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Abstract
The time-fractional advection–diffusion reaction equation (TFADRE) is a fundamentalmath-
ematical model because of its key role in describing various processes such as oil reservoir
simulations, COVID-19 transmission, mass and energy transport, and global weather produc-
tion. One of the prominent issues with time fractional differential equations is the design of
efficient and stable computational schemes for fast and accurate numerical simulations. We
construct in this paper, a simple and yet efficient modified fractional explicit group method
(MFEGM) for solving the two-dimensional TFADRE with suitable initial and boundary
conditions. The proposed method is established using a difference scheme based on L1 dis-
cretization in temporal direction and central difference approximations with double spacing
in spatial direction. For comparison purposes, the Crank–Nicolson finite difference method
(CNFDM) is proposed. The stability and convergence of the presented methods are theo-
retically proved and numerically affirmed. We illustrate the computational efficiency of the
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MFEGM by comparing it to the CNFDM for four numerical examples including fractional
diffusion and fractional advection–diffusion models. The numerical results show that the
MFEGM is capable of reducing iteration count and CPU timing effectively compared to the
CNFDM, making it well-suited to time fractional diffusion equations.

Keywords Fractional advection–diffusion reaction equation · Explicit group approach ·
Finite difference scheme · Stability analysis · Numerical experiments

Mathematics Subject Classification 35R11 · 65N06 · 65N12

1 Introduction

Fractional calculus (FC) is considered oneof the top topics in appliedmathematics,with appli-
cations emerging in various scientific and engineering disciplines. FC extends the order of the
derivatives and integrals from the set of positive integers to the set of real and even complex
numbers. In contrast to classical derivatives, fractional-order derivatives have the non-local
property, making them an excellent choice for capturing memory and hereditary properties in
a variety of real-world phenomena. Generally speaking, the applications of FC have advanced
remarkably in various areas, including but not limited to physics, biology, medicine, signal
processing, hydrology, rheology, control systems, robotics, economics, anomalous transport,
electronic circuits, inventory control problem and viscoelasticity (Sun et al. 2018; Tarasov
2019; Chávez-Vázquez et al. 2022; Radwan et al. 2021; Rahaman et al. 2020). In line with
that, several types of fractional derivatives of different kernels such as Riemann-Liouville,
Caputo, Grunwald-Letnikov, Hadamard, Caputo-Fabrizio and Atangana-Baleanu have been
proposed for suitable simulation of various complex physical phenomena. A major class of
FC is the so-called fractional partial differential equation (FPDE), where the time and/or
space derivative in the classical PDE is replaced by its fractional counterpart. In recent years,
FPDEs have found a wide range of applications in fluidmechanics (Hamid et al. 2022), finan-
cial markets (Taghipour and Aminikhah 2022), material science (Yang et al. 2022), neuronal
dynamics (Zou et al. 2022), wave propagation, solar particle transport (Vieira et al. 2022)
and quantum mechanics (Zu and Yu 2022), to name a few. For extra information about the
analysis and applications of FPDEs, the reader can consult (Ara et al. 2018; Goswami et al.
2019; Nnolim 2022; Chakraverty et al. 2022; Salama et al. 2021; Ali et al. 2022; Khan et al.
2023).

The solutions of mathematical models in terms of FPDEs are mainly investigated by either
approximate analytical or numerical methods. However, the analytic treatment of FPDEs
is not a straight-forward process due to the complexity and non-local nature of fractional
derivatives. Exact analytical solutions to FPDEs are scarce in the literature, and in some
cases, they are too complicated to be useful. As a result, numerical methods have become
indispensable and are resorted to by many researchers, scholars and practitioners for han-
dling real-life fractional models. In this article, we study the two-dimensional time-fractional
advection–diffusion reaction equation (TFADRE) to account for its numerical solutions. The
said model problem shall be introduced in the subsequent section. Next, we survey some
recent numerical treatments of TFADRE. The authors in Cui (2015) and Ren and Wang
(2017) applied, respectively, a compact exponential difference scheme and an extrapolated
compact difference method for solving the one-dimensional TFADRE with variable coeffi-
cients. Wang and Wen 2020 constructed a compact exponential difference scheme to solve
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the general one-dimensional multi-termTFADREwith non-smooth solutions. They extended
their approach to the two-dimensional case in the same study. Haq et al. (2020) developed an
implicit meshless spectral algorithm for solving the one-dimensional TFADREwith variable
coefficients. Hafez et al. (2020) proposed two Galerkin spectral numerical schemes for the
solutions of the d-dimensional TFADRE. They pointed out that their schemes are well-suited
to time FPDEs since they preserve the singularity of the solution. Toprakseven (2021) utilized
the classical L1 discretization in time and a weak Galerkin element in space to establish a
weak Galerkin finite element method for the d-dimensional (d ∈ {1, 2}) TFADRE. Kumar
and Zeidan (2021) scrutinized the one-dimensional non-linear TFADRE in which the frac-
tional temporal derivative is defined in the Atangana-Baleanu sense. The authors employed
a Legendre operational matrix for the fractional derivative along with a Legendre spec-
tral method to account for the numerical solutions to the mentioned problem. Khalighi et al.
(2021) established a hybrid algorithm based on the boundary element method combined with
the Chebyshev operational matrix approach for handling the two-dimensional multi-order
TFADRE. Li and Wang (2021) established a local discontinuous Galerkin (LDG) method
for the one-dimensional TFADRE basted on the L1 scheme for uniform and non-uniform
temporal meshes and the LDG method for spatial uniform mesh. Recently, Jannelli (2022)
extended an adaptive time-stepping numerical scheme proposed in Jannelli (2020) for frac-
tional ordinary differential equations to solve the one-dimensional TFADRE. Afterwards,
Zhang and Feng (2022) developed and analyzed a virtual element method to scrutinize the
two-dimensional TFADRE with non-smooth solutions. Shortly after, Ngondiep (Ngondiep
2022) constructed an unconditionally stable two-level fourth-order numerical scheme for the
one-dimensional TFADRE. More recently, Naeem et al. (2022) generated approximate ana-
lytical solutions for the one-dimensional TFADRE based on the combination of the Elzaki
transform and the homotopy perturbation method. Other numerical investigations for frac-
tional diffusion models can be found in Roul and Rohil (2022), Hang et al. (2023) and
Chen et al. (2020). Most of the aforementioned methods are designed for one-dimensional
problems, creating a research gap for developing new efficient computational algorithms for
higher-dimensional problems. Herein lies the first motivation for our work.

Unlike classical advection diffusion reaction equations, the numerical solution process of
TFADRE is a challenging computational task. The reason for this is the historical dependence
and universal mutuality of fractional differential operators. Owing to the non-local property,
the solution values at the current time level require the solution information at all previous time
levels, which results in more sophisticated computations even for low-dimensional fractional
problems (Salama and Ali 2019, 2020). The computational effort may grow dramatically as
the mesh size increases and the integration proceeds forward. To surpass such major limi-
tations and reduce the corresponding computational complexity, a number of computational
algorithms were suggested, such as the short memory principle (Singh et al. 2021), precon-
ditioning (Sunarto et al. 2022), parallel computing (Wu et al. 2021) and multigrid methods
(Pan et al. 2021). The historical dependence feature of fractional derivatives permits accurate
and robust modeling of real-life phenomena but leads to severe computational drawbacks in
many cases. In fact, the development of efficient numerical methods that produce accurate
simulations and maintain low computational effort is one of the open problems in fractional
calculus; for example, see (Diethelm et al. 2022). This is the study’s second motivation.

Explicit group iterativemethods are another viable option for designing efficient numerical
schemes for FPDEs. They utilize small, fixed-size groups of points on the standard or rotated
grids and can be combined with other numerical methods, including finite difference method,
finite element method and collocation method. The main feature of explicit group methods is
that they can reduce the spectral radius of the iteration matrix and diminish the computational
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cost effectively, making them suitable for non-local fractional problems. In recent years, a
number of articles have appeared that dealt successfully with FPDEs using explicit group
methods. They have been used for efficient computations of accurate numerical solutions to
the two-dimensional fractional diffusion equation (Salama et al. 2022a), two-dimensional
fractional cable equation (Salama and Abd Hamid 2020; Khan et al. 2021), two-dimensional
fractional reaction diffusion equation (Abdi et al. 2021a) and two-dimensional fractional
advection diffusion equation (Salama et al. 2022b; Balasim et al. 2017). For further appli-
cations and analysis of explicit group methods, we refer the reader to Salama et al. (2022c),
Abdi et al. (2021b), Ali et al. (2021), Khan et al. (2020). In this work, we focus on a gen-
eral class of time FPDEs (i.e., TFADRE) that constitutes previously researched classes as a
special case. This is the third motivation for our work.

Motivated by the previous discussions, the main aim of this paper is to present the mod-
ified fractional explicit group method (MFEGM) based on finite difference approximations
for handling the more general TFADRE. TheMFEGM is an easy-to-implement solution pro-
cedure and can be executed on parallel computers. This represents an additional advantage of
the selected method. For the sake of comparison, we first simulate the model problem using
a fully discrete scheme, namely Crank–Nicolson finite difference method (CNFDM) based
on the L1 formula in time and central difference approximations in space. The theoretical
investigations of the proposed numerical schemes rely on three factors: stability, consistency
and convergence. Different fractional order exponents are utilized to exhibit the dynamics
of the model problem. The numerical findings and comparison with the CNFDM show the
computational efficiency and reliability of the proposed MFEGM, which can be extended to
solve other FPDEs. Moreover, the obtained results are particularly useful for time consuming
practical applications in engineering and scientific experimentation. In summary, the interest
is directed toward the following three items:

• Detailed description of CNFDM and MFEGM for the TFADRE with Dirichlet-type
initial-boundary conditions.

• Illustrations of the stability and convergence of the proposed methods.
• Several numerical examples and discussions that validate our considerations.

The rest of the paper is organized as follows. In Sect. 2, we introduce the two-dimensional
TFADRE as a mathematical model of real-world phenomena. The detailed description of
the CNFDM and MFEGM is given in Sect. 3 and 4, respectively. In Sect. 5, we analyze the
stability of the proposed solution schemes using the Fouriermethod, followed by convergence
in Sect. 6. Section7 includes a number of numerical simulations as well as graphical and
tabulated results demonstrating the accuracy and efficiency of our numerical schemes. Finally,
the paper is concisely concluded in Sect. 8.

2 Themathematical model

The diffusion phenomenon, where molecules or particles are transferred from the region
of higher concentration to the region of lower concentration, is one of the basic processes
in nature with a wide range of applications in science and engineering. In the context of
continuous random walk, the diffusion process can be interpreted by the Brownian motion
where the mean square displacement is given by the following relation:

〈(�r)2〉 = 2dDt,

where �r is the displacement of the Brownian molecule in some interval t , d and D denote
the spatial dimension and the diffusion coefficient, respectively. In many physical complex
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phenomena, the mean square displacement revels an anomalous behaviour and does not fol-
low the above linear temporal relation. Such an anomalous diffusion process can be modeled
with remarkable success under the framework of fractional derivatives (Oliveira et al. 2019).
The diffusion phenomenon can be associated with advection and reaction processes to form
a general model in terms of the advection–diffusion reaction equation. Classical advection–
diffusion reaction equations are an important class of PDEs, and many papers on numerical
schemes for solving them have been published (Savović et al. 2022; Zhang and Ge 2021; Lin
et al. 2020; Chowdhury and Kumar 2020; Singh et al. 2019; Araya et al. 2020). The two-
dimensional advection–diffusion reaction equation with Dirichlet-type boundary conditions
can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Pt = Pxx + Pyy − Px − Py − P + f (x, y, t), (x, y, t) ∈ � × (0, T ],
P(x, y, 0) = θ(x, y), (x, y) ∈ � ∪ ∂�,

P(0, y, t) = θ1(y, t), P(L, y, t) = θ2(y, t),
P(x, 0, t) = θ3(x, t), P(x, L, t) = θ4(x, t), (x, y, t) ∈ ∂� × (0, T ].

On the other hand, the TFADRE is a variant of the classical advection–diffusion reaction
equation in which the integer-order derivative is replaced by the Caputo fractional derivative.
The fractional Caputo derivative is one of the most useful differential operators for dealing
with real-world phenomena because it allows the implementation of initial and boundary
conditions as those of the integer-order case. In recent years, TFADREs have received much
attention and have been used to describe various real-world problems. They have been uti-
lized to describe anomalous diffusion phenomena in complex and disordered systems. The
usefulness of TFADRE has been verified in modeling various physical processes, such as oil
reservoir simulations, transmission of COVID-19, transport of mass and energy and global
weather production.Moreover, TFADRE has been employed for modeling option prices with
success in financial markets. For these reasons, the solution process of the TFADRE is a hot
topic in the field of applications.

In this study, we present and analyze a simple and yet efficient numerical scheme for the
two-dimensional TFADRE reads as,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t P=K1Pxx + K2Pyy−V1Px−V2Py−MP

+ f (x, y, t), (x, y, t) ∈ � × (0, T ], (1)

P(x, y, 0) = θ(x, y), (x, y) ∈ � ∪ ∂�,

P(0, y, t) = θ1(y, t), P(L, y, t) = θ2(y, t), (2)

P(x, 0, t) = θ3(x, t), P(x, L, t) = θ4(x, t), (x, y, t) ∈ ∂� × (0, T ], (3)

where � = [0, L]2 is the solution domain and ∂� is it is boundary. P(x, y, t) is the
unknown function representing a concentration, a population size, chemical species or option
prices. K1 and K2 are the diffusion coefficients, V1 and V2 are the advection coefficients and
M is the reaction coefficient. α ∈ (0, 1), f (x, y, t) is the source term, and C

0 D
α
t P is the

Caputo time fractional derivative of order α defined as,

C
0 D

α
t P(x, y, t) =

⎧
⎨

⎩

1
�(1−α)

∫ t
0 (t − ξ)−α ∂P(x,y,ξ)

∂ξ
dξ, 0 < α < 1,

∂P(x,y,t)
∂t , α = 1.

From the definition of the Caputo fractional derivative, it can be observed that the exact
solution of the model problem (1)–(3) may have weak regularity at the initial time. Without
loss of this constraint, we assume the considered problemhas a unique and sufficiently smooth
exact solution.
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3 Crank Nicolson finite differencemethod (CNFDM)

In this section, we propose a fully discrete numerical scheme for solving the model
problem (1). To this end, the solution domain is discretized as �hτ = �h�τ , where
�h = {xi = ihx , i = 0, 1, . . . , Nx , y j = jhy, j = 0, 1, . . . , Ny} and �τ = {tn =
nτ, n = 0, 1, . . . , Nt }. Here, hx = L/Nx , hy = L/Ny and τ = T /Nt represent the step sizes
in the spatial and temporal directions, respectively. Assume that P(x, y, t) ∈ C2(� × ∂�)

and Pn
i, j = P(xi , y j , tn), the first and second order spatial derivatives can be discretized as

follows:

∂2P

∂x2

∣
∣
∣
∣

n+1/2

i, j
= 1

2

[
Pn+1
i+1, j − 2Pn+1

i, j + Pn+1
i−1, j

(hx )2
+ Pn

i+1, j − 2Pn
i, j + Pn

i−1, j

(hx )2

]

+ O(τ 2 + (hx )
2) + (hy)

2), (4)

∂2P

∂ y2

∣
∣
∣
∣

n+1/2

i, j
= 1

2

[
Pn+1
i, j+1 − 2Pn+1

i, j + Pn+1
i, j−1

(hy)2
+ Pn

i, j+1 − 2Pn
i, j + Pn

i, j−1

(hy)2

]

+ O(τ 2 + (hx )
2) + (hy)

2), (5)

∂P

∂x

∣
∣
∣
∣

n+1/2

i, j
= 1

2

[
Pn+1
i+1, j − Pn+1

i−1, j

2hx
+ Pn

i+1, j − Pn
i−1, j

2hx

]

+ O(τ 2 + (hx )
2) + (hy)

2), (6)

∂P

∂ y

∣
∣
∣
∣

n+1/2

i, j
= 1

2

[
Pn+1
i, j+1 − Pn+1

i, j−1

2hy
+ Pn

i, j+1 − Pn
i, j−1

2hx

]

+ O(τ 2 + (hx )
2) + (hy)

2). (7)

The discretization of the Caputo time fractional derivative is described by the difference
formula with the following form:

∂αP

∂tα

∣
∣
∣
∣

n+1/2

i, j
= σ

[

W1P
n
i, j +

n−1∑

m=1

(Wn−m+1 − Wn−m) Pm
i, j − WnP

0
i, j + (Pn+1

i, j − Pn
i, j )

21−α

]

+O(τ 2−α), (8)

where

σ = 1

�(2 − α)τα
, Wn = (

(n + 1/2)1−α − (n − 1/2)1−α
)
.

The model problem (1) is now approximated as follows,

∂αP

∂tα

∣
∣
∣
∣

n+1/2

i, j
= K1

∂2P

∂x2

∣
∣
∣
∣

n+1/2

i, j
+ K2

∂2P

∂ y2

∣
∣
∣
∣

n+1/2

i, j
− V1

∂P

∂x

∣
∣
∣
∣

n+1/2

i, j
− V2

∂P

∂ y

∣
∣
∣
∣

n+1/2

i, j

−MPn+1/2
i, j + f k+1/2

i, j + O(τ 2−α + h2x + h2y). (9)

Substituting (4)–(8) into (1), the following CNFDM is obtained:

Pn+1
i, j = 1

0.51−α + κ + 2A1 + 2A2

[

(A1 − B1)(Pn+1
i+1, j + Pn

i+1, j )

+(A1 + B1)(Pn+1
i−1, j + Pn

i−1, j ) + (A2 − B2)(Pn+1
i, j+1 + Pn

i, j+1)

+(A2 + B2)(Pn+1
i, j−1 + Pn

i, j−1) + (0.51−α − κ − W1 − 2A1 − 2A2)Pn
i, j
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+
n−1∑

m=1

(Wn−m − Wn−m+1)Pm
i, j + WnP0

i, j + m f n+1/2
i, j

]

,

i = 1, 2, . . . , Nx − 1, j = 1, 2, . . . , Ny − 1, n = 0, 1, . . . , Nt − 1, (10)

with the following initial and boundary conditions

P0
i, j = θ(xi , y j ), i = 0, 1, . . . , Nx , j = 0, 1, . . . , Ny,

Pn
0, j = θ1(y j , tn), Pn

Nx , j = θ2(y j , tn), j = 0, 1, . . . , Ny n = 1, 2, . . . , Nt ,

Pn
i,0 = θ3(xi , tn), Pn

i,Ny
= θ4(xi , tn), i = 0, 1, . . . , Nx n = 1, 2, . . . , Nt ,

where

m = τα�(2 − α), κ = 0.5Mτα�(2 − α),

A1 = K1m

2h2x
, A2 = K2m

2h2y
, B1 = V1m

4hx
, B2 = V2m

4hy
.

Here,Pn
i, j denotes the numerical approximation of Pn

i, j after omitting the higher order terms.
Figure1 highlights the computational molecule of the CNFDM defined by (10). It is well
known that the application of Eq. (10) to the � points will result in large and sparse linear
systems that can be solved using iterative techniques. Considering a point-wise iterative
procedure, and at any time level tn , Eq. (10) is utilized to iterate solutions at all � points until
a predetermined convergence criterion is met. Once the converged solutions are attained, they
are used as an initial guess for the next time level tn+1. The iterative process is terminated
when the final time level is reached. In the next section, we propose a new group-wise iterative
numerical scheme to simulate the model problem (1) with less computing effort.

4 Description of themodified fractional explicit groupmethod
(MFEGM)

In this section, the MFEGM is proposed for the solution process of the time fractional
advection–diffusion–reaction equation (1). To explain the solutionmethod,we consider a new
computational mesh�2 h = {xi = 2ihx , i = 0, 1, . . . , Nx ; y j = 2 jhy, j = 0, 1, . . . , Ny},
where 2hx = 2 L

Nx
and 2hy = 2L

Ny
. Applying Crank Nicolson difference scheme on the new

mesh for approximating problem (1), the following expression is obtained:

[

W1P
n
i, j +

n−1∑

m=1

(Wn−m+1 − Wn−m) Pm
i, j − WnP

0
i, j + σ

(Pn+1
i, j − Pn

i, j )

21−α

]

= K1

2

[
Pn+1
i+2, j − 2Pn+1

i, j + Pn+1
i−2, j

4h2x
+ Pn

i+2, j − 2Pn
i, j + Pn

i−2, j

4h2x

]

+K2

2

[
Pn+1
i, j+2 − 2Pn+1

i, j + Pn+1
i, j−2

4h2y
+ Pn

i, j+2 − 2Pn
i, j + Pn

i, j−2

4h2y

]

−V1
2

[
Pn+1
i+2, j − Pn+1

i−2, j

4hx
+ Pn

i+2, j − Pn
i−2, j

4hx

]
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Fig. 1 Computational molecule of the CNFDM difference scheme with Nx = Ny = 10

−V2
2

[
Pn+1
i, j+2 − Pn+1

i, j−2

4hy
+ Pn

i, j+2 − Pn
i, j−2

4hy

]

−M

(
Pn+1
i, j + Pn

i, j

2

)

+ f n+1/2
i, j + O(τ 2−α + h2x + h2y), (11)

Disregarding higher order terms and using Pn
i, j as an approximation to Pn

i, j , the following
2h-spaced difference scheme is attained:

Pn+1
i, j = 1

0.51−α + κ + 2G1 + 2G2

[

(G1 − H1)(Pn+1
i+2, j + Pn

i+2, j )

+(G1 + H1)(Pn+1
i−2, j + Pn

i−2, j ) + (G2 − H2)(Pn+1
i, j+2 + Pn

i, j+2)

+(G2 + H2)(Pn+1
i, j−2 + Pn

i, j−2) + (0.51−α − κ − W1 − 2G1 − 2G2)Pn
i, j

+
n−1∑

m=1

(Wn−m − Wn−m+1)Pm
i, j + WnP0

i, j + m f n+1/2
i, j

]

,

i = 2, 4, . . . , Nx − 2, j = 2, 4, . . . , Ny − 2, n = 0, 1, . . . , Nt − 1, (12)

where

G1 = K1m

8h2x
, G2 = K2m

8h2y
, H1 = V1m

8hx
, H2 = V2m

8hy
.
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Before proceeding to the formulation of the MFEGM, we need a new skewed difference
scheme for approximating the model problem (1). Such numerical scheme can be achieved
by rotating the standard mesh 45◦ clockwise and applying Taylor expansion on the resulted
mesh as follows:

[

W1P
n
i, j +

n−1∑

m=1

(Wn−m+1 − Wn−m) Pm
i, j − WnP

0
i, j + σ

(Pn+1
i, j − Pn

i, j )

21−α

]

= K1

2

[
Pn+1
i+1, j−1 − 2Pn+1

i, j + Pn+1
i−1, j+1

2h2x
+ Pn

i+1, j−1 − 2Pn
i, j + Pn

i−1, j+1

2h2x

]

+K2

2

[
Pn+1
i+1, j+1 − 2Pn+1

i, j + Pn+1
i−1, j−1

2h2y
+ Pn

i+1, j+1 − 2Pn
i, j + Pn

i−1, j−1

2h2y

]

−V1
2

[
Pn+1
i+1, j−1 − Pn+1

i−1, j+1 + Pn+1
i+1, j+1 − Pn+1

i−1, j−1

4hx

+ Pn
i+1, j−1 − Pn

i−1, j+1 + Pn
i+1, j+1 − Pn

i−1, j−1

4hx

]

−V2
2

[
Pn+1
i+1, j+1 − Pn+1

i−1, j−1 + Pn+1
i−1, j+1 − Pn+1

i+1, j−1

4hy

+ Pn
i+1, j+1 − Pn

i−1, j−1 + Pn
i−1, j+1 − Pn

i+1, j−1

4hy

]

−M

(
Pn+1
i, j + Pn

i, j

2

)

+ f n+1/2
i, j + O(τ 2−α + h2x + h2y). (13)

After simplification and omitting the small error terms, we obtain the following skewed
difference scheme:

Pn+1
i, j = 1

0.51−α + κ + 2S1 + 2S2

[

(S1 − H1 − H2)(Pn+1
i+1, j−1 + Pn

i+1, j−1)

+(S1 + H1 − H2)(Pn+1
i−1, j+1 + Pn

i−1, j+1) + (S2 − H1 − H2)(Pn+1
i+1, j+1 + Pn

i+1, j+1)

+(S2 + H1 + H2)(Pn+1
i−1, j−1 + Pn

i−1, j−1) + (0.51−α − κ − W1 − 2S1 − 2S2)Pn
i, j

+
n−1∑

m=1

(Wn−m − Wn−m+1)Pm
i, j + WnP0

i, j + m f n+1/2
i, j

]

,

i = 1, 2, . . . , Nx − 1, j = 1, 2, . . . , Ny − 1, n = 0, 1, . . . , Nt − 1, (14)

with

S1 = K1m

4h2x
, S2 = K2m

4h2y
.

Consider the four-point groups of the discretized solution domain that are associated with
the spatial locations (i, j), (i + 2, j), (i + 2, j + 2) and (i, j + 2). Applying Eq. (12) to any

123



157 Page 10 of 30 F. M. Salama et al.

group of four points will give the following (4 × 4) system of equations:

⎛

⎜
⎜
⎝

Q1 −Q2 0 −Q4

−Q3 Q1 −Q4 0
0 −Q5 Q1 −Q3

−Q5 0 −Q2 Q1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Pn+1
i, j

Pn+1
i+2, j

Pn+1
i+2, j+2

Pn+1
i, j+2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

rhsi, j

rhsi+2, j

rhsi+2, j+2

rhsi, j+2

⎞

⎟
⎟
⎟
⎠

, (15)

in which

Q1 = 0.51−α + κ + 2G1 + 2G2, Q2 = G1 − H1, Q3 = G1 + H1

Q4 = G2 − H2, Q5 = G2 + H2, Q6 = 0.51−α − κ − W1 − 2G1 − 2G2,

and

rhsi, j = Q2Pn
i+2, j + Q3(Pn+1

i−2, j + Pn
i−2, j ) + Q4Pn

i, j+2 + Q5(Pn+1
i, j−2 + Pn

i, j−2)

+ Q6Pn
i, j +

n−1∑

m=1

(Wn−m − Wn−m+1)Pm
i, j + WnP0

i, j + m f n+1/2
i, j ,

rhsi+2, j = Q2(Pn+1
i+4, j + Pn

i+4, j ) + Q3Pn
i, j + Q4Pn

i+2, j+2 + Q5(Pn+1
i+2, j−2 + Pn

i+2, j−2)

+ Q6Pn
i+2, j +

n−1∑

m=1

(Wn−m − Wn−m+1)Pm
i+2, j + WnP0

i+2, j + m f n+1/2
i+2, j ,

rhsi+2, j+2 = Q2(Pn+1
i+4, j+2 + Pn

i+4, j+2) + Q3Pn
i, j+2 + Q4(Pn+1

i+2, j+4 + Pn
i+2, j+4)

+ Q5Pn
i+2, j + Q6Pn

i+2, j+2 +
n−1∑

m=1

(Wn−m − Wn−m+1)Pm
i+2, j+2

+ WnP0
i+2, j+2 + m f n+1/2

i+2, j+2,

rhsi, j+2 = Q2Pn
i+2, j+2 + Q3(Pn+1

i−2, j+2 + Pn
i−2, j+2) + Q4(Pn+1

i, j+4 + Pn
i, j+4) + Q5Pn

i, j

+ Q6Pn
i, j+2 +

n−1∑

m=1

(Wn−m − Wn−m+1)Pm
i, j+2 + WnP0

i, j+2 + m f n+1/2
i, j+2 .

Through the reversal of the coefficient matrix in (15), the four-point MFEGM is obtained as
follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Pn+1
i, j

Pn+1
i+2, j

Pn+1
i+2, j+2

Pn+1
i, j+2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 1

Z

⎛

⎜
⎜
⎝

Z1 Z2 Z3 Z4

Z5 Z1 Z4 Z6

Z7 Z8 Z1 Z5
Z8 Z9 Z2 Z1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

rhsi, j
rhsi+2, j

rhsi+2, j+2

rhsi, j+2

⎞

⎟
⎟
⎠ , (16)

where

Z = Q4
1 − 2Q2

1Q2Q3 − 2Q2
1Q4Q5 + Q2

2Q
2
3 − 2Q2Q3Q4Q5 + Q2

4Q52,

Z1 = Q1(Q
2
1 − Q2Q3 − Q4Q5), Z2 = Q2(Q

2
1 − Q2Q3 + Q4Q5),

Z3 = 2Q1Q2Q4, Z4 = Q4(Q
2
1 + Q2Q3 − Q4Q5),

Z5 = Q3(Q
2
1 − Q2Q3 + Q4Q5), Z6 = 2Q1Q3Q4
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Fig. 2 Computational molecule of the MFEGM with Nx = Ny = 10

Z7 = 2Q1Q3Q5, Z8 = Q5(Q
2
1 + Q2Q3 − Q4Q5),

Z9 = 2Q1Q2Q5.

As shown in Fig. 2, the mesh points of the discretized solution domain using the MFEGM
are branched into three types of points, i.e. �, � and �. It can be verified that the implemen-
tation of the MFEGM (16) requires only points of type �, makes it independent from the
remaining points of type � and �. Therefore, and at any time level tn , the MFEGM proceeds
by iterating the solutions at the � points until a predefined convergence criterion is achieved.
After convergence, the solutions at the residual points of type� and� are computed directly
once using Eqs. (14) and (10), respectively. Compared to the CNFDM presented in the pre-
vious section, the MFEGM comprise only quarter of the mesh points in the iterative process
which is expected to accelerate the rate of convergence, especially when dealing with large
scale linear systems. In this work, the four-point MFEGM is combined with the Gauss-Seidel
iterative scheme and is illustrated through the next algorithm.

5 Stability analysis

In this section, we analyze the stability of the proposed numerical schemes with the help
of Fourier analysis approach. To facilitate our theoretical analysis, the following lemma is
introduced.
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Algorithm 1 The MFEGM computational algorithm
1. Branch the mesh points of the computational domain into two categories:

(a) Iterative points of type �.
(b) Direct points of type � and �.

2. Assemble all the � points into four-point groups.
3. set up an initial guess and error tolerance ε = 10−5.
4. Iterate the intermediate solutions at the � points using the following formula:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P̂n+1,k+1
i, j

P̂n+1,k+1
i+2, j

P̂n+1,k+1
i+2, j+2

P̂n+1,k+1
i, j+2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 1

Z

⎛

⎜
⎝

Z1 Z2 Z3 Z4
Z5 Z1 Z4 Z6
Z7 Z8 Z1 Z5
Z8 Z9 Z2 Z1

⎞

⎟
⎠

⎛

⎜
⎜
⎝

rhsi, j
rhsi+2, j

rhsi+2, j+2
rhsi, j+2

⎞

⎟
⎟
⎠ ,

and carry out the Gauss-Seidel iterative procedure

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Pn+1,k+1
i, j

Pn+1,k+1
i+2, j

Pn+1,k+1
i+2, j+2

Pn+1,k+1
i, j+2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= ω

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P̂n+1,k+1
i, j

P̂n+1,k+1
i+2, j

P̂n+1,k+1
i+2, j+2

P̂n+1,k+1
i, j+2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ (1 − ω)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Pn+1,k
i, j

Pn+1,k
i+2, j

Pn+1,k
i+2, j+2

Pn+1,k
i, j+2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where ω is the relaxation factor and k is the iteration number.
5. If the infinity error norm is less than ε, go to to step 6. Otherwise, repeat step 4.
6. Evaluate the remaining solutions directly once at � points using Eq. (14) followed by � points utilizing

Eq. (10).
7. Carry out the previous steps at each time level until the final time step is reached.
8. Display numerical results.

Lemma 1 The coefficients Ws, (s = 0, 1, . . . ) in (8) satisfy

1. Wn−m > Wn−m+1, m = 0, 1, 2, . . . , n − 1.
2.

∑n−1
m=1 (Wn−m − Wn−m+1) = W1 − Wn.

5.1 Stability of the h-spaced numerical scheme

Suppose that Pn
i, j is the approximate solution of (10), and define

ρn
i, j = Pn

i, j − Pn
i, j , i = 0, 1, . . . , Nx , j = 0, 1, . . . , Ny, n = 0, 1, . . . , Nt ,

and

ρn = (ρn
1,1, ρ

n
1,2, . . . , ρ

n
1,Ny−1, ρ

n
2,1, ρ

n
2,2, . . . , ρ

n
2,Ny−1, . . . , ρ

n
Nx−1,1,

ρn
Nx−1,2, . . . , ρ

n
Nx−1,Ny−1)

T , n = 1, 2, . . . , Nt .

The roundoff error equation can be obtained as follows,

(0.51α + κ + 2A1 + 2A2)ρ
n+1
i, j − (A1 − B1)ρ

n+1
i+1, j − (A1 + B1)ρ

n+1
i−1, j

−(A2 − B2)ρ
n+1
i, j+1 − (A2 + B2)ρ

n+1
i, j−1 = (A1 − B1)ρ

n
i+1, j

+(A1 + B1)ρ
n
i−1, j + (A2 − B2)ρ

n
i, j+1
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+(A2 + B2)ρ
n
i, j−1 + (0.51−α − κ − W1 − 2A1 − 2A2)ρ

n
i, j

+
n−1∑

m=1

(Wn−m − Wn−m+1) ρm
i, j + Wnρ

0
i, j , (17)

with the following initial and boundary conditions

ρ0
i, j = 0, i = 0, 1, . . . , Nx , j = 0, 1, . . . , Ny,

ρn
0, j = ρn

Nx , j = 0, j = 0, 1, . . . , Ny, n = 0, 1, . . . , Nt ,

ρn
i,0 = ρn

i,Ny
= 0, i = 0, 1, . . . , Nx , n = 0, 1, . . . , Nt .

Next, we define the following grid function

ρn(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

ρn
i, j , xi− hx

2
< x ≤ xi+ hx

2
, y

j− hy
2

< y ≤ y
j+ hy

2
,

0, 0 ≤ x ≤ hx
2 or L − hx

2 ≤ x ≤ L,

0, 0 ≤ y ≤ hy
2 or L − hy

2 ≤ y ≤ L,

where ρn(x, y) has the Fourier expansion given by

ρn(x, y) =
∞∑

l1=−∞

∞∑

l2=−∞
ϒn(l1, l2)e

2π I (l1x/L+l2 y/L),

in which I = √−1 and

ϒn(l1, l2) = 1

L2

∫ L

0

∫ L

0
ρn(x, y)e−2π I (l1x/L+l2 y/L)dxdy. (18)

The 2-norm can be defined as

‖ρn‖2 =
⎛

⎝

Ny−1∑

j=1

Nx−1∑

i=1

hyhx |ρn
i, j |2

⎞

⎠

1/2

=
(∫ L

0

∫ L

0
|ρn

i, j |2dxdy
)1/2

.

Introducing the Parseval equality

∫ L

0

∫ L

0
|ρn

i, j |2dxdy =
∞∑

l2=−∞

∞∑

l1=−∞
|ϒn(l1, l2)|2,

we obtain

‖ρn‖2 =
⎛

⎝
∞∑

l2=−∞

∞∑

l1=−∞
|ϒn(l1, l2)|2

⎞

⎠

1/2

. (19)

Suppose the solution of (17) has the following form

ρn
i, j = ϒneI (β1ihx+β2 jhy), (20)

where β1 = 2πl1/L and β2 = 2πl2/L are the real spatial wave numbers. Setting (20) into
(17), yields

ϒn+1 = 0.51−α − κ − W1 − μ1 − Iμ2

0.51−α + κ + μ1 + Iμ2
ϒn
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+ 1

0.51−α + κ + μ1 + Iμ2

[
n−1∑

m=1

(Wn−m − Wn−m+1)ϒm + Wnϒ
0

]

, (21)

where

μ1 = 4A1 sin
2
(

β1hx
2

)

+ 4A2 sin
2
(

β2hy

2

)

,

μ2 = 2
(
B1 sin(β1hx ) + B2 sin(β2hy)

)
.

Lemma 2 Let ϒn+1, n = 0, 1, . . . , Nt − 1 be the solution of (21), given that 31−α ≤ 2, then
it holds that

|ϒn+1| ≤ |ϒ0|, n = 0, 1, . . . , Nt − 1.

Proof Here, mathematical induction shall be used to complete the proof. For n = 0, we have

|ϒ1| =
∣
∣
∣
∣
0.51−α − κ − μ1 − Iμ2

0.51−α + κ + μ1 + Iμ2

∣
∣
∣
∣|ϒ0| ≤ |ϒ0|.

Now, we assume that

|ϒ s+1| ≤ |ϒ0|, s = 0, 1, . . . , n − 1.

For s = n, utilizing Eq. (21) along with lemma 1, we have

|ϒn+1| ≤
∣
∣
∣
∣
0.51−α − κ − W1 − μ1 − Iμ2

0.51−α + κ + μ1 + Iμ2

∣
∣
∣
∣|ϒn |

+
∣
∣
∣
∣

1

0.51−α + κ + μ1 + Iμ2

∣
∣
∣
∣

[ n−1∑

m=1

| (Wn−m − Wn−m+1) ||ϒn | + |Wn ||ϒ0|
]

≤
∣
∣
∣
∣
0.51−α − κ − W1 − μ1 − Iμ2

0.51−α + κ + μ1 + Iμ2

∣
∣
∣
∣|ϒ0|

+
∣
∣
∣
∣

1

0.51−α + κ + μ1 + Iμ2

∣
∣
∣
∣

[ n−1∑

m=1

| (Wn−m − Wn−m+1) ||ϒ0| + |Wn ||ϒ0|
]

= |0.51−α − κ − W1 − μ1 − Iμ2| + W1

0.51−α + κ + μ1 + Iμ2
|ϒ0|.

As n → ∞, τ , κ , μ1 and μ2 approach to zero and

|ϒn+1| ≤ |0.51−α − W1| + W1

0.51−α
|ϒ0|.

This leads to the following cases:
Case I. If 0.51−α − W1 ≥ 0, then

|ϒn+1 ≤ |ϒ0|.
Case II. If 0.51−α − W1 < 0, then

|ϒn+1| ≤ 2W1 − 0.51−α

51−α
|ϒ0|.

Here,

|ϒn+1| ≤ |ϒ0|
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⇔ 2W1 − 0.51−α ≤ 0.51−α

⇔ 31−α ≤ 2,

which ends the proof. ��

Theorem 1 Given that 31−α < 2, the h-spaced difference scheme (10) is stable.

Proof On the basis of lemma 2 and Parseval equality, it follows that

‖ρn‖2 =
Ny−1∑

j=1

Nx−1∑

i=1

hyhx |ρk
i, j |2 = hyhx

Ny−1∑

j=1

Nx−1∑

i=1

∣
∣ϒneI (β1ihx+β2 jhy)

∣
∣2

= hyhx

Ny−1∑

j=1

Nx−1∑

i=1

|ϒn |2 ≤ hyhx

Ny−1∑

j=1

Nx−1∑

i=1

|ϒ0|2

= hyhx

Ny−1∑

j=1

Nx−1∑

i=1

∣
∣ϒ0eI (β1ihx+β2 jhy)

∣
∣2 = ‖ρ0‖2.

This means that the difference scheme (10) is unconditionally stable. ��

5.2 Stability of the 2h-spaced numerical scheme

Let P̂n
i, j is the approximate solution of (12), and define

En
i, j = Pn

i, j − P̂n
i, j , i = 0, 2, . . . , Nx , j = 0, 2, . . . , Ny, n = 0, 1, . . . , Nt ,

and

En = (En
2,2, En

2,4, . . . , En
2,Ny−2, En

4,2, En
4,4, . . . , En

4,Ny−2, . . . , En
Nx−2,2,

En
Nx−2,4, . . . , En

Nx−2,Ny−2)
T , n = 1, 2, . . . , Nt .

The roundoff error equation can be easily obtained as,

(0.51α + κ + 2G1 + 2G2)En+1
i, j − (G1 − H1)En+1

i+1, j − (G1 + H1)En+1
i−1, j

−(G2 − H2)En+1
i, j+1 − (H2 + H2)En+1

i, j−1 = (G1 − H1)En
i+1, j

+(G1 + H1)En
i−1, j + (G2 − H2)En

i, j+1

+(G2 + H2)En
i, j−1 + (0.51−α − κ − W1 − 2G1 − 2G2)En

i, j

+
n−1∑

m=1

(Wn−m − Wn−m+1) Em
i, j + WnE0

i, j , (22)

with the following initial and boundary conditions

E0
i, j = 0, i = 0, 2, . . . , Nx , j = 0, 2, . . . , Ny,

En
0, j = En

Nx , j = 0, j = 0, 2, . . . , Ny, n = 0, 1, . . . , Nt ,

En
i,0 = En

i,Ny
= 0, i = 0, 2, . . . , Nx , n = 0, 1, . . . , Nt .
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Next, we define the following grid function

En(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

En
i, j , xi− hx

4
< x ≤ xi+ hx

4
, y

j− hy
4

< y ≤ y
j+ hy

4
,

0, 0 ≤ x ≤ hx
4 or L − hx

4 ≤ x ≤ L,

0, 0 ≤ y ≤ hy
2 or L − hy

2 ≤ y ≤ L,

where En(x, y) has the Fourier expansion given by

En(x, y) =
∞∑

l1=−∞

∞∑

l2=−∞
�n(l1, l2)e

2π I (l1x/L+l2 y/L),

such that

�n(l1, l2) = 1

L2

∫ L

0

∫ L

0
En(x, y)e−2π I (l1x/L+l2 y/L)dxdy. (23)

The 2-norm is given by

‖En‖2 =
⎛

⎝

Ny−1∑

j=1

Nx−1∑

i=1

hyhx |En
i, j |2

⎞

⎠

1/2

=
(∫ L

0

∫ L

0
|En

i, j |2dxdy
)1/2

.

With the help of the Parseval equality

∫ L

0

∫ L

0
|En

i, j |2dxdy =
∞∑

l2=−∞

∞∑

l1=−∞
|�n(l1, l2)|2,

we get

‖En‖2 =
⎛

⎝
∞∑

l2=−∞

∞∑

l1=−∞
|�n(l1, l2)|2

⎞

⎠

1/2

. (24)

Suppose the solution of (22) has the following form

En
i, j = �neI (β1ihx+β2 jhy), (25)

Substituting (25) into (22) leads to

�n+1 =0.51−α − κ − W1 − η1 − Iη2
0.51−α + κ + η1 + Iη2

�n

+ 1

0.51−α + κ + η1 + Iη2

[
n−1∑

m=1

(Wn−m − Wn−m+1)�m + Wn�
0

]

,

(26)

where

η1 = 4G1 sin
2 (β1hx ) + 4G2 sin

2 (
β2hy

)
,

η2 = 2
(
H1 sin(2β1hx ) + H2 sin(2β2hy)

)
.

Lemma 3 Let �n+1, n = 0, 1, . . . , Nt − 1 be the solution of (26), given that 31−α ≤ 2, then
it holds that

|�n+1| ≤ |�0|, n = 0, 1, . . . , Nt − 1.
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Proof Again, mathematical induction is utilized for the completion of the proof. For n = 0,
we have

|�1| =
∣
∣
∣
∣
0.51−α − κ − η1 − Iη2
0.51−α + κ + η1 + Iη2

∣
∣
∣
∣|�0| ≤ |�0|.

Now, we suppose that

|�s+1| ≤ |�0|, s = 0, 1, . . . , n − 1.

For s = n, using Eq. (26) together with lemma 1, we have

|�n+1| ≤
∣
∣
∣
∣
0.51−α − κ − W1 − η1 − Iη2

0.51−α + κ + η1 + Iη2

∣
∣
∣
∣|�n |

+
∣
∣
∣
∣

1

0.51−α + κ + η1 + Iη2

∣
∣
∣
∣

[ n−1∑

m=1

| (Wn−m − Wn−m+1) ||�n | + |Wn ||�0|
]

≤
∣
∣
∣
∣
0.51−α − κ − W1 − η1 − Iη2

0.51−α + κ + η1 + Iη2

∣
∣
∣
∣|�0|

+
∣
∣
∣
∣

1

0.51−α + κ + η1 + Iη2

∣
∣
∣
∣

[ n−1∑

m=1

| (Wn−m − Wn−m+1) ||�0| + |Wn ||�0|
]

= |0.51−α − κ − W1 − η1 − Iη2| + W1

0.51−α + κ + η1 + Iη2
|�0|.

As n → ∞, τ , κ , η1 and η2 approach to zero and

|�n+1| ≤ |0.51−α − W1| + W1

0.51−α
|�0|.

From the previous subsection, we know that

|0.51−α − W1| + W1

0.51−α
≤ 1

⇔ 31−α ≤ 2.

This completes the proof. ��
Theorem 2 Given that 31−α ≤ 2, the 2h-spaced difference scheme (12) is stable.

Proof According to lemma 3 and Parseval equality, we obtain

‖En‖2 =
Ny−1∑

j=1

Nx−1∑

i=1

hyhx |Ek
i, j |2 = hyhx

Ny−1∑

j=1

Nx−1∑

i=1

∣
∣�neI (β1ihx+β2 jhy)

∣
∣2

= hyhx

Ny−1∑

j=1

Nx−1∑

i=1

|�n |2 ≤ hyhx

Ny−1∑

j=1

Nx−1∑

i=1

|�0|2

= hyhx

Ny−1∑

j=1

Nx−1∑

i=1

∣
∣�0eI (β1ihx+β2 jhy)

∣
∣2 = ‖E0‖2.

Hence, the difference scheme (12) is unconditionally stable. ��
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6 Convergence analysis

In this part, we describe the convergence analysis of the proposed numerical schemes. For
this purpose, the following theorem is required.

Theorem 3 (Lax-Richertmyer theorem) if the differential equation (1) is well-posed and the
finite difference scheme is consistent, then the finite difference scheme is convergent if and
only if, it is stable

The next theorem discuss the convergence of the h-spaced difference scheme defined by (10).

Theorem 4 The h-spaced difference scheme (10) is consistent, and hence is convergent.

Proof Let Rn
i, j be the truncation error at the point (xi , y j , tn). According to Eqs. (4–8), the

local truncation error of the numerical scheme (10) is

Rn+1/2
i, j =

[

W1P
n
i, j +

n−1∑

m=1

(Wn−m+1 − Wn−m) Pm
i, j − WnP

0
i, j + σ

(Pn+1
i, j − Pn

i, j )

21−α

]

−K1

2

[
Pn+1
i+1, j − 2Pn+1

i, j + Pn+1
i−1, j

h2x
+ Pn

i+1, j − 2Pn
i, j + Pn

i−1, j

h2x

]

−K2

2

[
Pn+1
i, j+1 − 2Pn+1

i, j + Pn+1
i, j−1

h2y
+ Pn

i, j+1 − 2Pn
i, j + Pn

i, j−1

h2y

]

+V1
2

[
Pn+1
i+1, j − Pn+1

i−1, j

2hx
+ Pn

i+1, j − Pn
i−1, j

2hx

]

+V2
2

[
Pn+1
i, j+1 − Pn+1

i, j−1

2hy
+ Pn

i, j+1 − Pn
i, j−1

2hy

]

+M

(
Pn+1
i, j + Pn

i, j

2

)

− f n+1/2
i, j ,

=
[

W1Pn
i, j +

n−1∑

m=1

(Wn−m+1 − Wn−m)Pm
i, j − WnP0

i, j + σ
(Pn+1

i, j − Pn
i, j )

21−α

]

−∂αP(xi , y j , tn+1/2)

∂tα

−K1

2

[Pn+1
i+1, j − 2Pn+1

i, j + Pn+1
i−1, j

h2x
+ Pn

i+1, j − 2Pn
i, j + Pn

i−1, j

h2x

]

−∂2P(xi , y j , tn+1/2)

∂x2

−K2

2

[Pn+1
i, j+1 − 2Pn+1

i, j + Pn+1
i, j−1

h2y
+ Pn

i, j+1 − 2Pn
i, j + Pn

i, j−1

h2y

]

−∂2P(xi , y j , tn+1/2)

∂ y2
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+V1
2

[Pn+1
i+1, j − Pn+1

i−1, j

2hx
+ Pn

i+1, j − Pn
i−1, j

2hx

]

− ∂P(xi , y j , tn+1/2)

∂x

+V2
2

[Pn+1
i, j+1 − Pn+1

i, j−1

2hy
+ Pn

i, j+1 − Pn
i, j−1

2hy

]

− ∂P(xi , y j , tn+1/2)

∂ y

M

(Pn+1
i, j + Pn

i, j

2

)

− P(xi , y j , tn+1/2) = O(τ 2−α + h2x + h2y). (27)

It can be easily shown that the local truncation error tends to zero as τ , hx and hy go to zero.
This means that the difference scheme (10) is consistent, so that by Theorem 3, the difference
scheme (10) is convergent. ��
Theorem 5 The 2h-spaced difference scheme (12) is consistent, and hence is convergent.

Proof The proof is similar to Theorem 4. ��

7 Numerical experiments and discussion of results

In this part, four numerical examples are presented to demonstrate the computational effi-
ciency of the MFEGM by comparing to the CNFDM. All programming codes are written
in MATLAB and run on a PC with i7-8550U CPU, 8 GB RAM and Windows 10 (64-bit)
operating system. The obtained numerical results are represented in terms of several illus-
trative figures and tables. In these tables, "Sec" denotes the amount of computational time
required for solving the problem under consideration. "Iter" means the number of iterations
needed to achieve convergence at the last time level. And, "MAE" stands for the maximum
absolute error between the numerical and exact solutions. In all numerical examples, we let
Nx = Ny = N , and give the source terms by the exact solutions.

Example 1 Consider the model problem with the exact solution u(x, y, t) = et (1− x2)2(1−
y2)2,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0 D

α
t P = Pxx + Pyy − Px − Py − P + f (x, y, t), 0 ≤ x, y ≤ 1, 0 < t ≤ T ,

P(x, y, 0) = (1 − x2)2(1 − y2)2, (x, y) ∈ � ∪ ∂�,

P(0, y, t) = et (1 − y2)2, P(1, y, t) = 0,

P(x, 0, t) = et (1 − x2)2, P(x, 1, t) = 0, (x, y, t) ∈ ∂� × (0, T ].
Table 1 presents a comparison between the elapsed time in seconds, number of iterations

and maximum absolute errors of the MFEGM and CNFDM at T = 1, τ = 0.1, 0.01 and
various values of α. From this table, we can observe that the approximate solution of the
MFEGM converges to the exact solution with less computational time and iteration count in
comparison to the CNFDM. For instance, at α = 0.9 and τ = 0.01, the CNFDM reaches
convergence after 135 iterations with 165.41 computing time, while the MFEGM terminates
after only 27 iterations with 20.10 computing time. The numerical solutions of the proposed
methods and the exact solution at y = 0.5, N = 70, Nt = 100, α = 0.5 and different final
times T = 1, 1.5 and 2 are drawn in Fig. 3. In addition, Fig. 4 depicts the plot of maximum
errors for the CNFDM and the MFEGM at N = 62, Nt = 100, α = 0.5 and T = 1. From
these figures, we can see that the numerical solutions of our proposed methods are in good
agreement with the exact solution.
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Fig. 3 Numerical solutions and exact solutions for Example 1 at y = 0.5, N = 70, Nt = 100, α = 0.5 and
T = 1, 1.5, 2

Fig. 4 The 3D error plot of absolute errors using a CNFDM and b MFEGM for Example 1 at N = 62,
Nt = 100, α = 0.5 and T = 1
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Fig. 5 Numerical solutions and exact solutions for Example 2 at y = 0.5, N = 70, Nt = 100, α = 0.5 and
T = 1, 1.5, 2

Example 2 Consider the following model problem,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0 D

α
t P = Pxx + Pyy − Px − Py − P + f (x, y, t), 0 ≤ x, y ≤ 1, 0 < t ≤ T ,

P(x, y, 0) = 0, (x, y) ∈ � ∪ ∂�,

P(0, y, t) = 0, P(1, y, t) = 20t1+a y sin(y)ey,

P(x, 0, t) = 0, P(x, 1, t) = 20t1+ax sin(x)ex , (x, y, t) ∈ ∂� × (0, T ].
The exact solution of the above problem is u(x, y, t) = 20t1+αxy sin(xy)exy . Table 2 enu-
merates the numerical results of the CNFDM and the MFEGM in solving Example 2 at
N = 62, Nt = 62, several values of α and diverse final times T = 1, 1.5 and 2. From which
we notice that the CNFDM and the MFEGM simulate the considered problem accurately
where the later method results in much faster simulations that the former one for different
values of T . The graphical representations of the numerical and exact solutions of Example
2 at y = 0.5, N = 70, Nt = 100, α = 0.5 and T = 1, 1.5 and 2 are highlighted in Fig. 5. We
can observe that the numerical solutions agree well with the exact solutions. One more time,
we plot the execution time of the proposed methods versus several mesh sizes at fixed T = 1,
τ = 0.01 and α = 0.5 in Fig. 6. One can see that the MFEGM requires smaller amount of
running time compared to the CNFDM, especially for larger values of N . This is very useful
when solving large-scale linear systems.
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Fig. 6 The plot of elapsed time in (seconds) against N for Example 2 using CNFDM (red line) and MFEGM
(green line)

Example 3 Consider the following time fractional diffusion equation,
⎧
⎪⎪⎨

⎪⎪⎩

C
0 D

α
t P = Pxx + Pyy + f (x, y, t), 0 ≤ x, y ≤ 1, 0 < t ≤ T ,

P(x, y, 0) = 0, (x, y) ∈ � ∪ ∂�,

P(0, y, t) = t2ey, P(1, y, t) = t2e1+y,

P(x, 0, t) = t2ex , P(x, 1, t) = t2ex+1, (x, y, t) ∈ ∂� × (0, T ].

The exact solution of Example 3 is given by u(x, y, t) = t2ex+y . Table 3 shows the per-
formance of the proposed methods in solving the considered problem. The results in this
table are achieved at T = 4, τ = 0.1, 0.01 and different fractional orders. To show the
accuracy of the solution methods, Fig. 7 portrays absolute errors of the CNFDM (left frame)
and MFEGM (right frame) at N = 62, Nt = 100, α = 0.5 and T = 4.

Example 4 Consider the following time fractional advection–diffusion equation,
⎧
⎪⎪⎨

⎪⎪⎩

C
0 D

α
t P = Pxx + Pyy − Px − Py + f (x, y, t), 0 ≤ x, y ≤ 1, 0 < t ≤ T ,

P(x, y, 0) = 0, (x, y) ∈ � ∪ ∂�,

P(0, y, t) = t2(y − y2), P(1, y, t) = t2(y − y2),
P(x, 0, t) = t2(x − x2), P(x, 1, t) = t2(x − x2), (x, y, t) ∈ ∂� × (0, T ].

The exact solution of Example 4 reads as u(x, y, t) = t2(x − x2 + y − y2). The results of
solving this problem are shown in Table 4. Numerical simulations have been implemented at

123



Efficient numerical simulations based on an explicit group… Page 25 of 30 157

Ta
bl
e
3

N
um

er
ic
al
re
su
lts

of
th
e
C
N
FD

M
an
d
th
e
M
FE

G
M

fo
r
E
xa
m
pl
e
3
at

N
=

50
an
d
T

=
4

α
τ

=
0.
1

τ
=

0.
01

C
N
FD

M
M
FE

G
M

C
N
FD

M
M
FE

G
M

Se
c

It
er

M
A
E

Se
c

It
er

M
A
E

Se
c

It
er

M
A
E

Se
c

It
er

M
A
E

0.
1

3.
65

20
78

2.
98

37
E
−0

3
0.
75

32
4

3.
78

82
E
−0

3
20

6.
49

15
21

7.
57

28
E
−0

4
15

.0
2

25
4

8.
27

90
E
−0

4

0.
2

3.
65

20
55

5.
18

09
E
−0

3
0.
68

32
1

6.
15

74
E
−0

3
19

6.
18

14
74

9.
58

08
E
−0

4
14

.3
1

24
5

8.
07

58
E
−0

4

0.
3

3.
63

20
30

6.
59

76
E
−0

3
0.
61

31
7

7.
73

27
E
−0

3
21

4.
07

14
09

9.
95

38
E
−0

4
14

.0
4

23
4

7.
76

98
E
−0

4

0.
4

3.
55

20
02

7.
23

50
E
−0

3
0.
59

31
2

8.
50

70
E
−0

3
20

7.
90

13
24

1.
03

74
E
−0

3
12

.7
5

22
0

7.
36

87
E
−0

4

0.
5

3.
63

19
70

7.
30

58
E
−0

3
0.
62

30
7

8.
72

04
E
−0

3
19

7.
59

12
17

1.
10

46
E
−0

3
12

.0
6

20
2

6.
80

67
E
−0

4

0.
6

3.
53

19
37

7.
24

68
E
−0

3
0.
57

30
2

8.
75

52
E
−0

3
21

4.
19

10
91

1.
18

22
E
−0

3
11

.0
4

18
0

5.
97

99
E
−0

4

0.
7

3.
69

19
02

7.
55

22
E
−0

3
0.
60

29
6

9.
14

50
E
−0

3
12

6.
54

95
3

1.
25

79
E
−0

3
9.
36

15
7

5.
25

11
E
−0

4

0.
8

3.
53

18
65

8.
82

04
E
−0

3
0.
56

29
1

1.
04

68
E
−0

2
10

5.
35

81
1

1.
30

19
E
−0

3
8.
27

13
4

4.
93

47
E
−0

4

0.
9

3.
47

18
29

1.
16

62
E
−0

2
0.
58

28
5

1.
33

42
E
−0

2
88

.4
7

67
6

1.
21

87
E
−0

3
7.
32

11
5.
74

31
E
−0

4

123



157 Page 26 of 30 F. M. Salama et al.

Fig. 7 The 3D error plot of absolute errors using a CNFDM and b MFEGM for Example 3 at N = 62,
Nt = 100, α = 0.5 and T = 4

T = 8, τ = 0.1, 0.01 and different fractional orders. Figure8 draws absolute errors of the
CNFDM (left frame) and MFEGM (right frame) at N = 62, Nt = 100, α = 0.5 and T = 8.

8 Conclusion

Due to the non-local property of fractional derivatives, the numerical treatment of time FPDEs
usually requires substantial computer resources, which may result in some computational
challenges in practice. In this paper, we have proposed the MFEGM for solving a class of
the general two-dimensional TFADRE involving source terms and Caputo-type temporal
derivative. It has been constructed utilizing a difference scheme based on L1 discretization
in the temporal direction and central difference approximations with double spacing in the
spatial direction. We have illustrated the reliability of the MFEGM by comparing it to the
CNFDMderived in Sect. 3. The stability and convergence of the proposedmethods have been
proven theoretically and comprehended by several numerical examples. The comparison of
the numerical results obtained by the MFEGM with the numerical results obtained by the
CNFDM shows the accuracy, computational efficiency and simple implementation of the
former. We have also discussed the application of the methods to the fractional diffusion and
fractional advection–diffusion models, from which we deduce the potential capability of the
MFEGM to solve time fractional diffusion models and other FPDEs that arise in science and
engineering disciplines, providing a new line of future research.
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Fig. 8 The 3D error plot of absolute errors using a CNFDM and b MFEGM for Example 4 at N = 62,
Nt = 100, α = 0.5 and T = 8
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