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Abstract
The first memory-less transition bus encoding technique for low power dissipation, crosstalk

avoidance, and error correction simultaneously was presented by Chee et al. [Optimal low-
power coding for error correction and crosstalk avoidance in on-chip data buses. Des. Codes
Cryptogr., 77 (2-4) (2015), 479–491]. They construct optimal or asymptotically optimal
constant weight codes that eliminate each kind of crosstalk. In this article, we construct
the improved asymptotically optimal (n, 4, 3)-IV code for all even orders n ≥ 14 by using a
combinatorial design approach. Furthermore, we show that an optimal weighted three code
avoiding type-III crosstalk is also an optimal code avoiding the crosstalk of type-{III, IV},
for each odd order n ≥ 3.

Keywords: Crosstalk; Balanced sampling plans avoiding adjacent unit (BSA); BSA∗; Incomplete
group divisible design (IGDD); Leave graph
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1 Introduction

Coupled switched capacitance causes crosstalk in ultra deep submicron/nonometer VLSI fabri-
cation, which leads to power dissipation, delay faults, and logical malfunctions. The problem of
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removing or reducing crosstalk is considered a major signal integrity challenge for long on-chip
buses implemented in UDSM CMOS technology [14].

The worst crosstalk couplings have been divided into four types [7, 14] and briefly explained in
[5]. We restate such types in Table 1. The coupled switched capacitance resulting from type-I, -II,
-III, and -IV crosstalks is in the ratio of 1 : 2 : 3 : 4. Therefore, avoiding crosstalks of higher types
is of particular interest. However, type-I crosstalk cannot be avoided in any useful communication
channel, but must be limited, since type-I crosstalk gives rise to power dissipation. The correction
of active errors and limiting power dissipation are also critical issues in the design of bus-encoding
despite the crosstalk avoidance.

Research presenting the coding schemes to encode data buses for error correction can be found
in [2, 8], for low power dissipation [4, 9, 20, 25, 28] and for crosstalk avoidance [7, 11, 22, 24, 29, 30]
and for any two of such three criteria [6, 13, 14, 17, 18, 19, 21]. The first memory-less transition
bus-encoding technique that covers all three previously described criteria simultaneously; see [1, 5]
for example.

Type-I Type-II Type-III Type-IV

0←→ 1

001←→ 010

010←→ 101
001←→ 110 010←→ 100
011←→ 100 011←→ 101

101←→ 110
Single wire under-
goes transition.
Adjacent wires
maintain previous
states

Center wire in op-
posite transition to
an adjacent wire.
The other wire in
same transition as
center wire

Center wire in
opposite transition
to an adjacent
wire. The other
wire maintains
previous state

All three adjacent
wires undergo op-
posite transitions

Table 1: Types of worst crosstalk couplings [5].

For positive integers x < y, denote [x, y] = {x, x + 1, . . . , y}. Further abbreviate [1, y] to
[y]. Now, first we recall some basic concepts of classical error correcting codes then define our
required codes. Let set C be a subset of {0, 1}n. Then we say C is a binary code of length n,
and its elements are codewords. The support of a vector u = (ux), x ∈ [n] of code C defined
to be supp(u) = {x ∈ [n] : ux ̸= 0}. The weight of codeword u is the number of elements in
supp(u). For any two codewords u, v ∈ C, the Hamming distance between u and v is defined to
be d(u, v) = |{i : ui ̸= vi}|, where u = (u1, . . . , un) and v = (v1, . . . , vn). The minimum distance
of code C, denoted d(C) or simply write d, is the smallest positive integer such that d(u, v) ≥ d
for all u, v ∈ C and u ̸= v. A code with distance d has capability to correcting any appearance
of e or fewer symbol errors, where e ≤ (d − 1)/2. Let (n, d, w)-code be a constant weight code
with length n, distance d, and weight w. An (n, d, w)-code with d ≥ 3 is said to be a code avoids
crosstalk of type-II (or III, IV) if crosstalk couplings of type-II (or III, IV) do not exist in any
three consecutive coordinates of such code [5]. We denote this code as (n, d, w)-II (or -III, IV).
The largest size of an (n, d, w)-II code (or III, IV) is denoted by AII(n, d, w) (or AIII(n, d, w),
AIV (n, d, w)). If such a code achieves the corresponding largest size then we call it optimal. Let S
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be a subset of set {II, III, IV }. The notation AS(n, d, w) denotes the largest size of a code that
is simultaneously an (n, d, w)-S for each S ∈ S.

Let integers n ≥ k ≥ 3. Consider a pair of sets (X,B) as a set system, where X :=
{x0, x1, . . . , xn−1} is a finite set of points and B is a set of subsets of X. The cardinality of
set X is n which known as order of a set system. Suppose a set B ∈ B, we call B as a block and
the cardinality B is size of a set system. If each block of B having k number of elements then
given set system is a k-uniform. A k-uniform set system (X,B) of order n is an (n, k)-packing if
every two distinct elements of X appear in at most one block of B. The pair (X,E) is a leave
graph of such packing, where E contains all the pairs which are not appear in any block. The
notation D(n, k) denotes the largest size of an (n, k)-packing.

Hedayat, Rao and Stufken were designed a set system namely balanced sampling plan avoiding
adjacent units (BSA in short) for a survey plan when several adjacent units provide similar infor-
mation [10]. For more background about BSA, see for example [12, 27, 31, 32, 33] and references
which are cited in these. We now recall some relevant concepts to this design. If the elements
of X are ordered with circular order xo ≺ x1 ≺ · · · ≺ xn−1 ≺ x0 then we call it a cycle and
denote as (x0, x1, . . . , xn−1). The set X with order xo ≺ x1 ≺ · · · ≺ xn−1 is a line and write as
[x0, x1, . . . , xn−1]. For any two points xi and xj of cycle X, define the distance of xi and xj to be
min{|j − i|, n− |j − i|}. The distance between any two points xi and xj over line X is defined as
|j − i|. An (n, k)-packing (X,B) with cyclic X is a CBSA(n, k, α) (or simply write BSA) if every
pair {i, j} within distance α appears in leave graph and every other pair with distance greater than
α appears in exactly one block of B. Similarly, an (n, k)-packing is a LBSA(n, k, α) when each
pair {i, j} of line X within distance α appears in its leave graph and all other pairs with distance
greater than α appear in exactly one block of B. Whenever the necessary conditions of existence
of CBSA and LBSA are not hold then these definitions were generalized into packing sampling
plans avoiding adjacent units (PSA) [5]. If we use the world at most instead of world exactly in
definitions of CBSA(n, k;α) and LBSA(n, k;α) then these concepts become CPSA(n, k;α) and
LPSA(n, k;α), respectively. Every CPSA(n, k;α) is a LPSA(n, k;α) but converse may not true.
Let B◦(n, k;α) be the largest size of any CPSA(n, k;α), a CPSA(n, k;α) is optimal if it achieve
the size B◦(n, k;α). Similarly, the notation B(n, k;α) be use for largest size of any LPSA(n, k;α),
an optimal LPSA(n, k;α) have size B(n, k;α).

In [5], Chee et al. first established the connection between codes avoids crosstalks and PSA
then determined AS(n, 2w,w) where S = II (or III, IV ) and AII(n, 4, 3) for each order n. For
any S ⊂ {II, III, IV }, they give lower bounds of AS(n, 2w − 2, w). In particular, the authors
provided the following result.

Lemma 1. ([5, Lemma 3.4]) For each n ̸≡ 0, 1 (mod 6) and n ≥ 14,

1. AII,IV (n, 4, 3) ≥ B(n, 3; 2),

2. AIV (n, 4, 3) ≥ B(n, 3; 2) + ⌊n−1
2
⌋,

For the upper bound of an (n, 4, 3)-{II, IV} code, they proved AII,IV (n, 4, 3) ≤ U(n, 3; 2), for each
n ≥ 13, where

U(n, 3; 2) :=
⌊2⌊n−3

2
⌋+ 2⌊n−4

2
⌋+ (n− 4)⌊n−5

2
⌋

3

⌋
.
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In 2021, Ajmal and Zhang [1] provided the complete solution of Lemma 1 and consequently
showed that AII,IV (n, 4, 3) = U(n, 3; 2) for each n ≥ 14.

From previously established results, we observe that only lower bounds for all crosstalks are
provided except for crosstalks of type-II and {II, IV}, when the weight of the codes is three or
more. Therefore, such binary codes deserve further investigation. For upper bounds of (n, 4, 3)-III
and (n, 4, 3)-IV codes, we present Conjectures 2 and 3, respectively.

Conjecture 2. Let n ≥ 3 be an odd integer, then AIII(n, 4, 3) ≤ A(n), where

A(n) =


n2+6n−3

24
, if n ≡ 3 (mod 12),

n2+8n−17
24

, if n ≡ 5 (mod 12),
n2+8n−33

24
, if n ≡ 1, 9 (mod 12),

n2+6n−19
24

, if n ≡ 7, 11 (mod 12).

Conjecture 3. Let n ≥ 14 be an integer, then AIV (n, 4, 3) ≤ B(n), where

B(n) =


n2−3n+6

6
, if n ≡ 0 (mod 6),

n2−2n+1
6

, if n ≡ 1 (mod 6),
n2−3n+8

6
, if n ≡ 2, 4 (mod 6),

n2−2n−3
6

, if n ≡ 3, 5 (mod 6).

If an (n, 4, 3)-III (or IV) code achieves the size in Conjecture 2 (or 3), respectively, then we
say that it is optimal.

In this article, we construct improved asymptotically optimal (n, 4, 3)-IV code for all even
n ≥ 14. Moreover we show that AIII(n, 4, 3) is also AIII,IV (n, 4, 3) for all n ≥ 3 and n ≡ 1 (mod 2).
The rest part of this article is organized as follows. In Section 2, we state some relevant concepts
and results. We construct an auxiliary design BSA∗(n, {2, 3}; 2, ℓ) for all necessary parameters n
and ℓ in Section 3. By using a recursive construction, we give the optimal codes avoiding crosstalk
type-IV in Section 4. Finally, we give concluding remarks in Section 5.

2 Preliminaries

All graphs used in this paper are finite, undirected, and without loops. Consider a pair (X,E) as
a graph, where set X is a vertex set and set E ⊆

(|X|
2

)
is a edge set. Two edges are independent

if they do not have any common vertex. The collection of such independent edges is called a
matching. If all independent edges cover all the vertices of a graph, then call it a perfect matching
(or parallel class). The difference of edge {u, v} ∈ E such that u < v of a graph (X,E) with
|X| = n, is defined to be v − u, n− (v − u), whichever is smaller. For any set D ⊆ [⌊n

2
⌋], define

G(D,n) to be a graph with vertex X = {0, 1, . . . , n − 1} and edge set consisting of all edges
having a difference in D. For d ∈ D, a graph G({d}, n) is a subgraph of G(D,n). For undefined
terminology related to graph theory, the reader is encouraged to consult [3].

For integers a and b, gcd(a, b) is the greatest common divisor of a and b. The following
corollary is taken from [15] which we use in the next lemma.
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Corollary 4. [15] A graph G({d}, n) consists of h = gcd(d, n) components, and each component
is

1. a cycle Cn/h if d ̸= n/2, and

2. K2 if d = n/2.

The following result is a modification of Stern and Lenz lemma [26], which use in next section.

Lemma 5. Given a vertex set X = {0, 1, . . . , 2g − 1} and set D ⊆ [g − 1]. For each d ∈
D ∪ {g}, if a G({d}, 2g) consists of h = gcd(d, 2g) components such that 2g/h is even, then a
graph G(D ∪ {g}, 2g) can be decomposed into 2|D|+ 1 parallel classes of X.

Proof. From Corollary 4, for each d ∈ D, there exists h cycles of length 2g/h in G({d}, 2g). Since
2g/h is even, then alternate edges of these cycles form two parallel classes, and for d = g, there
are g K2 of G({d}, 2g), which forms one parallel class. Hence, there are in total 2|D|+ 1 parallel
classes of X.

In [33], the authors gave the necessary and sufficient conditions of BSA for α ∈ {2, 3}. In par-
ticular, they prove the result which is stated below, and we use later in the recursive construction.

Lemma 6. [33] There exists a circular BSA(n, 3; 2) if and only if n ≡ 3, 5 (mod 6) and n ≥ 15.

The following concept will be used in our recursive construction as a master design.

Let (X,A) be a 3-uniform set system. Suppose G is a partition of X into G1, G2, . . . , Gu,
(called groups or groops) such that each |Gi| = g, and H is a subset of X (called hole) such
that |Gi ∩H| = h for each Gi. The quadruple (X,H,G,A) is an incomplete group divisible design
(IGDD) of type (g, h)u with index one, denote 3-IGDD, when each pair of distinct elements x and
y of X appears in exactly one block if {x, y} ⊈ Gi for each i ∈ [u] and {x, y} ⊈ H, otherwise it
appears in no block.

Miao and Zhu established the existence of an 3-IGDD with index one in [16]. We quote that
result as below.

Lemma 7. [16] An 3-IGDD of type (g, h)u with index one exists if and only if the following
properties hold:

1. g ≥ 2h and u ≥ 3,

2. g(u− 1) ≡ 0 (mod 2),

3. (g − h)(u− 1) ≡ 0 (mod 2),

4. u(u− 1)(g2 − h2) ≡ 0 (mod 6).

The next two lemmas are from [32] by using Langford sequences. Further detail of Langford
sequences, see [23].
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Lemma 8. [32] Let d be an odd integer if m ≡ 0, 1 (mod 4), or an even integer if m ≡ 0, 3
(mod 4) such that m ≥ 2d − 1. Then [d, d + 3m − 1] can be partitioned into triples {ai, bi, ci},
i ∈ [m], such that ai + bi = ci.

Lemma 9. [32] Let d be an odd integer if m ≡ 2, 3 (mod 4), or an even integer if m ≡ 1, 2
(mod 4) such that m(m− 2d+1)+ 2 ≥ 0. Then [d, d+3m] \ {d+3m− 1} can be partitioned into
triples {ai, bi, ci}, i ∈ [m], such that ai + bi = ci.

We close this section with following result which will be used later.

Lemma 10. Let n be a positive odd integer. Then there is only one pair of codewords having
crosstalk type-IV that can be contained in an (n, 4, 3)-III code. Furthermore, an optimal (n, 4, 3)-
III code does not contain such pair of codewords.

Proof. We start by defining a pair of codewords avoiding the crosstalk type-III but having the
crosstalk type-IV. As the entries of five consecutive coordinates [i− 2, i+3] for some i ∈ [2, n− 4]
are given below and 0 is placed at every other coordinate that are omit here for convenience.

i− 2 i− 1 i i+ 1 i+ 2 i+ 3
1 1 0 1 0 0
0 0 1 0 1 1

or

i− 2 i− 1 i i+ 1 i+ 2 i+ 3
0 0 1 0 1 1
1 1 0 1 0 0

By observation, the pair above is the only possible pair of codewords in an (n, 4, 3)-III code.
Now, we show the second statement of this lemma. By computer search, there exists an

optimal (n, 4, 3)-III code with 3 ≤ n ≤ 19 and n ≡ 1 (mod 2), which does not contain a pair
of codewords defined already. For n ≥ 21, by contrary we suppose an optimal (n, 4, 3)-III code
contains the two codewords defined above. Then by definition of corsstalks of type-III and type-
IV, all entries of columns i−1 to i+2 are zeros except one, which is presented in one of those two
codewords. By shorting any two coordinates between i−2 and i+4, we have A(n) ≤ A(n−2)+2.
But from Conjecture 2, we have a contradiction. Hence, any optimal (n, 4, 3)-III code does not
contain such type of two codewords.

3 Constructions of BSA∗(n, {2, 3}; 2, ℓ)
In [33], Zhang and Chang introduced an auxiliary design that is BSA∗(n, {2, 3};α, ℓ). We first
recall this design and then give a direct construction of BSA∗(n, {2, 3}; 2, ℓ) designs for different
values of the parameters n and ℓ which are needed in the next section.

Definition 3.1. A BSA∗(n, {2, 3};α, ℓ) is a set system (X,B), where X is a cycle and the size of
each block of B is k = 2 or 3, if it satisfies the following properties:

(i) For points x, y ∈ X, no pair {x, y} within distance α appears in any block while any pair
{x, y} with distance greater than α appears in exactly one block.
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(ii) All blocks with size two can be partitioned into exactly ℓ parallel classes, where a parallel
class means that every point of X occurs precisely once in the class.

The necessary conditions for existence of a BSA∗(n, {2, 3};α, ℓ) were given in [1], we summarize
them in the following lemma.

Lemma 11. Suppose there exists a BSA∗(n, {2, 3};α, ℓ). Then the following hold:

1. n− 2α− 1 ≥ ℓ,

2. n− ℓ− 2α− 1 ≡ 0 (mod 6), and

3. n ≡ 0 (mod 2) if ℓ > 0.

Note that, if a BSA∗(n, {2, 3};α, ℓ) have no block of size two then it becomes a simple
BSA(n, 3;α) and the notation BSA∗(n, 2;α, ℓ) means that the design is a 2-uniform set system
only. Let Zn = {0, 1, . . . , n− 1} denote the cyclic additive group of order n. Assume B is a subset
of Zn, let ∆B := {a − b : where a, b ∈ B and a ̸= b} ⊂ Zn. In [1], the authors proved following
result.

Lemma 12. [1] Let n be even and ℓ be odd such that n − 2α − 1 ≥ ℓ and n − ℓ − 2α − 1 ≡ 0
(mod 6). Let R be a set of ℓ−1

2
positive odd integers less than n/2. Suppose there exist 3-subsets

Bi ⊂ Zn, i ∈ [(n− ℓ− 2α− 1)/6], such that the multiset union⋃
i∈[(n−ℓ−2α−1)/6]

∆Bi = Zn \ ({0,±1, . . . ,±α, n/2} ∪ ±R),

then there exists a BSA∗(n, {2, 3};α, ℓ).

Given an integer m dividing n, we call the action that B + im where 0 ≤ i ≤ m − 1 as
developing the base block B by mZn. Here, B+a := {b+a : where b ∈ B} for a ∈ Zn, the designs
BSA∗ which we will construct over X = Zn under modulo n. For some specific parameters, these
designs are constructed by a computer search.

Lemma 13. A BSA∗(n, 2; 2, ℓ) exists for each (n, ℓ) ∈ {(16, 11), (20, 15), (22, 17)}.

Proof. See Appendix A.

Lemma 14. A BSA∗(n, {2, 3}; 2, ℓ) exists for each (n, ℓ) ∈ {(16, 5), (28, 11), (28, 17)}.

Proof. For each pair (n, ℓ), all blocks of size three are obtained by developing base blocks under
Zn and ℓ parallel classes are obtained by decomposing a graph G(D ∪ {n/2, n}) from Lemma 5.
We list the base blocks and the set D for each pair (n, ℓ) below.

(n, ℓ) Base blocks D
(16, 5) {0, 3, 7}. {5, 6}
(28, 11) {0, 4, 12}, {0, 6, 13}. {3, 5, 9, 10, 11}
(28, 17) {0, 4, 12}. {3, 5, 6, 7, 9, 10, 11, 13}
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Lemma 15. A BSA∗(n, {2, 3}; 2, ℓ) exists for each (n, ℓ) ∈ {(18, 3), (18, 9), (18, 11)}.

Proof. For each pair (n, ℓ), a BSA∗(n, {2, 3}; 2, ℓ) is presented in Appendix B.

Lemma 16. A BSA∗(n, {2, 3}; 2, ℓ) exists for each (n, ℓ) ∈ {(20, 9), (22, 11), (26, 9), (26, 15)}.

Proof. For each pair (n, ℓ), a BSA∗(n, {2, 3}; 2, ℓ) is constructed in Appendix C.

Lemma 17. A BSA∗(n, {2, 3}; 2, ℓ) exists for each (n, ℓ) ∈ {(24, 9), (32, 9), (36, 11), (40, 5), (42, 5),
(42, 17), (64, 17)}.

Proof. For each pair (n, ℓ), a BSA∗(n, {2, 3}; 2, ℓ) is constructed in Appendix D.

Lemma 18. A BSA∗(n, {2, 3}; 2, ℓ) exists for each (n, ℓ) ∈ {(22, 5), (28, 5), (34, 5), (44, 15), (52, 11),
(58, 5), (58, 11), (62, 3), (68, 15), (70, 11), (74, 9), (82, 5), (82, 17), (86, 3), (86, 15), (94, 11), (98, 9),
(106, 17), (110, 15)}.

Proof. For each pair (n, ℓ), a BSA∗(n, {2, 3}; 2, ℓ) is constructed in Appendix E .

Lemma 19. ([33, Lemma 2.1]) There exists a BSA∗(n, {2, 3}; 2, ℓ) in each of the following cases:

1. n = 24r + 2 where r ≥ 2, ℓ = 15,

2. n = 24r + 8 where r ≥ 1, ℓ = 15,

3. n = 24r + 14 where r ≥ 3, ℓ = 33,

4. n = 24r + 20 where r ≥ 5, ℓ = 69.

Lemma 20. There exists a BSA∗(24r + 2, {2, 3}; 2, 3) where r ≥ 1.

Proof. By Lemma 9, the interval [3, 12r] \R can be partitioned into 4r− 1 triples {ai, bi, ci} such
that ai + bi = ci for all i ∈ [4r − 1] and R = {12r − 1}. Transform all base blocks into {0, ai, ci}
then applying Lemma 12, we obtain the desired result.

Lemma 21. There exists a BSA∗(n, {2, 3}; 2, ℓ) in each of the following cases:

1. n = 24r − 2 where r ≥ 5, ℓ = 53,

2. n = 24r + 2 where r ≥ 3, ℓ = 27,

3. n = 24r + 2 where r ≥ 4, ℓ = 39,

4. n = 24r + 4 where r ≥ 2, ℓ = 17,

5. n = 24r + 8 where r ≥ 1, ℓ = 3,

6. n = 24r + 10 where r ≥ 1, ℓ = 11,

7. n = 24r + 10 where r ≥ 2, ℓ = 23,

8. n = 24r + 10 where r ≥ 3, ℓ = 35 ,
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9. n = 24r + 10 where r ≥ 4, ℓ = 47 ,

10. n = 24r + 14 where r ≥ 1, ℓ = 9,

11. n = 24r + 14 where r ≥ 2, ℓ = 21,

12. n = 24r + 14 where r ≥ 4, ℓ = 45,

13. n = 24r + 20 where r ≥ 1, ℓ = 9,

14. n = 24r + 22 where r ≥ 1, ℓ = 5 ,

15. n = 24r + 22 where r ≥ 1, ℓ = 17 ,

16. n = 24r + 22 where r ≥ 2, ℓ = 29 ,

17. n = 24r + 22 where r ≥ 3, ℓ = 41.

Proof. In each of the above cases, the interval [3, n/2− 1] \R with some |R| = ℓ−1
2
, is partitioned

into triples {ai, bi, ci} such that ai + bi = ci, for i ∈ [(n− ℓ− 5)/6]. Transform all base blocks into
{0, ai, ci}, then applying Lemma 12 with corresponding R, we obtained the desired result for each
case. We list the sets {ai, bi, ci} and R for all cases below. In some of the following cases, we take
the set O to consist of all odd integers of [3, n/2− 1].

(1) n = 24r − 2, r ≥ 5, and ℓ = 53.
For r = 5, let R = O \ {5, 49}. The triples are {4, 6, 10}, {5, 44, 49}, {8, 30, 38}, {12, 34, 46},

{14, 40, 54}, {16, 42, 58}, {18, 32, 50}, {20, 36, 56}, {22, 26, 48}, {24, 28, 52}.
For r = 6, let R = O \ {5, 7, 9, 11, 55, 59, 63, 69}. The triples are {4, 6, 10}, {5, 50, 55},

{7, 52, 59}, {8, 12, 20}, {9, 54, 63}, {11, 58, 69}, {14, 32, 46}, {16, 40, 56}, {18, 42, 60}, {22, 48, 70},
{24, 44, 68}, {26, 36, 62}, {28, 38, 66}, {30, 34, 64}.

For r ≥ 7, let R = {3, 5, 7, 9, 4r − 11, 4r − 9, 4r − 7, 4r − 3, 4r − 1, 4r + 1, 4r + 3, 4r + 5, 6r −
1, 6r+1, 6r+3, 8r−5, 8r−3, 8r−1, 8r+1, 8r+3, 8r+5, 10r−3, 10r−1, 10r+1, 10r+3, 12r−3}.
Then the triples are as follows:

ai bi ci h ∈
6r − 5− h, 11 + 2h, 6r + 6 + h, [0, r − 7];
5r + 1− h, 2r − 1 + 2h, 7r + h, [0, r − 6];
10r − 4− h, 8 + 2h, 10r + 4 + h, [0, r − 5];
9r − h, 2r + 2h, 11r + h, [0, r − 6].

Other triples are {4, 8r, 8r+4}, {6, 4r− 10, 4r− 4}, {4r− 8, 4r+6, 8r− 2}, {4r− 6, 6r+4, 10r−
2}, {4r− 5, 6r+5, 10r}, {4r− 2, 4r+4, 8r+2}, {4r, 8r− 4, 12r− 4}, {4r+2, 6r, 10r+2}, {6r−
4, 6r + 2, 12r − 2}, {6r − 3, 6r − 2, 12r − 5}.

(2) n = 24r + 2, r ≥ 3, and ℓ = 27.
For r = 3, let R = O \ {9, 27, 33, 35}. The triples are {4, 18, 22}, {6, 27, 33}, {8, 28, 36},

{9, 26, 35}, {10, 24, 34}, {12, 20, 32}, {14, 16, 30}.
For r ≥ 4, let R = {3, 4r− 5, 4r− 3, 4r− 1, 4r+ 1, 6r− 1, 6r+ 1, 8r+ 1, 8r+ 3, 10r− 1, 10r+

1, 10r + 3, 12r − 1}. Then the triples are as follows:
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ai bi ci h ∈
6r − 2− h, 5 + 2h, 6r + 3 + h, [0, r − 4];
5r + 1− h, 2r − 1 + 2h, 7r + h, [0, r − 3];
10r − 2− h, 6 + 2h, 10r + 4 + h, [0, r − 4];
9r + 1− h, 2r + 2h, 11r + 1 + h, [0, r − 3].

Other triples are {4, 8r−2, 8r+2}, {4r−4, 4r+3, 8r−1}, {4r−2, 6r+2, 10r}, {4r, 8r, 12r}, {4r+
2, 6r, 10r + 2}.

(3) n = 24r + 2, r ≥ 4, and ℓ = 39.
For r = 4, let R = O \ {5, 7, 41, 45}. The triples are {4, 6, 10}, {5, 36, 41}, {7, 38, 45},

{8, 24, 32}, {12, 28, 40}, {14, 34, 48}, {16, 30, 46}, {18, 26, 44}, {20, 22, 42}.
For r = 5, let R = O \ {5, 7, 9, 11, 13, 35, 39, 53, 55, 59}. The triples are {4, 6, 10}, {5, 35, 40},

{7, 46, 53}, {8, 12, 20}, {9, 50, 59}, {11, 44, 55}, {13, 39, 52}, {14, 28, 42}, {16, 32, 48}, {18, 36, 54},
{22, 38, 60}, {24, 34, 58}, {26, 30, 56}.

For r ≥ 6, let R = {3, 5, 7, 4r−5, 4r−1, 4r+1, 6r−3, 6r−1, 6r+1, 6r+3, 8r−3, 8r−1, 8r+
1, 8r + 3, 8r + 5, 10r − 1, 10r + 1, 10r + 3, 12r − 3}. Then the triples are as follows:

ai bi ci h ∈
6r − 4− h, 9 + 2h, 6r + 5 + h, [0, r − 6];
5r + 1− h, 2r − 1 + 2h, 7r + h, [0, r − 4];
10r − 2− h, 6 + 2h, 10r + 4 + h, [0, r − 4];
9r + 1− h, 2r + 2h, 11r + 1 + h, [0, r − 6].

Other triples are {4, 4r−10, 4r−6}, {4r−3, 4r+3, 8r}, {4r−2, 4r+4, 8r+2}, {4r+2, 6r, 10r+
2}, {4r − 4, 6r + 4, 10r}, {4r − 7, 8r + 6, 12r − 1}, {4r, 8r − 2, 12r − 2}, {4r − 8, 8r + 4, 12r −
4}, {6r − 2, 6r + 2, 12r}.

(4) n = 24r + 4, r ≥ 2, and ℓ = 17.
For r = 2, let R = O \ {5, 7, 15, 25}. The triples are {4, 10, 14}, {5, 20, 25}, {6, 12, 18},

{7, 15, 22}, {8, 16, 24}.
For r = 3, let R = {9, 13, 15, 21, 25, 27, 29, 31}. The triples are {3, 23, 26}, {4, 6, 10, },

{5, 32, 37}, {7, 28, 35}, {8, 16, 24, }, {11, 22, 33}, {12, 18, 30, }, {14, 20, 34, }, {17, 19, 36}.
For r ≥ 4, let R = {3, 5, 4r + 1, 6r − 3, 6r + 1, 8r − 1, 12r − 1, 12r + 1}. Then the triples are

as follows:
ai bi ci h ∈
6r − 4− h, 7 + 2h, 6r + 3 + h, [0, r − 4];
5r − 1− h, 2r + 2 + 2h, 7r + 1 + h, [0, r − 3];
10r − 3− h, 4 + 2h, 10r + 1 + h, [0, r − 3];
9r − 1− h, 2r + 1 + 2h, 11r + h, [0, r − 2].

Other triples are {6r−2, 6r+2, 12r}, {4r−1, 7r, 11r−1}, {4r−2, 6r, 10r−2}, {2r, 8r, 10r}, {4r, 6r−
1, 10r − 1}.

(5) n = 24r + 8, r ≥ 1, and ℓ = 3.
For r = 1, let R = {13}. The triples are {3, 9, 12}, {4, 7, 11}, {5, 10, 15}, {6, 8, 14}.
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For r ≥ 2, let R = {6r + 3}. Then the triples are as follows:

ai bi ci h ∈
6r + 1− h, 4 + 2h, 6r + 5 + h, [0, r − 2];
5r + 2− h, 2r + 2 + 2h, 7r + 4 + h, [0, r − 2];
10r + 2− h, 3 + 2h, 10r + 5 + h, [0, r − 2];
9r + 3− h, 2r + 1 + 2h, 11r + 4 + h, [0, r − 2].

Other triples are {4r − 1, 6r + 4, 10r + 3}, {4r, 8r + 3, 12r + 3}, {4r + 1, 4r + 3, 8r + 4}, {4r +
2, 6r + 2, 10r + 4}.

(6) n = 24r + 10, r ≥ 1, and ℓ = 11.
For r = 1, let R = {5, 9, 11, 13, 15}. The triples are {3, 7, 10}, {4, 12, 16} and {6, 8, 14}.
For r ≥ 2, let R = {4r + 1, 4r + 3, 6r + 3, 8r + 3, 12r + 3}. Then the triples are as follows:

ai bi ci h ∈
6r + 1− h, 4 + 2h, 6r + 5 + h, [0, r − 2];
5r + 2− h, 2r + 2 + 2h, 7r + 4 + h, [0, r − 2];
10r + 2− h, 3 + 2h, 10r + 5 + h, [0, r − 2];
9r + 3− h, 2r + 1 + 2h, 11r + 4 + h, [0, r − 2].

Other triples are {4r − 1, 6r + 4, 10r + 3}, {4r, 8r + 4, 12r + 4}, {4r + 2, 6r + 2, 10r + 4}.
(7) n = 24r + 10, r ≥ 2, and ℓ = 23.
For r = 2, let R = O\{11, 19}. The triples are {4, 20, 24}, {6, 16, 22}, {8, 11, 19}, {10, 18, 28},

{12, 14, 26}.
For r = 3, let R = {5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 33}. The triples are {3, 25, 28}, {4, 35, 39},

{6, 31, 37}, {8, 24, 32}, {9, 20, 29}, {10, 30, 40}, {12, 26, 38}, {14, 22, 36}, {16, 18, 34}.
For r ≥ 4, let R = {3, 5, 4r+3, 6r+1, 6r+3, 8r+1, 10r+1, 10r+3, 10r+5, 12r+1, 12r+3}.

Then the triples are as follows:

ai bi ci h ∈
6r − h, 6 + 2h, 6r + 6 + h, [0, r − 3];
5r + 2− h, 2r + 2 + 2h, 7r + 4 + h, [0, r − 4];
10r − 1− h, 7 + 2h, 10r + 6 + h, [0, r − 4];
9r + 2− h, 2r + 1 + 2h, 11r + 3 + h, [0, r − 3].

Other triples are {4, 4r+ 1, 4r+ 5}, {4r− 4, 6r+ 4, 10r}, {4r− 3, 6r+ 5, 10r+ 2}, {4r− 2, 4r+
4, 8r + 2}, {4r − 1, 8r + 3, 12r + 2}, {4r, 8r + 4, 12r + 4}, {4r + 2, 6r + 2, 10r + 4}.

(8) n = 24r + 10, r ≥ 3, and t = 35.
For r = 3, let R = O \ {5, 39}. The triples are {4, 14, 18}, {5, 34, 39}, {6, 22, 28}, {8, 24, 32},

{10, 30, 40}, {12, 26, 38}, {16, 20, 36}.
For r = 4, let R = O \ {17, 23, 37, 39, 45, 47, 49, 51}. The triples are {4, 38, 42}, {6, 39, 45},

{8, 22, 30}, {10, 37, 47}, {12, 40, 52}, {14, 36, 50}, {16, 32, 48}, {17, 34, 51}, {18, 28, 46}, {20, 24, 44},
{23, 26, 49}.
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For r ≥ 5, let R = {3, 5, 4r− 5, 4r+ 1, 4r+ 3, 6r− 1, 6r+ 1, 6r+ 5, 6r+ 7, 8r+ 1, 8r+ 3, 8r+
5, 10r + 1, 10r + 3, 10r + 5, 12r + 1, 12r + 3}. Then the triples are as follows:

ai bi ci h ∈
6r − 2− h, 10 + 2h, 6r + 8 + h, [0, r − 5];
5r + 2− h, 2r + 2 + 2h, 7r + 4 + h, [0, r − 4];
10r − 1− h, 7 + 2h, 10r + 6 + h, [0, r − 4];
9r + 2− h, 2r + 1 + 2h, 11r + 3 + h, [0, r − 4].

Other triples are {4, 12r, 12r + 4}, {6, 6r, 6r + 6}, {8, 4r − 4, 4r + 4}, {4r − 3, 6r + 3, 10r}, {4r −
2, 6r + 4, 10r + 2}, {4r − 1, 4r + 5, 8r + 4}, {4r, 8r + 2, 12r + 2}, {4r + 2, 6r + 2, 10r + 4}.

(9) n = 24r + 10, r ≥ 4, and ℓ = 47.
For r = 4, let R = O \ {3, 37}. The triples are {3, 37, 40}, {4, 6, 10}, {8, 30, 38}, {12, 32, 44},

{14, 34, 48}, {16, 36, 52}, {18, 24, 42}, {20, 26, 46}, {22, 28, 50}.
For r = 5, let R = O\{7, 9, 11, 13, 51, 59, 61, 63}. The triples {4, 6, 10}, {7, 44, 51}, {8, 12, 20},

{9, 50, 59}, {11, 52, 63}, {13, 48, 61}, {14, 32, 46}, {16, 38, 54}, {18, 40, 58}, {22, 42, 64}, {24, 36, 60},
{26, 30, 56}, {28, 34, 62}.

For r ≥ 6, let R = {5, 7, 9, 4r−5, 4r−3, 4r−1, 4r+1, 4r+5, 4r+7, 6r+1, 6r+3, 6r+7, 8r−
1, 8r+1, 8r+3, 8r+5, 8r+7, 10r+1, 10r+5, 10r+7, 10r+9, 12r+1, 12r+3}. Then the triples
are as follows:

ai bi ci h ∈
6r − 3− h, 12 + 2h, 6r + 9 + h, [0, r − 6];
5r + 2− h, 2r + 2 + 2h, 7r + 4 + h, [0, r − 6];
10r − 3− h, 13 + 2h, 10r + 10 + h, [0, r − 6];
9r + 2− h, 2r + 3 + 2h, 11r + 5 + h, [0, r − 6].

Other triples are {3, 8, 11}, {4, 8r, 8r+4}, {6, 10r− 2, 10r+4}, {10, 4r− 8, 4r+2}, {4r− 7, 6r+
6, 10r−1}, {4r−6, 6r+8, 10r+2}, {4r−4, 6r+4, 10r}, {4r−2, 8r+6, 12r+4}, {4r, 8r+2, 12r+
2}, {4r+ 3, 6r+ 5, 10r+ 8}, {4r+ 4, 6r− 1, 10r+ 3}, {4r+ 6, 6r, 10r+ 6}, {6r− 2, 6r+ 2, 12r}.

(10) n = 24r + 14, r ≥ 1, and ℓ = 9.
For r = 1, let R = {7, 11, 13, 17}. The triples are {3, 15, 18}, {4, 8, 12}, {5, 9, 14}, {6, 10, 16}.
For r ≥ 2, let R = {4r + 1, 8r + 5, 10r + 5, 12r + 5}. Then the triples are as follows:

ai bi ci h ∈
6r + 2− h, 3 + 2h, 6r + 5 + h, [0, r − 1];
5r + 2− h, 2r + 3 + 2h, 7r + 5 + h, [0, r − 2];
10r + 3− h, 4 + 2h, 10r + 7 + h, [0, r − 2];
9r + 4− h, 2r + 2 + 2h, 11r + 6 + h, [0, r − 2].

Other triples are {4r, 6r + 4, 10r + 4}, {4r + 2, 8r + 4, 12r + 6}, {4r + 3, 6r + 3, 10r + 6}.
(11) n = 24r + 14, r ≥ 2, and ℓ = 21.
For r = 2, let R = O \ {3, 23, 27, 29}. The triples are {3, 24, 27}, {4, 16, 20}, {6, 23, 29},

{8, 22, 30}, {10, 18, 28}, {12, 14, 26}.
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For r ≥ 3, let R = {3, 5, 4r − 1, 4r + 3, 4r + 5, 6r + 5, 8r + 5, 10r + 3, 10r + 5, 12r + 5}. Then
the triples are as follows:

ai bi ci h ∈
6r + 1− h, 6 + 2h, 6r + 7 + h, [0, r − 3];
5r + 3− h, 2r + 2 + 2h, 7r + 5 + h, [0, r − 3];
10r + 1− h, 7 + 2h, 10r + 8 + h, [0, r − 3];
9r + 3− h, 2r + 3 + 2h, 11r + 6 + h, [0, r − 3].

Other triples are {4, 10r+2, 10r+6}, {4r− 2, 6r+6, 10r+4}, {4r, 8r+4, 12r+4}, {4r+1, 4r+
2, 8r + 3}, {4r + 4, 6r + 3, 10r + 7}, {6r + 2, 6r + 4, 12r + 6}.

(12) n = 24r + 14, r ≥ 4, and ℓ = 45.
For r = 4, let R = O \ {17, 33, 39, 41}. The triples are {4, 40, 44}, {6, 33, 39}, {8, 28, 36},

{10, 22, 32}, {12, 42, 54}, {14, 38, 52}, {16, 34, 50}, {17, 24, 41}, {18, 30, 48}, {20, 26, 46}.
For r = 5, let R = O \ {5, 7, 9, 11, 13, 43, 51, 55, 59, 63}. The triples are {4, 6, 10}, {5, 46, 51},

{7, 48, 55}, {8, 12, 20}, {9, 50, 59}, {11, 52, 63}, {13, 43, 56}, {14, 26, 40}, {16, 38, 54}, {18, 42, 60},
{22, 44, 66}, {24, 34, 58}, {28, 36, 64}, {30, 32, 62}.

For r ≥ 6, let R = {3, 5, 7, 9, 11, 4r− 5, 4r− 3, 4r+3, 6r+1, 6r+5, 6r+9, 8r+3, 8r+5, 8r+
7, 10r−1, 10r+1, 10r+3, 10r+5, 10r+7, 10r+9, 12r+3, 12r+5}. Then the triples are as follows:

ai bi ci h ∈
6r − 2− h, 12 + 2h, 6r + 10 + h, [0, r − 6];
5r + 3− h, 2r + 2 + 2h, 7r + 5 + h, [0, r − 5];
10r − 2− h, 13 + 2h, 10r + 11 + h, [0, r − 6];
9r + 3− h, 2r + 3 + 2h, 11r + 6 + h, [0, r − 5].

Other triples are {4, 6, 10}, {4r − 4, 4r + 6, 8r + 2}, {4r − 1, 4r + 7, 8r + 6}, {4r, 4r + 4, 8r +
4}, {4r− 6, 6r+6, 10r}, {4r− 2, 6r+8, 10r+6}, {4r+2, 6r+2, 10r+4}, {4r+5, 6r+3, 10r+
8}, {8, 10r+2, 10r+10}, {4r+1, 8r+1, 12r+2}, {6r, 6r+4, 12r+4}, {6r− 1, 6r+7, 12r+6}.

(13) n = 24r + 20, r ≥ 1, and ℓ = 9.
For r = 1, let R = {9, 13, 17, 19}. The triples are {3, 8, 11}, {4, 16, 20}, {5, 10, 15}, {6, 12, 18},

{7, 14, 21}.
For r ≥ 2, let R = {3, 10r + 5, 12r + 7, 12r + 9}. Then the triples are as follows:

ai bi ci h ∈
6r + 1− h, 5 + 2h, 6r + 6 + h, [0, r − 2];
5r + 2− h, 2r + 3 + 2h, 7r + 5 + h, [0, r − 2];
10r + 3− h, 4 + 2h, 10r + 7 + h, [0, r − 2];
9r + 4− h, 2r + 2 + 2h, 11r + 6 + h, [0, r − 2].

Other triples are {4r, 6r + 4, 10r + 4}, {4r + 1, 6r + 5, 10r + 6}, {4r + 2, 8r + 4, 12r + 6}, {4r +
3, 8r + 5, 12r + 8}, {6r + 2, 6r + 3, 12r + 5}.

(14) n = 24r + 22, r ≥ 2, and ℓ = 5.
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For r ≥ 2, let R = {6r + 5, 12r + 9}. Then the triples are as follows:

ai bi ci h ∈
6r + 3− h, 4 + 2h, 6r + 7 + h, [0, r − 2];
5r + 4− h, 2r + 2 + 2h, 7r + 6 + h, [0, r − 1];
10r + 6− h, 3 + 2h, 10r + 9 + h, [0, r − 1];
9r + 6− h, 2r + 3 + 2h, 11r + 9 + h, [0, r − 1].

Other triples are {4r + 2, 6r + 6, 10r + 8}, {4r + 3, 6r + 4, 10r + 7}, {4r + 4, 8r + 6, 12r + 10}.
(15) n = 24r + 22, r ≥ 1, and ℓ = 17.
For r = 1, let R = O \ {3, 15}. The triples are {3, 15, 18}, {4, 16, 20}, {6, 8, 14}, {10, 12, 22}.
For r ≥ 2, let R = {3, 4r+1, 4r+5, 6r+5, 8r+5, 10r+7, 10r+9, 12r+9}. Then the triples

as follows:
ai bi ci h ∈
6r + 3− h, 4 + 2h, 6r + 7 + h, [0, r − 2];
5r + 4− h, 2r + 2 + 2h, 7r + 6 + h, [0, r − 2];
10r + 5− h, 5 + 2h, 10r + 10 + h, [0, r − 2];
9r + 6− h, 2r + 3 + 2h, 11r + 9 + h, [0, r − 2].

Other triples are {4r, 6r + 6, 10r + 6}, {4r + 2, 8r + 6, 12r + 8}, {4r + 3, 8r + 7, 12r + 10}, {4r +
4, 6r + 4, 10r + 8}.

(16) n = 24r + 22, r ≥ 2, and ℓ = 29.
For r = 2, let R = O \ {3, 29}. The triples are {3, 29, 32}, {4, 14, 18}, {6, 20, 26}, {8, 22, 30},

{10, 24, 34}, {12, 16, 28}.
For r ≥ 3, let R = {3, 5, 4r − 1, 4r + 1, 4r + 5, 6r + 3, 6r + 7, 8r + 5, 8r + 7, 10r + 5, 10r +

7, 10r + 9, 12r + 7, 12r + 9}. Then the triples are as follows:

ai bi ci h ∈
6r + 2− h, 6 + 2h, 6r + 8 + h, [0, r − 3];
5r + 4− h, 2r + 2 + 2h, 7r + 6 + h, [0, r − 3];
10r + 4− h, 7 + 2h, 10r + 11 + h, [0, r − 3];
9r + 6− h, 2r + 3 + 2h, 11r + 9 + h, [0, r − 3].

Other triples are {4, 10r+6, 10r+10}, {4r− 2, 4r+6, 8r+4}, {4r, 8r+8, 12r+8}, {4r+2, 4r+
4, 8r + 6}, {4r + 3, 6r + 5, 10r + 8}, {6r + 4, 6r + 6, 12r + 10}.
(17) n = 24r + 22, r ≥ 3, and ℓ = 41.

For r = 3, let R = O \ {3, 37}. The triples are {3, 34, 37}, {4, 16, 20}, {6, 22, 28}, {8, 30, 38},
{10, 36, 46}, {12, 32, 44}, {14, 26, 40}, {18, 24, 42}.

For r = 4, let R = O \ {5, 7, 9, 11, 45, 49, 53, 57}. The triples are {4, 6, 10}, {5, 40, 45},
{7, 42, 49}, {8, 12, 20}, {9, 44, 53}, {11, 46, 57}, {14, 34, 48}, {16, 36, 52}, {18, 38, 56}, {22, 28, 50},
{24, 30, 54}, {26, 32, 58}.

For r ≥ 5, let R = {3, 5, 4r− 9, 4r− 7, 4r− 3, 4r− 1, 4r+ 1, 6r− 1, 6r+ 1, 6r+ 3, 8r− 1, 8r+
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1, 10r+1, 10r+3, 10r+5, 10r+7, 12r+3, 12r+5, 12r+7, 12r+9}. Then the triples are as follows:

ai bi ci h ∈
6r − 2− h, 7 + 2h, 6r + 5 + h, [0, r − 5];
5r + 2− h, 2r − 1 + 2h, 7r + 1 + h, [0, r − 5];
10r − h, 8 + 2h, 10r + 8 + h, [0, r − 4];
9r + 3− h, 2r + 2 + 2h, 11r + 5 + h, [0, r − 4].

Other triples are {4, 10r+2, 10r+6}, {6, 8r− 3, 8r+3}, {4r− 5, 4r+5, 8r}, {4r− 4, 4r+2, 8r−
2}, {4r− 2, 8r+6, 12r+4}, {4r, 6r+4, 10r+4}, {4r+3, 8r+5, 12r+8}, {4r+4, 8r+2, 12r+
6}, {4r + 6, 8r + 4, 12r + 10}, {6r, 6r + 2, 12r + 2}.

Lemma 22. A BSA∗(n, {2, 3}; 2, ℓ) exists for each pair (n, ℓ) ∈ {(24r+4, 5), (24r+16, 11)} where
r ≥ 1 and r ≥ 2, respectively.

Proof. For each pair (n, ℓ), the triples and the set R are obtained by direct application given in
Lemmas 20 and 21 (case 10), respectively.

For pairs (n, ℓ) = (24r + 4, 5) where r ≥ 1, insert a new odd element 12r + 1 into set R of
Lemma 20.

For pairs (n, ℓ) = (24r + 16, 11) where r ≥ 2, inset a new odd element 12r + 7 into set R of
Lemma 21 (case 10).

Finally apply Lemma 12, a BSA∗(n, {2, 3}; 2, ℓ) exists for each pair (n, ℓ).

4 (n, 4, 3)-IV codes

In this section, we construct an (n, 4, 3)-IV code for all n ≥ 14 with size B(n), where the values
of B(n) are given in Conjecture 3.

First, we show the following recursive construction, which plays an important role in the
construction of (n, 4, 3)-IV codes for even orders n.

Construction 23. Let g and ℓ be the positive integers such that (g, ℓ) ≡ (0, 1), (2, 3), (4, 5)
(mod 6), g > ℓ, and g + ℓ ≥ 21. Suppose that there exist the following:

1. a 3-IGDD of type (g, 5)u with index one,

2. a BSA(5u, 3; 2),

3. a BSA∗(g, {2, 3}; 2, ℓ), and

4. an (g+ℓ−1, 4, 3)-IV code with size B(g+ℓ−1) such that three edges {g+ℓ−3
2

, g+ℓ−1
2
}, {g+ℓ−5

2
, g+ℓ−1

2
}

and {g+ℓ−3
2

, g+ℓ+1
2
} must be contained in its leave graph,

then there exists an (gu+ ℓ− 1, 4, 3)-IV code with size B(gu+ ℓ− 1).
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Proof. There exists a 3-IGDD of (g, 5)u with index one, (X,H,G,A), where X = [u]×Zg is a point
set, G = {Gi : 1 ≤ i ≤ u} with Gi = {i}×Zg is a group set , and H = [u]×{0, 1, g−3, g−2, g−1}
is a hole set. For our convenience, each point (i, j) of X is denoted by ij. Adjoin a set Y =
{∞1,∞2, . . . ,∞ℓ−1} of ℓ − 1 new points with X, and let X ′ = X ∪ Y . We will construct an
(gu+ ℓ− 1, 4, 3)-IV code with size B(n) on line X ′ depicted in Fig. 1 as follows:

For each i ∈ [u]\⌈u
2
⌉, on the cyclic groupGi = (i0, i1, . . . , ig−1), we construct BSA

∗(g, {2, 3}; 2, ℓ)
which is denoted by (Gi,Bi). By definition, each Bi = B

′
i ∪ (∪j∈[ℓ]Pi,j), where B

′
i is a block set

with size 3 and each Pi,j, j ∈ [ℓ] is a parallel class of Gi with block size 2. For each j ∈ [ℓ− 1], let
P ′

i,j = {{∞j} ∪ P : P ∈ Pi,j} and P
′
i = ∪j∈[ℓ−1]P

′
i,j. Finally, let B = ∪i∈[u]\⌈u

2
⌉(B

′
i ∪ P

′
i). Here, we

leave a parallel class Pi,ℓ for each i ∈ [u] \ ⌈u
2
⌉, which will be included in the desired leave graph.

On the cyclic holeH = (10, 11, 1g−3, 1g−2, 1g−1, 20, 21, 2g−3, 2g−2, 2g−1, . . . , u0, u1, ug−3, ug−2, ug−1),
we construct a BSA(5u, 3; 2) and its block set C.

For the middle group Gi where i = ⌈u2⌉, we construct an (g+ℓ−1, 4, 3)-IV code with size B(g+
ℓ − 1) on line Gi ∪ Y with order [∞ ℓ−1

2
, . . . ,∞1, i g

2
−1, . . . , i1, i0, ig−1, ig−2, . . . , i g

2
,∞ℓ−1, . . . ,∞ ℓ+1

2
]

and block set D. Denote its leave graph by (G⌈u
2
⌉ ∪ T,P⌈u

2
⌉), the edge set P⌈u

2
⌉ = U ∪ V such that

U ∩ V = ϕ, where set U = {{⌈u
2
⌉0, ⌈u2⌉g−1}, {⌈u2⌉0, ⌈

u
2
⌉g−2}, {⌈u2⌉1, ⌈

u
2
⌉g−1}}, |V| = x and integer

x = ((g + ℓ− 1)(g + ℓ− 2)− 2B(g + ℓ− 1)− 6)/2.

Define a set E =
∑⌊u

2
⌋

i=1(E1i ∪ E2i ) ∪
∑u

i=⌈u
2
⌉+1(E3i ∪ E4i ), where E1i = {{i2j, i2j+1, i2j+2} : 0 ≤ j ≤

g/2− 2}, E2i = {{ig−2, ig−1, (i+ 1)0}}, E3i = {{(i− 1)g−1, i0, i1}}, and E4i = {{i2j+1, i2j+2, i2j+3} :
0 ≤ j ≤ g/2− 2}.

Define a set W =
∑⌊u

2
⌋

i=1(W1
i ∪W2

i ) ∪
∑u

i=⌈u
2
⌉+1(W3

i ∪W4
i ), where W1

i = {{i2j+1, i2j+3} : 0 ≤
j ≤ g/2− 2}, W2

i = {{ig−1, (i+ 1)1}}, W3
i = {{(i− 1)g−2, i0}}, and W4

i = {{i2j, i2j+2}
: 0 ≤ j ≤ g/2− 2}.

Let the block set be M = A ∪ B ∪ C ∪ D ∪ E . We will prove that the pair (X ′,M) is an
(gu+ ℓ− 1, 4, 3)-IV code with size B(gu+ ℓ− 1) over line X ′, and the set P := (∪i∈[u]\⌈u

2
⌉Pi,ℓ) ∪

V ∪W ∪Y , where Y = {{10, ug−1}, {10, ug−2}, {11, ug−1}}, consists on all edges of its leave graph.
First, we prove that every pair {x, y} on X ′ appears in at least one block ofM∪P . There

arise the following four cases.

1. For x ∈ Gi, y ∈ Gj such that i ̸= j.

If a pair {x, y} is not contained in H, then a pair {x, y} appears in one block of A. If a pair
{x, y} is contained in H, then a pair {x, y} with distance greater than two appears in one
block of C, while each pair within distance two appears either in E2i ⊂ E , W2

i ⊂ W ⊂ P , for
some i ∈ [1, ⌊u

2
⌋], E3i ⊂ E , W3

i ⊂ W ⊂ P , for some i ∈ [⌈u
2
⌉, u], or Y ⊂ P .

2. For x, y ∈ Gi, where i ∈ [u] \ ⌈u
2
⌉.

If a pair {x, y} is at distance greater than two on Gi, then it appears in one block of Bi,
that is, it appears either in a block of B′

i or a block in Pi,j for some j ∈ [ℓ]. If j ∈ [ℓ − 1],
then there is a block of P ′

i,j ⊂ B containing {x, y}. If j = ℓ, then there is a block of Pi,ℓ ⊂ P
containing {x, y}.
If a pair {x, y} is within distance two on Gi, then each pair {x, y} appears either in a block of
E1i ⊂ E , W1

i ⊂ W ⊂ P , for some i ∈ [1, ⌊u
2
⌋], E4i ⊂ E , or W4

i ⊂ W ⊂ P , for some i ∈ [⌈u
2
⌉, u]
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except three pairs {i0, ig−1}, {i0, ig−2}, and {i1, ig−1}. On cycle H, such three exceptional
pairs have distance greater than two, therefore, they appear in some block of C.

3. For x, y ∈ G⌈u
2
⌉ ∪ Y .

Each pair {x, y} appears in one block of D or in P⌈u
2
⌉ \ U except for three pairs of U . As

in the above case, such three exceptional pairs of U appear in some block of C because they
have distance greater than two on the cycle H.

4. For x ∈ Gi, i ∈ [u] \ ⌈u
2
⌉ and y =∞j, j ∈ [ℓ− 1].

We know that Pi,j is a parallel class of Gi, there exists a pair containing x, denoted by {x, z}.
Then {x, z,∞j} is a block of P ′

i,j ⊂ B containing {x, y}.

10 11 1g−3 1g−2 1g−1

⌊u2 ⌋0 ⌊u2 ⌋1 ⌊u2 ⌋g−3 ⌊u2 ⌋g−2 ⌊u2 ⌋g−1

⌈u2 ⌉0 ⌈
u
2 ⌉1 ⌈

u
2 ⌉ g

2−1
∞1 ∞ ℓ−1

2
∞ ℓ+1

2
∞ℓ−1 ⌈u2 ⌉ g

2
⌈u2 ⌉g−3 ⌈u2 ⌉g−2 ⌈u2 ⌉g−1

(⌈u2 ⌉+ 1)0 (⌈u2 ⌉+ 1)1 (⌈u2 ⌉+ 1)g−3 (⌈u2 ⌉+ 1)g−2 (⌈u2 ⌉+ 1)g−1

u0 u1 ug−3 ug−2 ug−1

Figure 1: The set hole points are indicated by • and all others by ◦

Since there are (gu+ℓ−1)(gu+ℓ−2)
2

distinct pairs on X
′
, if we prove that M∪ P have the same

number of pairs, then we will have shown that each such pair appears exactly once in M∪ P .
That is, P is the leave graph of an (gu+ ℓ− 1, 4, 3)-IV code with block setM. We show this by
counting the number of blocks inM and P .

We know that

|A| = u(u− 1)(g2 − 52)

6
,

|B′
i| =

g(g − ℓ− 5)

6
| and |P ′

i| =
g(ℓ− 1)

2
for i ∈ [u] \ ⌈u

2
⌉,

|C| = 25u(u− 1)

6
,

|D| = (g + ℓ− 1)(g + ℓ− 2)− 2(x+ 3)

6
,

17



and

|E| = g(u− 1)

2

then

|M| = (gu+ ℓ− 1)(gu+ ℓ− 2)− 2g(u− 1)− 2(x+ 3)

6

and
|P| = g(u− 1) + x+ 3.

Therefore, the total number of pairs they have in common is

3|M|+ |P| = (gu+ ℓ− 1)(gu+ ℓ− 2)

2
.

Thus, every pair of the set X ′ appears exactly once inM∪P . Hence, the Hamming distance
is at least four.

Second, we need to show that the blocks of the setM do not create the crosstalk of type-IV.
Let x, y, z be the any three consecutive coordinates on X

′
. Then, by the definition of crosstalk

type-IV, we need to verify that the following occur:

1. If there exists a pair {x, z} in a block and another coordinate not equal to y, then the
coordinate y is not allowed to appear in any other blocks.

2. If y has distance more than two with other coordinates which are not equal to x and z in
the same block, then the pair {x, z} is not allowed in any other blocks.

3. A block of the form {x, y, z} is permitted

Every coordinate of the set X ′ \G⌈u
2
⌉ appears in at least one block ofM\D. So, for each pair

{x, z} ⊂ X ′ \G⌈u
2
⌉, we need to check the situations (2) and (3) in blocks ofM\D. A pair {x, z}

does not appear in any block of A, B, and C because each pair has distance greater than two in
a block of these sets. A pair {x, z} has appeared in blocks of E because its blocks are in {x, y, z}
form. While, the blocks of D over point set G⌈u

2
⌉ already avoided the crosstalk of type-IV. Hence,

all blocks ofM avoided the crosstalk type-IV. This completes the proof.

It is easy to check that the lower bound B(n, 3; 2)+ ⌊n−1
2
⌋ for an (n, 4, 3)-IV code in Lemma 1

coincides with B(n) and B(n)− 1 for each odd order n ≥ 15 and even order n ≥ 14, respectively.
The values of B(n, 3; 2) when n ≥ 14 are already determined in [1, Theorem 5.1]. Therefore, we
have the following result.

Lemma 24. There exists an optimal (n, 4, 3)-IV code when n ≡ 1 (mod 2) and n ≥ 15.

Now, we handle the case when n ≡ 0 (mod 2) and n ≥ 14. For some small orders, opti-
mal sizes of an (n, 4, 3)-IV codes are listed in Table 2 and Table 3. All these codes are found
by computer search and are available upon request. Note that the three pairs {n/2 − 2, n/2},
{n/2− 1, n/2}, and {n/2− 1, n/2 + 1} appeared in their leave graph for each order n mentioned
in Table 3. The codes of these small orders will be used in our recursive construction as initial
terms.
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n 14 16 22 50
B(n) 27 36 71 393

Table 2: Optimal sizes of an (n, 4, 3)-IV code.

n 18 20 24 26 28 30 32 34 36 38 40 42 44 46 48
B(n) 46 58 85 101 118 136 156 177 199 223 248 274 302 331 361

Table 3: Optimal sizes of an (n, 4, 3)-IV code for some small orders n.

Lemma 25. There exists an optimal (n, 4, 3)-IV code when n ≡ 0 (mod 6) and n ≥ 18.

Proof. For each n ∈ [18, 48] and n ≡ 0 (mod 6), there exists an (n, 4, 3)-IV code by Table 3.
When n ≥ 54 and n ≡ 0 (mod 6), the proof is similar to that of [1, Lemma 4.8]. We just apply
Construction 23 instead of [1, Construction 4.7] in the proof of [1, Lemma 4.8] and obtain the
desired result.

Lemma 26. There exists an optimal (n, 4, 3)-IV code for each n ∈ {14, 16, 22, 50}.

Proof. This follows by using Table 2.

Lemma 27. There exists an optimal (n, 4, 3)-IV code when n ≡ 2, 4 (mod 6) and n ≥ 14 except
when n ∈ {14, 16, 22, 50}.

Proof. For each n ∈ {20, 26, 28, 32, 34, 38, 40, 44, 46}, an optimal (n, 4, 3)-IV code exists from Table
3.

When n ∈ {52, 56, 58, 62, 64, 68, 70}, write n = 3s + ℓ− 1 where pair (s, ℓ) ∈ {(16, 5), (18, 3),
(16, 11), (18, 9), (18, 11), (20, 9), (22, 5)}. For each s, there exists a 3-IGDD of type (s, 5)3 from
Lemma 7. For each pair (s, ℓ), a BSA∗(s, {2, 3}; 2, ℓ) comes from Lemmas 13, 15, 16, 18 and there
exists an optimal (s+ℓ−1, 4, 3)-IV code by above. A BSA(15, 3; 2) exists by Lemma 6. By applying
Construction 23, there exists an optimal (n, 4, 3)-IV code for each n ∈ {52, 56, 58, 62, 64, 68, 70}.
When n ≥ 74 and n ≡ 2, 4 (mod 6), write n = 3s + ℓ − 1 where values of parameters s and
ℓ are listed in Table 4 except some orders of n. Now, we use induction on r. For r = 1,
n ∈ [74, 142] and n ≡ 2, 4 (mod 6), write each n = su + ℓ − 1. When u = 3, then pair (s, ℓ) ∈
{(20, 15), (22, 11), (26, 3), (22, 17), (26, 9), (28, 5), (26, 15), (28, 11), (32, 3), (28, 17), (32, 9), (34, 5),
(32, 15), (34, 11), (36, 11), (38, 9), (40, 5), (42, 5), (42, 17), (44, 9)} and when u = 7 then pair (s, ℓ) ∈
{(16, 5), (18, 3), (18, 9), (18, 11)}. For each s, a 3-IGDD of type (s, 5)u, when u = 3 or 7 exists
by Lemma 7. For each pair (s, ℓ), a BSA∗(s, {2, 3}; 2, ℓ) exists by Lemmas 13-22 and an optimal
(s + ℓ − 1, 4, 3)-IV code exists by above. For u = 3 or 7, there exists a BSA(5u, 3; 2) by Lemma
6. Then applying Construction 23, an optimal (n, 4, 3)-IV code exists for each n ∈ [74, 142] and
n ≡ 2, 4, (mod 6).

For exceptional cases when r = 2, 3, 4, 5 listed in Table 4, we have n ∈ {146, 148, 158, 166, 176,
178, 188, 190, 200, 208, 218, 220, 230, 250, 260, 262, 272, 292, 302, 334, 344, 416}. For each n, write
n = us+ℓ−1 where u = 3 or 7. When u = 3, pair (s, t) ∈ {(44, 15), (52, 11), (58, 5), (62, 3), (64, 17),
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n = 3s+ (ℓ− 1) s ℓ

72r + 2 = 3(24(r − 1) + 14) + 32 24(r − 1) + 14 33 r ≥ 1, r ̸= 1, 2, 3
72r + 4 = 3(24(r − 1) + 10) + 46 24(r − 1) + 10 47 r ≥ 1, r ̸= 1, 2, 3, 4
72r + 8 = 3(24r + 2) + 2 24r + 2 3 r ≥ 1
72r + 10 = 3(24(r − 1) + 22) + 16 24(r − 1) + 22 17 r ≥ 1, r ̸= 1
72r + 14 = 3(24(r − 1) + 14) + 44 24(r − 1) + 14 45 r ≥ 1, r ̸= 1, 2, 3, 4
72r + 16 = 3(24r + 4) + 4 24r + 4 5 r ≥ 1
72r + 20 = 3(24r + 2) + 14 24r + 2 15 r ≥ 1, r ̸= 1
72r + 22 = 3(24(r − 1) + 22) + 28 24(r − 1) + 22 29 r ≥ 1, r ̸= 1, 2
72r + 26 = 3(24r + 8) + 2 24r + 8 3 r ≥ 1
72r + 28 = 3(24r + 4) + 16 24r + 4 17 r ≥ 1, r ̸= 1
72r + 32 = 3(24r + 2) + 26 24r + 2 27 r ≥ 1, r ̸= 1, 2
72r + 34 = 3(24(r − 1) + 22) + 40 24(r − 1) + 22 41 r ≥ 1, r ̸= 1, 2, 3
72r + 38 = 3(24r + 8) + 14 24r + 8 15 r ≥ 1
72r + 40 = 3(24r + 10) + 10 24r + 10 11 r ≥ 1
72r + 44 = 3(24r + 2) + 38 24r + 2 39 r ≥ 1, r ̸= 1, 2, 3
72r + 46 = 3(24r − 2) + 52 24r − 2 53 r ≥ 1, r ̸= 1, 2, 3, 4
72r + 50 = 3(24r + 14) + 8 24r + 14 9 r ≥ 1
72r + 52 = 3(24r + 10) + 22 24r + 10 23 r ≥ 1, r ̸= 1
72r + 56 = 3(24(r − 1) + 20) + 68 24(r − 1) + 20 69 r ≥ 1, r ̸= 1, 2, 3, 4, 5
72r + 58 = 3(24r + 16) + 10 24r + 16 11 r ≥ 1, r ̸= 1
72r + 62 = 3(24r + 14) + 20 24r + 14 21 r ≥ 1, r ̸= 1
72r + 64 = 3(24r + 10) + 34 24r + 10 35 r ≥ 1, r ̸= 1, 2
72r + 68 = 3(24r + 20) + 8 24r + 20 9 r ≥ 1
72r + 70 = 3(24r + 22) + 4 24r + 22 5 r ≥ 1, r ̸= 1

Table 4: Parameters for proof of Lemma 27.

(68, 15), (70, 11), (74, 9), (82, 5), (86, 3), (82, 17), (86, 15), (94, 11), (98, 9), (106, 17), (110, 15)} and
when u = 7, pair (s, ℓ) ∈ {(20, 9), (22, 5), (24, 9), (26, 9), (28, 5), (58, 11)}. For each s, having u = 3
or 7, there exists a 3-IGDD of type (s, 5)u by Lemma 7. For each pair (s, ℓ), a BSA∗(s, {2, 3}; 2, ℓ)
comes from Lemmas 16,17,18 and an optimal (s+ ℓ− 1, 4, 3) code just proved. For u = 3, 7, there
exists a BSA(5u, 3; 2) by Lemma 6. Then applying Construction 23, an optimal (n, 4, 3)-IV code
exists for each n written above.

Assume that there exists an optimal (n, 4, 3)-IV code for all orders n, except n ̸∈ {14, 16, 22, 50},
listed in Table 4 with 1 ≤ r ≤ p. Now, we prove the case r = p + 1 except the 22 cases proved
above. For each s, there exists a 3-IGDD of type (s, 5)3 from Lemma 7. For each pair (s, ℓ) cor-
responding to each class that mentioned in Table 4, there exits a BSA∗(s, {2, 3}; 2, ℓ) by Lemmas
19-22 and an optimal (s+ ℓ− 1, 4, 3)-IV code exists by assumption. From Lemma 6, there exists
a BSA(15, 3; 2). Then applying Construction 23, an optimal (n, 4, 3)-IV code exists for all classes
when r = p+ 1.

Finally, an optimal (n, 4, 3)-IV code exists whenever n ≥ 14 and n ≡ 2, 4 (mod 6), except if
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n ∈ {14, 16, 22, 50}.

5 Concluding remarks and open problems

Motivated by binary codes that cover the three features like, low-power consumption, error-
correction, and avoiding crosstalks, simultaneously on-chip data buses, we have studied such
binary codes as well. In [5], the authors presented the lower bounds of these codes, which avoid
the crosstalk of type-III (or IV). In this paper, we present Conjecture 2 (or 3) for the upper bound
of (n, 4, 3)-III (or IV) codes, respectively. By computer search, these conjectures are true for small
orders, but their theoretical proofs are very difficult. However, our main contribution to this paper
is summarized in the following two results.

Theorem 28. There exists an optimal (n, 4, 3)-IV code for each integer n ≥ 14.

Proof. By combining the Lemmas 24-27, we have proof of this result.

Theorem 29. For n ≥ 3 and n ≡ 1 (mod 2), every optimal (n, 4, 3)-III code is also an optimal
(n, 4, 3)-{III, IV } code.

Proof. The proof of this result follows directly from Lemma 10.

There are still intriguing open problems in the underlying direction. For instance,

Problem 30. Prove Conjectures 2 and 3.

Problem 31. Give a tight upper bound for the size of an (n, 4, 3)-III code when n is even and
construct optimal codes.

Finally, we close this section with the following remarks.

Remark 32. If Conjecture 3 is true, then the optimal size of an (n, 4, 3)-IV code for all n ≥ 14
is determined.

Remark 33. Conjecture 2 is confirmed for odd n in the range 3 ≤ n ≤ 19 by [5]. If Conjecture 2
holds for all odd n ≥ 21 and solution of Problem 31 exists, then an optimal size of an (n, 4, 3)-III
code for all n ≥ 3 can be determined.
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Appendices

Appendix A. There exists a BSA∗(n, 2; 2, ℓ) for each pair (n, ℓ) ∈ {(16, 11), (20, 15), (22, 17)} as below. Following
each column is considered as one parallel class.
(n, ℓ) = (16, 11)

{0, 3},
{1, 4},
{2, 5},
{6, 9},
{7, 10},
{8, 13},
{11, 14},
{12, 15}.

{0, 4},
{1, 5},
{2, 6},
{3, 7},
{8, 12},
{9, 13},
{10, 14},
{11, 15}.

{0, 5},
{1, 6},
{2, 7},
{3, 11},
{4, 12},
{8, 14},
{9, 15},
{10, 13}.

{0, 6},
{1, 7},
{2, 8},
{3, 12},
{4, 11},
{5, 13},
{9, 14},
{10, 15}.

{0, 7},
{1, 8},
{2, 10},
{3, 13},
{4, 14},
{5, 11},
{6, 15},
{9, 12}.

{0, 8},
{1, 9},
{2, 11},
{3, 10},
{4, 13},
{5, 12},
{6, 14},
{7, 15}.

{0, 9},
{1, 10},
{2, 12},
{3, 6},
{4, 15},
{5, 14},
{7, 13},
{8, 11}.

{0, 10},
{1, 11},
{2, 9},
{3, 14},
{4, 8},
{5, 15},
{6, 13},
{7, 12}.

{0, 11},
{1, 12},
{2, 13},
{3, 15},
{4, 9},
{5, 8},
{6, 10},
{7, 14}.

{0, 12},
{1, 13},
{2, 14},
{3, 9},
{4, 7},
{5, 10},
{6, 11},
{8, 15}.

{0, 13},
{1, 14},
{2, 15},
{3, 8},
{4, 10},
{5, 9},
{6, 12},
{7, 11}.

(n, ℓ) = (20, 15)

{0, 3},
{1, 4},
{2, 5},
{6, 9},
{7, 10},
{8, 11},
{12, 15},
{13, 17},
{14, 18},
{16, 19}.

{0, 4},
{1, 5},
{2, 6},
{3, 7},
{8, 12},
{9, 13},
{10, 16},
{11, 17},
{14, 19},
{15, 18}.

{0, 5},
{1, 6},
{2, 7},
{3, 8},
{4, 9},
{10, 13},
{11, 16},
{12, 18},
{14, 17},
{15, 19}.

{0, 6},
{1, 7},
{2, 8},
{3, 9},
{4, 14},
{5, 15},
{10, 17},
{11, 18},
{12, 16},
{13, 19}.

{0, 7},
{1, 8},
{2, 9},
{3, 6},
{4, 15},
{5, 14},
{10, 18},
{11, 19},
{12, 17},
{13, 16}.

{0, 8},
{1, 9},
{2, 10},
{3, 11},
{4, 16},
{5, 17},
{6, 14},
{7, 15},
{12, 19},
{13, 18}.

{0, 9},
{1, 10},
{2, 12},
{3, 13},
{4, 17},
{5, 16},
{6, 15},
{7, 18},
{8, 19},
{11, 14}.

{0, 10},
{1, 11},
{2, 13},
{3, 12},
{4, 18},
{5, 19},
{6, 16},
{7, 14},
{8, 15},
{9, 17}.

{0, 11},
{1, 12},
{2, 14},
{3, 10},
{4, 13},
{5, 18},
{6, 17},
{7, 19},
{8, 16},
{9, 15}.

{0, 12},
{1, 13},
{2, 11},
{3, 14},
{4, 19},
{5, 8},
{6, 18},
{7, 17},
{9, 16},
{10, 15}.

{0, 13},
{1, 14},
{2, 15},
{3, 16},
{4, 7},
{5, 11},
{6, 12},
{8, 17},
{9, 18},
{10, 19}.

{0, 14},
{1, 15},
{2, 16},
{3, 17},
{4, 10},
{5, 12},
{6, 11},
{7, 13},
{8, 18},
{9, 19}.

{0, 15},
{1, 16},
{2, 17},
{3, 18},
{4, 12},
{5, 9},
{6, 19},
{7, 11},
{8, 13},
{10, 14}.

{0, 16},
{1, 17},
{2, 18},
{3, 19},
{4, 8},
{5, 10},
{6, 13},
{7, 12},
{9, 14},
{11, 15}.

{0, 17},
{1, 18},
{2, 19},
{3, 15},
{4, 11},
{5, 13},
{6, 10},
{7, 16},
{8, 14},
{9, 12}.

(n, ℓ) = (22, 17)

{0, 3},
{1, 4},
{2, 5},
{6, 9},
{7, 10},
{8, 11},
{12, 15},
{13, 16},
{14, 19},
{17, 20},
{18, 21}.

{0, 4},
{1, 5},
{2, 6},
{3, 7},
{8, 12},
{9, 13},
{10, 14},
{11, 18},
{15, 19},
{16, 20},
{17, 21}.

{0, 5},
{1, 6},
{2, 7},
{3, 8},
{4, 9},
{10, 13},
{11, 17},
{12, 18},
{14, 20},
{15, 21},
{16, 19}.

{0, 6},
{1, 7},
{2, 8},
{3, 9},
{4, 10},
{5, 11},
{12, 17},
{13, 19},
{14, 18},
{15, 20},
{16, 21}.

{0, 7},
{1, 8},
{2, 9},
{3, 6},
{4, 11},
{5, 16},
{10, 17},
{12, 19},
{13, 20},
{14, 21},
{15, 18}.

{0, 8},
{1, 9},
{2, 10},
{3, 11},
{4, 15},
{5, 18},
{6, 16},
{7, 19},
{12, 20},
{13, 21},
{14, 17}.

{0, 9},
{1, 10},
{2, 11},
{3, 14},
{4, 16},
{5, 15},
{6, 17},
{7, 20},
{8, 19},
{12, 21},
{13, 18}.

{0, 10},
{1, 11},
{2, 12},
{3, 15},
{4, 14},
{5, 19},
{6, 18},
{7, 16},
{8, 20},
{9, 21},
{13, 17}.

{0, 11},
{1, 12},
{2, 13},
{3, 16},
{4, 17},
{5, 14},
{6, 15},
{7, 18},
{8, 21},
{9, 19},
{10, 20}.

{0, 12},
{1, 13},
{2, 14},
{3, 10},
{4, 18},
{5, 17},
{6, 19},
{7, 15},
{8, 16},
{9, 20},
{11, 21}.

{0, 13},
{1, 14},
{2, 15},
{3, 12},
{4, 7},
{5, 20},
{6, 21},
{8, 17},
{9, 16},
{10, 18},
{11, 19}.

{0, 14},
{1, 15},
{2, 16},
{3, 13},
{4, 8},
{5, 21},
{6, 12},
{7, 17},
{9, 18},
{10, 19},
{11, 20}.

{0, 15},
{1, 16},
{2, 17},
{3, 18},
{4, 19},
{5, 8},
{6, 20},
{7, 13},
{9, 12},
{10, 21},
{11, 14}.

{0, 16},
{1, 17},
{2, 18},
{3, 19},
{4, 20},
{5, 12},
{6, 10},
{7, 21},
{8, 13},
{9, 14},
{11, 15}.

{0, 17},
{1, 18},
{2, 19},
{3, 20},
{4, 21},
{5, 9},
{6, 13},
{7, 11},
{8, 14},
{10, 15},
{12, 16}.

{0, 18},
{1, 19},
{2, 20},
{3, 21},
{4, 12},
{5, 13},
{6, 11},
{7, 14},
{8, 15},
{9, 17},
{10, 16}.

{0, 19},
{1, 20},
{2, 21},
{3, 17},
{4, 13},
{5, 10},
{6, 14},
{7, 12},
{8, 18},
{9, 15},
{11, 16}.

Appendix B. BSA∗(n, {2, 3}; 2, ℓ)s, where (n, ℓ) ∈ {(18, 3), (18, 9), (18, 11)}. All triples and ℓ parallel classes (in
column) are listed below.
(n, ℓ) = (18, 3)

Triples {0, 3, 14},
{0, 4, 10},
{0, 6, 12},

{0, 7, 15},
{0, 8, 11},
{1, 4, 7},

{1, 5, 11},
{1, 8, 15},
{1, 9, 13},

{1, 12, 16},
{2, 5, 16},
{2, 6, 13},

{2, 8, 14},
{2, 9, 12},
{2, 10, 17},

{3, 6, 10},
{3, 7, 13},
{3, 9, 17},

{3, 11, 15},
{4, 8, 16},
{4, 11, 14},

{4, 12, 15},
{5, 8, 12},
{5, 9, 15},

{5, 13, 17},
{6, 9, 16},
{6, 14, 17},

{7, 10, 14},
{7, 11, 17},
{10, 13, 16}.

Parallel classes {2l, 5 + 2l} {2l + 1, 6 + 2l} {l, 9 + l} where l ∈ [0, 8]

(n, ℓ) = (18, 9)

Triples {0, 3, 6},
{0, 4, 7},

{1, 4, 8},
{1, 5, 9},

{2, 5, 8},
{2, 10, 14},

{3, 11, 15},
{6, 12, 15},

{7, 12, 16},
{9, 13, 16},

{10, 13, 17},
{11, 14, 17}.

Parallel
classes

{0, 5},
{1, 6},
{2, 7},
{3, 8},
{4, 13},
{9, 14},
{10, 15},
{11, 16},
{12, 17}.

{0, 8},
{1, 7},
{2, 11},
{3, 12},
{4, 14},
{5, 13},
{6, 17},
{9, 15},
{10, 16}.

{0, 9},
{1, 10},
{2, 12},
{3, 13},
{4, 11},
{5, 14},
{6, 16},
{7, 15},
{8, 17}.

{0, 10},
{1, 11},
{2, 6},
{3, 14},
{4, 12},
{5, 15},
{7, 13},
{8, 16},
{9, 17}.

{0, 11},
{1, 12},
{2, 9},
{3, 10},
{4, 15},
{5, 16},
{6, 13},
{7, 17},
{8, 14}.

{0, 12},
{1, 13},
{2, 15},
{3, 9},
{4, 16},
{5, 17},
{6, 10},
{7, 14},
{8, 11}.

{0, 13},
{1, 14},
{2, 16},
{3, 7},
{4, 17},
{5, 10},
{6, 11},
{8, 15},
{9, 12}.

{0, 14},
{1, 15},
{2, 17},
{3, 16},
{4, 10},
{5, 12},
{6, 9},
{7, 11},
{8, 13}.

{0, 15},
{1, 16},
{2, 13},
{3, 17},
{4, 9},
{5, 11},
{6, 14},
{7, 10},
{8, 12}.

(n, ℓ) = (18, 11)

Triples {0, 3, 6}, {1, 4, 7}, {2, 5, 8}, {9, 12, 15}, {10, 13, 16}, {11, 14, 17}.
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Parallel
classes

{0, 4},
{1, 5},
{2, 6},
{3, 7},
{8, 11},
{9, 14},
{10, 15},
{12, 16},
{13, 17}.

{0, 5},
{1, 6},
{2, 7},
{3, 8},
{4, 13},
{9, 16},
{10, 14},
{11, 15},
{12, 17}.

{0, 7},
{1, 8},
{2, 9},
{3, 12},
{4, 14},
{5, 13},
{6, 15},
{10, 17},
{11, 16}.

{0, 8},
{1, 10},
{2, 11},
{3, 13},
{4, 12},
{5, 14},
{6, 16},
{7, 15},
{9, 17}.

{0, 9},
{1, 11},
{2, 10},
{3, 14},
{4, 15},
{5, 12},
{6, 13},
{7, 16},
{8, 17}.

{0, 10},
{1, 9},
{2, 12},
{3, 11},
{4, 16},
{5, 15},
{6, 14},
{7, 17},
{8, 13}.

{0, 11},
{1, 12},
{2, 13},
{3, 9},
{4, 10},
{5, 16},
{6, 17},
{7, 14},
{8, 15}.

{0, 12},
{1, 13},
{2, 14},
{3, 15},
{4, 9},
{5, 17},
{6, 10},
{7, 11},
{8, 16}.

{0, 13},
{1, 14},
{2, 15},
{3, 16},
{4, 17},
{5, 11},
{6, 9},
{7, 10},
{8, 12}.

{0, 14},
{1, 15},
{2, 16},
{3, 17},
{4, 8},
{5, 10},
{6, 11},
{7, 12},
{9, 13}.

{0, 15},
{1, 16},
{2, 17},
{3, 10},
{4, 11},
{5, 9},
{6, 12},
{7, 13},
{8, 14}.

Appendix C. A BSA∗(n, {2, 3}; 2, ℓ), where (n, ℓ) ∈ {(20, 9), (22, 11), (26, 9), (26, 15)}. For each (n, t), the base-
blocks and all t parallel classes (in columns) are listed below. Each baseblocks of size three is developed in Zn.
(n, ℓ) = (20, 9) : Baseblock {0, 4, 9}.

Parallel
classes

{0, 3},
{1, 4},
{2, 5},
{6, 9},
{7, 10},
{8, 11},
{12, 19},
{13, 16},
{14, 17},
{15, 18}.

{0, 6},
{1, 7},
{2, 8},
{3, 9},
{4, 14},
{5, 13},
{10, 17},
{11, 18},
{12, 15},
{16, 19}.

{0, 7},
{1, 8},
{2, 9},
{3, 6},
{4, 17},
{5, 15},
{10, 16},
{11, 14},
{12, 18},
{13, 19}.

{0, 8},
{1, 9},
{2, 12},
{3, 13},
{4, 16},
{5, 17},
{6, 14},
{7, 15},
{10, 18},
{11, 19}.

{0, 10},
{1, 11},
{2, 14},
{3, 15},
{4, 12},
{5, 18},
{6, 13},
{7, 17},
{8, 16},
{9, 19}.

{0, 12},
{1, 13},
{2, 10},
{3, 11},
{4, 18},
{5, 19},
{6, 16},
{7, 14},
{8, 15},
{9, 17}.

{0, 13},
{1, 14},
{2, 15},
{3, 10},
{4, 7},
{5, 12},
{6, 19},
{8, 18},
{9, 16},
{11, 17}.

{0, 14},
{1, 15},
{2, 16},
{3, 17},
{4, 11},
{5, 8},
{6, 18},
{7, 19},
{9, 12},
{10, 13}.

{0, 17},
{1, 18},
{2, 19},
{3, 16},
{4, 10},
{5, 11},
{6, 12},
{7, 13},
{8, 14},
{9, 15}.

(n, ℓ) = (22, 11) : Baseblock {0, 4, 10}.

Parallel
classes

{0, 3},
{1, 4},
{2, 5},
{6, 9},
{7, 10},
{8, 11},
{12, 15},
{13, 16},
{14, 19},
{17, 20},
{18, 21}.

{0, 5},
{1, 6},
{2, 7},
{3, 8},
{4, 9},
{10, 13},
{11, 18},
{12, 17},
{14, 21},
{15, 20},
{16, 19}.

{0, 7},
{1, 8},
{2, 9},
{3, 6},
{4, 11},
{5, 10},
{12, 19},
{13, 20},
{14, 17},
{15, 18},
{16, 21}.

{0, 8},
{1, 9},
{2, 10},
{3, 14},
{4, 15},
{5, 16},
{6, 17},
{7, 18},
{11, 19},
{12, 20},
{13, 21}.

{0, 9},
{1, 10},
{2, 11},
{3, 16},
{4, 17},
{5, 14},
{6, 15},
{7, 20},
{8, 19},
{12, 21},
{13, 18}.

{0, 11},
{1, 12},
{2, 13},
{3, 17},
{4, 18},
{5, 19},
{6, 14},
{7, 15},
{8, 16},
{9, 20},
{10, 21}.

{0, 13},
{1, 14},
{2, 15},
{3, 10},
{4, 12},
{5, 18},
{6, 19},
{7, 16},
{8, 21},
{9, 17},
{11, 20}.

{0, 14},
{1, 15},
{2, 16},
{3, 11},
{4, 13},
{5, 12},
{6, 20},
{7, 21},
{8, 17},
{9, 18},
{10, 19}.

{0, 15},
{1, 16},
{2, 19},
{3, 18},
{4, 7},
{5, 20},
{6, 21},
{8, 13},
{9, 12},
{10, 17},
{11, 14}.

{0, 17},
{1, 18},
{2, 21},
{3, 20},
{4, 19},
{5, 8},
{6, 13},
{7, 12},
{9, 14},
{10, 15},
{11, 16}.

{0, 19},
{1, 20},
{2, 17},
{3, 12},
{4, 21},
{5, 13},
{6, 11},
{7, 14},
{8, 15},
{9, 16},
{10, 18}.

(n, ℓ) = (26, 9) : Baseblocks {0, 4, 10}, {0, 5, 12}.

Parallel
classes

{0, 3},
{1, 4},
{2, 5},
{6, 9},
{7, 10},
{8, 11},
{12, 15},
{13, 24},
{14, 17},
{16, 19},
{18, 21},
{20, 23},
{22, 25}.

{0, 8},
{1, 9},
{2, 10},
{3, 6},
{4, 7},
{5, 13},
{11, 14},
{12, 23},
{15, 18},
{16, 25},
{17, 20},
{19, 22},
{21, 24}.

{0, 9},
{1, 10},
{2, 11},
{3, 12},
{4, 13},
{5, 18},
{6, 19},
{7, 20},
{8, 21},
{14, 22},
{15, 23},
{16, 24},
{17, 25}.

{0, 11},
{1, 12},
{2, 13},
{3, 16},
{4, 17},
{5, 20},
{6, 21},
{7, 18},
{8, 19},
{9, 22},
{10, 23},
{14, 25},
{15, 24}.

{0, 13},
{1, 14},
{2, 15},
{3, 18},
{4, 19},
{5, 16},
{6, 17},
{7, 22},
{8, 23},
{9, 20},
{10, 21},
{11, 24},
{12, 25}.

{0, 15},
{1, 16},
{2, 17},
{3, 11},
{4, 21},
{5, 8},
{6, 24},
{7, 25},
{9, 18},
{10, 19},
{12, 20},
{13, 22},
{14, 23}.

{0, 17},
{1, 18},
{2, 19},
{3, 14},
{4, 15},
{5, 22},
{6, 23},
{7, 16},
{8, 25},
{9, 24},
{10, 13},
{11, 20},
{12, 21}.

{0, 18},
{1, 24},
{2, 20},
{3, 21},
{4, 22},
{5, 23},
{6, 14},
{7, 15},
{8, 17},
{9, 12},
{10, 25},
{11, 19},
{13, 16}.

{0, 23},
{1, 19},
{2, 25},
{3, 20},
{4, 12},
{5, 14},
{6, 15},
{7, 24},
{8, 16},
{9, 17},
{10, 18},
{11, 22},
{13, 21}.

(n, ℓ) = (26, 15) : Baseblock {0, 4, 10}.

Parallel
classes

{0, 3},
{1, 4},
{2, 5},
{6, 9},
{7, 10},
{8, 11},
{12, 15},
{13, 16},
{14, 17},
{18, 21},
{19, 24},
{20, 23},
{22, 25}.

{0, 5},
{1, 6},
{2, 7},
{3, 8},
{4, 9},
{10, 13},
{11, 14},
{12, 17},
{15, 18},
{16, 23},
{19, 22},
{20, 25},
{21, 24}.

{0, 7},
{1, 8},
{2, 9},
{3, 6},
{4, 11},
{5, 10},
{12, 19},
{13, 20},
{14, 21},
{15, 22},
{16, 24},
{17, 25},
{18, 23}.

{0, 8},
{1, 9},
{2, 10},
{3, 11},
{4, 7},
{5, 12},
{6, 19},
{13, 22},
{14, 23},
{15, 20},
{16, 21},
{17, 24},
{18, 25}.

{0, 9},
{1, 10},
{2, 11},
{3, 12},
{4, 13},
{5, 18},
{6, 20},
{7, 21},
{8, 23},
{14, 19},
{15, 24},
{16, 25},
{17, 22}.

{0, 11},
{1, 12},
{2, 13},
{3, 10},
{4, 15},
{5, 22},
{6, 18},
{7, 24},
{8, 21},
{9, 23},
{14, 25},
{16, 19},
{17, 20}.

{0, 12},
{1, 13},
{2, 14},
{3, 16},
{4, 17},
{5, 19},
{6, 21},
{7, 18},
{8, 20},
{9, 22},
{10, 24},
{11, 25},
{15, 23}.

{0, 13},
{1, 14},
{2, 15},
{3, 17},
{4, 16},
{5, 20},
{6, 23},
{7, 19},
{8, 22},
{9, 18},
{10, 21},
{11, 24},
{12, 25}.

. {0, 14},
{1, 15},
{2, 16},
{3, 18},
{4, 12},
{5, 17},
{6, 24},
{7, 20},
{8, 19},
{9, 21},
{10, 22},
{11, 23},
{13, 25}.

{0, 15},
{1, 16},
{2, 17},
{3, 14},
{4, 18},
{5, 8},
{6, 25},
{7, 22},
{9, 20},
{10, 23},
{11, 19},
{12, 21},
{13, 24}.

{0, 17},
{1, 18},
{2, 19},
{3, 15},
{4, 21},
{5, 23},
{6, 11},
{7, 16},
{8, 13},
{9, 24},
{10, 25},
{12, 20},
{14, 22}.

{0, 18},
{1, 19},
{2, 20},
{3, 21},
{4, 22},
{5, 24},
{6, 13},
{7, 14},
{8, 25},
{9, 17},
{10, 15},
{11, 16},
{12, 23}.

{0, 19},
{1, 20},
{2, 21},
{3, 22},
{4, 23},
{5, 13},
{6, 14},
{7, 25},
{8, 15},
{9, 16},
{10, 17},
{11, 18},
{12, 24}.

{0, 21},
{1, 22},
{2, 23},
{3, 24},
{4, 25},
{5, 14},
{6, 17},
{7, 15},
{8, 16},
{9, 12},
{10, 19},
{11, 20},
{13, 18}.

{0, 23},
{1, 24},
{2, 25},
{3, 20},
{4, 19},
{5, 16},
{6, 15},
{7, 12},
{8, 17},
{9, 14},
{10, 18},
{11, 22},
{13, 21}.

Appendix D. For each pair (n, ℓ) ∈ {(24, 9), (32, 9), (36, 11), (40, 5), (42, 5), (42, 17), (64, 17)}, all blocks of size
three are available upon request. Here, we only list below the set R corresponding to each pair (n, ℓ).
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(n, ℓ) R (n, ℓ) R
(24, 9) {3, 5, 9, 11} (42, 5) {5, 11}
(32, 9) {5, 9, 11, 13} (42, 17) {5, 7, 9, 11, 13, 15, 17, 19}
(36, 11) {5, 7, 9, 11, 13} (64, 17) {5, 7, 15, 19, 23, 25, 29, 31}
(40, 5) {5, 11}

Appendix E. For each pair (n, ℓ), the baseblocks, value of m, and the set S of a BSA∗(n, {2, 3}; 2, ℓ) are listed in
the following table.

(n, ℓ) Baseblocks m R
(22, 5) {0, 4, 12}, {0, 9, 15}, {1, 5, 13}, {0, 6, 13}. 2 {3, 5}
(28, 5) {0, 4, 12}, {0, 5, 11}, {0, 3, 13}. 1 {7, 9}.
(34, 5) {0, 4, 10}, {0, 9, 15}, {0, 13, 25}, {3, 11, 21}, {0, 7, 21}, {0, 11, 18}, {0, 19, 23}, {0, 8, 20} 2 {3, 5}.
(44, 15) {0, 4, 10}, {1, 11, 24}, {2, 17, 25}, {1, 27, 39}, {0, 20, 38}, {3, 33, 39}, {2, 18, 31}, {0, 8, 23}, 4 {3, 5, 7, 9, 11, 17, 19}.{3, 27, 43}, {0, 30, 34}, {3, 13, 26}, {0, 12, 26}, {0, 16, 29}, {1, 17, 21}, {1, 13, 31}, {2, 26, 34}.

(52, 11)
{0, 4, 10}, {0, 17, 30}, {0, 19, 35}, {1, 26, 40}, {0, 25, 29}, {2, 12, 30}, {2, 22, 37}, {3, 25, 31},

4 {3, 5, 7, 9, 11}.{0, 20, 34}, {3, 18, 26}, {1, 19, 39}, {3, 7, 32}, {3, 9, 24}, {1, 22, 41}, {3, 13, 42}, {3, 11, 30},
{2, 19, 32}, {3, 34, 40}, {0, 12, 33}, {0, 28, 36}, {3, 33, 43}, {1, 9, 25}, {1, 15, 33}, {2, 14, 18}.

(58, 5)
{0, 4, 10}, {3, 7, 23}, {2, 40, 49}, {3, 10, 29}, {3, 47, 55}, {0, 17, 44}, {3, 21, 40}, {1, 10, 36}, 3 {3, 5}.{2, 17, 38}, {1, 25, 37}, {3, 13, 28}, {1, 34, 46}, {3, 26, 54}, {0, 8, 24}, {0, 18, 45}, {1, 18, 29}.

(58, 11) {0, 3, 25}, {0, 4, 11}, {0, 6, 15}, {0, 7, 27}, {0, 8, 26}, {0, 10, 24}, {0, 12, 28}. 1 {13, 17, 19, 21, 23}.

(62, 3)
{0, 4, 9}, {0, 29, 39}, {0, 37, 43}, {1, 13, 27}, {3, 21, 41}, {0, 13, 53}, {2, 36, 54}, {0, 48, 54},

2 {3}.{0, 11, 26}, {0, 16, 49}, {1, 5, 35}, {3, 46, 58}, {2, 24, 47}, {1, 6, 48}, {0, 21, 32}, {0, 17, 24},
{0, 25, 41}, {0, 27, 35}.

(68, 15)

{0, 4, 10}, {0, 8, 56}, {3, 27, 50}, {1, 7, 15}, {3, 29, 56}, {1, 31, 48}, {0, 16, 46}, {3, 22, 48},
4 {3, 5, 7, 29, 31, 33}.{3, 14, 39}, {0, 18, 24}, {3, 49, 67}, {2, 38, 50}, {3, 55, 61}, {3, 23, 45}, {2, 12, 25}, {3, 13, 30},

{0, 22, 50}, {3, 24, 52}, {2, 44, 55}, {1, 12, 55}, {2, 16, 54}, {0, 17, 36}, {1, 39, 51}, {2, 17, 29},
{1, 33, 49}, {2, 15, 66}, {0, 27, 55}, {2, 26, 45}, {1, 41, 45}, {0, 14, 25}, {0, 45, 53}, {2, 10, 57}.

(70, 11)
{0, 4, 10}, {2, 38, 59}, {1, 34, 52}, {2, 41, 49}, {0, 8, 51}, {1, 25, 46}, {2, 43, 60}, {1, 21, 39},

2 {3, 5, 7, 9, 11}.{3, 37, 43}, {3, 31, 57}, {3, 28, 60}, {2, 16, 46}, {2, 25, 29}, {0, 15, 29}, {0, 16, 33}, {0, 20, 42},
{1, 11, 23}, {0, 24, 55}.

(74, 9)
{0, 4, 10}, {2, 30, 53}, {3, 36, 67}, {2, 17, 71}, {3, 51, 72}, {3, 11, 61}, {3, 28, 42}, {0, 26, 38},

2 {3, 7, 9, 11}.{3, 44, 63}, {0, 39, 43}, {2, 29, 47}, {1, 35, 50}, {3, 25, 31}, {0, 20, 42}, {3, 35, 65}, {0, 29, 56},
{0, 17, 55}, {0, 13, 30}, {0, 21, 34}, {0, 16, 24}.

(82, 5)
{0, 4, 10}, {1, 7, 62}, {1, 10, 48}, {2, 49, 66}, {2, 41, 53}, {0, 43, 57}, {3, 19, 40}, {2, 39, 52},

2 {3, 5}{2, 51, 69}, {3, 29, 53}, {0, 46, 53}, {1, 50, 61}, {3, 23, 33}, {1, 45, 49}, {3, 57, 76}, {2, 31, 77},
{0, 8, 34}, {0, 16, 71}, {0, 19, 59}, {2, 22, 62}, {0, 13, 70}, {3, 11, 70}, {0, 14, 31}, {0, 30, 54}.

(82, 17)
{0, 4, 10}, {1, 28, 47}, {0, 34, 56}, {0, 28, 36}, {3, 47, 73}, {3, 19, 37}, {3, 26, 55}, {2, 29, 66},

2 {3, 5, 7, 9, 11, 13, 15, 17}.{1, 23, 73}, {2, 32, 55}, {3, 34, 65}, {2, 35, 41}, {3, 7, 42}, {2, 22, 72, }{0, 14, 35}, {3, 31, 45},
{2, 39, 63}, {0, 25, 44}, {0, 49, 57}, {2, 26, 42}.

(86, 3)

{0, 4, 9}, {3, 44, 67}, {1, 31, 56}, {1, 38, 80}, {0, 18, 29}, {1, 7, 46}, {2, 14, 28}, {1, 8, 72},
2 {3}.{3, 21, 50}, {2, 10, 64}, {2, 32, 68}, {0, 35, 75}, {2, 53, 61}, {3, 53, 73}, {1, 6, 75}, {2, 27, 65},

{2, 29, 78}, {0, 52, 58}, {1, 45, 54}, {0, 48, 65}, {3, 13, 75}, {0, 16, 71}, {0, 13, 73}, {0, 19, 53},
{1, 5, 33}, {2, 48, 69}.

(86, 15)
{0, 4, 10}, {1, 18, 58}, {1, 31, 50}, {2, 27, 37}, {2, 21, 52}, {2, 54, 76}, {2, 32, 53}, {3, 28, 81},

2 {3, 5, 7, 9, 11, 13, 15}.{1, 28, 67}, {0, 17, 41}, {0, 27, 63}, {1, 13, 73}, {0, 45, 49}, {3, 42, 56}, {2, 40, 56}, {0, 24, 68},
{2, 28, 59}, {0, 23, 65}, {3, 25, 71}, {1, 7, 59}, {1, 17, 49}, {2, 10, 68}.

(94, 11)

{0, 4, 10}, {1, 7, 20}, {3, 55, 80}, {3, 62, 70}, {0, 30, 46}, {1, 21, 38}, {1, 19, 70}, {1, 32, 56},
2 {3, 5, 7, 9, 11}.{3, 33, 69}, {2, 35, 78}, {2, 60, 73}, {1, 17, 80}, {3, 24, 56}, {3, 35, 89}, {2, 62, 82}, {1, 30, 51},

{1, 34, 72}, {1, 36, 73}, {2, 21, 69}, {1, 42, 91}, {1, 27, 83}, {0, 40, 82}, {0, 44, 66}, {1, 35, 50},
{1, 11, 25}, {0, 29, 68}.

(98, 9)

{0, 4, 10}, {1, 32, 64}, {1, 36, 81}, {0, 61, 75}, {1, 20, 79}, {0, 43, 60}, {1, 5, 48}, {1, 17, 87},
2 {3, 7, 9, 11}.{3, 28, 59}, {3, 13, 75}, {1, 42, 69}, {2, 44, 88}, {1, 25, 77}, {3, 57, 72}, {3, 61, 69}, {2, 16, 21},

{3, 16, 37}, {1, 28, 51}, {2, 26, 74}, {0, 58, 76}, {0, 17, 78}, {0, 13, 46}, {1, 66, 74}, {0, 30, 69},
{0, 16, 93}, {1, 7, 58}, {0, 15, 53}, {2, 30, 66}.

(106, 17)

{0, 4, 10}, {3, 24, 43}, {1, 52, 82}, {1, 20, 62}, {3, 21, 52}, {3, 72, 88}, {2, 28, 50}, {3, 61, 105},
2 {3, 5, 7, 9, 11, 13, 15, 17}.{0, 60, 88}, {1, 72, 84}, {2, 36, 83}, {0, 61, 67}, {2, 42, 75}, {0, 14, 82}, {0, 27, 77}, {3, 11, 78},

{3, 13, 68}, {3, 63, 85}, {0, 59, 71}, {1, 53, 79}, {3, 44, 93}, {0, 50, 79}, {3, 37, 79}, {1, 39, 71},
{0, 8, 70}, {0, 20, 52}, {0, 69, 83}, {1, 44, 87}.

(110, 15)

{0, 4, 10}, {0, 8, 52}, {0, 14, 94}, {0, 48, 60}, {0, 17, 83}, {0, 64, 85}, {1, 55, 59}, {3, 68, 90},
2 {3, 5, 7, 9, 11, 13, 15}.{0, 24, 49}, {2, 20, 39}, {0, 28, 57}, {1, 39, 58}, {0, 39, 79}, {0, 32, 65}, {2, 22, 58}, {0, 27, 35},

{0, 34, 77}, {3, 26, 66}, {2, 53, 70}, {0, 38, 69}, {0, 61, 71}, {0, 26, 67}, {1, 15, 52}, {1, 30, 105},
{1, 23, 43}, {1, 22, 85}, {3, 63, 79}, {1, 29, 93}, {1, 13, 37}, {1, 31, 63}.
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