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Abstract
We extend the study of the randomHermite second-order ordinary differential equation to the
fractional setting. We first construct a random generalized power series that solves the equa-
tion in the mean square sense under mild hypotheses on the random inputs (coefficients and
initial conditions). From this representation of the solution, which is a parametric stochastic
process, reliable approximations of the mean and the variance are explicitly given. Then, we
take advantage of the random variable transformation technique to go further and construct
convergent approximations of the first probability density function of the solution. Finally,
several numerically simulations are carried out to illustrate the broad applicability of our
theoretical findings.
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1 Introduction

The extension of many classical results to the context of fractional calculus has allowed
their successful application to a number of practical problems. In particular, fractional-order
derivatives have demonstrated to be powerful tools to better describe systems, media and
fields characterized by non-local and memory of power-law type often met in models that
appear in physics, control, signal and image processing, mechanics and dynamic systems,
biology, environmental science, materials, economic and multidisciplinary in engineering
fields (Honguang et al. 2018). The aforementioned extension is often done from relevant
models formulated via classical differential equations that have been generalized using dif-
ferent fractional-order derivatives. Examples in this regard include the linear, logistic, Riccati,
Gompertz, etc. Rivero et al. (2008), Nieto (2022), Khan et al. (2013) and Frunzo et al. (2019),
just to mention a few models.
On the other hand, the applications of fractional differential equations to modeling the
dynamics of complex phenomena using real-world data involve the rigorous treatment of ran-
domness coming from the combination of epistemic and aleatoric uncertainties (Kiureghian
and Ditlevsen 2009). Epistemic (or systematic) uncertainty appears because inaccurate mea-
surements or because the model simplifies the true complexity of the phenomena under study
neglecting certain effects, while aleatoric (or stochastic) uncertainty comes from the fact that
different outcomes are obtained when we run or observe the same experiment. These facts
lead to stochastic or random fractional differential equations. As it is accurately pointed
out in (Smith 2014, p. 96), it is important to underline that there is a growing trend in the
Uncertainty Quantification community to treat stochastic and random differential equations
as synonymous terms, when in fact they require completely different approaches for analysis
and approximation. In dealing with stochastic differential equations (SDEs), uncertainties
are forced by an irregular process, such as the Brownian motion or, more generality, aWiener
process. SDEs are typically represented in terms of stochastic differentials, but they must
be interpreted as Itô or Stratonovich stochastic integrals (Smith 2014, p. 97), Kloeden and
Platen (1992). The role of uncertainty is essentially different in random differential equa-
tions (RDEs). Indeed, in the setting of these equations, random effects are directly manifested
through coefficients, initial/boundary conditions, and/or source term that are assumed to be
well-behaved (e.g., continuous) with respect to time and/or space (Smith 2014, p.97), Soong
(1973). As pointed out in (Banks et al. 2014, p.258), overall the theory of RDEs is much
less advanced than that for SDEs. This fact is even more noticeable in the case of RDEs
formulated by means of fractional-order derivatives.
The aimof this paper is to continue contributing the realm of Fractional Calculus by extending
the analysis of the Hermite differential equation in a twofold sense, namely introducing both
fractional derivatives and uncertainties in its formulation. For the former goal, the mean
square Caputo fractional derivative will be used, while for the later we will rely on the RDE
approach.
On the one hand, the fractional Hermite differential equation, based on Caputo operator, has
been studied to introduce fractional Hermite polynomials and with applications to design
special filters (AbdelAty et al. 2016). On the other hand, the random Hermite equation

Y ′′(t) − 2tY ′(t) + λY (t) = 0, Y (0) = Y0, Y ′(0) = Y1, (1)
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where Y0, Y1 and λ are random variables, has been studied in Calbo et al. (2011) using the
so-called mean square calculus (Soong 1973). In this latter contribution, one constructs a
power series solution for the randomized classical Hermite differential equation and then
both the expectation and the variance of the solution are approximated. Apart from these
above-mentioned contributions, and to the best of our knowledge, none contribution has
dealt yet with the study of the random fractional Hermite differential equation. So, in some
sense, the present paper is aimed at extending the results that are available so far. Even more,
as it shall be seen, we will also give amethod to calculate the first probability density function
of the solution, that is a more ambitious goal.

Hereinafter, we will work on the Lebesgue spaces Lp(D) ≡ Lp(D, dμ), 1 ≤ p <

∞, whose elements are real-valued measurable functions h : D −→ R with the norm
‖h‖Lp(D) = (∫

D |h|pdμ)1/p < ∞. In the case that p = ∞, recall that the norm is defined
as ‖h‖L∞(D) = inf{sup{|h(t)| : t ∈ D\N } : μ(N ) = 0} < ∞. For p = ∞, elements in
the space L∞(D) are essentially bounded functions. Classically, D = T ⊂ R is an interval
and dμ = dt is the Lebesgue measure. Throughout the paper, as we shall also work with
random variables and stochastic processes, we will implicitly take D = � (sample space)
and μ = P (probability measure), and D = T × � and dμ = dt × dP, respectively.
Notice that X ∈ Lp(�) if and only if ‖X‖Lp(�) = (E[|X |p])1/p < ∞, where E[ ] denotes
the expectation operator, and, X ≡ X(t) ∈ Lp(T × �) if and only if ‖X‖Lp(T ×�) =
(
E
[∫

T |X(t)|p dt])1/p < ∞. Any stochastic process X(t) in Lp(T × �) can be interpreted
as a set of random variables in Lp(�) indexed by t ∈ T . An important result in the above
probabilistic Lebesgue spaces is the so-called Liapunov’s inequality

(E[|X |r ])1/r ≤ (E[|X |s])1/s, 0 < r ≤ s,

provided the expectationE[|X |s] < ∞. This result indicates that Ls(�) ⊂ Lr (�), 0 < r ≤ s,
and as a consequence, in the probabilistic setting, it is preferred to establish results in the
biggest space L2(�) whose elements are real-valued random variables, X : � −→ R,
with finite second-order moment E[X2] < ∞ (equivalently, finite variance). The elements
of L2(�) are usually called second-order variables. It can be proven that L2(�) is a Hilbert
space with the following inner product 〈X , Y 〉 = E[XY ], fromwhich one infers the so-called

2-norm: ||X ||2 = √〈X , X〉 = E[X2] 1
2 . Given a sequence of second-order random variables,

{Xn : n ≥ 0 integer}, is said to be mean square convergent to a random variable X ∈ L2(�)

if and only if ||X − Xn ||2 −→ 0 as n → ∞. In the case that the collection of second-order
random variables is indexed with reference to an interval, say T ⊂ R, then {X(t) : t ∈ T }
is called a second-order stochastic process. The concepts of continuity, differentiability and
integrability in the mean square sense are naturally inferred from the 2-norm.When trying to
prove the mean square convergence of a sequence of second-order stochastic processes that
defines the solution of a random fractional differential equation often is required to bound
products of random variables. Unfortunately, the following inequality ‖XY‖2 ≤ ‖X‖2‖Y‖2,
X , Y ∈ L2(�) does not hold, in general. However, Hölder inequality

||XY ||r ≤ ||X ||p||Y ||q , 0 < p, q, r ≤ ∞,
1

r
= 1

p
+ 1

q
, (2)

applied to r = p = 2 and q = ∞ leads to ‖XY‖2 ≤ ‖X‖2‖Y‖∞. This result, that relates
the Lebesgue spaces L2(�) and L∞(�), will be very useful in our subsequent analysis to
properly majorizing some quantities and then establishing the mean square convergence.
After doing that, we will be interested in computing reliable approximations of the main
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moments of the solution, such as the expectation and the variance. To achieve this important
goal, the following property of the mean square convergence will play a key role.

Proposition 1.1 (Soong 1973, Th 4.4.3) Let {Xn : n ≥ 0} be a sequence of second-order
random variables such that Xn −→ X as n → ∞ in the mean square sense. Then,

E [Xn] −−−→
n→∞ E [X ] , V [Xn] −−−→

n→∞ V [X ] .

In this paper,we shall study the following randomfractional initial value problem (RFIVP),
that extends, to the fractional setting the random (classical) Hermite equation previously
introduced in (1),

(C D2α
0 Y )(t) − 2tα(C Dα

0 Y ) + λY (t) = 0, Y (0) = Y0, Y ′(0) = Y1. (3)

Here, (C Dα
0 Y )(t) stands for the Caputo mean square derivative of order α > 0 of the second-

order stochastic process Y (t), and λ, Y0 and Y1 are second-order random variables defined
on a complete probability space (�,F,P). Let us recall that, given a second-order stochastic
process, the random Caputo operator is defined by Burgos et al. (2017)

(C Dα
0 Y )(t) := 1

�(n − α)

∫ t

0
(t − u)n−α−1Y (n)(u)du, (4)

where n = −[−α], being [·] the ceiling function. As the classical setting theHermite equation
is a second-order differential equation, hereinafter we will assume that α ∈]0, 1] in (3). It is
important to remark that throughout this paper, we take (C D2α

0 Y )(t) := (C Dα
0 (C Dα

0 Y ))(t).
This paper is organized as follows. Section2 is addressed to construct a mean square con-

vergent solution of the RFIVP (3). In Sect. 3, we take advantage of Proposition 1.1 together
with the results established in Sect. 2 to construct reliable approximations of mean and of the
standard deviation (equivalently, the variance) functions for the solution of the RFIVP (3).
To complete our probabilistic study, in Sect. 4 we will go further and, first, we will construct
formal approximations of the probability density function of the solution in Sect. 4.1 and,
second, in Sect. 4.2 we will rigorously prove they are convergent. In Sect. 5, we illustrate all
our theoretical findings by means of two numerical examples, where a wide range of proba-
bility distributions for model parameters is considered to better illustrate the applicability of
the results.

2 Obtaining amean square convergent solution for the Hermite
random fractional differential equation

This section is devoted to construct a convergent solution of the random IVP (3) in the so-
called mean square sense (Soong 1973). The solution, which is a stochastic process, will be
constructed, by means of a generalized random power series, by applying the extension of
classical Fröbenius method to the stochastic setting. To guarantee the mean square conver-
gence of the above-mentioned series, we will impose some conditions, that will be specified
later, on the random coefficient λ, and on the random initial conditions, Y0 and Y1.

According to the random Fröbenius method, let us assume that the solution, Y (t), can be
expanded via a generalized random power series,

Y (t) =
∞∑

m=0

Xmt
αm, (5)
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where {Xm} is a sequence of random variables in L2(�) to be determined. To calculate Xm ,
using the random Fröbenius method, we will impose that (5) is a solution of the random
IVP (3). To this end, we need to determine the mean square Caputo fractional deriva-
tives, (C Dα

0 Y )(t) and (C D2α
0 Y )(t), of the stochastic process given in (5). We first deal with

(C Dα
0 Y )(t) that, according to (4), is defined in terms of the first-order mean square derivative

of Y (t), denoted by Y ′(t). To rigorously do that, we will apply (Cortés et al. 2005, Theo-
rem 3.1). Let us first denote Um(t) := Xmtαm , applying (Soong 1973, Property 4.126) with
the following identification: f (t) = tαm and X(t) = Xm (constant), one gets that Um(t)
is mean square differentiable and U ′

m(t) = αmXmtαm−1. Furthermore, by the assumption
{Xm} ∈ L2(�), Um(t) and U ′

m(t) are mean square continuous for each m ≥ 0.
Later, once the coefficients Xm had been explicitly determined, we will justify that Y (t) =∑∞

m=0Um(t) is mean square convergent for all real t > 0 and
∑∞

m=0U
′
m(t) is mean square

uniformly convergent on [−K , K ] for any positive K . Then,

Y ′(t) =
∞∑

m=0

U ′
m(t) =

∞∑

m=1

αmXmt
αm−1 (6)

will be justified, in the mean square sense, by (Cortés et al. 2005, Theorem 3.1).
Now, we shall calculate the mean square Caputo derivative of the stochastic process Y (t),

(C Dα
0 Y )(t), 0 < α ≤ 1. Recall that the Caputo derivative of the deterministic power function

tν is given by

(C Dα
0 )(tν) =

{
�(ν+1)

�(ν+1−α)
tν−α if ν > 0,

0 if ν = 0,
(7)

see (Diethelm 2010, Example 3.1). Then, taking into account (6) and (7), one gets

(C Dα
0 Y )(t) = 1

�(1 − α)

∫ t

0
(t − u)−αY ′(u)du

= 1

�(1 − α)

∫ t

0
(t − u)−α

( ∞∑

m=0

Um(u)

)′
du

=
∞∑

m=0

1

�(1 − α)

∫ t

0
(t − u)−α

(
U ′
m(u)

)
du

=
∞∑

m=0

C Dα
0 (Um(t))

=
∞∑

m=0

Xm
C Dα

0

(
tαm
)

=
∞∑

m=1

Xm
�(αm + 1)

�(α(m − 1) + 1)
tα(m−1)

=
∞∑

m=0

Xm+1
�(α(m + 1) + 1)

�(αm + 1)
tαm . (8)

Notice that we have used that
∑∞

m=0U
′
m(t) converges uniformly in the mean square sense

to legitimate the commutation between this series and the integral.
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Now, we proceed to compute (C D2α
0 Y )(t) by applying one more time Caputo’s fractional

operator to (8),

(C D2α
0 Y )(t) = C Dα

0 (C Dα
0 Y )(t) = C Dα

0

( ∞∑

m=0

Xm+1
�(α(m + 1) + 1)

�(αm + 1)
tαm
)

=
∞∑

m=0

Xm+1
�(α(m + 1) + 1)

�(αm + 1)
C Dα

0 (tαm)

=
∞∑

m=1

Xm+1
�(α(m + 1) + 1)

�(αm + 1)

�(αm + 1)

�(αm + 1 − α)
tαm−α

=
∞∑

m=1

Xm+1
�(α(m + 1) + 1)

�(α(m − 1) + 1)
tαm−α

=
∞∑

m=0

Xm+2
�(α(m + 2) + 1)

�(αm + 1)
tαm

= X2
�(2α + 1)

�(1)
+

∞∑

m=1

Xm+2
�(α(m + 2) + 1)

�(αm + 1)
tαm

= X2�(2α + 1) +
∞∑

m=0

Xm+3
�(α(m + 3) + 1)

�(α(m + 1) + 1)
tα(m+1). (9)

Once (C Dα
0 Y )(t) and (C D2α

0 Y )(t) have been computed, we formally plug expressions
(8), (9) and (5) in the RFIVP (3), this gives

0 = (C D2α
0 Y )(t) − 2tα(C Dα

0 Y ) + λY (t)

= X2�(2α + 1) +
∞∑

m=0

Xm+3
�(α(m + 3) + 1)

�(α(m + 1) + 1)
tα(m+1)

− 2
∞∑

m=0

Xm+1
�(α(m + 1) + 1)

�(αm + 1)
tα(m+1) + λX0 + λ

∞∑

m=0

Xm+1t
α(m+1)

= �(2α + 1)X2 + λX0

+
∞∑

m=0

(
�(α(m + 3) + 1)

�(α(m + 1) + 1)
Xm+3 − 2

�(α(m + 1) + 1)

�(αm + 1)
Xm+1 + λXm+1

)
tα(m+1).

This relation fulfills choosing Xn such that

X2 = − λ

�(2α + 1)
X0,

and

Xm+3 = �(α(m + 1) + 1)

�(α(m + 3) + 1)

(
2�(α(m + 1) + 1)

�(αm + 1)
− λ

)
Xm+1, m ≥ 0. (10)

Note that the terms X0 and X1 are obtained from the initial conditions given in (3),
X0 = Y (0) = Y0 and X1 = Y ′(0) = Y1. As it can be observed from Eq. (10), odd and
even terms, Xm , are independently defined. By recursion, it is easy to check that they can be
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explicitly expressed as follows

Xm = �(α + 1)

�(mα + 1)

m−3
2∏

k=0

(
2
�((2k + 1)α + 1)

�(2kα + 1)
− λ

)
X1, m ≥ 3, m odd,

and

Xm = �(2α + 1)

�(mα + 1)

m−2
2∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)
X2, m ≥ 4, m even,

respectively.
Then the solution (5) can be rewritten as

Y (t) =X0 + X1t
α + X2t

2α +
∞∑

m=1

X2m+1t
(2m+1)α +

∞∑

m=2

X2mt
2mα, (11)

where

X0 = Y0,

X1 = Y1,

X2 = − λX0

�(2α + 1)
= − λY0

�(2α + 1)
,

X2m+1 = �(α + 1)

�((2m + 1)α + 1)

m−1∏

k=0

(
2
�((2k + 1)α + 1)

�(2kα + 1)
− λ

)
X1

= �(α + 1)

�((2m + 1)α + 1)

m−1∏

k=0

(
2
�((2k + 1)α + 1)

�(2kα + 1)
− λ

)
Y1,

X2m = �(2α + 1)

�(2mα + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)
X2

= − 1

�(2mα + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)
λX0

= − 1

�(2mα + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)
λY0.

(12)

Substituting (12) into (11) and rearranging the terms yields

Y (t) = Y0 + Y1t
α − λY0

�(2α + 1)
t2α

+ Y1

∞∑

m=1

[
�(α + 1)

�((2m + 1)α + 1)

m−1∏

k=0

(
2
�((2k + 1)α + 1)

�(2kα + 1)
− λ

)]

t (2m+1)α

− λY0

∞∑

m=2

[
1

�(2mα + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)]

t2mα

= Y0Ŷ1(t) + Y1Ŷ2(t), (13)
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where

Ŷ1(t) := 1 − λ

∞∑

m=1

[
1

�(2αm + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)]

t2mα (14)

and

Ŷ2(t) := tα +
∞∑

m=1

[
�(α + 1)

�((2m + 1)α + 1)

m−1∏

k=0

(
2
�((2k + 1)α + 1)

�(2αk + 1)
− λ

)]

t (2m+1)α. (15)

Notice that in the definition of Ŷ1(t), we have used the usual convention
∏ j

k=i pk = 1 for
i > j in the particular case that i = 1 > 0 = j .
Hereinafter, we shall assume that:

• H1: The coefficient λ is a bounded random variable, i.e., there are real numbers b1 and
b2 such that b1 < λ(ω) < b2, for all ω ∈ �. Notice that this is equivalent to write that
λ ∈ L∞(�).

• H2: The initial conditions Y0, Y1 ∈ L2(�) and λ ∈ L∞(�) are independent random
variables.

In the sequel, we will show that Y (t) in (13) is a rigorous solution of the RFIVP (3).
To this end, we show that Y (t) in (13) is mean square convergent for all real t > 0 and
Y ′(t) = Y0Ŷ ′

1(t)+Y1Ŷ ′
2(t) (derived from (13) andH2) is uniformly mean square convergent

for all real t > 0.
To establish the mean square convergence of Y (t), let us first observe that each Ŷi (t),

i = 1, 2, only depends on the random variable λ. By hypothesis H2, Y0, Y1 and λ are
independent random variables. Thus, (13) implies

‖Y (t)‖2 ≤ ‖Y0‖2‖Ŷ1(t)‖2 + ‖Y1‖2‖Ŷ2(t)‖2.
Since Y0 and Y1 belong L2(�), considering the previous inequality, the mean square conver-
gence of Y (t) follows from the mean square convergence of series Ŷi (t), i = 1, 2, defined
in (14) and (15), respectively. Hence, we begin by proving the mean square convergence of

Ŷi (t), i = 1, 2. First, we find a bound for
∥∥∥Ŷ1(t)

∥∥∥
2
. The triangle inequality and the Hölder

inequality (2) with r = p = 2 and q = ∞ imply

∥∥∥Ŷ1(t)
∥∥∥
2

=
∥∥∥∥∥
1 − λ

∞∑

m=1

[
1

�(2αm + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)]

t2mα

∥∥∥∥∥
2

≤ 1 +
∞∑

m=1

∥∥∥∥∥

[
λ

�(2αm + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)∥∥∥∥∥
2

|t |2mα

]

≤ 1 +
∞∑

m=1

[
‖λ‖∞

�(2αm + 1)

m−1∏

k=1

∥∥∥∥

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)∥∥∥∥∞
|t |2mα

]

≤ 1 +
∞∑

m=1

[
‖λ‖∞

�(2αm + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
+ ‖λ‖∞

)
|t |2mα

]

.

By setting

δm(t) = ‖λ‖∞
�(2αm + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
+ ‖λ‖∞

)
|t |2mα,
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we only need to show that
∑∞

m=1 δm(t) converges for all real t , to ensure the mean square
convergence of Y1(t) for all real t . Taking advantage of the Stirling formula, �(x + 1) ≈
xxe−x

√
2πx as x → ∞, we have

lim
m→∞

δm+1(t)

δm(t)
= lim

m→∞
�(2αm + 1)

�(2α(m + 1) + 1)

(
2

�(2αm + 1)

�((2m − 1)α + 1)
+ ||λ||∞

)
|t |2α

= lim
m→∞

(2mα)2mαe−2mα
√
4mαπ

(2(m + 1)α)2(m+1)αe−2(m+1)α
√
4π(m + 1)α

·
(

2
(2mα)2mαe−2mα

√
4mαπ

((2m − 1)α)(2m−1)αe−(2m−1)α
√
2(2m − 1)πα

+ ||λ||∞
)

|t |2α

= lim
m→∞

(
2mα

2(m + 1)α

)2mα ( 1

2(m + 1)α

)2α

e2α
√

m

m + 1

·
(

2

(
2mα

(2m − 1)α

)(2m−1)α

(2mα)αe−α

√
2m

2m − 1
+ ||λ||∞

)

|t |2α

= lim
m→∞

(
2mα

2(m + 1)α

)2mα ( 1

2(m + 1)α

)2α

e2α
√

m

m + 1

· 2
(

2mα

(2m − 1)α

)(2m−1)α

(2mα)αe−α

√
2m

2m − 1
|t |2α

+ lim
m→∞

(
2mα

2(m + 1)α

)2mα ( 1

2(m + 1)α

)2α
e2α
√

m

m + 1
||λ||∞|t |2α

= lim
m→∞ 2

(
2mα

2(m + 1)α

)2mα ( 2mα

(2m − 1)α

)(2m−1)α

·
(

1

2(m + 1)α

)α ( 2mα

2(m + 1)α

)α

eα

√
m

m + 1

√
2m

2m − 1
|t |2α

+ lim
m→∞

(
2mα

2(m + 1)α

)2mα ( 1

2(m + 1)α

)2α
e2α
√

m

m + 1
||λ||∞|t |2α

= 0, (16)

because
(

2mα
2(m+1)α

)2mα m→∞−−−−→ e−2α ,
(

2mα
(2m−1)α

)(2m−1)α m→∞−−−−→ eα ,
(

1
2(m+1)α

)kα m→∞−−−−→ 0

for k = 1, 2 and
(

2mα
2(m+1)α

)α m→∞−−−−→ 1. By the ratio test, the series
∑∞

m=1 δm(t) converges for

all real t . Hence, Y1(t) defined in (14), is mean square convergent for all real t > 0. Similarly,
for all real t , it can be proved the mean square convergence of Y2(t) given by (15). Moreover,
using similar arguments, one can prove that their corresponding mean square derivatives,
Ŷ ′
1(t) and Ŷ ′

2(t), are uniformly mean square convergent on [−K , K ] for any positive K .
Summarizing, the following result has been established:

Theorem 2.1 If the random variables Y0, Y1 and λ satisfy hypotheses H1 and H2, then

Y (t) = Y0

(

1 − λ

∞∑

m=1

[
1

�(2αm + 1)

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)]

t2mα

)
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+ Y1

(

tα +
∞∑

m=1

[
�(α + 1)

�((2m + 1)α + 1)

m−1∏

k=0

(
2
�((2k + 1)α + 1)

�(2αk + 1)
− λ

)]

t (2m+1)α

)

,

(17)

is a mean square convergent solution of the RFIVP (3) for all t > 0.

3 Obtaining approximations for themean and standard deviation of
the solution

Theorem 2.1 ensures the mean square convergence of the solution process Y (t) in 17. Hence,
Proposition 1.1 guarantees the convergence of its mean and standard deviation. This section
is devoted to find explicit expressions for these relevant statistical functions. To this end, we
first introduce the following technical result that simplifies the subsequent calculations.

Lemma 3.1 Let f (k) be a real function and let λ be a random variable. Then,

m∏

k=1

( f (k) − λ) =
m∑

i=0

λi (−1)i Gm,i , for all m ∈ N, (18)

where

Gm,i =
⎧
⎨

⎩

∑
j1< j2<···< jm−i

f ( j1) f ( j2) · · · f ( jm−i ) if i < m,

1 if m = i,
0 otherwise.

(19)

In other words, for i < m, Gm,i is defined as the sum taken over all subsets of m − i indexes
j1, . . . , jm−i from the set {1, . . . ,m}.

Proof We proceed by induction on m. Clearly, (18) is true for m = 1. Indeed, observe that
G1,0 = f (1) and G1,1 = 1 and the right side of (18) is

λ0(−1)0G1,0 + λ1(−1)1G1,1,

which is equal to the left side of (18). The Eq. (18) holds for m = 2 since the left side of
(18) is

( f (1) − λ)( f (2) − λ) = λ2 − ( f (1) + f (2))λ + f (1) f (2),

and the right side of (18) is

λ0(−1)0G2,0 + λ1(−1)1G2,1 + λ2(−1)2G2,2 = f (1) f (2) − λ( f (1) + f (2)) + λ2.

By definition of Gm,i it follows

Gm+1,i = f (m + 1)Gm,i + Gm,i−1. (∗∗)
Let m ∈ N such that m ≥ 2 and suppose that

m−1∏

k=1

( f (k) − λ) =
m−1∑

i=0

λi (−1)i Gm−1,i . (20)
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By induction hypothesis 20, we have

m∏

k=1

( f (k) − λ) = ( f (m) − λ)

m−1∏

k=1

( f (k) − λ) = ( f (m) − λ)

m−1∑

i=0

λi (−1)i Gm−1,i

= f (m)

m−1∑

i=0

λi (−1)i Gm−1,i − λ

m−1∑

i=0

λi (−1)i Gm−1,i

=
m−1∑

i=0

λi (−1)i
(
f (m)Gm−1,i

)+
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

= λ0(−1)0
(
f (m)Gm−1,0

)+
m−1∑

i=1

λi (−1)i
(
f (m)Gm−1,i

)

+
m−1∑

i=0

λi+1(−1)i+1Gm−1,i .

Using the equalities Gm,0 = f (m)Gm−1,0 and f (m)Gm−1,i+1 = f (m)Gm−1,i+1 +Gm−1,i

(derived from (∗∗)) yields

= λ0(−1)0
(
Gm,0

)+
m−2∑

i=0

λi+1(−1)i+1 ( f (m)Gm−1,i+1
)

+
m−2∑

i=0

λi+1(−1)i+1Gm−1,i + λm(−1)mGm−1,m−1

= λ0(−1)0Gm,0 +
m−2∑

i=0

λi+1(−1)i+1 ( f (m)Gm−1,i+1 + Gm−1,i
)

+ λm(−1)mGm,m

= λ0(−1)0Gm,0 +
m−2∑

i=0

λi+1(−1)i+1Gm,i+1 + λm(−1)mGm,m

=
m∑

i=0

λi (−1)i Gm,i .

By the principle of mathematical induction, we conclude that (18) is true for all m. ��
Now, we apply Lemma 3.1 to simplify the products involved in (13).
Let f (k) = 2 �(2kα+1)

�((2k−1)α+1) . Then,

m−1∏

k=1

(
2

�(2kα + 1)

�((2k − 1)α + 1)
− λ

)
=

m−1∏

k=1

( f (k) − λ) =
m−1∑

i=0

λi (−1)i Gm−1,i ,

being Gm−1,i as in (19).
Next, setting f̂ (k) = 2�((2k−1)α+1)

�((2k−2)α+1) , one gets

m−1∏

k=0

(
2
�((2k + 1)α + 1)

�(2αk + 1)
− λ

)
=

m∏

k=1

(
f̂ (k) − λ

)
=

m∑

i=0

λi (−1)i Ĝm,i ,
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where

Ĝm,i =
⎧
⎨

⎩

∑
j1< j2<···< jm−i

f̂ ( j1) f̂ ( j2) · · · f̂ ( jm−i ) if i < m,

1 if m = i
0 otherwise.

(21)

As a consequence, the solution given in (13) can be represented free of products by the
following expression

Y (t) = Y0

(

1 +
∞∑

m=1

[
t2mα

�(2αm + 1)

(
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

)])

+ Y1

(

tα +
∞∑

m=1

[
�(α + 1)t (2m+1)α

�((2m + 1)α + 1)

(
m∑

i=0

λi (−1)i Ĝm,i

)])

, (22)

where Gm,i and Ĝm,i are defined in (19) and (21), respectively.
Now, we shall obtain reliable approximations for the mean and the variance functions of

the solution. To achieve this goal, we first consider the truncation of order M , YM (t), of the
solution given in (22):

YM (t) := Y0

(

1 +
M∑

m=1

[
t2mα

�(2αm + 1)

(
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

)])

+ Y1

(

tα +
M∑

m=1

[
�(α + 1)t (2m+1)α

�((2m + 1)α + 1)

(
m∑

i=0

λi (−1)i Ĝm,i

)])

. (23)

By independence of Y0, Y1 and λ, see assumption H1, one gets

E[YM (t)] = E[Y0]
(

1 +
M∑

m=1

[
t2mα

�(2αm + 1)

(
m−1∑

i=0

E[λi+1](−1)i+1Gm−1,i

)])

+ E[Y1]
(

tα +
M∑

m=1

[
�(α + 1)t (2m+1)α

�((2m + 1)α + 1)

(
m∑

i=0

E[λi ](−1)i Ĝm,i

)])

. (24)

Recall that the standard deviation of YM (t), σ [YM (t)], is defined by

σ [YM (t)] =
√
E[Y 2

M (t)] − (E[YM (t)])2. (25)
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Note that

Y 2
M (t) = Y 2

0

(

1 +
M∑

m=1

[
t2αm

�(2αm + 1)

(
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

)])2

︸ ︷︷ ︸
:=A

+ Y 2
1

(

tα +
M∑

m=1

[
�(α + 1)t (2m+1)α

�((2m + 1)α + 1)

(
m∑

i=0

λi (−1)i Ĝm,i

)])2

︸ ︷︷ ︸
:=B

+ 2Y0Y1

(

1 +
M∑

m=1

[
t2αm

�(2αm + 1)

(
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

)])

︸ ︷︷ ︸
C

·
(

tα +
M∑

m=1

[
�(α + 1)t (2m+1)α

�((2m + 1)α + 1)

(
m∑

i=0

λi (−1)i Ĝm,i

)])

︸ ︷︷ ︸
:=C

.

(26)

Now, for the sake of clarity, we separately compute the above three terms, denoted by A,
B and C.

A :=
⎛

⎝1 +
M∑

m=1

⎡

⎣ t2αm

�(2αm + 1)

⎛

⎝
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

⎞

⎠

⎤

⎦

⎞

⎠

2

= 1 + 2
M∑

m=1

⎡

⎣ t2αm

�(2αm + 1)

⎛

⎝
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

⎞

⎠

⎤

⎦

+
⎛

⎝
M∑

m=1

⎡

⎣ t2αm

�(2αm + 1)

⎛

⎝
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

⎞

⎠

⎤

⎦

⎞

⎠

2

= 1 + 2
M∑

m=1

⎡

⎣ t2αm

�(2αm + 1)

⎛

⎝
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

⎞

⎠

⎤

⎦

+
⎛

⎝
M∑

m=1

M∑

n=1

⎡

⎣ t2α(m+n)

�(2αm + 1)�(2αn + 1)

⎛

⎝
m−1∑

i=0

n−1∑

j=0

λi+ j+2(−1)i+ j+2Gm−1,i Gn−1, j

⎞

⎠

⎤

⎦

⎞

⎠ ,

B :=
⎛

⎝tα +
M∑

m=1

⎡

⎣�(α + 1)t(2m+1)α

�((2m + 1)α + 1)

⎛

⎝
m∑

i=0

λi (−1)i Ĝm,i

⎞

⎠

⎤

⎦

⎞

⎠

2

= t2α + 2tα
M∑

m=1

⎡

⎣�(α + 1)t(2m+1)α

�((2m + 1)α + 1)

⎛

⎝
m∑

i=0

λi (−1)i Ĝm,i

⎞

⎠

⎤

⎦

+
⎛

⎝
M∑

m=1

⎡

⎣�(α + 1)t(2m+1)α

�((2m + 1)α + 1)

⎛

⎝
m∑

i=0

λi (−1)i Ĝm,i

⎞

⎠

⎤

⎦

⎞

⎠

2

= tα + 2tα
M∑

m=1

⎡

⎣�(α + 1)t(2m+1)α

�((2m + 1)α + 1)

⎛

⎝
m∑

i=0

λi (−1)i Ĝm,i

⎞

⎠

⎤

⎦
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+
M∑

m=1

M∑

n=1

⎡

⎣ �(α + 1)2t(2n+2m+2)α

�((2m + 1)α + 1)�((2n + 1)α + 1)

⎛

⎝
m∑

i=0

n∑

j=0

λi+ j (−1)i+ j Ĝm,i Ĝn, j

⎞

⎠

⎤

⎦

and

C :=
⎛

⎝1 +
M∑

m=1

⎡

⎣ t2αm

�(2αm + 1)

⎛

⎝
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

⎞

⎠

⎤

⎦

⎞

⎠

·
⎛

⎝tα +
M∑

m=1

⎡

⎣�(α + 1)t(2m+1)α

�((2m + 1)α + 1)

⎛

⎝
m∑

i=0

λi (−1)i Ĝm,i

⎞

⎠

⎤

⎦

⎞

⎠

= tα + tα
M∑

m=1

⎡

⎣ t2αm

�(2αm + 1)

⎛

⎝
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

⎞

⎠

⎤

⎦

+
M∑

m=1

⎡

⎣�(α + 1)t(2m+1)α

�((2m + 1)α + 1)

⎛

⎝
m∑

i=0

λi (−1)i Ĝm,i

⎞

⎠

⎤

⎦

+
M∑

m=1

M∑

n=1

⎡

⎣ �(α + 1)t2αmt(2n+1)α

�((2n + 1)α + 1)�(2αm + 1)

⎛

⎝
m−1∑

i=0

n∑

j=0

λi+ j+1(−1)i+ j+1Gm−1,i Ĝn, j

⎞

⎠

⎤

⎦ .

Substituting A, B and C in (26), YM (t)2 can be expressed as

Y 2
M (t) = Y 2

0

⎛

⎝1 + 2
M∑

m=1

⎡

⎣ t2αm

�(2αm + 1)

⎛

⎝
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

⎞

⎠

⎤

⎦

+
⎛

⎝
M∑

m=1

M∑

n=1

⎡

⎣ t2α(m+n)

�(2αm + 1)�(2αn + 1)

⎛

⎝
m−1∑

i=0

n−1∑

j=0

λi+ j+2(−1)i+ j+2Gm−1,i Gn−1, j

⎞

⎠

⎤

⎦

⎞

⎠

⎞

⎠

+ Y 2
1

⎛

⎝tα + 2tα
M∑

m=1

⎡

⎣�(α + 1)t(2m+1)α

�((2m + 1)α + 1)

⎛

⎝
m∑

i=0

λi (−1)i Ĝm,i

⎞

⎠

⎤

⎦

+
M∑

m=1

M∑

n=1

⎡

⎣ �(α + 1)2t(2n+2m+2)α

�((2m + 1)α + 1)�((2n + 1)α + 1)

⎛

⎝
m∑

i=0

n∑

j=0

λi+ j (−1)i+ j Ĝm,i Ĝn, j

⎞

⎠

⎤

⎦

⎞

⎠

+ 2Y0Y1

⎛

⎝tα + tα
M∑

m=1

⎡

⎣ t2αm

�(2αm + 1)

⎛

⎝
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

⎞

⎠

⎤

⎦

+
M∑

m=1

⎡

⎣�(α + 1)t(2m+1)α

�((2m + 1)α + 1)

⎛

⎝
m∑

i=0

λi (−1)i Ĝm,i

⎞

⎠

⎤

⎦

+
M∑

m=1

M∑

n=1

⎡

⎣ �(α + 1)t2αmt(2n+1)α

�((2n + 1)α + 1)�(2αm + 1)

⎛

⎝
m−1∑

i=0

n∑

j=0

λi+ j+1(−1)i+ j+1Gm−1,i Ĝn, j

⎞

⎠

⎤

⎦

⎞

⎠ .

(27)

Applying the expectation operator on (27), one gets

E[Y 2
M (t)] = E[Y 2

0 ]
(

1 + 2
M∑

m=1

[
t2αm

�(2αm + 1)

(
m−1∑

i=0

E[λi+1](−1)i+1Gm−1,i

)]

+
⎛

⎝
M∑

m=1

M∑

n=1

⎡

⎣ t2α(m+n)

�(2αm + 1)�(2αn + 1)

⎛

⎝
m−1∑

i=0

n−1∑

j=0

E[λi+ j+2](−1)i+ j+2Gm−1,i Gn−1, j

⎞

⎠

⎤

⎦

⎞

⎠

⎞

⎠
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+ E[Y 2
1 ]
(

tα + 2tα
M∑

m=1

[
�(α + 1)t (2m+1)α

�((2m + 1)α + 1)

(
m∑

i=0

E[λi ](−1)i Ĝm,i

)]

+
M∑

m=1

M∑

n=1

⎡

⎣ �(α + 1)2t (2n+2m+2)α

�((2m + 1)α + 1)�((2n + 1)α + 1)

⎛

⎝
m∑

i=0

n∑

j=0

E[λi+ j ](−1)i+ j Ĝm,i Ĝn,i

⎞

⎠

⎤

⎦

⎞

⎠

+ 2E[Y0]E[Y1]
(

tα + tα
M∑

m=1

[
t2αm

�(2αm + 1)

(
m−1∑

i=0

E[λi+1](−1)i+1Gm−1,i

)]

+
M∑

m=1

[
�(α + 1)t (2m+1)α

�((2m + 1)α + 1)

(
m∑

i=0

E[λi ](−1)i Ĝm,i

)]

+
M∑

m=1

M∑

n=1

⎡

⎣ �(α + 1)t2αmt (2n+1)α

�((2n + 1)α + 1)�(2αm + 1)

⎛

⎝
m−1∑

i=0

n∑

j=0

E[λi+ j+1](−1)i+ j+1Gm−1,i Ĝn, j

⎞

⎠

⎤

⎦

⎞

⎠ .

(28)

From the previous expressions, it is interesting to observe that the approximation of order
M of the mean, E[YM (t)], depends on E[Y0], E[Y1] and E[λm], m = 1, . . . , M , while the
approximation of the second-order moment, E[Y 2

M (t)] (and hence, by (25), of σ [YM (t)])),
depends on the above quantities together with E[Y 2

0 ], E[Y 2
1 ] and E[λm], m = 1, . . . , 2M , as

expected. Finally, notice that Theorem 2.1 ensures the mean square convergence of YM (t),
and according to Proposition 1.1, E[YM (t)] and E[Y 2

M (t)] converge to their corresponding
exact values, E[Y (t)] and E[Y 2(t)], respectively.

4 Convergent approximations for the 1-PDF of the solution

So far, convergent approximations for the mean, E[YM (t)], and for the standard deviation,
σ [YM (t)], of the solution, Y (t), given in (22) have been computed from its truncation of
order M , YM (t), given in (23). Nevertheless, sometimes, it is required further statistical
information of Y (t). On the one hand, computing higher-order one-dimensional statistical
moments, E[(YM (t))k], allow us to approximate additional statistical properties, such as the
asymmetry, the kurtosis, etc., of Y (t) that are useful functions to better describing the solution
from a probabilistic standpoint. On the other hand, the probability that the solution lies within
an interval of interest is, obviously, a relevant information in practice. Approximations for
both quantities can be calculated by integrating the so-called first probability density function
(1-PDF) of YM (t), say fYM (t)(y),

E[(YM (t))k] =
∫ ∞

−∞
yk fYM (t)(y) dy, k = 1, 2, . . . ,

and

P[l1 ≤ YM (t) ≤ l2] =
∫ l2

l1
fYM (t)(y)dy.

Of course the above approximations will be legitimated provided fYM (t)(y) −→ fY (t)(y) as
M → ∞, where fY (t)(y) stands for the 1-PDF of the exact solution Y (t), given in (22). In
this section, we first formally construct the approximations fYM (t)(y) and, then, we establish
sufficient conditions so that the foregoing convergence fulfills.

123



140 Page 16 of 28 C. Burgos et al.

4.1 Constructing formal approximations for the 1-PDF

In the extant literature, there exist different approaches to obtain, exact or approximately,
the 1-PDF of a stochastic process. Most of these methods are natural extensions of their
corresponding counterpart for calculating the PDF of a random variable. As we have previ-
ously obtained approximations for the two first moments of the solution, a natural approach
would be to apply the principle of maximum entropy (PME). This method constructs the
PDF taking into account the available information of the random variable (in our case, the
two first moments) by maximizing the concept of Shannon’s entropy, which defines the lack
of knowledge of a random variable (Michalowicz et al. 2013). In the setting of ordinary and
fractional differential equations with randomness, this approach has been recently applied
in Burgos-Simón et al. (2020) and Burgos et al. (2019), respectively. Although, the method
provides well-founded approximations to calculate the 1-PDF, the results heavily depend on
the accuracy of the approximations of the first statistical moments. Moreover, according to
the PME method, the approximations of the 1-PDF are limited to certain specific classes of
densities depending on the number of statistical moments that have been pre-calculated. For
example, if it is only known the mean and that the solution is positive, the PDF will be an
exponential distribution; if both the mean and the variance are known, the approximation
of the PDF will be Gaussian, etc. Michalowicz et al. (2013). Non-standard distributions can
be achieved at expenses of pre-calculating higher statistical moments that could be cumber-
some, as can be guess from the expressions of the two first moments (see expressions (24)
and (28)).

To avoid these drawbacks, we here propose to obtain the 1-PDF by an alternative method
termed the Probabilistic Transformation Method (PTM), which is based on the following
result.

Theorem 4.1 (PTM) (Soong 1973, p. 25) Let us consider Z = (Z1, . . . , Zk) and
X = (X1, . . . , Xk) two k-dimensional absolutely continuous random vectors defined on
a common complete probability space (�,F�,P). Let r : R

k → R
k be a one-to-one

deterministic transformation of Z into X, i.e., X = r(Z). Assume that r is continu-
ous in Z and has continuous partial derivatives with respect to each Zi , 1 ≤ i ≤ k.
Then, if fZ(z) denotes the joint probability density function of random vector Z, and
s = r−1 = (s1(x1, . . . , xk), . . . , sk(x1, . . . , xk)) represents the inverse mapping of r =
(r1(z1, . . . , zk), . . . , rk(z1, . . . , zk)), the joint probability density function of random vector
X is given by

fX(y) = fZ (s(x)) |J | ,
where |J |, which is assumed to be different from zero, is the absolute value of the Jacobian
defined by the following determinant

J = det

(
∂s
∂x

)
= det

⎛

⎜⎜
⎝

∂s1(x1,...,xk )
∂x1

· · · ∂sk (x1,...,xk )
∂x1

...
. . .

...
∂s1(x1,...,xk )

∂xk
· · · ∂sk (x1,...,xk )

∂xk

⎞

⎟⎟
⎠ .

In our setting, the key idea to take advantage of the above results is to note that, for t > 0 fixed,
the approximate solution, YM (t), given in (23) is described by means of a transformation, r,
of the input parameters Y0, Y1 and λ, whose PDFs, fY0 , fY1 and fλ are known. Observe that,
according to hypothesis H1, the joint PDF of (Y0, Y1, λ) is given by fY0,Y1,λ = fY0 fY1 fλ.
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Applying Theorem 4.1 to YM (t), we first shall obtain the approximations, fYM (t)(y) and,
later, we will establish sufficient condition so that fYM (t)(y) −→ fY (t)(y) as M → ∞.

The PTM (also referred to as RVT—Random Variable Transformation) method has been
successfully applied to obtain the 1-PDF of the solution of some classes of differential
equations with uncertainties. In Dorini et al. (2016), the authors have obtained the 1-PDF of
the solution of a logistic random differential equation. In Caraballo et al. (2019), the PTM
method is applied to approximate the 1-PDF of the solution of a delay random differential
equation. The PTM method has also been applied to numerically solve PDEs (Calatayud
et al. 2020). In Burgos et al. (2018), some of the authors of this contribution, approximate
the 1-PDF of a linear autonomous random fractional differential equation, whose order of
fractional differentiation is 0 < α ≤ 1, by taking advantage of the PTM technique.

Let us apply Theorem (4.1) with the following identification, k = 3 and Z =
(Z1, Z2, Z3) = (Y0, Y1, λ). The vector X = (X1, X2, X3) is defined by the following deter-
ministic transformation r = (r1, r2, r3), of Z, i.e., X = r(Z), where

x1 = r1(y0, y1, λ) = y0

(

1 +
M∑

m=1

[
t2mα

�(2αm + 1)

(
m−1∑

i=0

λi+1(−1)i+1Gm−1,i

)])

,

+ y1

(

tα +
M∑

m=1

[
�(α + 1)t (2m+1)α

�((2m + 1)α + 1)

(
m∑

i=0

λi (−1)i Ĝm,i

)])

,

x2 = r2(y0, y1, λ) = y1

x3 = r3(y0, y1, λ) = λ.

It can be seen that the inverse mapping of r, s = r−1, is given by

y0 = s1(x1, x2, x3) =
x1 − x2

(
tα +

M∑

m=1

[
�(α+1)t (2m+1)α

�((2m+1)α+1)

(
m∑

i=0
xi3(−1)i Ĝm,i

)])

1 +
M∑

m=1

[
t2αm

�(2αm+1)

(
m∑

i=0
xi+1
3 (−1)i+1Gm−1,i

)] ,

y1 = s2(x1, x2, x3) = x2,

λ = s3(x1, x2, x3) = x3.

The absolute value of the Jacobian of the transformation s is given by

|J | =
∣∣∣∣
∂s1(x1, x2, x3)

∂x1

∣∣∣∣ =
1

∣∣∣∣1 +
M∑

m=1

[
t2αm

�(2αm+1)

(
m−1∑

i=0
xi+1
3 (−1)i+1Gm−1,i

)]∣∣∣∣

.

Applying Theorem (4.1), the PDF of the random vector X = (X1, X2, X3) is given by

fX1,X2,X3(x1, x2, x3)

= fY0,Y1,λ

⎛

⎜⎜⎜
⎝

x1 − x2

(
tα +

M∑

m=1

[
�(α+1)t (2m+1)α

�((2m+1)α+1)

(
m∑

i=0
xi3(−1)i Ĝm,i

)])

1 +
M∑

m=1

[
t2αm

�(2αm+1)

(
m−1∑

i=0
xi+1
3 (−1)i+1Gm−1,i

)] , x2, x3

⎞

⎟⎟⎟
⎠

· 1
∣∣∣∣1 +

M∑

m=1

[
t2αm

�(2αm+1)

(
m−1∑

i=0
xi+1
3 (−1)i+1Gm−1,i

)]∣∣∣∣

.
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Marginalizingwith respect X2 = Y1 and X3 = λ, we can obtain the 1-PDFof the approximate
solution, YM (t),

fYM (t)(y) = fX1(y) =
∫ ∞

−∞

∫ ∞

−∞
fX1,Y1,λ(y, y1, λ) dy1 dλ

=
∫ ∞

−∞

∫ ∞

−∞
fY0

⎛

⎜
⎜
⎜
⎝

y − y1

(
tα +

M∑

m=1

[
�(α+1)t (2m+1)α

�((2m+1)α+1)

(
m∑

i=0
λi (−1)i Ĝm,i

)])

1 +
M∑

m=1

[
t2αm

�(2αm+1)

(
m−1∑

i=0
λi+1(−1)i+1Gm−1,i

)]

⎞

⎟
⎟
⎟
⎠

· fY1(y1) fλ(λ)
1

∣
∣
∣
∣1 +

M∑

m=1

[
t2αm

�(2αm+1)

(
m−1∑

i=0
λi+1(−1)i+1Gm−1,i

)]∣∣
∣
∣

dy1 dλ.

(29)

4.2 Convergence of approximations of the 1-PDF

This subsection is addressed to show that fYM (t)(y) −→ fY (t)(y) as M → ∞ under mild
conditions. Note that fYM (t)(y) is given by (29), while the limit is given by

fY (t)(y) =
∫ ∞
−∞

∫ ∞
−∞

fY0

⎛

⎜
⎜
⎜
⎜
⎝

y − y1

(

tα +
∞∑

m=1

[
�(α+1)t (2m+1)α

�((2m+1)α+1)

(
m∑

i=0
λi (−1)i Ĝm,i

)])

1 +
∞∑

m=1

[
t2αm

�(2αm+1)

(
m−1∑

i=0
λi+1(−1)i+1Gm−1,i

)]

⎞

⎟
⎟
⎟
⎟
⎠

· fY1(y1) fλ(λ)
1

∣
∣
∣∣
∣
1 +

∞∑
m=1

[
t2αm

�(2αm+1)

(
m−1∑

i=0
λi+1(−1)i+1Gm−1,i

)]∣∣
∣∣
∣

dy1dλ.

(30)

For the sake of clarity in the subsequent development, we first introduce the following
notation.

SM0 (t) = 1 +
M∑

m=1

[
t2αm

�(2αm + 1)

(
m∑

i=0

λi+1(−1)i+1Gm−1,i

)]

,

S0(t) = 1 +
∑

m≥1

[
t2αm

�(2αm + 1)

(
m∑

i=0

λi+1(−1)i+1Gm−1,i

)]

,

SM1 (t) = tα +
M∑

m=1

[
�(α + 1)

�((2m + 1)α + 1)

(
m∑

i=0

λi (−1)i Ĝm,i

)]

,

S1(t) = tα +
∑

m≥1

[
�(α + 1)

�((2m + 1)α + 1)

(
m∑

i=0

λi (−1)i Ĝm,i

)]

.

(31)
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Then, expressions (29) and (30) read

fYM (t)(y) =
∫

R2
fY0

(
y − y1SM1 (t)

SM0 (t)

)

fY1(y1) fλ(λ)

∣
∣
∣
∣
∣

1

SM0 (t)

∣
∣
∣
∣
∣
dy1 dλ,

fY (t)(y) =
∫

R2
fX0

(
y − y1S1(t)

S0(t)

)
fY1(y1) fλ(λ)

∣
∣
∣
∣

1

S0(t)

∣
∣
∣
∣ dy1 dλ.

(32)

Before proceeding with the proof, it is important to remark the following observations.
Note that with the notation of (31), the solution (22) is given by Y (t) = Y0S0(t) + X1S1(t).

If Y0 �= 0, then

Y0 = Y (0) = Y0S0(0) + Y1S1(0) = Y0S0(0),

and S0(0) = 1 with probability 1, because S1(0) = 0. Taking into account that S0(t) is a
power series evaluated at t2α and consequently continuous, we can guarantee that

∃δ0 > 0 : 0 < ms,0 ≤ min{|SM0 (t)|, |S0(t)|}, ∀t : |t | ≤ δ0, ∀ integer M ≥ 0. (33)

Moreover, by the definition of Eq. (31), it is known that SM0 (t) and SM1 (t) are convergent
series in the whole real line. Thus, these series are almost surely uniform convergent in every
compact subset of R. This guarantees that, for j = 0, 1,

∃Ms, j > 0 : max{|SMj (t)|, |S j (t)|} ≤ Ms, j , ∀t : |t | ≤ δ0, ∀ integer M ≥ 0. (34)

Finally, it is note that SM0 (t) and SM1 (t) converge uniformly to S0(t) and S1(t) on [−δ0, δ0],
respectively. So, taken ε j > 0, j = 0, 1, arbitrarily but fixed, there exists M j

0 > 0 integer,
so that

|SMj (t) − S j (t)| < ε j , ∀M ≥ M j
0 integer and ∀t : |t | ≤ δ0. (35)

To complete the proof, we fix t assuming that it lies within a neighborhood about
t0 = 0, where the RFIVP is formulated and the bounds (33) and (34) fulfill. To proof
that fYM (t)(y) −→ fY (t)(y) as M → ∞, besides assuming hypotheses H1 and H2, we will
assume that

• H3: The PDF, fY0 , of the initial condition Y0 is Lipschitz on the whole real line, R, i.e.,
there exists L0 > such that

∣∣ fY0(x) − fY0(z)
∣∣ ≤ L0|x − z|, ∀x, z ∈ R.

To prove the convergence, we fix t and calculate the difference
∣∣ fY (t)(y) − fYM (t)(y)

∣∣
using (32).

∣
∣ fY (t)(y) − fYM (t)(y)

∣
∣

=
∣
∣∣
∣∣

∫

R2

(

fY0

(
y − y1S1(t)

S0(t)

)
1

|S0(t)| − fY0

(
y − y1SM1 (t)

SM0 (t)

)
1

|SM0 (t)|

)

fY1 (y1) fλ(λ) dλ dy1

∣
∣∣
∣∣

≤
∫

R2

∣∣
∣∣
∣
fY0

(
y − y1S1(t)

S0(t)

)
1

|S0(t)| − fY0

(
y − y1SM1 (t)

SM0 (t)

)
1

|SM0 (t)|

∣∣
∣∣
∣
fY1 (y1) fλ(λ) dλ dy1

=
∫

R2

∣
∣∣
∣
∣
fY0

(
y − y1S1(t)

S0(t)

)
1

|S0(t)| − fY0

(
y − y1SM1 (t)

SM0 (t)

)
1

|S0(t)|

+ fY0

(
y − y1SM1 (t)

SM0 (t)

)
1

|S0(t)| − fY0

(
y − y1SM1 (t)

SM0 (t)

)
1

|SM0 (t)|

∣∣
∣
∣∣
fY1 (y1) fλ(λ)dλ dy1
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≤
∫

R2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣
∣∣
∣
∣
fY0

(
y − y1S1(t)

S0(t)

)
− fY0

(
y − y1SM1 (t)

SM0 (t)

)∣∣∣
∣
∣

︸ ︷︷ ︸
(I)

1

|S0(t)|︸ ︷︷ ︸
(II)

+
∣∣
∣
∣∣
fY0

(
y − y1SM1 (t)

SM0 (t)

)∣∣
∣
∣∣

︸ ︷︷ ︸
(III)

∣∣
∣
∣∣

1

|S0(t)| − 1

|SM0 (t)|

∣∣
∣
∣∣

︸ ︷︷ ︸
(IV)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

fY1 (y1) fλ(λ) dλ dy1. (36)

Now, we proceed to bound the terms (I)–(IV) in (36). Let us start with term (III). First, let us
denote F0 := fY0(0), then using hypothesis H3 and bounds (33) and (34) for SM0 and SM1 ,
respectively, one gets

(III) =
∣
∣
∣
∣
∣
fY0

(
y − y1SM1 (t)

SM0 (t)

)∣∣
∣
∣
∣
=
∣
∣
∣
∣
∣
fY0

(
y − y1SM1 (t)

SM0 (t)

)

− fY0(0) + F0

∣
∣
∣
∣
∣

≤
∣
∣
∣∣∣
fY0

(
y − y1SM1 (t)

SM0 (t)

)

− fY0(0)

∣
∣
∣∣∣
+ F0

≤ L0

∣∣∣∣∣
y − y1SM1 (t)

SM0 (t)

∣∣∣∣∣
+ F0

≤ L0

ms,0

(|y| + |y1|Ms,1
)+ F0. (37)

Using the bound (33) for SM0 and (35) for j = 0, the term (IV) can be majorized by

(IV) =
∣∣∣∣∣

1

|S0(t)| − 1

|SM0 (t)|

∣∣∣∣∣
=
∣∣|SM0 (t)| − |S0(t)|

∣∣

|S0(t)||SM0 (t)| ≤
∣∣SM0 (t) − S0(t)

∣∣

|S0(t)||SM0 (t)| ≤ ε0

m2
s,0

. (38)

The bound of the term (II) straightforwardly follows from the application of (33)

(II) = 1

|S0(t)| ≤ 1

ms,0
. (39)

Finally, we proceed to bound the term (I). To this end, we first apply hypothesis H3

(I) =
∣∣
∣∣
∣
fY0

(
y − y1S1(t)

S0(t)

)
− fY0

(
y − y1SM1 (t)

SM0 (t)

)∣∣
∣∣
∣

≤ L0

∣
∣∣
∣
∣
y − y1S1(t)

S0(t)
− y − y1SM1 (t)

SM0 (t)

∣
∣∣
∣
∣

≤ L0

∣∣
∣∣
∣
ySM0 (t) − y1S1(t)SM0 (t) − yS0(t) + y1S0(t)SM1 (t)

S0(t)SM0 (t)

∣∣
∣∣
∣

= L0

∣
∣∣
∣
∣
y
(
SM0 (t) − S0(t)

)+ y1
(
S0(t)SM1 (t) − S1(t)SM0 (t)

)

S0(t)SM0 (t)

∣
∣∣
∣
∣

≤ L0

(
|y||SM0 (t) − S0(t)| + |y1||S0(t)SM1 (t) − S1(t)SM0 (t)|

|S0(t)||SM0 (t)|

)
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= L0

(
|y||SM0 (t) − S0(t)| + |y1||S0(t)SM1 (t) − S0(t)S1(t) + S0(t)S1(t) − S1(t)SM0 (t)|

|S0(t)||SM0 (t)|

)

≤ L0

(
|y||SM0 (t) − S0(t)| + |y1|

(|S0(t)||SM1 (t) − S1(t)| + |S1(t)||S0(t) − SM0 (t)|)

|S0(t)||SM0 (t)|

)

≤ L0

(
|y|ε0 + |y1|(Ms,0ε1 + Ms,1ε0)

m2
s,0

)

, (40)

where in the last step, we have applied (35) and (34), both for j = 0, 1, and (33) for Sm0 and
S0.

Substituting (40), (39), (37) and (38), in (36) to bound the terms (I)–(IV), respectively,
one gets

∣
∣ fY (t)(y) − fYM (t)(y)

∣
∣

≤
∫

R2

{∣∣
∣
∣
∣
fY0

(
y − y1S1(t)

S0(t)

)
− fY0

(
y − y1SM1 (t)

SM0 (t)

)∣∣
∣
∣
∣

1

|S0(t)|

+
∣
∣∣∣∣
fY0

(
y − y1SM1 (t)

SM0 (t)

)∣∣∣∣∣

∣
∣∣∣∣

1

|S0(t)| − 1

|SM0 (t)|

∣
∣∣∣∣

}

fY1(y1) fλ(λ) d λdy1

≤
∫

R2
L0

{(
|y|ε0 + |y1|(Ms,0ε1 + Ms,1ε0)

m2
s,0

)
1

ms,0

+
(

L0

ms,0

(|y| + |y1|Ms,1
)+ F0

)
ε0

m2
s,0

}

fY1(y1) fλ(λ)dλdy1.

Let us denote M = max{Ms,0, Ms,1} and ε = max{ε0, ε1}, then,
∣∣ fY (t)(y) − fYM (t)(y)

∣∣

≤
∫

R2

{

L0

(
|y|ε + 2Mε|y1|

m3
s,0

)

+
(

L0

ms,0
(|y| + |y1|M) + F0

)
ε

m2
s,0

}

fY1(y1) fλ(λ) dλ dy1

=
∫

R2

{
L0ε

m3
s,0

|y| + 2L0Mε

m3
s,0

|y1| + L0ε

m3
s,0

|y|

+ L0Mε

m3
s,0

|y1| + F0ε

m2
s,0

}

fY1(y1) fλ(λ) dλ dy1

=
(
2L0ε

m3
s,0

|y| + F0ε

m2
s,0

)∫

R2
fY1(y1) fλ(λ) dy1 dλ

+
(
3L0Mε

m3
s,0

)∫

R2
|y1| fY1(y1) fλ(λ) dy1 dλ

=
(
2L0ε

m3
s,0

|y| + F0ε

m2
s,0

)

+
(
3L0Mε

m3
s,0

)

E[|Y1|]
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Fig. 1 Mean and standard deviation of the solution for different orders of M ∈ {5, 7, 10, 12, 15} in the context
of Example 5.1. Convergence of these two statistical moments is clearly observed as M increases

= ε

(
2L0

m3
s,0

|y| + F0
m2

s,0

+ 3L0M
m3

s,0

E[Y1]
)

.

Since by hypothesis H2, Y1 ∈ L2(�), by Schwarz’s inequality E[|Y1|] ≤ E[|Y1|2] <

∞. Then, as a consequence of the previous development, we conclude that fYM (t)(y) −→
fY (t)(y) as M → ∞.

5 Numerical examples

This section is devoted to illustrate the theoretical findings established in the previous sec-
tions by means of two numerical examples. These examples are devised with regard to the
probability distribution of model parameter λ, which, according to hypothesis H1, is assumed
to be an essentially bounded random variable. In the first example, we will assume that λ has
a bounded distribution. In the second example, we will illustrate how the case, where λ is
an unbounded random variable can be treated via its approximation using truncated random
variables for which hypothesis H1 fulfills. In this latter case, we will graphically show the
correct convergence of the approximations of the 1-PDF of the solution stochastic process.

Example 5.1 In this first example, let us consider that the order of the fractional derivative
is α = 0.5. We will assume the following probability distributions for the model input
parameters: Y0 has a Gamma distribution with parameters (1, 1), i.e., Y0 ∼ Ga(1, 1) (hence,
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Fig. 2 1-PDF of the solution, (29), for different t ∈ {0.25, 0.5, 0.75} in the context of Example 5.1, considering
different order of truncation M ∈ {2, 3, 4, 5, 6}

E[Y0] = 1 E[Y 2
0 ] = 2); Y1 has a Gaussian distribution with mean 2 and standard deviation√

2, i.e., Y1 ∼ N(2, (
√
2)2) (hence, E[Y1] = 2 E[Y 2

1 ] = 6); and, λ has a Beta distribution
with parameters (2, 3), i.e., λ ∼ Be(2, 3). According to (24) and (28), to compute the mean
and the second-order moment of the solution besides knowing the two first moments of Y0
and Y1, it is also required to pre-calculate the higher moments E[λk], k ∈ N, which are
explicitly known in the case for λ ∼ Be(2, 3),

E[λk] =
k−1∏

r=0

2 + r

2 + 3 + r
.

In Fig.1 we can observe, along the time t ∈ [0, 1], the mean and the standard deviation
of the solution considering different order of truncation M ∈ {5, 7, 10, 12, 15}. To illustrate
clearly the convergence as M increases, in each subfigure a zoom has been made at the time
instants, t , close to 1, which is where the graphs can be perceived separately.

In Fig.2 the 1-PDF, fYM (y), of the solution, given in (29), for different orders of truncation,
M ∈ {2, 3, 4, 5, 6} and times instants, t ∈ {0.25, 0.5, 0.75} have been plotted. We can see
graphically the convergence of the 1-PDFs, studied in Sect. 4.2, as M increases. To have
better visualization of this convergence, in each subplot, a zoom has been performed around
the maximum of these functions. From the symmetry of the 1-PDFs, we can determine that
the mean is around the point y where the maximum of the function occurs. Taking advantage
of this zoom we can verify that the mean estimated in Fig. 2 matches the mean obtained in
Fig. 1.
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Fig. 3 Mean and standard deviation, (24) and (28), respectively, in the context of Example 5.2 considering
different order of truncation M ∈ {7, 10, 12, 15, 17} on the interval t ∈ [0, 1]

Example 5.2 As it has been mentioned before, the objective of this second example is to
illustrate an approximation of the case where the random variable λ is not bounded. To this
end, λ is truncated on an interval containing a high percentage of probability mass. It is
important to remark that this approach approximates the original problem. Nevertheless, the
more probability mass the truncation interval contains the better this approximation will be.

On the one hand, we have considered that λ has a truncated Gaussian distribution with
mean 0 and standard deviation 0.2 on the interval [−100, 100], i.e., λ ∼ N[−100,100](0, 0.22).
The truncation of a N(0, 0.22) over the interval [−100, 100] captures a 99.9999% of the total
probability mass.

On the other hand, we will assume that the order of the derivative is α = 0.4. We will
assume that Y0 has an Exponential distribution of parameter 2, i.e., Y0 ∼ Exp(2). For the
random variable Y1, we will assume that it has a Beta distribution of parameters (2, 4), i.e.,
Y1 ∼ Be(2, 4). The two first moments of Y0 and Y1, required to compute the mean and
the standard deviation, are then E[Y0] = 1/2, E[X2

0] = 1/2, E[X1] = 1/3 and E[Y 2
1 ] =

1/7. It is also necessary to know the higher order moments of the random variable λ ∼
N[−100,100](0, 0.22). Note that it can be calculated by

E[λk] =
∫ 100

−100
λk fλ(λ) dλ, k = 1, 2, . . . ,
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Fig. 4 1-PDF of the solution, fYM (t)(y), given in (29), for different t ∈ {0.25, 0.5, 0.75} in the context of
Example 5.2, considering different order of truncation M ∈ {4, 5, 7, 10, 12}

where

fλ(λ) = e
− 1

2

(
λ
0.2

)2

∫ 100
−100 e

− 1
2

(
λ
0.2

)2

dλ

, −100 ≤ λ ≤ 100.

This calculation approximates the moments

E[N(0, σ )k] =
{

0 if k is odd,

σ k(k − 1)!! if k is even,

where (k − 1)!! is defined as the double factorial, which is the product of all numbers from
k − 1 to 1 that have the same parity as k − 1. Here, σ = 0.2. This approximation is based on
the fact that, according to Chebyshev’s inequality, the truncated Gaussian random captures
99.9999% of the probability of the original Gaussian random variable N(0, 0.22).

In Figure 3, we show the approximations of the mean and the standard deviation of the
solution for t ∈ [0, 1] considering different order of truncation, M ∈ {7, 10, 12, 15, 17}. As
in the previous example, to better show convergence as M increases, we have magnified the
plot about t = 1,where the discrepancies could be greater.We can see that the approximations
are very good.
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In Fig.4 different plots for the 1-PDF at times t ∈ {0.25, 0.5, 0.75} considering different
order of truncation have been included. A zoom has been added at the maximum of each plot
to better show graphically the convergence proved in Sect. 4.2.

6 Conclusions

In this paper, we have presented a comprehensive analysis of the fractional Hermite differ-
ential equation with uncertainties in all its data (coefficient and initial conditions). Our study
has been based on the so-called random differential equation approach. To perform the study,
we first have constructed a random generalized power series and we have proved that this
solution is mean square convergent by assuming mild hypotheses on the data. Second, we
have taken advantage of a key property of the mean square convergence to approximate the
mean and the variance of the solution. Afterwards, we have constructed approximations of
the first probability density function of the solution using the so called Probability Transfor-
mation Method. We have also shown that these approximations are also convergent under
some assumptions that fulfill in many practical applications.
The main spirit of the paper is to continue developing new results in the setting of Fractional
Calculus with uncertainty, where results for random fractional differential equations are still
scarce. In this sense, the results presented in this paper for the random fractional Hermite
equation can inspire to extend our analysis to other significant random fractional second-order
differential equations in forthcoming contributions. Furthermore, the ideas developed in this
contribution may help to extend the deterministic theory for other types of polynomials, such
as Cesarano (2014), Cesarano et al. (2014), Cesarano et al. (2005) and Quintana et al. (2018),
to the fractional random framework.
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