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Binary optimal linear codes with various hull

dimensions and entanglement-assisted QECC

Jon-Lark Kim
∗

Abstract

The hull of a linear code C is the intersection of C with its dual. To
the best of our knowledge, there are very few constructions of binary
linear codes with the hull dimension ≥ 2 except for self-orthogonal
codes. We propose a building-up construction to obtain a plenty of
binary [n+2, k+1] codes with hull dimension ℓ, ℓ+1, or ℓ+2 from a
given binary [n, k] code with hull dimension ℓ. In particular, with re-
spect to hull dimensions 1 and 2, we construct all binary optimal [n, k]
codes of lengths up to 13. With respect to hull dimensions 3, 4, and
5, we construct all binary optimal [n, k] codes of lengths up to 12 and
the best possible minimum distances of [13, k] codes for 3 ≤ k ≤ 10.
As an application, we apply our binary optimal codes with a given hull
dimension to construct several entanglement-assisted quantum error-
correcting codes(EAQECC) with the best known parameters.

keywords building-up construction, codes, hull, LCD codes
MSC(2010): Primary 94B05

1 Introduction

The hull of a linear code C is the intersection of C with its dual. The hull of a
linear code was introduced by Assmus, Jr. and Key [1]. The hull determines
the complexity of algorithms for checking permutation equivalence of two
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linear codes [25], which are very effective if the dimension of the hull is
small, and which are worst if the dimension of the hull is large. The hardness
of the Permutation Code Equivalence problem is of great importance when
designing cryptographic primitives, such as public-key cryptosystems and
identification schemes in the field of code-based cryptography [26].

When the hull contains only the zero vector, that is, the hull dimension
is 0, C is called a Linear Complementary Dual code (shortly, LCD code).
Recently, LCD codes have been actively studied due to its side channel attack.
An LCD code was originally constructed by Massey [19], [20] as a reversible
code in order to provide an optimum linear coding solution for the two-user
binary adder channel. Carlet and Guilley [5] introduced several constructions
of LCD codes and investigated an application of LCD codes against side-
channel attacks(SCA) and Fault Injection Attack(FIA).

There are several constructions for binary linear codes with hull dimen-
sions 0 or 1. More precisely, Galvez et al. [8] have constructed all binary
optimal LCD [n, k] codes for 1 ≤ k ≤ n ≤ 12. Harada and Saito [12] have
extended this for 1 ≤ k ≤ n ≤ 16. Li and Zeng [18] have constructed binary
linear [n, k] codes with hull dimension 1 for n = 8 with k = 3, 5, 7, n = 9
with k = 3, 5, 6, 7, and n = 10 with k = 3, 4, 7, whose optimality was not
discussed.

On the other hand, when the dimension h of the hull of a linear [n, k] code
C is equal to k, C is called self-orthogonal, and self-dual if h = k = n/2. Self-
orthogonal or self-dual codes have been one of the most active research areas
in classical coding theory [24] and recently in quantum coding theory [4]. As
far as we know, there are few constructions of binary linear codes with the
hull dimension h ≥ 2 except for self-orthogonal codes. It turns out that linear
codes with various hull dimensions can be used to construct entanglement-
assisted quantum error-correcting codes (EAQECC) [7], [9], [27].

Therefore, it is an interesting problem to find a unified method to con-
struct linear codes with various hull dimensions.

In this paper, we give an efficient and systematic method, called a building-
up construction to construct linear codes with various hull dimensions from
a given linear code with a fixed hull dimension. More precisely, with respect
to hull dimensions 1 and 2, we construct all binary optimal [n, k] codes of
lengths up to 13. With respect to hull dimensions 3, 4, and 5, we construct all
binary optimal [n, k] codes of lengths up to 12 and the best possible minimum
distances of [13, k] codes for 3 ≤ k ≤ 10. As a coding theoretical application,
given length 2 ≤ n ≤ 12 and dimension k (2 ≤ k ≤ n), by running all values
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of the hull dimension h (0 ≤ h ≤ [n/2]), we can recover all the binary best
known linear [n, k] codes in Grassl’s table [10] with sometimes more than
one inequivalent code. We apply our binary optimal codes with a given hull
dimension to the construction of [[n, k, d; c]] EAQECC with the best known
parameters as described in [7], [27].

2 Preliminaries

A linear [n, k, d] code C over GF (q) or Fq is a k-dimensional subspace of Fn
2

with minimum distance d(C) or d if there is no confusion. The dual of C is
C⊥ = {x ∈ F

n
2
| x · c = 0 for any c ∈ C}, where the dot product is the usual

inner product. A linear code C is called self-orthogonal if C ⊂ C⊥ and self-
dual if C = C⊥. A linear code C is called an LCD code (linear complementary
dual code) if C ∩ C⊥ = {0}. Hence being LCD is the opposite concept of
self-orthogonality.

Let C be a linear code over GF (q) with its dual C⊥. The Hull of C is
defined as Hull(C) = C ∩ C⊥. Let h = dimension of Hull(C).

We call C hi-optimal if d(C) is the largest among all the linear [n, k] codes
C with h = i for 0 ≤ i ≤ k. We call C optimal if d(C) is the largest among
all the linear [n, k] codes C.

Lemma 1. ([18, Proposition 1]) Let C be a linear [n, k] code over GF (q)
with generator matrix G. Then h = k − rank(GGT ).

Hence, if h = 0, that is, Hull(C) = {0} or rank(GGT ) = k, then C is
LCD. If Hull(C) = C, then C is self-orthogonal.

Now we also describe entanglement-assisted quantum error-correcting
codes(EAQECC). An EAQECC with parameters [[n, k, d; c]] encodes k logi-
cal qubits into n physical qubits with the help of c pre-shared entanglement
pairs [23]. If c = 0, then [[n, k, d; c]] EAQECC are equivalent to quantum
stabilizer codes. Hence, [[n, k, d; c]] EAQECC are a generalization of [[n, k, d]]
QECC.

The following is a useful method to construct [[n, k, d; c]]q EAQECC from
q-ary linear [n, k, d] codes.

Proposition 1. ([7], [9, Corollary 3.1], [27, Proposition 8]) Let C be a linear
code over GF (q) with parameters [n, k, d]q and C⊥ be its dual with parameters
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[n, n − k, d′]q. Let dim(Hull(C)) = h. Then, there exist an [[n, k − h, d;n−
k − h]]q EAQECC and an [[n, n− k − h, d′; k − h]]q EAQECC.

Proposition 2 ([9]). An [[n, k, d; c]]q EAQECC satisfies

n+ c− k ≥ 2(d− 1),

where 0 ≤ c ≤ n− 1.

An EAQECC attaining this Singleton bound is called an MDS EAQECC.
Chen et al. [6] constructed MDS EAQECC when q = 2e with e odd with
special values of n, k, d, and c.

Let q = 2 and consider the binary Hamming [7, 4, 3] code H3. Since its
dual H⊥

3
is the simplex code S3 and is a subcode of H3, we have h(H3) = 3.

Hence by Proposition 1, we obtain a [[7, 1, 3; 0]]2 EAQECC which is best
known by Grassl’s table [10]. Note that n + c − k = 7 + 0 − 1 = 6 and
2(d− 1) = 4. Hence [[7, 1, 3; 0]]2 EAQECC is not MDS.

In this paper, we consider q = 2 and construct various [[n, k − h, d;n −
k − h]]2 EAQECC using the building-up constructions.

3 Building-up construction for linear codes with

various hull dimensions

In the remaining sections, we consider binary codes. We can construct [n +
2, k+1] linear codes with hull dimension ℓ+1 from a given [n, k] linear code
with hull dimension ℓ as follows.

Theorem 1. Let C be a binary linear [n, k] code. Suppose that the dimension
of Hull(C) is ℓ, where 0 ≤ ℓ ≤ k. Let G be a generator matrix for C and H
a parity check matrix for C.

Suppose that x = (x1, x2, . . . , xn) ∈ GF (2)n satisfies x · x = 1. Let
yi = x · ri for 1 ≤ i ≤ k where ri is the ith row of G and zj = x · sj for
1 ≤ j ≤ n− k where sj is the jth row of H. Then

(a) the following matrix

G1 =









1 0 x1 . . . xn
y1 y1 r1
y2 y2 r2
...

...
...

yk yk rk
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generates an [n + 2, k + 1] linear code C1 with h(C1) = ℓ + 1. This is
called Construction I.

(b) A parity check matrix H1 for C1 is given by

H1 =









1 0 x1 . . . xn
z1 z1 s1
z2 z2 s2
...

...
...

zn−k zn−k sn−k









.

Proof. We prove (a). Now rank(G1G
T
1
) is computed as follows.

G1G
T
1
=







0 0 . . . 0
0
... GGT

0






.

Thus rank(G1G
T
1
) = rank(GGT ) = k−h(C) = k−ℓ since h(C) = ℓ. Now

h(C1) = (k + 1)− rank(G1G
T
1
) = (k + 1)− (k − ℓ) = ℓ+ 1 as desired.

We prove (b) as follows. Notice that

G1H
T
1
=







0 0 . . . 0
0
... GHT

0






= 0.

Since the top row of H1 cannot be a linear combination of the remaining rows
of H1, the dimension of the row space of H1 is 1+ (n−k) = (n+2)− (k+1)
which is the dimension of (C⊥

1
). Thus H1 is a generator matrix for C⊥

1
.

Theorem 2. Let C be a binary linear [n, k] code. Suppose that the dimension
of Hull(C) is ℓ, where 0 ≤ ℓ ≤ k. Let G be a generator matrix for C and H
a parity check matrix for C.

Suppose that x = (x1, x2, . . . , xn) ∈ GF (2)n satisfies x · x = 0. Let
yi = x · ri for 1 ≤ i ≤ k where ri is the ith row of G and zj = x · sj for
1 ≤ j ≤ n− k where sj is the jth row of H. Then
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(a) the following matrix

G2 =









1 1 x1 . . . xn

y1 0 r1
y2 0 r2
...

...
...

yk 0 rk









generates an [n+2, k+1] linear code C2 with h(C2) = ℓ, ℓ+1, or ℓ+2.
More precisely, we characterize them as follows.

• If yi = 0 for any 1 ≤ i ≤ k, then the dimension of Hull(C2) is
ℓ+ 1. This is called Construction II.

• Suppose yi 6= 0 for some 1 ≤ i ≤ k. So, G2 can be rewritten as
G′

2
given by

G′

2
=









1 1 x1 . . . xn

1 0
0 0
...

... G′

0 0









,

where 〈G′〉 = 〈G〉. Then the dimension of Hull(C2) is ℓ, ℓ+1, or
ℓ+ 2. This is called Construction III.

(b) A parity check matrix H2 for C2 is given by

H2 =









1 1 x1 . . . xn

0 z1 s1
0 z2 s2
...

...
...

0 zn−k sn−k









.

Proof. We prove (a).

• Suppose that yi = 0 for any 1 ≤ i ≤ k. Then we have

G2G
T
2
=







0 0 . . . 0
0
... GGT

0






.

Thus rank(G2G
T
2
) = rank(GGT ) = k−ℓ since h(C) = ℓ. The dimension

of Hull(C2) = h(C2) = (k+1)−rank(G2G
T
2
) = (k+1)−(k−ℓ) = ℓ+1.
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• Suppose yi 6= 0 for some 1 ≤ i ≤ k. By row operations of G2, G2 is
transformed into G′

2
given by

G′

2
=









1 1 x1 . . . xn

1 0
0 0
...

... G′

0 0









,

where 〈G′〉 = 〈G〉. Furthermore,

G′

2
(G′

2
)T =







0 0 . . . 0
0
... X
0






,

where X = (10 . . . 0)T (10 . . . 0)+G′(G′)T . Since rank(A+B) ≤ rank(A)
+ rank(B), we have rank(X)≤ rank((10 . . . 0)T (10 . . . 0)) + rank(G′(G′)T )
= 1+ rank(G′(G′)T ). Noting that (10 . . . 0)T (10 . . . 0) affects only the
top row of G′(G′)T , we know that rank(X) decreases by at most one.
So, rank(X) is rank(G′(G′)T ), rank(G′(G′)T )−1, or rank(G′(G′)T )+1.

Thus rank(G2(G2)
T )=rank(G′

2
(G′

2
)T ) = rank(X) is rank(G′(G′)T ) =

k− ℓ, rank(G′(G′)T )− 1 = k− ℓ− 1, or rank(G′(G′)T ) + 1 = k− ℓ+1.
Hence the dimension of Hull(C2) is k + 1 − (k − ℓ) = ℓ + 1, k + 1 −
(k − ℓ− 1) = ℓ+ 2, or k + 1− (k − ℓ+ 1) = ℓ.

We prove (b). It is straightforward to check that G2H
T
2

= 0 by the
definition of yi’s and zj ’s. Because the rank of H2 is (n − k) + 1 and the
dimension of the dual of C2 is (n+ 2)− (k + 1) = n− k + 1, we see that H2

is a parity check matrix for C2.

We note that Constructions II and III are basically the same construc-
tion but we distinguish them in order to guess the hull dimension of the
built-up code. We remark that Theorem 1 reproves the original building-up
construction of binary self-dual codes [15] where n is even and k = n/2 = ℓ.

Harada [11] gave a construction of binary LCD [n + 2, k + 1] codes from
a given binary LCD [n, k] code. We generalize this in the following theorem.

By modifying the proof of Theorem 1, we can construct [n+2, k+1] linear
codes with the same hull dimension as that of a given [n, k] linear code.
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Theorem 3. Let C be a binary linear [n, k] code. Suppose that the dimension
of Hull(C) is ℓ, where 0 ≤ ℓ ≤ k. Let G be a generator matrix for C and H
a parity check matrix for C.

Suppose that x = (x1, x2, . . . , xn) ∈ GF (2)n satisfies x · x = 0. Let
yi = x · ri for 1 ≤ i ≤ k where ri is the ith row of G and zj = x · sj for
1 ≤ j ≤ n− k where sj is the jth row of H. The following matrix

G3 =









1 0 x1 . . . xn
y1 y1 r1
y2 y2 r2
...

...
...

yk yk rk









generates an [n + 2, k + 1] linear code C3 with h(C3) = ℓ. This is called
Construction IV. A parity check matrix H3 for C3 is given by

H3 =









0 1 x1 . . . xn
z1 z1 s1
z2 z2 s2
...

...
...

zn−k zn−k sn−k









.

Proof. The proof is almost the same as that of Theorem 1. It is straightfor-
ward to see that G3H

T
3
= 0 and rank(H3) = 1 + (n− k) which implies that

H3 is a parity check matrix for C3. We compute rank(G3G
T
3
) as follows.

G3G
T
3
=







1 0 . . . 0
0
... GGT

0






.

Thus rank(G3G
T
3
) = 1+rank(GGT ) = 1+k−h(C) = 1+k−ℓ since h(C) = ℓ.

Now h(C3) = (k+1)− rank(G3G
T
3
) = (k+1)− (1+k−ℓ) = ℓ as desired.

We can estimate the minimum distance d(Ci) (i = 1, 2, 3) for Construc-
tions I-IV as follows.

Theorem 4. Let C be a binary linear [n, k] code. Let x = (x1, x2, . . . , xn) ∈
GF (2)n. Then we have the following.

(i) The minimum distance d(Ci) (i = 1, 3) is min{d(C),weight(x+C)+1}
or min{d(C) + 2,weight(x+ C) + 1} for Constructions I and IV.
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(ii) d(C2) is min{d(C),weight(x+C)+2} for Construction II and min{d(C)+
1,weight(x + C) + 1}, or min{d(C) + 1,weight(x + C) + 2} for Con-
struction III.

Proof. We prove statement (i). Let i = 1, 3. Let S1 be the code spanned by
all the rows of Gi except for the top row. Then Ci is the disjoint union of S1

and (1 0 x)+S1. Thus d(Ci) is the minimum of d(S1) and weight((1 0 x)+S1).
We note that d(S1) is d(C) or d(C) + 2 and that weight((1 0 x) + S1)= 1+
weight(x + C)). Hence we obtain (i). Similarly, we can prove (ii), whose
proof is omitted.

The following is straightforward since d(C) ≤ ρ(C), where ρ(C) is the
covering radius of C.

Corollary 1. Let C be a binary linear [n, k] code with its covering radius
ρ(C). Then the minimum distance d(Ci) (i = 1, 2, 3) for Constructions I-IV
satisfies min{d(C),weight(x+ C) + 1} ≤ d(Ci) ≤ ρ(C) + 2.

Remark 1. Although we have considered Constructions I-IV for linear codes
over GF (2), it is easy to see that the same Constructions I-IV in Theorems
1-3 hold for linear codes over GF (q), where q = 2r for any integer r ≥ 1.
If q is odd, then a slight modification of Constructions I-IV based on the
building-up construction for self-dual codes over GF (q) [16],[17] will give
results similar to Theorems 1-3.

4 Some interesting optimal linear codes

We display some interesting optimal linear codes with hull dimensions 2 and
3 from a linear code with hull dimension 1.

Start with an h1-optimal [10, 6, 3] code C whose generator matrix G is
given below.

G =











1000000101
0100001001
0010001110
0001000110
0000101010
0000011100
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Example 1. Let us take x = (0000011000) with G by Construction III to
get an h2-optimal [12, 7, 3] linear code C ′ with h = 2. Its generator matrix
G′ is written as follows.

G′ =













11 0000011000
00 1000000101
10 0100001001
10 0010001110
00 0001000110
10 0000101010
00 0000011100













∼













100000101010
010000101110
001000000101
000100100011
000010100100
000001000110
000000011100













By Proposition 1, we can obtain a [[12, 5, 3; 3]]2 EAQECC from C ′.

Example 2. Let us take x = (1111110011) with G above by Construction
III to get an optimal [12, 7, 4] linear code C ′′ with h = 3. Its generator matrix
G′′ is written in standard from after row operations.

G′′ =













11 1111110011
00 1000000101
00 0100001001
00 0010001110
00 0001000110
00 0000101010
10 0000011100













∼













100000011100
010000001101
001000011001
000100010101
000010001110
000001011010
000000110110













By Proposition 1, we can obtain a [[12, 5, 3; 3]]2 EAQECC from C ′′.
By exhaustive search, we have checked that there are up to equivalence

exactly two optimal [12, 7, 4] codes. One of them is the above [12, 7, 4]
code C ′′ with h = 3. The other is a [12, 7, 4] code [14] with h = 1 whose
weight distribution is [〈0, 1〉 , 〈4, 38〉 , 〈6, 52〉 , 〈8, 33〉 , 〈10, 4〉]. This code gives
a [[12, 6, 4; 4]]2 EAQECC by Proposition 1.

5 Optimal linear codes with several hulls and

the construction of EAQECC

We construct several optimal linear codes of lengths up to 13 with h = i
(i = 1, 2, 3, 4, 5) from a given linear code of a fixed hull dimension h. Ta-
bles 1,3,5,7,9 display best possible minimum distances of linear [n, k] codes
from hull dimensions 1 to 5. The upper bounds for the minimum distances
in the tables are from Grassl’s table [10] by taking not the hull dimension
into account and by brute force search. Each cell in each table denotes the
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highest minimum distance d(n, k) for given n, k, and h = i together with
the superscripts referring to Constructions I to IV and o meaning that the
codes are optimal. For n = 12, we apply Constructions I, II, and/or III. For
n = 13, we apply Constructions I, III, and/or IV. All computations were
done by Magma [2]. To save the space, we post whole information about the
codes in Tables 1,3,5,7,9 in the author’s website [14] and list most generator
matrices for n = 12 and 13 in this paper.

Tables 2,4,6,8,10 display associated [[n, k, d; c]]2 EAQECC based on Propo-
sition 1 and Tables 1, 3, 5, 7, 9. In other words, we obtain [[n, k − h, d;n−
k − h]]2 EAQECC from binary [n, k, d] codes with hull dimension h.

Example 3. Fix the hull dimension h = 1. For any n with k such that
1 ≤ k ≤ n ≤ 11 and n = 12 with k (1 ≤ k ≤ 4), we ran exhaustive search to
get optimal or h1-optimal codes. We note that there is an optimal [12, 5, 4]
code with h = 1 from Magma database.

For n = 12 with k ≥ 6, we apply Constructions I and II to all the LCD
codes of length 10 and dimension k − 1 displayed in [12]. More precisely, we
construct optimal [12, 6, 4] and [12, 9, 2] codes by Construction I. Similarly,
we construct optimal [12, 7, 4] and [12, 8, 3] codes by Construction III.

Let n = 13. We construct optimal [13, 4, 6], [13, 5, 5], [13, 6, 4], [13, 7, 4],
[13, 8, 3], [13, 10, 2], [13, 11, 2] codes by Construction I. We also construct an
h1-optimal [13, 3, 6] code by Construction I, which is justified by the non-
existence of [13, 3, 7] codes with h = 1 using exhaustive search. Similarly, we
construct an h1-optimal [13, 9, 2] code by Construction I, which is justified
by the non-existence of [13, 9, 3] codes with h = 1 using exhaustive search.

In what follows, Gi
n,k,d refers to a generator matrix for a binary [n, k, d]

code C i
n,k,d with h = i and the highest minimum distance d = d(n, k).

• n = 12 with h = 1

G1

12,6,4 =









101111011100
111000100010
110100100001
110010000011
000001100101
000000001111









, G1

12,7,4 =













111111011000
101000100100
100100100010
100010000110
100001100001
100000010101
100000001011
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G1

12,8,3 =















111111000011
101000000011
000100000101
000010000110
100001000111
000000100011
100000010101
000000001111















, G1

12,9,2 =



















101000000000
111000000001
000100000001
000001000001
000000100001
000000010001
000000001001
000000000101
000000000011



















G1

12,10,1 =





















101000000000
010000000000
000010000000
000001000000
000000100000
000000010000
000000001000
000000000100
000000000010
000000000001





















, G1

12,11,2 =

























100000000001
010000000001
001000000001
000100000001
000010000001
000001000001
000000100001
000000010001
000000001001
000000000101
000000000011

























• n = 13 with h = 1

G1

13,3,6 =

[1010110001100
1111100011001
0000011111001

]

, G1

13,4,6 =





1001110111100
1110011011011
0001011101001
0000111110010





G1

13,5,6 =







1011101111000
1110001100100
1101001010010
1100101010101
0000011100011






, G1

13,6,4 =









1010011000000
1110000010111
0001000101010
0000100110011
1100010001110
1100001110101









G1

13,7,4 =













1010011000000
1110000001011
0001000101111
0000100101001
1100010001101
1100001101010
0000000011110













, G1

13,8,3 =















1010011000000
1110000001011
0001000001101
0000100000110
1100010001110
1100001001111
0000000100101
0000000010011
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G1

13,9,2 =



















1010000000000
1110000000001
0001000000001
0000100000001
0000010000001
0000001000001
0000000001001
0000000000101
0000000000011



















, G1

13,10,2 =





















1010000000000
1110000000010
0001000000010
0000100000011
0000010000010
0000001000010
0000000100010
0000000010010
0000000001010
0000000000110





















G1

13,11,2 =

























1010000000000
1110000000001
0001000000001
0000100000001
0000010000001
0000001000001
0000000100001
0000000010001
0000000001001
0000000000101
0000000000011

























n/k 1 2 3 4 5 6 7 8 9 10 11 12
1 0
2 2 0
3 2 1 0
4 4 1 2 0
5 4 3 2 1 0
6 6 3 2 1 2 0
7 6 4 3 2 2 1 0
8 8 4 4 3 2 1 2 0
9 8 5 4 3 3 2 2 1 0
10 10 5 5 4 4 3 2 1 2 0
11 10 7 6 5 4 3 3 2 2 1 0
12 12o 7 6o 5 4o 4I,o 4III,o 3III,o 2I,o 1 2o 0
13 12 8o 6I 6I,o 5I,o 4I,o 4I,o 3I 2I 2I,o 2I,o 1

Table 1: Each cell refers to the highest minimum distance d(n, k) for n ≤ 13
when h = 1, and examples of corresponding generator matrices G1

12,k,d (6 ≤
k ≤ 11) and G1

13,k,d (3 ≤ k ≤ 11)

Example 4. Fix the hull dimension h = 2. For any n with k such that
1 ≤ k ≤ n ≤ 11 and n = 12 with k (1 ≤ k ≤ 4), we ran exhaustive search to
get optimal or h2-optimal codes.
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n/k 0 1 2 3 4 5 6 7 8 9 10 11
2 (2; 0)
3 (2; 1) (1; 0)
4 (4; 2) (1; 1) (2; 0)
5 (4; 3) (3; 2) (2; 1) (1; 0)
6 (6; 4) (3; 3) (2; 2) (1; 1) (2; 0)
7 (6; 5) (4; 4) (3; 3) (2; 2) (2; 1) (1; 0)
8 (8; 6) (4; 5) (4; 4) (3; 3) (2; 2) (1; 1) (2; 0)
9 (8; 7) (5; 6) (4; 5) (3; 4) (3; 3) (2; 2) (2; 1) (1; 0)
10 (10; 8) (5; 7) (5; 6) (4; 5) (4; 4) (3; 3) (2; 2) (1; 1) (2; 0)
11 (10; 9) (7; 8) (6; 7) (5; 6) (4; 5) (3; 4) (3; 3) (2; 2) (2; 1) (1; 0)
12 (12; 10) (7; 9) (6; 8) (5; 7) (4; 6) (4; 5) (4; 4) (3; 3) (2; 2) (1; 1) (2; 0)
13 (12; 11) (8; 10) (6; 9) (6; 8) (5; 7) (4; 6) (4; 5) (3; 4) (2; 3) (2; 2) (2; 1) (1; 0)

Table 2: [[n, k, d; c]]2 EAQECC with (d; c) for n ≤ 13 when h = 1 based on
Proposition 1 and Table 1

For n = 12 with k ≥ 5, we apply Constructions I, II or III to LCD codes or
linear codes with h = 1 of length 10 and dimension k−1. More precisely, we
construct optimal [12, 5, 4], [12, 6, 4], [12, 8, 3], [12, 9, 2], [12, 10, 2] codes from
[10, 4, 4], [10, 5, 3], [10, 7, 2], [10, 8, 2], [10, 9, 1] codes with h = 0 respectively
by Construction III. On the other hand, we also construct a [12, 7, 3] code
from a [10, 6, 3] code with h = 0 by Construction III. By exhaustive search,
we check that it is h2-optimal.

Let n = 13. We construct optimal [13, 3, 7], [13, 4, 6], [13, 5, 5], [13, 6, 4],
[13, 8, 4] codes by Construction III from LCD codes of length 11 and dimen-
sions k = 2, 3, 4, 5, 7 respectively. We also construct an optimal [13, 7, 4] code
from a linear [11, 6, 3] code with h = 1 by Construction I. For k = 2, 10, 11,
it is easy to construct directly optimal or h2-optimal [13, k] codes. For k = 9,
it is known that there exist an optimal [13, 9, 3] code with h = 2 by Magma
database.

• n = 12 with h = 2

G2

12,3,5 =

[100011011010
010100011100
001111100000

]

, G2

12,4,6 =





100010101011
010011010101
001011100110
000111111000
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G2

12,5,4 =







110001100000
101000111001
000100011101
100010101011
100001001111






, G2

12,6,4 =









111111001100
101000100010
100100100001
100010000011
000001100101
000000001111









G2

12,7,3 =













111101100000
101000001011
100100001101
000010000110
100001000101
100000101111
000000011110













, G2

12,8,3 =















111111000110
001000000011
000100000101
100010000110
100001000111
100000100011
100000010101
000000001111















G2

12,9,2 =



















110110000000
001000000011
100100000011
100010000010
000001000011
000000100011
000000010011
000000001011
000000000111



















, G2

12,10,2 =





















111111111111
101000000000
100010000000
100001000000
100000100000
100000010000
100000001000
100000000100
100000000010
100000000001





















• n = 13 with h = 2

G2

13,3,7 =

[1111000110110
0011100011101
1000011111101

]

, G2

13,4,6 =





1101110111000
1010011011011
0001011101001
0000111110010





G2

13,5,5 =







1101111011000
1010001100100
1001001010010
1000101010101
0000011100011






, G2

13,6,4 =









1111000000000
1010000010111
1001000101010
0000100110011
0000010001110
0000001110101









G2

13,7,4 =













1011000111011
1110000001010
1101000010010
0000100011100
1100010001100
1100001010100
1100000111000













, G2

13,8,4 =















1111101000110
0010000001011
0001000001101
1000100000110
0000010001110
1000001001111
1000000100101
1000000010011
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G2

13,9,3 =



















1000000000011
0100000010100
0010000010111
0001000010001
0000100010010
0000010000101
0000001000110
0000000110011
0000000001111



















, G2

13,10,2 =





















1000000000100
0100000000010
0010000000001
0001000000001
0000100000001
0000010000001
0000001000001
0000000100001
0000000010001
0000000001001





















n/k 2 3 4 5 6 7 8 9 10 11
2 0
3 0 0
4 2 0 0
5 2 1 0 0
6 4 3 2 0 0
7 4 3 2 1 0 0
8 4 4 3 2 2 0 0
9 4 4 4 3 2 1 0 0
10 6 4 4 3 3 2 2 0 0
11 6 5 4 4 4 3 2 1 0 0
12 8o 5 6o 4III,o 4III,o 3III 3III,o 2III,o 2III,o 0
13 8o 7III,o 6III,o 5III,o 4III,o 4I,h1,o 4III,o 3o 2o 1

Table 3: Each cell refers to the highest minimum distance d(n, k) for n ≤ 13
when h = 2, and examples of corresponding generator matrices G2

12,k,d (3 ≤
k ≤ 10) and G2

13,k,d (3 ≤ k ≤ 10)

Example 5. Fix the hull dimension h = 3.
Since h = 3, the code length n should be at least 6. If n − k ≤ 2, then

there does not exist an [n, k] code with h = 3. If k = 3, we use the optimal
minimum distances of self-orthogonal [n, 3] codes from [3].

For any n with k such that 3 ≤ k ≤ n ≤ 11 and n = 12 with k = 3, 4, we
ran exhaustive search to obtain optimal or h3-optimal codes.

Using Construction III, we construct an optimal [12, 5, 4] code with h = 3
from a [10, 4, 4] code, and an h3-optimal [12, 6, 4] code from a [10, 5, 3] code
with h = 2. We further construct an optimal [12, 7, 4] code from a [10, 6, 3]
code with h = 1 by Construction III.

We construct h3-optimal [12, 8, 2] and [12, 9, 2] codes from [10, 7, 2] and
[10, 8, 2] codes with h = 2, respectively by Construction I. This is justified
by exhaustive search that there are no [12, 6, 4], [12, 8, 3] codes.
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n/k 0 1 2 3 4 5 6 7 8 9
4 (2;0)
5 (2;1) (1;0)
6 (4;2) (3;1) (2;0)
7 (4;3) (3;2) (2;1) (1;0)
8 (4;4) (4;3) (3;2) (2;1) (2;0)
9 (4;5) (4;4) (4;3) (3;2) (2;1) (1;0)
10 (6;6) (4;5) (4;4) (3;3) (3;2) (2;1) (2;0) 0 0
11 (6;7) (5;6) (4;5) (4;4) (4;3) (3;2) (2;1) (1;0)
12 (8; 8) (5;7) (6; 6) (4; 5) (4; 4) (3; 3) (3; 2) (2; 1) (2; 0)
13 (8; 9) (7; 8) (6; 7) (5; 6) (4; 5) (4; 4) (4; 3) (3; 2) (2; 1) (1;0)

Table 4: [[n, k, d; c]]2 EAQECC with (d; c) for n ≤ 13 when h = 2 based on
Proposition 1 and Table 3

For n = 13, we construct [13, 4, 4], [13, 5, 4], [13, 6, 4], [13, 7, 3], [13, 8, 2],
[13, 9, 2] codes with h = 3 from [11, k] codes with h = 3 (3 ≤ k ≤ 8) by
Construction IV. Similarly we construct [13, 4, 5], [13, 5, 4], [13, 6, 4], [13, 7, 4],
[13, 8, 3], [13, 10, 2] codes with h = 3 from [11, k] codes with h = 2 (3 ≤ k ≤
7, k = 9) by Construction I.

• n = 12 with h = 3

G3

12,4,4 =





100001111000
010010110000
001011010000
000111100000



, G3

12,5,4 =







100100101100
010100011110
001100110010
000010110100
000001111000







G3

12,6,4 =









111100000000
101000011001
100100001110
000010010110
000001011010
000000111100









, G3

12,7,4 =













111111111111
101000000101
100100001001
000010001110
100001000110
100000101010
100000011100













G3

12,8,2 =















111100000000
101000000001
100100000010
000010000100
000001000100
000000100100
000000010100
000000001100















, G3

12,9,2 =



















110000000000
001000000001
000100000010
000010000010
000001000010
000000100010
000000010010
000000001010
000000000110
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• n = 13 with h = 3

G3

13,4,5 =





1011111000000
0010001101101
0001010001110
1100111110000



, G3

13,5,4 =







1011100000000
1110001100100
1101001011000
1100101101000
0000011110000







G3

13,6,4 =









1001110000000
0010000011101
1101000110010
1100100101100
1100010110100
0000001111000









, G3

13,7,4 =













1010110000000
1110000010101
0001000011001
1100100001110
1100010010110
0000001011010
0000000111100













G3

13,8,3 =















1010000110000
1110000001101
0001000000101
0000100001001
0000010001110
0000001000110
1100000101010
1100000011100















, G3

13,9,2 =



















1011000000000
1110000000111
1101000000011
0000100000101
0000010000110
0000001000100
0000000100100
0000000010100
0000000001100



















G3

13,10,2 =





















1011111111100
1110000000001
1101000000010
1100100000000
1100010000000
1100001000000
1100000100000
1100000010000
1100000001000
1100000000100





















Example 6. Fix the hull dimension h = 4.
Since h = 4, the code length n should be at least 8. If n − k ≤ 3, then

there does not exist a [n, k] code with h = 4. If k = 4, we use the optimal
minimum distances of self-orthogonal [n, 4] codes from [3].

For any n with k such that 4 ≤ k ≤ n ≤ 11 and n = 12 with k = 4, we
ran exhaustive search to obtain optimal or h4-optimal codes.

We construct optimal [12, 5, 4] and [12, 6, 4] codes with h = 4 from [10, 4, 4]
and [10, 5, 3] codes with h = 3 respectively by Construction I.

We construct h4-optimal [12, 7, 3], [12, 8, 2] codes with h = 4 from [10, 6, 1],
[10, 7, 2] codes respectively with h = 3 by Construction I. This is justified by
exhaustive checking that there are no [12, 7, 4] and [12, 8, 3] codes with h = 4.
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n/k 3 4 5 6 7 8 9 10
6 2 0 0 0
7 4 3 0 0 0
8 4 3 2 0 0 0
9 4 4 3 2 0 0
10 4 4 4 2 2 0 0
11 4 4 4 3 2 2 0
12 6o 4 4III,o 4III,o 4III,h1,o 2III 2II,o

13 6 ≥ 5I ≥ 4I,IV 4I,IV,o 4I,o ≥ 3I ≥ 2IV 2I,o

Table 5: Each cell refers to the highest minimum distance d(n, k) for n ≤ 13
when h = 3, and examples of corresponding generator matrices G3

12,k,d (4 ≤
k ≤ 9) and G3

13,k,d (4 ≤ k ≤ 10)

n/k 0 1 2 3 4 5 6 7
6 (2;0)
7 (4;1) (3;0)
8 (4;2) (3;1) (2;0)
9 (4;3) (4;2) (3;1) (2;0)
10 (4;4) (4;3) (4;2) (2;1) (2;0)
11 (4;5) (4;4) (4;3) (3;2) (2;1) (2;0)
12 (6; 6) (4;5) (4; 4) (4; 3) (4; 2) (2; 1) (2; 0)
13 (6;7) (≥ 5; 6) (≥ 4; 5) (4; 4) (4; 3) (≥ 3; 2) (≥ 2; 1) (2; 0)

Table 6: [[n, k, d; c]]2 EAQECC with (d; c) for n ≤ 13 when h = 3 based on
Proposition 1 and Table 5

For n = 13, we obtain [13, 5, 4], [13, 6, 4], [13, 7, 3], [13, 8, 2] codes with h =
4 from [11, k] codes with h = 4 (4 ≤ k ≤ 7) by Construction IV. Similarly,
we construct [13, 4, 4], [13, 5, 4], [13, 6, 4], [13, 7, 3], [13, 8, 2], [13, 9, 2] codes
with h = 4 from [11, k] codes with h = 3 (3 ≤ k ≤ 8) by Construction I.

• n = 12 with h = 4

G4

12,5,4 =







101000000011
001000011110
000100101100
000010110100
000001111000






, G4

12,6,4 =









101011000000
111000011001
000100001110
110010010110
110001011010
000000111100
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G4

12,7,3 =













100001111001
110001110100
001001110101
000100110010
000011100010
000001011111
000000100011













, G4

12,8,2 =















101000000000
111000000001
000100000010
000010000100
000001000100
000000100100
000000010100
000000001100















• n = 13 with h = 4

G4

13,5,4 =





0010000111100
0001001011000
0000101101000
0000011110000



, G4

13,6,4 =









1010110000000
1110000110010
0001000011100
1100100101100
1100010110100
0000001111000









G4

13,7,3 =













1011100000000
1110000010001
1101000010010
1100100011100
0000010001100
0000001010100
0000000111000













, G4

13,8,2 =















1010000000000
1110000000010
0001000000100
0000100001000
0000010001000
0000001001000
0000000101000
0000000011000















G4

13,9,2 =



















1010000000000
1110000000111
0001000000011
0000100000101
0000010000110
0000001000100
0000000100100
0000000010100
0000000001100



















n/k 4 5 6 7 8 9
8 4 0 0 0 0 0
9 4 2 0 0 0 0
10 4 4 2 0 0 0
11 4 4 3 2 0 0
12 4 4I,o 4I,o 3I 2I 0
13 4≥ 4I,IV 4I,IV,o ≥ 3I,IV ≥ 2I,IV ≥ 2I

Table 7: Each cell refers to the highest minimum distance d(n, k) for n ≤ 13
when h = 4, and examples of corresponding generator matrices G4

12,k,d (5 ≤
k ≤ 8) and G4

13,k,d (5 ≤ k ≤ 9)
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n/k 0 1 2 3 4 5
8 (4;0)
9 (4;1) (2;0)
10 (4;2) (4;1) (2;0)
11 (4;3) (4;2) (3;1) (2;0)
12 (4;4) (4; 3) (4; 2) (3; 1) (2; 0)
13 (4;5) (≥ 4; 4) (4; 3) (≥ 3; 2) (≥ 2; 1) (≥ 2; 0)

Table 8: [[n, k, d; c]]2 EAQECC with (d; c) for n ≤ 13 when h = 4 based on
Proposition 1 and Table 7

Example 7. Fix the hull dimension h = 5.
Since h = 5, the code length n should be at least 10. If n− k ≤ 4, then

there does not exist a [n, k] code with h = 5. If k = 5, we use the optimal
minimum distances of self-orthogonal [n, 5] codes from [3].

For n = 10, 11 with k = 4, 5, we ran exhaustive search to obtain optimal
or h5-optimal codes.

It is well known that there is a self-orthogonal [12, 5, 4] code [3], which is
optimal. We construct h5-optimal [12, 6, 3] and [12, 7, 3] codes from [10, 5, 4]
and [10, 6, 2] codes with h = 4 by Construction I. This is justified by exhaus-
tive checking that there are no [12, 6, 4] and [12, 7, 4] codes with h = 5.

For n = 13, we obtain [13, 6, 3], [13, 7, 3] codes with h = 5 from [11, k]
codes with h = 5 (5 ≤ k ≤ 6) by Construction IV. Similarly we construct
[13, 6, 4], [13, 7, 3], [13, 8, 2] codes from [11, k] codes with h = 4 (5 ≤ k ≤ 7)
by Construction I.

Although we cannot construct a [13, 7, 4] code with h = 5 from Construc-
tions I and IV, we observe the following. Using the unique self-dual [12, 6, 4]
code B12 [22] with the below generator matrix G12, we obtain an optimal
[13, 7, 4] code C13,7,4 with the below generator matrix G13,7,4 by augmenting
a coset leader v = (000000010101) to B12 because the covering radius of B12

is 3. We show that h(C13,7,4) = 5 in what follows. The top row r1 = (1 | v)
of G13,7,4 is orthogonal to only five rows r2, r3, r5, r6, r7 of G13. Therefore, the
hull of C13,7,4 consists of these five rows, resulting in h(C13,7,4) = 5.
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G12 =









111100000000
001111000000
000011110000
000000111100
000000001111
010101010101









, G13,7,4 =













1 000000010101
0 111100000000
0 001111000000
0 000011110000
0 000000111100
0 000000001111
0 010101010101













• n = 12 with h = 5

G5

12,5,4 =







101000000110
001000011100
110100101100
110010110100
000001111000






, G5

12,6,3 =









101011000000
111000001111
000100010111
110010011001
110001011010
000000111100









G5

12,7,3 =













100001011101
110000000011
001001110000
000100000111
000010111000
000001011011
000000110011













• n = 13 with h = 5

G5

13,5,4 =







1000000110100
0100101011100
0010000111000
0001100110000
0000011110000






, G5

13,6,4 =









1011100000000
1110000011101
1101000011110
1100100101100
0000010110100
0000001111000









G5

13,7,4 =













1000000010101
0111100000000
0001111000000
0000011110000
0000000111100
0000000001111
0010101010101













, G5

13,8,2 =















1010000000000
1110000000111
0001000000011
0000100000101
0000010000110
0000001001000
0000000101000
0000000011000















There are not many known [[n, k, d; c]] EAQECC when n ≤ 13. We
compare our results with some known EAQECC in Table 11. In fact, the
parameters in boldface in the third column of the table are better than the
currently known parameters from [21], [27].
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n/k 5 6 7 8
10 2 0 0 0
11 4 3 0 0
12 4o 3I 3I 0
13 4 4I,o 4o ≥ 2I

Table 9: Each cell refers to the highest minimum distance d(n, k) for n ≤ 13
when h = 5, and examples of corresponding generator matrices G5

12,k,d (5 ≤
k ≤ 7) and G5

13,k,d (5 ≤ k ≤ 8)

n/k 0 1 2 3
10 (2;0)
11 (4;1) (3;0)
12 (4; 2) (3; 1) (3; 0)
13 (4;3) (4; 2) (4; 1) (≥ 2; 0)

Table 10: [[n, k, d; c]]2 EAQECC with (d; c) for n ≤ 13 when h = 5 based on
Proposition 1 and Table 9

6 Conclusion

This paper has introduced a systematic and efficient method to construct
binary optimal or possibly optimal [n, k] codes of lengths up to 13 with
respect to hull dimensions 1-5. These codes are used to construct EAQECC
with the best known parameters.

The complexity of Constructions I-IV mainly depends on the binary vec-
tors x of length n, whose cardinality is at most 2n−1 due to the parity of x.
This complexity can be reduced if we consider the standard generator matrix
G in Theorems 1, 2, and 3. Since n ≤ 13 we need at most 212 = 4, 096 vectors
for x. As we prefer to keep a non-standard generator matrix to distinguish
Constructions I-IV, we have run all possibilities for x and have checked the
equivalence of codes by Magma. Using our linux machine Intel(R) Xeon(R)

CPU E3-1225 V2 @ 3.20GHz, calculations for Theorems 1-3 were performed
within ten minutes while some exhaustive search took more than two weeks.
As future work, it is worth considering similar constructions for other finite
fields and rings.
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currently known EAQECC Ref our related EAQECC Tables

[[9, 1, 3; 1]]2 [21] [[9, 2, 3; 1]]2 Table 6

[[12, 1, 7; 9]]2 [27] [[12, 1, 7; 9]]2 Table 2

[[12, 3, 5; 7]]2 [27] [[12, 3, 5; 7]]2 Table 2

[[12, 4, 4; 6]]2 [27] [[12, 4, 4; 6]]2, [[12, 2, 6; 6]]2 Table 2, Table 4

[[12, 5, 3; 5]]2 [27] [[12, 5, 4; 5]]2, [[12, 3, 4; 5]]2 Table 2, Table 4

[[13, 7, 3; 4]]2 [27] [[13, 7, 3; 4]]2, [[13, 5, 4; 4]]2 Table 2, Table 4

[[13, 3, 5; 8]]2 [27] [[13, 3, 6; 8]]2, [[13, 1, 7; 8]]2 Table 2, Table 4

Table 11: Comparison with some known EAQECC
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