi
)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜
⎝

1

1 +
{
∑n

i=1εi

(
1−kσ i

kσ i

)β
} 1

β

, 1 − 1

1 +
{
∑n

i=1εi

(
δσ i

1−δσ i

)β
} 1

β

⎞

⎟⎟⎟⎟
⎠

,
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⎛

⎜
⎜
⎜
⎜
⎝

1

1 +
{
∑n

i=1εi

(
1−kσ i

kσ i

)β
} 1

β

, 1 − 1

1 +
{
∑n

i=1εi

(
δσ i

1−δσ i

)β
} 1

β

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

where the IFRN ψ(Bσ i ) =
(
ψ(Bσ i ), ψ(Bσ i )

)
represents the largest permutation of the

collection ψ(Bi ).

Proof Proof is straightforward.

Theorem 11 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then some basic

results are satisfied for the collection ψ(Bi )by applying IFRDOWA operator.

(i) Idempotency. Let ψ(Bi ) = E(B) ∀i = 1, 2, . . . , n such that E(B) =
(
E(B), E(B)

) =
(
〈k, δ〉, 〈k, δ〉

)
. Then

IFRDOWG(ψ(B1), ψ(B2), . . . , ψ(Bn)) = E(B).

(ii) Boundedness. Let (ψ(Bi ))
− =

(
min
i

ψ(Bi ),min
i

ψ(Bi )

)
and (ψ(Bi ))

+ =
(
max
i

ψ(Bi ),max
i

ψ(Bi )

)
. Then

(ψ(Bi ))
− ≤ I FRDOWG(ψ(B1), ψ(B2), . . . , ψ(Bn)) ≤ (ψ(Bi ))

+.

(iii) Monotonicity. Consider another family ψ
(
B

′
i

)
=
(
ψ
(
B

′
i

)
, ψ
(
B

′
i

))
of IFRNs, such

that ψ
(
B

′
i

)
≤ ψ(Bi ) and ψ

(
B

′
i

)
≤ ψ(Bi ). Then

IFRDOWG
(
ψ
(
B

′
1

)
, ψ
(
B

′
2

)
, . . . , ψ

(
B

′
n

))
≤ IFRDOWG(ψ(B1), ψ(B2), . . . , ψ(Bn)).

(iv) Shift invariance. Assume that E
(
B

′) =
(
E
(
B

′)
, E
(
B

′)) =
(
〈k′

, δ
′ 〉, 〈k′

, δ
′ 〉
)
be

another IFRN. Then
IFRDOWG

(
ψ(B1) ⊕ E

(
B

′)
, ψ(B2) ⊕ E

(
B

′)
, . . . , ψ(Bn) ⊕ E

(
B

′)) =
IFRDOWG(ψ(B1), ψ(B2), . . . , ψ(Bn)) ⊕ E

(
B

′)
.

(v) Homogeneity. For a real number α > 0,
IFRDOWG(αψ(B1), αψ(B2), . . . , αψ(Bn)) = αIFRDOWG(ψ(B1), ψ(B2), . . . , ψ(Bn)).

Proof Proofs are easy and straightforward.

5.3 Intuitionistic fuzzy rough Dombi hybrid geometric operators

In this portion of the manuscript, to examine relation of the hybrid geometric operators
with IFRDWG and IFRDOWG operators which weight both the ordered position and the
arguments value itself, IFRDHG generalized both the operations. This subsection consists
of the study of IFRDHG operator and discuss its rudimentary properties.

Definition 15 Assume that ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs such

that ρ = (ρ1, ρ2, . . . , ρn)
T be the WV such that

∑n
i=1ρi = 1 and ρi ∈ [0, 1]. Let
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ε = (ε1, ε2, ε3, . . . , εn)
T be the associated WV such that

∑n
i=1εi = 1 and εi ∈ [0, 1].

Then the IFRDHG operator is a mapping (ψ(B))n → ψ(B), which is given as:

IFRDHG(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊗n

i=1

(
ψ(Bσ̃ i )

)εi
,⊗n

i=1

(
ψ(Bσ̃ i )

)εi
)
.

Theorem 12 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs such that

ρ = (ρ1, ρ2, . . . , ρn)
T be the WV such that

∑n
i=1ρi = 1and ∈ [0, 1]. Let ε =

(ε1, ε2, ε3, . . . , εn)
T be the associated WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then

using IFRDHG operator, the aggregated result is described as:

I FRDHG(ψ(B1), ψ(B2), ψ(B3), . . . , ψ(Bn)) =
(
⊗n

i=1

(
ψ(Bσ̃ i )

)εi
,⊗n

i=1

(
ψ(Bσ̃ i )

)εi
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜
⎜
⎝

1

1 +
{
∑n

i=1εi

(
1−kσ̃ i

kσ̃ i

)β
} 1

β

, 1 − 1

1 +
{
∑n

i=1εi

(
δσ̃ i

1−δσ̃ i

)β
} 1

β

⎞

⎟⎟
⎟
⎠

,

⎛

⎜
⎜⎜
⎝

1

1 +
{
∑n

i=1εi

(
1−kσ̃ i

kσ̃ i

)β
} 1

β

, 1 − 1

1 +
{
∑n

i=1εi

(
δσ̃ i

1−δσ̃ i

)β
} 1

β

⎞

⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where the IFRN ψ(Bσ̃ i ) = nρiψ(Bi ) = nρi

(
ψ(Bi ), ψ(Bi )

)
represent the largest permu-

tation of the collection ψ(Bi ).

Proof Proof is straightforward.

Theorem 13 Let ψ(Bi ) =
(
ψ(Bi ), ψ(Bi )

)
be the family of IFRNs and ε =

(ε1, ε2, ε3, . . . , εn)
T be the WV such that

∑n
i=1εi = 1and εi ∈ [0, 1]. Then some basic

results are satisfied for the collection ψ(Bi )by applying IFRDOWG operator.

(i) Idempotency. Let ψ(Bi ) = E(B) ∀i = 1, 2, . . . , n such that E(B) =
(
E(B), E(B)

) =
(
〈k, δ〉, 〈k, δ〉

)
. Then

IFRDHG(ψ(B1), ψ(B2), . . . , ψ(Bn)) = E(B).

(ii) Boundedness. Let (ψ(Bi ))
− =

(
min
i

ψ(Bi ),min
i

ψ(Bi )

)
and (ψ(Bi ))

+ =
(
max
i

ψ(Bi ),max
i

ψ(Bi )

)
. Then

(ψ(Bi ))
− ≤ IFRDHG(ψ(B1), ψ(B2), . . . , ψ(Bn)) ≤ (ψ(Bi ))

+.

(iii) Monotonicity. Consider another family ψ
(
B

′
i

)
=
(
ψ
(
B

′
i

)
, ψ
(
B

′
i

))
of IFRNs, such

that ψ
(
B

′
i

)
≤ ψ(Bi ) and ψ

(
B

′
i

)
≤ ψ(Bi ). Then

IFRDHG
(
ψ
(
B

′
1

)
, ψ
(
B

′
2

)
, . . . , ψ

(
B

′
n

))
≤ IFRDHG(ψ(B1), ψ(B2), . . . , ψ(Bn)).

(iv) Shift invariance. Assume that E
(
B

′) =
(
E
(
B

′)
, E
(
B

′)) =
(
〈k′

, δ
′ 〉, 〈k′

, δ
′ 〉
)
be

another IFRN. Then
IFRDHG

(
ψ(B1) ⊕ E

(
B

′)
, ψ(B2) ⊕ E

(
B

′)
, . . . , ψ(Bn) ⊕ E

(
B

′)) =
IFRHWG(ψ(B1), ψ(B2), . . . , ψ(Bn)) ⊕ E

(
B

′)
.
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(v) Homogeneity. For a real number α > 0,
IFRDHG(αψ(B1), αψ(B2), . . . , αψ(Bn)) = αIFRDHG(ψ(B1), ψ(B2), . . . , ψ(Bn)).

Proof Proofs are easy and straightforward.

6 A new approach for MCGDM hybrid with TOPSIS technique

In this portion of the manuscript, we will present the general structure of the TOPSIS and
step-wise algorithm for TOPSIS technique based on MCGDM.

In real life, group DM is one of the most significant process, in which the professional
experts of different genre present their input evaluations for every alternative against all
criteria to get the most desirable solution. Assume that the set K = {g1, g2, . . . , gn} of
n objects and let C̃ = {

C̃1, C̃2, . . . , C̃m
}
be the set corresponding criteria with WV ε =

(ε1, ε2, . . . , εm)T such that
∑m

j=1ε j with ε j ∈ [0, 1]. Let G = {G1,G2, . . . ,Gt } be a set of
professional specialist who assign their personal views for each alternatives with respect to
corresponding criteria withWV v = (v1, v2, . . . , vt )

T such that
∑t

l=1vl with vl ∈ [0, 1]. The
decision experts present their evaluation in the form of IFRNs and collectively represented in
the form of decisionmatrixM = [

ψ
(
Bi j

)]
m×n , and then defined the accumulated geometric

operator to transform the IFRNs into IFNs which is defined by:

Definition 16 Let ψ(B) =
(
ψ(B), ψ(B)

)
=
(
〈k, δ〉, 〈k, δ〉

)
be an intuitionistic fuzzy

rough number. Then transform the intuitionistic fuzzy rough number into intuitionistic fuzzy
number by applying accumulated geometric operator (AGO), which is defined as:

G = (kG, δG) =
(
ψ(B), ψ(B)

)0.5 =
((

kk
)0.5

,
(
δδ
)0.5

)

The combined opinions of decision experts are expressed in the form of intuitionistic
fuzzy rough decision matrixM = [

ψ
(
Bi j

)]
m×n which is transformed into an intuitionistic

fuzzy decision matrixM =
[
G
(
kGi j , δGi j

)]

m×n
by applying AGO.

Furthermore, the technique of TOPSIS method is applied to calculate the IF-PIS P+ and
IF-NIS P− of the transformed decision matrix via the score function which is defined as:

P+ =
{
〈C̃ j ,max

{
S
(
C̃ j (gi )

)}〉|i = 1, . . . , n, j = 1, . . . ,m
}

= {〈C̃1,
(
k+
1 , δ+

1

)〉, 〈C̃2,
(
k+
2 , δ+

2

)〉, . . . , 〈C̃m,
(
k+
m, δ+

m

)〉}

P− =
{
〈C̃ j ,min

{
S
(
C̃ j (gi )

)}〉|i = 1, . . . , n, j = 1, . . . ,m
}

= {〈C̃1,
(
k−
1 , δ−

1

)〉, 〈C̃2,
(
k−
2 , δ−

2

)〉, . . . , 〈C̃m,
(
k−
m, δ−

m

)〉}

Calculate the shortest distance D+ and farthest distance D− between the each object gi
and the IF-PIS and IF-NIS

D+(gi ,P+) =
∑n

j=1
ε j d

(
C̃ j (gi ), C̃ j

(P+))

= 1

2

∑n

j=1
ε j
(∣∣ki j − k+

j
∣∣+ ∣∣δi j − δ+

j
∣∣+ ∣∣πi j − π+

j
∣∣)forp > 1

D−(gi ,P−) =
∑n

j=1
ε j d

(
C̃ j (gi ), C̃ j

(P−))
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= 1

2

∑n

j=1
ε j
(∣∣ki j − k−

j
∣
∣+ ∣

∣δi j − δ−
j
∣
∣+ ∣

∣πi j − π−
j
∣
∣)forp > 1

Generally the objects having smaller the value of shortest distance D+(gi ,P+) is better
the alternative gi and the object havinh bigger the value of farthest distance D−(gi ,P−) is
better that alternative gi .

D+
min

(
gi ,P+) = min

1≤i≤n
D+(gi ,P+), D−

max

(
gi ,P−) = max

1≤i≤n
D−(gi ,P−)

Finally, from the above analysis, the ranking of all alternatives was calculated according
to the corresponding criteria and arranged them in a specific order to get the optimum value.

ξ(gi ) = D−(gi ,P−)

D−
max

(
gi ,P−) − D+(gi ,P+)

D+
min

(
gi ,P+) .

Algorithm From the above analysis, the step-wise decision algorithm for the developed
approach consists of the following steps:

Step 1 The decision experts present their evaluation in the form of IFRNs and collectively
expressed in the form of IFR decision matrix given by:

M = [
ψ
(
Bi j

)]
m×n .

Step 2 Aggregate the expressed combine decision assessment of the professional experts
by applying the developed approach to get a single decisionmatrix in the form of IFR decision
matrix.

Step 3 The collective aggregated evaluation information of decision experts in the form
of IF rough decision matrix M = [

ψ
(
Bi j

)]
m×n is transformed into an intuitionistic fuzzy

decision matrix M =
[
G
(
kGi j , δGi j

)]

m×n
by applying AGO.

Step 4 Calculate the IF-PIS P+ and IF-NIS P− of the transformed decision matrix via the
score function.

Step 5Calculate the shortest distance D+ and farthest distance D− between the alternative
gi and the IF-PIS and IF-NIS.

Step 6 Finally, by applying the ranking function ξ(gi ), arrange the ranking information in
a specific order to get the optimum object.

7 Illustrative example

The massive outbreak of the pandemic COVID-19 promoted the challenging scenario for
the world organizations including scientists, laboratories, and researchers to conduct spe-
cial clinical treatment strategies to prevent the people from COVID-19 pandemic. Globally,
COVID-19 pandemic affected the human race and hit hard on them in terms of health and
economy. The most severe symptoms, which need medical attention are, low level of oxygen
in the body, pneumonia, sometime failure of vital organs such as kidneys, heart, and liver.
Studies also reported loss of taste and smell. The common symptoms reported by CDC is
mentioned somewhere in this article, but we here studied the symptoms with sever disease
that are associated to most distinctive comorbidities SARS-CoV-2 infection. We will discuss
the severity of the disease with symptoms through an illustrative example.

Assume that a team of experts doctors including D1, D2, and D3 are called to diagnose
the most severe illness of COVID-19 patient with WV ε = (0.326, 0.352, 0.322)T such that
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∑m
j=1ε j with ε j ∈ [0, 1]. The experts examined four patients g1, g2, g3, and g4. According

to the recent study by the collaboration of different organizations, majority exhibited clinical
criteria such as C̃1 = fever, C̃2 = dry cough, C̃3 = fatigue, C̃4 = diarrhea and C̃5 = shortness
of breath, with WV ϑ = (0.215, 0.218, 0.212, 0.231, 0.124)T . Further, the decision maker
presented their evaluation report in the form of IFRNs for each patient gi with respect to their
corresponding criteria. Now, the step-wise algorithmwas applied for the developed approach
to diagnose the most severe ill patient by taking the operational parameter β = 2.

7.1 For IFRDWA/IFRDWG operator

Step 1 The decision experts expressed their judgement in the form of IFRNs and collectively
represented in the form of IFR decision matrix given in Tables 1, 2, 3.

Step 2 Aggregate the collective decision information of the professional experts given in
Tables 1, 2, 3, by applying the IFRDWA/IFRDWG operator to get a single decision matrix
in the form of IFR decision matrix which is given in Table 4.

Step 3 The collective aggregated evaluation information of decision experts in the form
of IF rough decision matrix M = [

ψ
(
Bi j

)]
m×n is transformed into an intuitionistic fuzzy

decision matrix M =
[
G
(
kGi j , δGi j

)]

m×n
by applying AGO, which is defined as:

G = (kG, δG) =
(
ψ(B), ψ(B)

)0.5 =
((

kk
)0.5

,
(
δδ
)0.5

)
.

The collective evaluation information of decision experts in the form of intuitionistic fuzzy
decision matrix by applying AGO is given in Table 5.

Step 4 Determine the IF-PIS P+ and IF-NIS P− of the transformed decision matrix given
in Table 5, by applying the score function given in Definition 6.

P+ = {(0.7304, 0.1443), (0.8434, 0.1437), (0.7915, 0.1425), (0.8474, 0.1159), (0.7853, 0.1296)}
P− = {(0.5772, 0.1723), (0.5486, 0.1881), (0.6631, 0.1620), (0.5131, 0.1441), (0.6955, 0.1607)}

Step 5 Calculate the shortest distance D+(gi ,P+) and farthest distance D−(gi ,P−)

between the alternative gi and the IF-PIS and IF-NIS, which is given in Table 6.
Step 6 Finally, by applying the ranking function ξ(gi ), arrange the ranking information in

a specific order to get the optimum object, which is illustrated in Table 7.

7.2 Comparative study for the effectiveness of the proposed approaches

The TOPSIS method is one of the most significant technique to cope MCDM problems, in
which the target is to get the optimal object having highest score value known as PIS and
the object with the least score value is known as NIF. To present the ability and resilience of
proposed approach by applying IF rough aggregation operators based on Dombi t-norms and
t-conorms hybrid with TOPSIS method, we made a comparison of the investigated concept
with several previous models in literature such as IFWA operator by Xu (2007), IFWG
operator by Xu and Yager (2006), IF TOPSIS method by Yinghui andWenlu (2015), IFRWA
operator by Yahya et al. (2021), IFRWA and IFRWG operators based on EDAS method
by Chinram et al. (2021), IFDWA and IFDWG operators by Seikh and Mandal (2021). If
we consider Tables 1, 2, 3, and 4, then the aggregation operators presented in Xu (2007),
Xu and Yager (2006), Seikh and Mandal (2021) and Yinghui and Wenlu (2015) are not
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Table 5 Intuitionistic fuzzy decision matrix after the use of AGO

C̃1 C̃2 C̃3 C̃4 C̃5

g1 (0.6579, 0.1317) (0.8434, 0.1437) (0.7915, 0.1425) (0.8474, 0.1159) (0.7117, 0.1686)

g2 (0.7304, 0.1443) (0.8034, 0.1159) (0.7270, 0.1761) (0.5131, 0.1441) (0.7853, 0.1296)

g3 (0.7336, 0.1863) (0.5486, 0.1881) (0.6911, 0.1329) (0.8489, 0.1423) (0.6955, 0.1607)

g4 (0.5772, 0.1723) (0.7285, 0.1214) (0.6631, 0.1620) (0.6797, 0.1338) (0.7616, 0.1187)

Table 6 Result obtained for IFRDWA operator by applying IFR TOPSIS method

D+(gi ,P+) D−(gi ,P−) ξ(gi ) Ranking

g1 0.0275 0.1891 0 1

g2 0.1057 0.1162 −3.2327 2

g3 0.1149 0.1204 −3.5469 3

g4 0.1331 0.0859 −4.3899 4

capable to aggregate the illustrative example presented in Sect. 7. However, the aggregation
operators investigated by Chinram et al. (2021) work but these operators are the special
cases of the investigated operators. Furthermore, the influence of operational parameter β

provides additional space to the decision makers to use their skill and expertise. Dombi
operators have general capability and provide additional space in evaluation process to the
decision makers. Some of the existing models such as Xu (2007); Xu and Yager (2006);
Seikh and Mandal (2021); Chinram et al. (2021); Yinghui and Wenlu (2015) have lack of
this operational parameter. The collectively aggregated ranking result of the existing and
developed approaches is given in Table 8. The influence of operational parameter β plays
significant role in DM. Different values are used for the operational parameter β to judge the
ranking result of proposed approaches IFRDWA and IFRDWG operators. The raking results
based on different values of operational parameter β in the range of 2 ≤ β ≤ 10, for both
IFRWA and IFRWG operators, are shown in Table 9. From Table 9, it is clear that the ranking
results and best optimal object is same that is g1. From the analysis of existing models and
proposed approaches, it is clear that the investigated approach provides extra flexibility and
capability than the previous methods.

8 Conclusion

The MCGDM is a pre-plan technique in which the group of professional decision makers
presented their evaluation report to get the best and logical alternative among the several
objects. Decision-making is a hard and complex process to access the conflicting character-
istics of each alternative from different aspect. Hence, intellectual experts are engaged in this
technique to improve the evaluation process to get more accurate and intelligent decision
with experience and skills in addition to mental maturity. For this shortcoming, Atanassov
(1986) investigated the prominent concept of IFS which is characterized by the membership
and nonmembership grades. This study aims to propose the intuitionistic fuzzy rough set
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Table 8 Comparative study of the proposed model with some existing approaches

Methods ξ(gi ) Ranking

IFWA (Xu and Yager 2006) 0.6523, 0.5781, 0.5646, 0.5361 g1 ≥ g2 ≥ g3 ≥ g4

IF TOPSIS (Yinghui and Wenlu
2015)

0.8041, 0.4434, 0.5694, 0.4631 g1 ≥ g3 ≥ g4 ≥ g2

IFRFWA based on EDAS
(Yahya et al. 2021)

0.8966, 0.6654, 0.247, 0.3567 g1 ≥ g2 ≥ g4 ≥ g3

IFRWA based on EDAS
(Chinram et al. 2021)

0.8584, 0.5703, 0.2734, 0.2234 g1 ≥ g2 ≥ g3 ≥ g4

IFDWA (Seikh and Mandal
2021)

0.6747, 0.6081, 0.6113, 0.5530 g1 ≥ g3 ≥ g2 ≥ g4

IFWG (Xu and Yager 2006) 0.6356, 0.5507, 0.5362, 0.5253 g1 ≥ g2 ≥ g3 ≥ g4

IFDWG (Seikh and Mandal
2021)

0.6136, 0.5064, 0.5022, 0.5107 g1 ≥ g4 ≥ g3 ≥ g2

IFRWG based on EDAS
(Chinram et al. 2021)

0.7789, 0.6357, 0.3677, 0.2043 g1 ≥ g2 ≥ g3 ≥ g4

IFRDWA proposed 0.0000, −3.2327, −3.5469, −4.3899 g1 ≥ g2 ≥ g3 ≥ g4

IFRDWG proposed 0.0000, −0.1313, −0.4616, −0.8582 g1 ≥ g2 ≥ g3 ≥ g4

based on Dombi norms and t-norms, and then by applying TOPSIS approach to aggregate
averaging and geometric aggregation operators. Further, on the presented concept, we inves-
tigated IFRDWA, IFRDOWA, and IFRDHA operators. Moreover, on the proposed model,
we initiated IFRDWG, IFRDOWG, and IFRDHG operators. The important properties of
the proposed approach are presented in detailed. The algorithm for MCGDM hybrid with
TOPSIS method is presented for intuitionistic fuzzy rough Dombi averaging and geometric
aggregation operators. The novel concept of accumulated geometric operator is applied on
proposedmodel to convert the intuitionistic fuzzy rough numbers to intuitionistic fuzzy num-
bers. The massive outbreak of the pandemic COVID-19 promoted the challenging scenario
for the world organizations including scientists, laboratories, and researchers to conduct spe-
cial clinical treatment strategies to prevent the people fromCOVID-19 pandemic. In addition,
an illustrative example is proposed to solve MCGDM problem to diagnose the most severe
patient of COVID-19 by applying TOPSIS. Finally, a comparative analysis of the developed
model is presented with some existing approaches which shows the applicability and preem-
inence of the investigated model. As the prominent concepts of intuitionistic fuzzy sets and
rough sets have broad applications, so by keeping in view of the future, we will extend the
proposed concept to hesitant fuzzy sets, neutrosophic fuzzy sets, bipolar fuzzy sets, soft sets
and will study different aggregation operators by applying the presented model.
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