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Abstract. Let G be a simple graph with order n and size m. The quantity M1(G) =
n∑

i=1

d2vi is

called the first Zagreb index of G, where dvi is the degree of vertex vi, for all i = 1, 2, . . . , n.

The signless Laplacian matrix of a graph G is Q(G) = D(G) + A(G), where A(G) and D(G)

denote, respectively, the adjacency and the diagonal matrix of the vertex degrees of G. Let

q1 ≥ q2 ≥ · · · ≥ qn ≥ 0 be the signless Laplacian eigenvalues of G. The largest signless Laplacian

eigenvalue q1 is called the signless Laplacian spectral radius or Q-index of G and is denoted by

q(G). Let S+
k (G) =

k∑

i=1

qi and Lk(G) =

k−1∑

i=0

qn−i, where 1 ≤ k ≤ n, respectively denote the sum

of k largest and smallest signless Laplacian eigenvalues of G. The signless Laplacian energy of

G is defined as QE(G) =

n∑

i=1

|qi − d|, where d = 2m
n

is the average vertex degree of G. In this

article, we obtain upper bounds for the first Zagreb index M1(G) and show that each bound

is best possible. Using these bounds, we obtain several upper bounds for the graph invariant

S+
k (G) and characterize the extremal cases. As a consequence, we find upper bounds for the

Q-index and lower bounds for the graph invariant Lk(G) in terms of various graph parameters

and determine the extremal cases. As an application, we obtain upper bounds for the signless

Laplacian energy of a graph and characterize the extremal cases.

Keywords: First Zagreb index; signless Laplacian matrix; signless Laplacian eigenvalues; signless Laplacian

energy
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1 Introduction

We consider simple graphs G = G(V,E) with order n and size m having vertex set V (G) =

{v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. As usual, K1,n−1 and Kn denote the

star on n vertices and the complete graph on n vertices, respectively. The degree of a vertex

vi ∈ V (G), denoted by dvi = di, is the number of edges incident on vi. We will denote by △(G)

and δ(G) the maximum vertex degree and the minimum vertex degree in a graph G, respectively.

The diameter of a connected graph G, denoted by D(G), is the largest distance between any

pair of vertices in G. We refer the reader to [7,21] for other undefined notations and terminology

from spectral graph theory.

The adjacency matrix A(G) = (aij) of G is a (0, 1)-square matrix of order n whose (i, j)-entry

is equal to 1, if vi is adjacent to vj and equal to 0, otherwise. If λ1 ≥ λ2 ≥ · · · ≥ λn are the

adjacency eigenvalues of G, the energy [13] of G is defined as E(G) =

n∑

i=1

|λi|. The quantity

E(G) introduced by I. Gutman has well developed mathematical aspect and has noteworthy

chemical applications (see [17]).

Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associated to G, where di = dvi is the

degree of the vertex vi, for all i = 1, 2, . . . , n. The matrices L(G) = D(G)− A(G) and Q(G) =

D(G) + A(G) are called the Laplacian and the signless Laplacian matrices, respectively. Their

spectrum are called the Laplacian spectrum and the signless Laplacian spectrum of the graph

G, respectively. Both the matrices L(G) and Q(G) are real symmetric, positive semi-definite

matrices, therefore their eigenvalues are non-negative real numbers. Let µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0

and q1 ≥ q2 ≥ · · · ≥ qn ≥ 0 be the Laplacian spectrum and the signless Laplacian spectrum of

the graph G, respectively. The eigenvalues of Q(G) are called the Q-eigenvalues of G. Also, the

largest signless Laplacian eigenvalue q1 of Q(G) is called the signless Laplacian spectral radius

or Q-index of G and is denoted by q(G). For k = 1, 2, . . . , n, let Sk(G) =

k∑

i=1

µi, be the sum of

k largest Laplacian eigenvalues of G. We note that the sum Sk(G) is of much interest by itself

and some exciting details, extensions and open problems about it may be found in the excellent

paper of Nikiforov [19]. The well-known Brouwer’s conjecture, due to Brouwer [3] about the

sum Sk(G) is stated as follows.

Conjecture 1 If G is any graph with order n and size m, then

Sk(G) ≤ m+

(
k + 1

2

)

, for any k ∈ {1, 2, . . . , n}.
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Although Conjecture 1 has been studied extensively but it remains open at large. For the

progress on Brouwer’s Conjecture, we refer to [5, 11, 14] and the references therein.

Let S+
k (G) =

k∑

i=1

qi and Lk(G) =
k−1∑

i=0

qn−i, where k = 1, 2, . . . , n, be the sum of k largest and

smallest signless Laplacian eigenvalues of G, respectively. Motivated by the studies of Mohar [18],

Jin et al. [16] investigated the sum of the k largest signless Laplacian eigenvalues. Motivated

by the definition of Sk(G) and Brouwer’s conjecture, Ashraf et al. [2] proposed the following

conjecture about S+
k (G).

Conjecture 2 If G is any graph with order n and size m, then

S+
k (G) ≤ m+

(
k + 1

2

)

, for any k ∈ {1, 2, . . . , n}.

To see the progress on this conjecture, we refer to [24] and the references therein.

The rest of the paper is organized as follows. In Section 2, we obtain upper bounds for the

first Zagreb index M1(G) and show that the bounds are sharp. Using these investigations, we

obtain several upper bounds for the graph invariant S+
k (G) and determine the extremal graphs.

As a consequence, we obtain upper bounds for the Q-index and lower bounds for the graph

invariant Lk(G) in terms of various graph parameters and determine the extremal cases in each

case. In Section 3, we find some upper bounds for the signless Laplacian energy QE(G) for a

connected graph G and determine the extremal cases.

2 Sum of the signless Laplacian eigenvalues of a graph

The first Zagreb index M1(G) [20] of a graph G is defined as M1(G) =

n∑

i=1

d2vi , where dvi is the

degree of vertex vi, for all i = 1, 2, . . . , n. The following inequality can be found in [15].

Lemma 2.1 [15] Let a = (a1, a2 . . . , an) and b = (b1, b2 . . . , bn) be n-tuples of real numbers

satisfying 0 ≤ m1 ≤ ai ≤ M1, 0 ≤ m2 ≤ bi ≤ M2 with i = 1, 2, . . . , n and M1M2 6== 0. Let

α = m1

M1

and β = m2

M2

. If (1 + α)(1 + β) ≥ 2, then

n∑

i=1

a2i

n∑

i=1

b2i −
( n∑

i=1

aibi

)2

≤
n2

4
(M1M2 −m1m2)

2
. (2.1)

The following result gives an upper bound for the graph invariant M1(G) in terms of the

order n, size m, △(G) and δ(G).



4 Pirzada,Saleem

Lemma 2.2 Let G be a connected graph with n vertices and m edges. Then

n∑

i=1

d2i ≤
4m2

n
+

n

4
(△(G)− δ(G))2. (2.2)

Furthermore, the inequality is sharp and is shown by all degree regular graphs.

Proof. In Lemma 2.1, taking a = (d1, d2, . . . , dn), b = (1, 1, . . . , 1), M1 = △(G), m1 = δ(G) and

M2 = m2 = 1. With these values the condition (1 + α)(1 + β) ≥ 2 in Lemma 2.1 is satisfied.

Substituting these values in Inequality 2.1, we get

n∑

i=1

d2i

n∑

i=1

1−
( n∑

i=1

di

)2

≤
n2

4
(△(G)− δ(G))2.

Using the fact that

n∑

i=1

di = 2m in the above inequality and simplifying further, we get

n

n∑

i=1

d2i − 4m2 ≤
n2

4
(△(G)− δ(G))2,

that is,
n∑

i=1

d2i ≤
4m2

n
+

n

4
(△(G)− δ(G))2,

which proves the required inequality.

Now, let G be an r-regular graph so that △(G) = δ(G). Clearly, the left hand side of

Inequality 2.2 becomes nk2 and the right hand side becomes n2k2

n
= nk2. This completes the

proof.

The next lemma shows that the diameter of a connected graph G can be at most e(G) − 1

where e(G) is the number of distinct Q-eigenvalues of G.

Lemma 2.3 Let G be a connected graph of diameter D and e(G) distinct Q-eigenvalues. Then

D ≤ e(G)− 1.

In the next lemma, we show that the complete graph is the unique connected graph having

only two distinct Q-eigenvalues.

Lemma 2.4 Let G be a connected graph on n vertices with e(G) distinct Q-eigenvalues. Then

e(G) = 2 if and only if G ∼= Kn.
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Proof. Assume that e(G) = 2. Then, from Lemma 2.3, we have D(G) = 1, which shows that

G ∼= Kn.

Conversely, suppose that G ∼= Kn. The proof follows by observing that the Q-spectrum of

Kn is {2n− 2, n− 2, . . . , n− 2
︸ ︷︷ ︸

n−1

}.

A simpler version of classical Cauchy- Schwarz Inequality is as follows.

Lemma 2.5 Let (a1, a2, . . . , an) be a sequence of non-negative real numbers. Then

( n∑

i=1

ai

)2

≤ n

n∑

i=1

a2i

with equality if and only if a1 = a2 = · · · = an.

Now, we obtain an upper bound for S+
k (G) in terms of n, m, △(G) and δ(G) and characterize

the extremal graphs.

Theorem 2.6 Let G be a connected graph with n vertices and m edges. If 1 ≤ k ≤ n− 1, then

S+
k (G) ≤

2mk

n
+

√

k(n− k)
(

8mn+ n2(△(G)− δ(G))2
)

2n
(2.3)

with equality if and only if G ∼= Kn and k = 1. Equality always holds when k = n.

Proof. Using the fact that the sum of the eigenvalues of a matrix equals its trace, we have

2m =
∑

vi∈V (G)

dvi = q1 + q2 + · · ·+ qn,

that is,

2m+
∑

vi∈V (G)

d2vi =
∑

vi∈V (G)

(d2vi + dvi) = q21 + q22 + · · ·+ q2n.

Let S+
k (G) = S+

k . Using the above equations with Lemma 2.5, we get

(qk+1 + · · ·+ qn)
2 = (2m− S+

k )
2 ≤ (n− k)(q2k+1 + · · ·+ q2n)

= (n− k)
(

2m+
∑

vi∈V (G)

d2vi − (q21 + · · ·+ q2k)
)

≤ (n− k)
(

2m+
∑

vi∈V (G)

d2vi −
S+
k

2

k

)

.
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Simplifying further, we get

S+
k

2
−

4mkS+
k

n
+

4m2k

n
−

k(n− k)

n

(

2m+
∑

vi∈V (G)

d2vi

)

≤ 0,

that is,

S+
k ≤

2mk

n
+

√

4m2k2 − 4knm2 + nk(n− k)
(

2m+
∑

vi∈V (G)

d2vi

)

n

or

S+
k ≤

2mk

n
+

√

k(n− k)
(

n(2m+
∑

vi∈V (G)

d2vi)− 4m2
)

n
. (2.4)

Using Lemma 2.2 in Inequality (2.4), we get

S+
k ≤

2mk

n
+

√

k(n− k)
(

2mn+ 4m2 + n2

4
(△(G)− δ(G))2 − 4m2

)

n

or

S+
k ≤

2mk

n
+

√

k(n− k)
(

8mn + n2(△(G)− δ(G))2
)

2n

and this proves the required inequality.

Now, suppose that the equality holds in Inequality 2.3. Then, from the above proof, equality

must hold in Lemma 2.5 and Lemma 2.2. Thus, we must have qk+1 = qk+2 = · · · = qn and

q1 = q2 = · · · = qk, from Lemma 2.5. These two equalities show that G has exactly two distinct

Q-eigenvalues. Thus, by Lemma 2.4, G ∼= Kn and we know that Kn is a regular graph. Lastly,

k = 1 follows from the Q-spectrum of Kn.

Conversely, it is easy to see that the equality holds in Inequality 2.3 if G ∼= Kn and k = 1.

Furthermore, if k = n then the left hand side of Inequality 2.3 is q1 + · · ·+ qn = 2m and the

right hand side becomes 2mn
n

= 2m. Thus, equality always holds when k = n.

Proceeding and using arguments similar to those used in Theorem 2.6, we get the following

lower bound for Lk(G).

Theorem 2.7 Let G be a connected graph with n vertices and m edges. If 1 ≤ k ≤ n− 1, then

Lk(G) ≥
2mk

n
−

√

k(n− k)
(

8mn+ n2(△(G)− δ(G))2
)

2n
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with equality if and only if G ∼= Kn and k = n− 1. Equality always holds when k = n.

Taking k = 1 in Theorem 2.6, we obtain the following upper bound for the signless Laplacian

spectral radius in terms of m, n, △(G) and δ(G.

Theorem 2.8 Let G be a connected graph with n vertices and m edges. Then

q(G) ≤
2m

n
+

√

(n− 1)
(

8mn+ n2(△(G)− δ(G))2
)

2n

with equality if and only if G ∼= Kn.

The following inequality can be seen in [22].

Lemma 2.9 [22] If ai and bi, 1 ≤ i ≤ n, are positive real numbers, then

n∑

i=1

a2i

n∑

i=1

b2i ≤
1

4

(√

M1M2

m1m2

+

√
m1m2

M1M2

)2( n∑

i=1

aibi

)2

,

where M1 = max{ai : 1 ≤ i ≤ n}, m1 = min{ai : 1 ≤ i ≤ n}, M2 = max{bi : 1 ≤ i ≤ n} and

m2 = min{bi : 1 ≤ i ≤ n}.

Now, we obtain a different upper bound for the sum of squares of the vertex degrees of a

connected graph G in terms of the same parameters as in Lemma 2.2.

Lemma 2.10 Let G be a connected graph with n vertices and m edges. Then

n∑

i=1

d2i ≤
m2
(

△(G) + δ(G)
)2

n△(G)δ(G)
. (2.5)

Moreover, the inequality is sharp and is shown by all degree regular graphs.

Proof. In Lemma 2.9, take ai = dvi = di (1 ≤ i ≤ n), bi = 1 (1 ≤ i ≤ n), M1 = △(G),

m1 = δ(G) and M2 = m2 = 1, we get

n∑

i=1

d2i

n∑

i=1

1 ≤
1

4

(√

△(G)

δ(G)
+

√

δ(G)

△(G)

)2(
n∑

i=1

di

)2

.
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Using
n∑

i=1

di = 2m in the above inequality, we get

n∑

i=1

d2i ≤
m2
(

△(G) + δ(G)
)2

n△(G)δ(G)
,

which is the required inequality.

For the equality part, let G be k-regular. Then the left hand side of Inequality 2.5 becomes

nk2 and the right hand side becomes 4k4n2

4nk2
= nk2. Thus equality holds in Inequality 2.5 whenever

G is a regular graph.

Now, we will use the Lemma 2.10 to get the following upper bound for the graph invariant

S+
k (G).

Theorem 2.11 Let G be a connected graph with n vertices and m edges. If 1 ≤ k ≤ n−1, then

S+
k (G) ≤

2mk

n
+

√

mk(n− k)
(

2△(G)δ(G)(n− 2m) +m(△(G) + δ(G))2
)

n
√

△(G)δ(G)
(2.6)

with equality if and only if G ∼= Kn and k = 1. Equality always holds when k = n.

Proof. Proceeding similarly as in Theorem 2.6 upto Inequality 2.4 and using Lemma 2.10, we

get

S+
k ≤

2mk

n
+

√

k(n− k)
(

n
(

2m+ m2(△(G)+δ(G))2

n△(G)δ(G)

)

− 4m2
)

n

or

S+
k ≤

2mk

n
+

√

mk(n− k)
(

2△(G)δ(G)(n− 2m) +m(△(G) + δ(G))2
)

n
√

△(G)δ(G)
.

This proves Inequality 2.6.

The proof of the remaining part of the theorem follows by using similar arguments as in

Theorem 2.6.

Taking k = 1 in Theorem 2.11, we obtain an upper bound for the signless Laplacian spectral

radius as follows.
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Theorem 2.12 Let G be a connected graph with n vertices and m edges. Then

q(G) ≤
2m

n
+

√

m(n− 1)
(

2△(G)δ(G)(n− 2m) +m(△(G) + δ(G))2
)

n
√

△(G)δ(G)

with equality if and only if G ∼= Kn.

Proceeding and using arguments similar to those used in Theorem 2.12, we get the following

lower bound for Lk(G).

Theorem 2.13 Let G be a connected graph with n vertices and m edges. If 1 ≤ k ≤ n−1, then

Lk(G) ≥
2mk

n
−

√

mk(n− k)
(

2△(G)δ(G)(n− 2m) +m(△(G) + δ(G))2
)

n
√

△(G)δ(G)

with equality if and only if G ∼= Kn and k = n− 1. Equality always holds when k = n.

3 Signless Laplacian energy of a graph

The Laplacian energy of a graph G is defined as LE(G) =
n∑

i=1

∣
∣
∣µi−

2m

n

∣
∣
∣. This quantity, which is

an extension of graph-energy concept [17], has found remarkable chemical applications beyond

the molecular orbital theory of conjucated molecules (see [23]).

In analogy to Laplacian energy, the signless Laplacian energy QE(G) of G is defined as

QE(G) =
n∑

i=1

∣
∣
∣qi −

2m

n

∣
∣
∣.

To see the basic properties of this quantity, including various upper and lower bounds, we refer

to [1, 8, 10, 12]. We start with the following lemma which gives an upper bound for the Q-index

q(G) of a connected graph G in terms of the order n and size m.

Lemma 3.1 [9] Let G be a connected graph with n vertices and m edges. Then

q(G) ≤
2m

n− 1
+ n− 2

with equality if and only if G is K1,n−1 or Kn.

Now, we obtain an upper bound for QE(G) of a connected graph G in terms of the order n,

size m, maximum vertex degree △(G), minimum vertex degree δ(G) and Q-index q(G) of G.
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Theorem 3.2 Let G be a connected graph with n vertices and m edges. Then

QE(G) ≤
2m

n(n− 1)
+ n− 2 +

√

(n− 1)
(

2m+
n

4
(△(G)− δ(G))2 −

(

q(G)−
2m

n

)2)

(3.7)

with equality if and only if G ∼= Kn.

Proof. It is easy to see that

q1 = q(G) ≥
2m

n
,

n∑

i=1

∣
∣
∣qi −

2m

n

∣
∣
∣

2

=
n∑

i=1

q2i −
4m2

n
and

n∑

i=1

q2i = 2m+
n∑

i=1

d2i .

Using this observations and Lemma 2.5, we get

QE(G) =

n∑

i=1

∣
∣
∣qi −

2m

n

∣
∣
∣ = q1 −

2m

n
+

n∑

i=2

∣
∣
∣qi −

2m

n

∣
∣
∣

≤ q1 −
2m

n
+

√
√
√
√(n− 1)

n∑

i=2

∣
∣
∣qi −

2m

n

∣
∣
∣

2

= q1 −
2m

n
+

√
√
√
√(n− 1)

( n∑

i=1

q2i −
4m2

n
−
(

q1 −
2m

n

)2)

= q1 −
2m

n
+

√
√
√
√(n− 1)

(

2m+
n∑

i=1

d2i −
4m2

n
−
(

q1 −
2m

n

)2)

≤ q1 −
2m

n
+

√

(n− 1)
(

2m+
4m2

n
+

n

4
(△(G)− δ(G))2 −

4m2

n
−
(

q1 −
2m

n

)2)

(by using Lemma 2.2)

≤
2m

n− 1
+ n− 2−

2m

n
+

√

(n− 1)
(

2m+
n

4
(△(G)− δ(G))2 −

(

q1 −
2m

n

)2)

(by using Lemma 3.1)

=
2m

n(n− 1)
+ n− 2 +

√

(n− 1)
(

2m+
n

4
(△(G)− δ(G))2 −

(

q(G)−
2m

n

)2)

.

This proves the required inequality.

Assume that equality holds in Inequality 3.7. Then equality must hold in all the above

inequalities, that is, equality must hold simultaneously in Lemmas 2.5, 2.2 and 3.1. We consider

the following cases.

Case 1. Equality holds in Lemma 2.5 if
∣
∣
∣q2 −

2m
n

∣
∣
∣ =

∣
∣
∣q3 −

2m
n

∣
∣
∣ = · · · =

∣
∣
∣qn −

2m
n

∣
∣
∣.

Case 2. Equality holds in Lemma 3.1 if G is either K1,n−1 or Kn. But K1,n−1 does not satisfy
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Case 1. Kn satisfies Case 1 and also equality holds in Lemma 2.2 when G ∼= Kn as Kn is a

regular graph.

All these arguments show that if equality holds in Inequality 3.7, then G ∼= Kn.

Conversely, if G ∼= Kn, then it is easy to see that the equality holds in Inequality 3.7.

The next lemma due to Cean [4] gives the upper bound for the sum of the squares of vertex

degrees in a graph.

Lemma 3.3 [4] Let G be a graph with n vertices and m edges. Then

∑

u∈V (G)

d2u ≤ m
( 2m

n− 1
+ n− 2

)

.

Moreover, if G is connected, then equality holds if and only if G is either a star K1,n−1 or a

complete graph Kn.

Proceeding and using arguments similar to Theorem 3.2 and using Lemma 3.3 in place of

Lemma 2.2, we get the following upper bound for QE(G) in terms of order n, size m and Q-index

q(G) of G.

Theorem 3.4 Let G be a connected graph with n vertices and m edges. Then

QE(G) ≤
2m

n(n− 1)
+ n− 2 +

√

(n− 1)
(

mn +
2m2(2− n)

n(n− 1)
−
(

q(G)−
2m

n

)2)

with equality if and only if G ∼= Kn.
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[6] D. Cvetković, New theorems for signless Laplacian eigenvalues, Bull. Acad. Serbe Sci. Arts,

Cl. Sci. Math. Natur., Sci. Math. 137(33) (2008) 131-146.
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