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Abstract

To improve the shock-capturing capability of the third-order WENO scheme and enhance its computational efficiency,

in this paper, we designed a new WENO scheme independent of the local smooth factor, WENO-SIF. The weight

functions of the WENO-SIF scheme are segmentation functions of the sub-stencils, which can guarantee it achieves

the desired accuracy at the high-order critical points. During the calculation, WENO-SIF need not calculate the

smoothing factor, which can effectively reduce the computational consumption. The new WENO-SIF is compared

with WENO-JS and other WENO schemes for numerical experiments at one- and two-dimensional benchmark

problems with a suitable choice of λ = 0.13. The results show the WENO scheme can further improve the resolution

of WENO-JS, achieve the optimal accuracy at high-order critical points, and significantly reduce computational

consumption.

Keywords: WENO scheme, high efficiency, high resolution, smoothness indicators free, low consumption

1. Introduction

Based on the ENO scheme [1], Liu et al. [2] proposed the WENO method that can maintain the ENO property in

the smooth region by recombining the sub-templates using a weighting function. Because of the high accuracy and the

essentially oscillatory of the WENO scheme, it has been widely used and vigorously developed in fluid mechanics and

aerospace. Jiang and Shu [3] proposed a technique that can measure the smoothness of sub-templates, and they gave

a framework for building the WENO method with various accuracies. Since then, the researchers have conducted tests,

evaluations, and improvements on the WENO method [4, 5, 6, 7].

Henrick et al. [8] found that the fifth-order WENO-JS scheme suffers from accuracy degradation at the extremum.

And they developed a mapping function, which resulted in a fifth-order accuracy WENO-M method that can achieve the

best at the first-order critical point. Since then, Feng [9, 10], Wang [11], Vevek [12], Hong [13], Hu [14], Li [15, 16],

Zhu [17] have developed a series of mapping functions successively to develop different higher-order mapping type WENO

schemes. Unlike Henrick’s mapping-type WENO scheme, Borges et al. [18] designed a new type of nonlinear weights

by using a linear combination of low-order local smoothness factors to construct a global high-order smoothness factor.

And they developed a class of structurally simple fifth-order WENO-Z schemes. In addition, Castro [19], Don [20], Liu

[21], Wang [22], Peng [23], Mulet [24, 25, 26], Hu [27], Russo [28, 29, 30], Rathan [31] and Huang [32] have successively

developed various high order WENO-Z type schemes based on Borges’.
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Compared with higher-order WENO schemes of fifth-order and above, the third-order WENO scheme is more robust

in capturing shocks, uses fewer grid points, and can be easily extended to unstructured grids. However, it also suffers

from shortcomings, such as higher dissipation and lower accuracy. Yamaleev et al. [33] developed a high-resolution third-

order energy-stable WENO scheme (ESWENO) using an amount-preserving stable global smoothness factor. Liu et al.

[34] proposed the WENO-MN scheme using the values of all three points on the global stencil of the third-order WENO

scheme to calculate the local smoothness factor. Wu et al.[35, 36, 37] developed three WENO schemes, namely WENO-N,

WENO-NP, and WENO-NN, using different nonlinear combinations of local smoothness indicators and local smoothness

factors. Wang et al. [38] introduced a new reference smoothness indicator to construct a third-order WENO-R scheme

with low dissipation. Li et al. [39] constructed a new global smoothness indicator by using Taylor expansions to handle

local smoothness indicators and developed the WENO-ZF scheme. Li et al.[40] designed two new global smoothness

indicators by non-linearly combining local smoothness indicators with reference values based on Lagrangian interpolation

polynomials and developed the WENO-L3 and WENO-L4. Tang et al. [41] constructed three multi-parameter types finite

volume WENO schemes by modifying the weight functions of the WENO scheme using the construction of the limiter of

the MUSCL scheme. In addition, many other scholars have improved the third-order WENO scheme and developed many

new schemes.[42, 43, 44]

However, the various current third-order WENO schemes suffer from two shortcomings: First, they cannot achieve

optimal accuracy at high-order critical points. Second, some high-resolution WENO schemes suffer from relatively com-

plicated construction of the weight function and low computational efficiency. To address these problems, in this paper,

we improve the WENO scheme by constructing a weight function that does not depend on the local smooth factor. The

results of WENO-SIF show it can achieve optimal weights at higher-order critical points and has a simple and efficient

structure. The present WENO-SIF scheme with λ = 0.13 has better spectral properties and higher resolution through

ADR analysis [45] and calculation of various 1D-2D problems, and its computational efficiency is much higher than other

given WENO schemes.

We set the basic framework for this paper: Section 2 presents the structure of classical third-order WENO schemes. In

Section 3, we give construction tips for the new WENO scheme and determine the parameters of the weight function in

the new scheme by using the ADR method. In Section 4, we compare the performance of various WENO schemes in terms

of accuracy at higher-order critical points, resolution, and computational efficiency for 1-D and 2-D Euler gas dynamics.

We will provide the conclusions of this paper in Section 5.

2. Reviews of WENO methods

In this section, we briefly introduce a series of third-order WENO schemes. Consider the following one-dimensional

scalar hyperbolic conservation laws.



ut + f(u)x = 0,

u(x, 0) = u0(x).
(1)

Discretizing the computational region as a uniform interval of ∆x yields a conservative scheme of semi-differentiation of

the following form:

duj

dt
= − 1

∆x
(f̂j+1/2 − f̂j−1/2), (2)

where f̂j+1/2 = f̂+
j+1/2 + f̂−

j+1/2 is the numerical flux, which satisfies df+(u)/du ≥ 0 and df−(u)/du ≤ 0. Since f̂+
j+1/2

and f̂−

j+1/2 are approximated similarly, for convenience, we will only describe the approximation of f̂+
j+1/2. For simplicity,
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we will remove the superscript + of the flux.

On the 3-point stencil at the central node xj−1/2, the numerical flux function of the third-order finite-difference WENO

scheme is defined as:

f̂j+1/2 = ω0q0 + ω1q1, (3)

where qk is the second-order flux on the sub-stencil Sk = {j − 1 + k, j + k}, k = 0, 1, which is defined by



q0 = (−fj−1 + 3fj)/2,

q1 = (fj + fj+1)/2.
(4)

And the weights ωk will be introduced in the following subsections.

2.1. WENO-JS scheme

The nonlinear weights proposed by Jiang and Shu [3] are

ωJS
k =

αk

α0 + α1
, αk =

dk
(βk + ϵ)2

, k = 0, 1, (5)

where (d0, d1) = (1/3, 2/3). ϵ is a positive number with the value 10−6 to avoid the denominator becoming zero in the

smoothing region. The local smoothness indicators βk in the stencils are calculated by

βk =

r−1∑

m=1

△x2m−1

∫ xj+1/2

xj−1/2

(
dmf̂k
dxm

)2

dx, (6)

where r = 2 is the number of sub-stencils. And the local smoothness indicators of the third-order WENO scheme are


β0 = (fj − fj−1)

2,

β1 = (fj+1 − fj)
2.

(7)

Taylor expansion of Eq. (7) at the point xj yields



β0 = f ′2

j (∆x)2 − f ′

jf
′′

j (∆x)3 +
(
1
3f

′

jf
′′′

j + 1
4f

′′2
j

)
(∆x)4 −

(
1
12f

′

jf
(4)
j + 1

6f
′′

j f
′′′

j

)
(∆x)5 +O(∆x6),

β1 = f ′2
j (∆x)2 + f ′

jf
′′

j (∆x)3 +
(
1
3f

′

jf
′′′

j + 1
4f

′′2
j

)
(∆x)4 +

(
1
12f

′

jf
(4)
j + 1

6f
′′

j f
′′′

j

)
(∆x)5 +O(∆x6).

(8)

Easy to verify that

βk = (∆x)2(ncp+1)(1 +O(∆x)), k = 0, 1, (9)

where ncp is a integer that satisfies the following condition: if the function f(x) has ncp+1-order derivatives and satisfies,

f ′(x0) = f ′′(x0) = · · · = f (ncp)(x0) = 0, and f (ncp+1)(x0) ̸= 0, then x0 is said to be a ncp-order critical point of the

function f(x).

Substituting (9) into (5) and ignoring ϵ, we get

ωk =




dk(1 +O(∆x)2), ncp = 0,

dk(1 +O(∆x)), ncp ≥ 1.
(10)

To get high accuracy numerical solution, the nonlinear weights of the WENO scheme should be approximately equal to

the linear at the smooth region. Yamaleev et al. [33] proposed a sufficient condition for the third-order accuracy of the

weights ωk

ωk = dk(1 +O(∆x)2), (11)

It can be seen that WENO-JS will reduce the order at the high-order critical point.
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2.2. WENO-Z-type scheme

To improve the accuracy of WENO-JS, Borges et al. [18] constructed a fifth-order WENO-Z scheme capable of

achieving the optimal accuracy at the first-order critical point by introducing a global smoothness indicator. Similar to

the fifth-order WENO-Z scheme, the weights of the third-order WENO-Z-type scheme are calculate as following

τ3 = |β1 − β0| . (12)

From this, the weight functions of the third-order WENO-Z scheme can be got as:

ωZ
k =

αZ
k

1∑
i=0

αZ
i

, αZ
k = dk

(
1 +

τ3
βk + ϵ

)
, k = 0, 1, (13)

In the smooth region, the Taylor expansion of equation (13) at the point xj gives

τ3 =

∣∣∣∣2f
′

jf
′′

j (∆x)3 +

(
1

6
f ′

jf
(4)
j +

1

3
f ′′

j f
′′′

j

)
(∆x)5 +

(
1

360
f ′

jf
(6)
j +

1

120
f ′′

j f
(5)
j +

1

72
f ′′′

j f
(4)
j

)
(∆x)7 +O(∆x9)

∣∣∣∣

= (∆x)2(ncp+1)+1.

(14)

Thus

ωZ
k = dk(1 +O(∆x)), k = 0, 1. (15)

From equation (15), one can see that the weight function in WENO-Z scheme does not satisfy the sufficient conditions

given by Yamaleev et al. However, the numerical results show that the WENO-Z can achieve the optimal accuracy at the

0th order critical point.

Xu et al. [37] proposed a new WENO-Z type scheme, WENO-PZ, by slightly modifying the local smoothness indicator

of the third-order WENO-Z by using Taylor expansion. And they gave the following new reference smoothness indicator

ωPZ
k =

αZ
k

1∑
i=0

αZ
i

, αZ
k = dk

(
1 +

τ3
(βk + ϵ)p

)
, k = 0, 1, (16)

To enable the WENO-PZ scheme to achieve high accuracy at the critical points, Xu et al. set the value of p to

3/4. However, since the exponents of the local-smooth factors in WENO-PZ are rational numbers, they consume a lot of

computational time during the calculation, a conclusion we will give later in the numerical calculation section.

2.3. WENO-M scheme

To overcome the fifith-order WENO-JS scheme will lose accuracy at the critical points, Henrick et al. [8] designed the

following mapping function to improve the approximation accuracy of ωJS
k

g(ωJS
k ) =

ωJS
k (dk + d2k − 3dkω

JS
k + (ωJS

k )2)

d2k + ωJS
k (1− 2dk)

, k = 0, 1. (17)

Similar to the fifth-order WENO-M scheme, the weights of the third-order WENO-M-type are as follows

ωM
k =

g(ωJS
k )

g(ωJS
0 ) + g(ωJS

1 )
, k = 0, 1, 2. (18)

A Taylor expansion of equation (17) at dk gives

g(ωJS
k ) = dk(+O((∆x)3)). (19)
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Thus

ωM
k = dk(+O((∆x)3)), (20)

that is, the WENO-M satisfies the sufficient condition for the third-order accuracy of the weights. Interestingly, although

WENO-M can achieve theoretically the optimal accuracy, it is not computationally achievable. This conclusion we will

present in the section on numerical calculations.

2.4. WENO-MN scheme

Liu et al. [34] constructed a new class of local smoothness factors by approximating the first-order derivatives of the

flux f at the nodes j − 1, j and j + 1.



βMN
0 = 1

4 (|fj+1 − fj−1| − |fj+1 − 4fj + 3fj−1|)2,

βMN
1 = 1

4 (|fj+1 − fj−1| − |3fj+1 − 4fj + fj−1|)2.
(21)

In the smooth region, the Taylor series expansions of (21) are



βMN
0 =

(∣∣f ′

j∆x+ 1
6f

′′′

j (∆x)3 +O(∆x)5
∣∣−
∣∣∣f ′

j∆x− f ′′

j (∆x)2 + 1
6f

′′′

j (∆x)3 − 1
12f

(4)
j (∆x)4 +O(∆x)5

∣∣∣
)2

,

βMN
1 =

(∣∣f ′

j∆x+ 1
6f

′′′

j (∆x)3 +O(∆x)5
∣∣−
∣∣∣f ′

j∆x+ f ′′

j (∆x)2 + 1
6f

′′′

j (∆x)3 + 1
12f

(4)
j (∆x)4 +O(∆x)5

∣∣∣
)2

.
(22)

Thus, the weights of the WENO-JS-type scheme WENO-MN satisfies

ωMN
k =

dk/(β
MN
k + ϵ)2

d0/(βMN
0 + ϵ)2 + d1/(βMN

1 + ϵ)2
= dk(1 +O((∆x))), k = 0, 1. (23)

Liu et al. pointed out that the weights of the WENO-MN scheme do not meet the sufficient condition near the critical

point, and its numerical dissipation will be significantly smaller than that of the WENO-JS in the smooth region.

3. Design and properties of the new WENO scheme

In this section, we propose a new WENO scheme independent of the local smoothing factor. The specific construction

process of WENO-SIF is divided into the following parts.

First, we reconstruct the weight functions of WENO-JS. It may be assumed that

rj =
|fj − fj−1|+ ϵ

|fj+1 − fj |+ ϵ
, (24)

where ϵ is a positive number to prevent the numerator and denominator from being equal to zero, and in this paper, we

always take the value ϵ = 10−40 without specifical specification. Thus, the weight functions of WENO-JS can always be

rewritten in the following form

ωJS
0 =

1

1 + 2r4j
, ωJS

1 =
2r4j

1 + 2r4j
. (25)

Similarly, the weight functions of the WENO-Z scheme can be rewritten as

ωZ
0 =

r2j +
∣∣1− r2j

∣∣
3r2j + (1 + 2r2j )

∣∣1− r2j
∣∣ , ωZ

1 =
2r2j (1 +

∣∣1− r2j
∣∣)

3r2j + (1 + 2r2j )
∣∣1− r2j

∣∣ . (26)

In contrast, the weight functions of the WENO-MN scheme can be rewritten as

ωMN
0 =

(|1 + rj | − |3− rj |)2
(|1 + rj | − |3− rj |)2 + 2(|1 + rj | − |1− 3rj |)2

, ωMN
1 =

2(|1 + rj | − |1− 3rj |)2
(|1 + rj | − |3− rj |)2 + 2(|1 + rj | − |1− 3rj |)2

. (27)
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Fig. 1: Curves of weight functions of WENO-JS(black), WENO-Z(green) and WENO-MN(blue).

Figure 1 represents the weight function curves of WENO-JS, WENO-Z and WENO-MN. One can see that ωJS
0 , ωZ

0

and ωMN
0 are monotonically decreasing with r and all pass through the point (1, 1/3). And ωJS

1 , ωZ
1 and ωMN

1 are

monotonically increasing with respect to r and all pass through the point (1, 2/3).

Second, combining the characteristics of the above several WENO schemes, we can always construct various improved

WENO schemes without local smooth factors that satisfy the third-order condition by using functions of rj . That leads

to a conclusion as follows.

Theorem 1 If the weight functions ωk(rj), k = 0, 1 satisfies the following conditions:

(a) ω0(rj) (or ω1(rj)) is monotone decrease (or increase) with rj , and satisying ω0(0) = 1 (or ω1(0) = 0), ω0(1) = 1/3

(or ω1(1) = 2/3) and ω0(∞) = 0 (or ω1(∞) = 1).

(b) The point rj = 1 is the 2nd-order critical point of the function ωk(rj), k = 0, 1.

Then, the resulting WENO scheme can achieve optimal accuracy at any critical point.

Proof Ignoring ϵ in equation (24), we get

rj =

∣∣fj −
(
fj − f ′

j∆x+ 1
2!f

′′

j (∆x)2 − 1
3!f

′′′

j (∆x)3 +O((∆x)4)
)∣∣

∣∣(fj + f ′

j∆x+ 1
2!f

′′

j (∆x)2 + 1
3!f

′′′

j (∆x)3 +O((∆x)4)
)
− fj

∣∣

=

∣∣f ′

j∆x− 1
2!f

′′

j (∆x)2 + 1
3!f

′′′

j (∆x)3 +O((∆x)4)
∣∣

∣∣f ′

j∆x+ 1
2!f

′′

j (∆x)2 + 1
3!f

′′′

j (∆x)3 +O((∆x)4)
∣∣

= 1 +O(∆x), ncp ≥ 0,

(28)

Suppose that ωk(rj), k = 0, 1 satisfies the two conditions in the theorem, then

ωk(rj) = ωk(1) + ω′

k(1)(rj − 1) +
ω′′

k (1)

2!
(rj − 1)2 +

ω′′′

k (1)

3!
(rj − 1)3 +O((rj − 1)4)

= dk +
ω′′′

k (1)

3!
(∆x)3 +O((∆x)4), k = 0, 1.

(29)

These weight functions will satisfy the sufficient conditions for third-order accuracy at any-order critical point.

To reduce the consumption of the weight function in the calculation process and ensure that the new WENO scheme

can achieve optimal accuracy at any critical point, we construct weight functions of the following form by combining the
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two conditions in Theorem 1.




ω0(rj) =





1, rj < λ,

1/3, λ ≤ rj ≤ 1/λ,

0, otherwise,

ω1(rj) = 1− ω0(rj),

(30)

in which, λ is a positive number less than 1 to be determined. We refer to the new WENO scheme equipped with the

weight function of (30) as the local smooth factor-free WENO scheme, or WENO-SIF for short.

It is easy to verify that WENO-SIF satisfies all the conditions of Theorem 1 when λ < 1. And the value of λ will affect

the numerical stability and resolution of the WENO-SIF scheme.
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Fig. 2: Dispersion and dissipation curves of WENO-SIF with selected λ.

Figure 2 depicts the spectral properties of WENO-SIF by using the approximate dispersion relation of the shock capture

method (ADR) [45]. It is easy to see that when λ → 0, the spectrum of WENO-SIF is very close to the third-order linear

upwind scheme. To make WENO-SIF with good numerical stability and high resolution, of thumb, in this paper, we will

always choose λ = 0.13.

We also compared the dispersion and dispersion of the third-order WENO-JS, WENO-Z, WENO-M, WENO-PZ (p =

3/4), WENO-MN, WENO-SIF, and the third-order upwind scheme, and the results shown in Figure 3. From the figure,

one can see that WENO-SIF has better spectral characteristics than other WENO schemes.

4. Numerical results

In this section, we will compare the performance of the present third-order WENO-SIF with WENO-JS, WENO-Z,

WENO-M, WENO-PZ and WENO-MN by computing several classical problems, where the time advance is the third-order

7



k

R
e

(k
)

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1 1

1.2 1.2

1.4 1.4

WENO-JS
WENO-Z

WENO-M

WENO-PZ

WENO-MN
WENO-SIF

up3

spectral

k

Im
(k

)

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

-1.5 -1.5

-1 -1

-0.5 -0.5

0 0

WENO-JS
WENO-Z

WENO-M

WENO-PZ

WENO-MN
WENO-SIF

up3

spectral

Fig. 3: Dispersion and dissipation curves of various WENO schemes.

TVD Runge-Kutta method [3].

u(1) = un +△tnC[un],

u(2) =
3

4
un +

1

4
(u(1) +△tnC[u(1)]),

u(3) =
1

3
un +

2

3
(u(2) +△tnC[u(2)]), (31)

where C[un] denote the numerical flux. Without specified, we will set ϵ to be 1e−40 in the following, except for WENO-JS

(ϵ = 1e− 6), and the CFL number is 0.6. In the following, CPU times for all 1-D problems are the averaged values of 100

calculations run with an Intel i3-10100 @ 3.60GHz processor.

4.1. Convergence at higher-order critical points

In this subsection, we will compare various WENO schemes by computing the accuracy of a function at the critical

points of the selected order. Given a trial function of the following form

f(x) = ex −
ncp∑

k=1

xk

k!
. (32)

Then, the value of the kth order derivative of this function at the point x0 = 0 is

f (k)(0) =




0, k ≤ ncp,

1, otherwise,
(33)

that is, x0 = 0 is the ncp order critical point of f(x).

For each ncp, we investigate the convergence of the critical point x0 = 0 at six levels from q = 0 to 5. Where each

level defined as △x = 0.001/2q. Tables 1-3 list the L1, L2 and L∞ errors and convergence rates in the approximation of

f(x 1
2
)− f(x

−
1
2
).
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Table 1: Convergence properites of various WENO schemes at ncp = 0 critical point.

q L1-error L1-order L2-error L2-order L∞-error L∞-order
WENO-JS 0 0.45205e− 07 0.45205e− 07 0.45205e− 07

1 0.28233e− 08 4.00 0.39927e− 08 3.50 0.56465e− 08 3.00
2 0.23519e− 09 3.59 0.40735e− 09 3.30 0.70556e− 09 3.00
3 0.22045e− 10 3.42 0.44089e− 10 3.21 0.88178e− 10 3.00
4 0.22043e− 11 3.32 0.49289e− 11 3.16 0.11021e− 10 3.00
5 0.22960e− 12 3.26 0.56240e− 12 3.13 0.13776e− 11 3.00

WENO-Z 0 0.10122e− 07 0.10122e− 07 0.10122e− 07
1 0.64176e− 09 3.98 0.90759e− 09 3.48 0.12835e− 08 2.98
2 0.53866e− 10 3.57 0.93298e− 10 3.28 0.16160e− 09 2.99
3 0.50681e− 11 3.41 0.10136e− 10 3.20 0.20272e− 10 2.99
4 0.50772e− 12 3.31 0.11353e− 11 3.16 0.25386e− 11 3.00
5 0.52934e− 13 3.26 0.12966e− 12 3.13 0.31761e− 12 3.00

WENO-M 0 0.10391e− 07 0.10391e− 07 0.10391e− 07
1 0.65031e− 09 4.00 0.91968e− 09 3.50 0.13006e− 08 3.00
2 0.54225e− 10 3.58 0.93920e− 10 3.29 0.16267e− 09 3.00
3 0.50850e− 11 3.41 0.10170e− 10 3.21 0.20340e− 10 3.00
4 0.50856e− 12 3.32 0.11372e− 11 3.16 0.25428e− 11 3.00
5 0.52979e− 13 3.26 0.12977e− 12 3.13 0.31787e− 12 3.00

WENO-PZ 0 0.10374e− 07 0.10374e− 07 0.10374e− 07
1 0.64990e− 09 4.00 0.91910e− 09 3.50 0.12998e− 08 3.00
2 0.54212e− 10 3.58 0.93898e− 10 3.29 0.16264e− 09 3.00
3 0.50845e− 11 3.41 0.10169e− 10 3.21 0.20338e− 10 3.00
4 0.50855e− 12 3.32 0.11371e− 11 3.16 0.25427e− 11 3.00
5 0.52978e− 13 3.26 0.12977e− 12 3.13 0.31787e− 12 3.00

WENO-MN 0 0.10396e− 07 0.10396e− 07 0.10396e− 07
1 0.65039e− 09 4.00 0.91979e− 09 3.50 0.13008e− 08 3.00
2 0.54226e− 10 3.58 0.93923e− 10 3.29 0.16268e− 09 3.00
3 0.50850e− 11 3.41 0.10170e− 10 3.21 0.20340e− 10 3.00
4 0.50856e− 12 3.32 0.11372e− 11 3.16 0.25428e− 11 3.00
5 0.52979e− 13 3.26 0.12977e− 12 3.13 0.31787e− 12 3.00

WENO-SIF 0 0.10396e− 07 0.10396e− 07 0.10396e− 07
1 0.65039e− 09 4.00 0.91979e− 09 3.50 0.13008e− 08 3.00
2 0.54226e− 10 3.58 0.93923e− 10 3.29 0.16268e− 09 3.00
3 0.50850e− 11 3.41 0.10170e− 10 3.21 0.20340e− 10 3.00
4 0.50856e− 12 3.32 0.11372e− 11 3.16 0.25428e− 11 3.00
5 0.52979e− 13 3.26 0.12977e− 12 3.13 0.31787e− 12 3.00

Table 1 shows all the computational errors and accuracies of various WENO schemes for the ncp = 0 critical point

xc = 0. One can see that all the WENO schemes achieve third-order accuracy. The errors of WENO-Z, WENO-M,

WENO-PZ, WENO-MN, and WENO-SIF are about the same and smaller than those of the WENO-JS scheme. That

shows the WENO-SIF scheme can achieve optimal accuracy at the 0th-order critical point.

Table 2: Convergence properites of various WENO schemes at ncp = 1 critical point.

q L1-error L1-order L2-error L2-order L∞-error L∞-order
WENO-JS 0 0.82120e− 03 0.82120e− 03 0.82120e− 03

1 0.20490e− 03 2.00 0.28977e− 03 1.50 0.40980e− 03 1.00
2 0.68233e− 04 1.59 0.11818e− 03 1.30 0.20470e− 03 1.00
3 0.25575e− 04 1.42 0.51150e− 04 1.21 0.10230e− 03 1.00
4 0.10227e− 04 1.32 0.22869e− 04 1.16 0.51137e− 04 1.00
5 0.42609e− 05 1.26 0.10437e− 04 1.13 0.25565e− 04 1.00

WENO-Z 0 0.59205e− 03 0.59205e− 03 0.59205e− 03
1 0.14849e− 03 2.00 0.21000e− 03 1.50 0.29699e− 03 1.00
2 0.49578e− 04 1.58 0.85872e− 04 1.29 0.14873e− 03 1.00
3 0.18607e− 04 1.41 0.37214e− 04 1.21 0.74427e− 04 1.00
4 0.74458e− 05 1.32 0.16649e− 04 1.16 0.37229e− 04 1.00
5 0.31030e− 05 1.26 0.76008e− 05 1.13 0.18618e− 04 1.00

WENO-M 0 0.76954e− 03 0.76954e− 03 0.76954e− 03
1 0.19293e− 03 2.00 0.27285e− 03 1.50 0.38587e− 03 1.00
2 0.64402e− 04 1.58 0.11155e− 03 1.29 0.19321e− 03 1.00
3 0.24168e− 04 1.41 0.48336e− 04 1.21 0.96671e− 04 1.00
4 0.96706e− 05 1.32 0.21624e− 04 1.16 0.48353e− 04 1.00
5 0.40301e− 05 1.26 0.98717e− 05 1.13 0.24181e− 04 1.00

WENO-PZ 0 0.12280e− 04 0.12280e− 04 0.12280e− 04
1 0.15602e− 05 3.00 0.22065e− 05 2.48 0.31205e− 05 1.98
2 0.26219e− 06 2.57 0.45412e− 06 2.28 0.78656e− 06 1.99
3 0.49364e− 07 2.41 0.98727e− 07 2.20 0.19745e− 06 1.99
4 0.98931e− 08 2.32 0.22122e− 07 2.16 0.49466e− 07 2.00
5 0.20632e− 08 2.26 0.50538e− 08 2.13 0.12379e− 07 2.00

WENO-MN 0 0.37005e− 05 0.37005e− 05 0.37005e− 05
1 0.46276e− 06 3.00 0.65445e− 06 2.50 0.92553e− 06 2.00
2 0.77144e− 07 2.58 0.13362e− 06 2.29 0.23143e− 06 2.00
3 0.14466e− 07 2.41 0.28932e− 07 2.21 0.57864e− 07 2.00
4 0.28934e− 08 2.32 0.64698e− 08 2.16 0.14467e− 07 2.00
5 0.60280e− 09 2.26 0.14766e− 08 2.13 0.36168e− 08 2.00

WENO-SIF 0 0.10396e− 07 0.10396e− 07 0.10396e− 07
1 0.65039e− 09 4.00 0.91979e− 09 3.50 0.13008e− 08 3.00
2 0.54226e− 10 3.58 0.93923e− 10 3.29 0.16268e− 09 3.00
3 0.50850e− 11 3.41 0.10170e− 10 3.21 0.20340e− 10 3.00
4 0.50856e− 12 3.32 0.11372e− 11 3.16 0.25428e− 11 3.00
5 0.52979e− 13 3.26 0.12977e− 12 3.13 0.31787e− 12 3.00
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Table 2 represents the various computational errors and accuracies at the ncp = 1 critical point. The accuracy of

all known WENO schemes degrades with WENO-JS and WENO-Z reduced to first-order. And the WENO-SIF scheme

provided in this paper maintains the same errors and accuracies as at the zero-order critical point. That shows the

WENO-NSI method can achieve optimal accuracy at the first-order critical point.

Table 3: Convergence properites of various WENO schemes at ncp = 2 critical point.

q L1-error L1-order L2-error L2-order L∞-error L∞-order
WENO-JS 0 0.41613e− 05 0.41613e− 05 0.41613e− 05

1 0.52034e− 06 3.00 0.73587e− 06 2.50 0.10407e− 05 2.00
2 0.86737e− 07 2.59 0.15023e− 06 2.30 0.26021e− 06 2.00
3 0.16265e− 07 2.42 0.32529e− 07 2.21 0.65058e− 07 2.00
4 0.32530e− 08 2.32 0.72740e− 08 2.16 0.16265e− 07 2.00
5 0.67773e− 09 2.26 0.16601e− 08 2.13 0.40664e− 08 2.00

WENO-Z 0 0.38754e− 05 0.38754e− 05 0.38754e− 05
1 0.48715e− 06 3.00 0.68894e− 06 2.50 0.97431e− 06 2.00
2 0.81420e− 07 2.58 0.14102e− 06 2.29 0.24426e− 06 2.00
3 0.15288e− 07 2.41 0.30576e− 07 2.21 0.61151e− 07 2.00
4 0.30597e− 08 2.32 0.68417e− 08 2.16 0.15299e− 07 2.00
5 0.63766e− 09 2.26 0.15619e− 08 2.13 0.38260e− 08 2.00

WENO-M 0 0.41505e− 05 0.41505e− 05 0.41505e− 05
1 0.51918e− 06 3.00 0.73424e− 06 2.50 0.10384e− 05 2.00
2 0.86560e− 07 2.58 0.14993e− 06 2.29 0.25968e− 06 2.00
3 0.16233e− 07 2.41 0.32466e− 07 2.21 0.64931e− 07 2.00
4 0.32468e− 08 2.32 0.72601e− 08 2.16 0.16234e− 07 2.00
5 0.67645e− 09 2.26 0.16570e− 08 2.13 0.40587e− 08 2.00

WENO-PZ 0 0.26182e− 07 0.26182e− 07 0.26182e− 07
1 0.13981e− 08 4.23 0.19772e− 08 3.73 0.27962e− 08 3.23
2 0.99909e− 10 3.81 0.17305e− 09 3.51 0.29973e− 09 3.22
3 0.81698e− 11 3.61 0.16340e− 10 3.40 0.32679e− 10 3.20
4 0.72873e− 12 3.49 0.16295e− 11 3.33 0.36437e− 11 3.16
5 0.69272e− 13 3.40 0.16968e− 12 3.26 0.41563e− 12 3.13

WENO-MN 0 0.40817e− 05 0.40817e− 05 0.40817e− 05
1 0.51074e− 06 3.00 0.72229e− 06 2.50 0.10215e− 05 2.00
2 0.85165e− 07 2.58 0.14751e− 06 2.29 0.25550e− 06 2.00
3 0.15973e− 07 2.41 0.31945e− 07 2.21 0.63890e− 07 2.00
4 0.31949e− 08 2.32 0.71440e− 08 2.16 0.15974e− 07 2.00
5 0.66565e− 09 2.26 0.16305e− 08 2.13 0.39939e− 08 2.00

WENO-SIF 0 0.10396e− 07 0.10396e− 07 0.10396e− 07
1 0.65039e− 09 4.00 0.91979e− 09 3.50 0.13008e− 08 3.00
2 0.54226e− 10 3.58 0.93923e− 10 3.29 0.16268e− 09 3.00
3 0.50850e− 11 3.41 0.10170e− 10 3.21 0.20340e− 10 3.00
4 0.50856e− 12 3.32 0.11372e− 11 3.16 0.25428e− 11 3.00
5 0.52979e− 13 3.26 0.12977e− 12 3.13 0.31787e− 12 3.00

Table 3 represents the various computational errors and accuracies for ncp = 2. The results show that the accuracy of

the methods WENO-JS, WENO-Z, and WENO-M decreases to the second-order at the second-order critical point, and

the WENO-PZ can achieve the third-order accuracy. In contrast, the WENO-SIF scheme has the smallest various errors

and maintains the theoretical third-order accuracy.

4.2. One-dimensional Linear advection problems

The main work of this subsection is to examine the resolution and computational efficiency of various WENO schemes

in computing the following 1D advection equation




ut + ux = 0, x ∈ [a, b],

u(x, 0) = u0(x), periodic boundary.
(34)

4.2.1. Case 1:

The initial conditions of this case are

u0(x) =




1, x ∈ [−1, 0),

0, x ∈ [0, 1].
(35)
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Figure 4 represents the numerical solutions of various WENO methods using 200 consistent cells with t = 2. We can see

that the results of WENO-SIF are closer to the exact, while WENO-PZ shows nonphysical oscillations. That shows the

present WENO-SIF is numerically stable and far less dissipative than the other WENO schemes.
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Fig. 4: Results of linear advection equation case 1 for various

WENO methods with 200 cells.
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Fig. 5: Computational efficiency for linear advection equation

case 1.

Table 4: Comparison of L1-errors and CPU times of various methods for Case 1 at t = 2.

N 100 200 400 800 1600
WENO-JS L1-error 0.58435e− 01 0.35024e− 01 0.20901e− 01 0.12440e− 01 0.73929e− 02

Time(s) 0.0042 0.0122 0.0404 0.1230 0.4359
WENO-Z L1-error 0.46070e− 01 0.26750e− 01 0.15503e− 01 0.89808e− 02 0.52044e− 02

Time(s) 0.0045 0.0134 0.0417 0.1350 0.4602
WENO-M L1-error 0.50682e− 01 0.29236e− 01 0.16767e− 01 0.95875e− 02 0.54771e− 02

Time(s) 0.0059 0.0180 0.0536 0.1989 0.6077
WENO-PZ L1-error 0.40887e− 01 0.23599e− 01 0.13677e− 01 0.79797e− 02 0.46984e− 02

Time(s) 0.0148 0.0539 0.1575 0.3191 2.7030
WENO-MN L1-error 0.39833e− 01 0.22884e− 01 0.13199e− 01 0.76482e− 02 0.44515e− 02

Time(s) 0.0066 0.0155 0.0422 0.1488 0.5384
WENO-SIF L1-error 0.38276e− 01 0.22199e− 01 0.12898e− 01 0.75204e− 02 0.43977e− 02

Time(s) 0.0039 0.0098 0.0269 0.0909 0.3089

In this example, we also compare the L1 errors and CPU times of various schemes in computing this problem using

different grid numbers, and the results are shown in Tab. 4 and Fig.5. The results show the CPU times of WENO-SIF

are significantly less than these WENO schemes when computing this problem. And all the errors of WENO-SIF are

significantly smaller than those of the other schemes. That shows the WENO-SIF scheme has far better resolution and

higher efficiency than others.
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4.2.2. Case 2:

The initial conditions of this case are

u0(x) =





1
6 (G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)), x ∈ [−0.8,−0.6),

1, x ∈ [−0.4,−0.2),

1− |10(x− 0.1)|, x ∈ [0, 0.2),

1
6 (F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, z)), x ∈ [0.4, 0.6),

0, otherwise,

(36)

where G(x, β, z) = e−β(x−z)2 , F (x, α, a) =
√
max(1− α2(x− a)2, 0) and the constants z = −0.7, δ = 0.0005, β =

ln2/(36δ2) and α = 10. Figure 6 represents the numerical solutions of various WENO methods using 200 consistent cells

with t = 6. In the square wave region (A), the results of both WENO-PZ and WENO-MN schemes show an upward jump,

while the three schemes WENO-JS, WENO-Z, and WENO-M do not capture the square wave. In contrast, the present

WENO-SIF is able to recognize the square wave and has a better match with the exact solution. And at the junction of

square and triangular waves (B), the WENO-SIF provided in this paper performs significantly better than other WENO

schemes. That shows the WENO-SIF scheme has better resolution than the others.
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Fig. 6: Results of Case 2 for various WENO methods with 200 cells at t = 6.

Table 5: Comparison of L1-errors and CPU times of various methods for Case 1 at t = 2 s.

N 100 200 400 800 1600
WENO-JS L1-error 0.26205e+ 00 0.15034e+ 00 0.70698e− 01 0.35678e− 01 0.16544e− 01

Time(s) 0.0143 0.0402 0.1161 0.3631 1.2816
WENO-Z L1-error 0.21769e+ 00 0.96672e− 01 0.43808e− 01 0.20840e− 01 0.96340e− 02

Time(s) 0.0148 0.0134 0.1203 0.3935 1.3887
WENO-M L1-error 0.24688e+ 00 0.11729e+ 00 0.49859e− 01 0.23715e− 01 0.10502e− 01

Time(s) 0.0186 0.0530 0.1658 0.1989 1.8517
WENO-PZ L1-error 0.15722e+ 00 0.70561e− 01 0.33124e− 01 0.15816e− 01 0.79290e− 02

Time(s) 0.0405 0.1495 0.4392 0.9634 8.1953
WENO-MN L1-error 0.18516e+ 00 0.75132e− 01 0.34745e− 01 0.16311e− 01 0.76641e− 02

Time(s) 0.0173 0.0448 0.1358 0.4517 1.6231
WENO-SIF L1-error 0.14108e+ 00 0.64001e− 01 0.31129e− 01 0.14958e− 01 0.73013e− 02

Time(s) 0.0133 0.0352 0.0933 0.2795 0.9567
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Fig. 7: Computational efficiency for linear advection equation case 2.

We also compare the L1 error and CPU time when computing this problem using different WENO schemes, and the

results are presented in Tab. 5 and Fig. 7. That shows the CPU times of WENO-SIF are significantly less than the

other WENO schemes, and the errors are also less than the other schemes. That shows the WENO-SIF scheme has good

resolution and high efficiency than others.

4.3. One-dimensional inviscid Burgers equation

Next, we will solve the one-dimensional linear inviscid Burgers equation of the following form




ut + uux = 0, x ∈ [0, 2π],

u0(x) = 0.5 + 0.5sin(x), periodic boundary.
(37)

Figure 8 represents the numerical solutions of Burgers equation using 100 consistent cells with t = 3, where the

reference solution is the result of third-order WENO-JS with 8000 cells. See from the enlarged view at the discontinuity

point, the results of WENO-SIF are closer to the exact solution than the other schemes.

13



x

u

0

0

1

1

2

2

3

3

4

4

5

5

6

6

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1 1
WENO-JS

WENO-Z
WENO-M

WENO-PZ
WENO-MN

WENO-SIF
exact

4.55

4.55

4.6

4.6

4.65

4.65

4.7

4.7

4.75

4.75

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1 1

Fig. 8: Results of inviscid Burgers’s problem for various WENO

methods with 100 cells.
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Fig. 9: Computational efficiency for inviscid Burgers’s problem.

We also compare the L1 error and CPU time for this problem, and the results are presented in Tab. 6 and Fig. 9. The

results show that WENO-SIF requires significantly less CPU time than other WENO schemes to compute this problem

with higher accuracy. That shows the WENO-SIF scheme has a higher resolution and computational efficiency than other

WENO schemes.

Table 6: Comparison of L1-errors and CPU times of various methods for Burgers equation at t = 3.

N 100 200 400
WENO-JS L1-error 0.54154e− 02 0.22134e− 02 0.87846e− 03

Time(s) 0.0034 0.0103 0.0228
WENO-Z L1-error 0.48777e− 02 0.19846e− 02 0.76258e− 03

Time(s) 0.0037 0.0089 0.0216
WENO-M L1-error 0.52125e− 02 0.21352e− 02 0.85026e− 03

Time(s) 0.0056 0.0114 0.0286
WENO-PZ L1-error 0.43732e− 02 0.17424e− 02 0.68191e− 03

Time(s) 0.0081 0.0247 0.0755
WENO-MN L1-error 0.48761e− 02 0.19743e− 02 0.72258e− 03

Time(s) 0.0048 0.0095 0.0244
WENO-SIF L1-error 0.39736e− 02 0.14041e− 02 0.60373e− 03

Time(s) 0.0030 0.0086 0.0198

4.4. One-dimensional gas dynamic Euler equations

This section focuses on performing various WENO schemes for the 1-D gas dynamic Euler equation.

ut + f(u)x = 0, (38)

with

u = (ρ, ρu,E)T , f(u) = (ρu, ρu2 + p, u(E + p))T , (39)

where ρ, u, p are the density, velocity and pressure, respectively. E = p/(γ − 1) + 1
2ρu

2 is the total energy and γ is the

specific heat ratio is set as γ = 1.4. And the time step is

∆t =
CFL∆x

maxi(ui + ci)
(40)
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where c =
√

γp/ρ. We will use the global Lax-Friedrichs flux splitting method in each of the following examples, and the

numerical fluxes are reconstructed in the characteristic space.

4.4.1. SOD’s problem

The initial conditions of SOD’s problem are

(ρ, u, p) =




(0.125, 0, 0.1), x ∈ [0, 0.5],

(1.000, 0, 1.0), x ∈ (0.5, 1].
(41)

Fig. 10 represents the density profiles of various WENO schemes at 200 cells until t = 0.2 with the reference solution

calculated with WENO-JS at 4000 cells. Results in the local zoom-in plots show that the results of WENO-SIF are closer

to the reference solution than the other WENO schemes.
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Fig. 10: Results of SOD’s problem for various WENO methods

with 400 cells.
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Fig. 11: Computational efficiency for SOD’s problem.

In this example, we also compare the L1 errors and CPU times of various schemes in computing this problem using

different grid numbers, and the results are shown in Tab. 7 and Fig.11. It is easy to see that the WENO-SIF scheme

has the least CPU time, and its error is the smallest among the results of all WENO schemes. That shows the present

WENO-SIF has optimal computational efficiency.

Table 7: Comparison of L1-errors and CPU times of various methods for SOD’s problem at t = 0.2.

N 100 200 400 800
WENO-JS L1-error 0.11463e− 01 0.62931e− 02 0.33992e− 02 0.18274e− 02

Time(s) 0.0347 0.1438 0.5502 2.0903
WENO-Z L1-error 0.95978e− 02 0.50504e− 02 0.26840e− 02 0.14375e− 02

Time(s) 0.0412 0.1550 0.5355 2.1739
WENO-M L1-error 0.10447e− 01 0.56146e− 02 0.29825e− 02 0.15702e− 02

Time(s) 0.0411 0.1594 0.5828 2.2522
WENO-PZ L1-error 0.86036e− 02 0.45538e− 02 0.24355e− 02 0.12930e− 02

Time(s) 0.0513 0.1847 0.6636 2.6458
WENO-MN L1-error 0.82540e− 02 0.43519e− 02 0.23119e− 02 0.12356e− 02

Time(s) 0.0381 0.1564 0.5404 2.1155
WENO-SIF L1-error 0.80335e− 02 0.42763e− 02 0.22335e− 02 0.12078e− 02

Time(s) 0.0342 0.1394 0.4027 1.7492
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4.4.2. Shu-Osher’s problem

The initial conditions of Shu-Osher’s problem at [−5, 5] are as follows

(ρ, u, p) =




(3.857143, 2.629369, 10.33333), x ∈ [−5,−4),

(1 + 0.2sin(5πx), 0, 1), otherwise.
(42)

This problem contains low-frequency and high-frequency density disturbances and is used to test the performance of

different WENO methods. Fig.12 presents the distribution curves of density for various WENO methods with 400 cells

at t = 1.8. The reference solution is calculated by using WENO-JS with 4000 cells. See from the figure, WENO-SIF

performs better than other WENO methods.
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Fig. 12: Results of Shu-Osher’s problem for various WENO

methods with 400 cells.
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Fig. 13: Computational efficiency for Shu-Osher’s problem.

The L1 errors and CPU times for this case with selected grid numbers are shown in Tab. 8 and Fig.13. It is easy

to see that the WENO-SIF scheme has the least CPU time, and its error is the smallest among the results of all WENO

schemes. That shows the present WENO-SIF has optimal computational efficiency.

Table 8: Comparison of L1-errors and CPU times of various methods for Shu-Osher’s problem at t = 1.8.

N 100 200 400 800
WENO-JS L1-error 0.17548e+ 00 0.12377e+ 00 0.86223e− 01 0.54189e− 01

Time(s) 0.0766 0.2905 1.1156 4.5627
WENO-Z L1-error 0.15919e+ 00 0.10336e+ 00 0.73338e− 01 0.35291e− 01

Time(s) 0.0875 0.3269 0.9927 4.6423
WENO-M L1-error 0.17251e+ 00 0.11455e+ 00 0.80621e− 01 0.45814e− 01

Time(s) 0.1027 0.3636 1.3128 4.7600
WENO-PZ L1-error 0.14736e+ 00 0.93986e− 01 0.67015e− 01 0.28745e− 01

Time(s) 0.0992 0.3511 1.3608 5.6314
WENO-MN L1-error 0.13527e+ 00 0.90792e− 01 0.63716e− 01 0.22812e− 01

Time(s) 0.0819 0.3261 0.9253 4.8361
WENO-SIF L1-error 0.13348e+ 00 0.83750e− 01 0.51532e− 01 0.16863e− 01

Time(s) 0.0755 0.2658 0.7691 3.6428
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4.4.3. Titarev-Toro’s problem

The initial conditions of the problem as follows

(ρ, u, p) =




(1.515695, 0.523346, 1.805000), x ∈ [−5,−4.5),

(1 + 0.1sin(20πx), 0, 1), x ∈ [−4.5, 5].
(43)

Figure 14 represents the computational results of various WENO methods using 2000 cells at t = 5. The reference solution

is computed by using third-order WENO-JS at 8000 cells. See from the figure that WENO-SIF performs better than the

other WENO schemes.
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Fig. 14: Results of Titarev-Toro’s problem for various WENO

methods with 2000 cells.
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Fig. 15: Computational efficiency for Titarev-Toro’s problem.

The L1 errors and CPU times for the problem on the selected grid are shown in Tab. 9 and Fig. 15. It is easy to see

that the WENO-SIF scheme takes much less CPU time to compute the problem and its accuracy is higher than that of

the others. That indicates the present WENO-SIF has the best resolution and computational efficiency.

Table 9: Comparison of L1-errors and CPU times of various methods for Titarev-Toro’s problem at t = 5.

N 500 1000 2000 4000
WENO-JS L1-error 0.62483e− 01 0.62483e− 01 0.62718e− 01 0.61440e− 01

Time(s) 1.7156 7.6427 30.439 121.97
WENO-Z L1-error 0.62460e− 01 0.62530e− 01 0.62618e− 01 0.52714e− 01

Time(s) 1.7536 7.7542 31.077 125.80
WENO-M L1-error 0.62464e− 01 0.62506e− 01 0.62707e− 01 0.58239e− 01

Time(s) 1.8969 8.2901 34.635 141.58
WENO-PZ L1-error 0.62428e− 01 0.62532e− 01 0.59712e− 01 0.31684e− 01

Time(s) 2.3443 9.3078 37.529 155.85
WENO-MN L1-error 0.62453e− 01 0.62538e− 01 0.58557e− 01 0.34812e− 01

Time(s) 2.0427 8.2568 32.641 130.05
WENO-SIF L1-error 0.62396e− 01 0.62550e− 01 0.57788e− 01 0.26048e− 01

Time(s) 1.6708 6.7469 28.965 112.78
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4.5. Two dimension gas dynamic Euler equation

In this section, we will investigate the performance characteristics of the WENO scheme mentioned in this paper by

solving a two-dimensional gas dynamics problem of the following form

ut + f(u)x + g(u)y = 0, (44)

with

u = (ρ, ρu, ρv, E)T ,

f(u) = (ρu, ρu2 + p, ρuv, u(E + p))T ,

g(u) = (ρv, ρuv, ρv2 + p, v(E + p))T , (45)

where, ρ, u, v, p are the density, x-velocity, y-velocity and pressure, respectively. And the total energy E is defined as

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (46)

And the time step is

∆t =
CFL∆x∆y

maxi(ui + ci) +maxj(vj + cj)
(47)

where c =
√

γp/ρ and CFL = 0.6. We will use the global Lax-Friedrichs flux splitting method in each of the following

examples, and the numerical fluxes are reconstructed in the characteristic space. The specific heat ratio γ = 1.4 for all

examples except γ = 5/3 in RT instability problem.

4.5.1. 2-D Riemann Problem: case 1

The initial conditions for 2-dimensional Riemann problem are as following[46, 48, 51]

(ρ, u, v, p) =





(1.5, 0.0, 0.0, 1.5), 0.8 ≤ x ≤1, 0.8 ≤ y ≤1,

(0.5323, 1.2, 0, 0.3), 0 ≤ x <0.8, 0.8 ≤ y ≤1,

(0.138, 1.206, 1.206, 0.029), 0 ≤ x <0.8, 0 ≤ y <0.8,

(0.5323, 0.0, 1.206, 0.3), 0.8 < x ≤1, 0 ≤ y <0.8.

(48)

In the results, there is a mushroom-like structure symmetric about the diagonal y = x, and the richness of the vortex

structure at the interface can usually examine the resolution of the different schemes. The boundary conditions for this

problem are: all four edges are zero-order extrapolation. Figure 16 represents the density contours of this case by using

800×800 cells until t = 0.8 with 24 contours at [0.2,1.7]. One can see that the unstable Kelvin-Helmholtz microstructures

constructed by WENO-SIF are significantly more abundant than the other WENO schemes, showing that the present

scheme has better resolution than the rest.

4.5.2. 2-D Riemann Problem: case 2

The initial conditions for 2-dimensional Riemann problem are as following[46, 48, 51]

(ρ, u, v, p) =





(3,−0.75,−0.5, 1), 0.5 ≤ x ≤1, 0.5 ≤ y ≤1,

(2, 0.75, 0.5, 1), 0 ≤ x <0.5, 0.5 ≤ y ≤1,

(1,−0.75, 0.5, 1), 0 ≤ x <0.5, 0 ≤ y <0.5,

(1, 0.75,−0.5, 1), 0.5 < x ≤1, 0 ≤ y <0.5.

(49)
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Fig. 16: Results of 2-D Riemann Problem for case 1: 20 density contours at [0.2, 2.2] with 640× 640 cells.

All four edges of the problem are zero-order extrapolation boundary conditions. Figure 17 shows the density contours for the

various WENO schemes using 800 × 800 cells until t = 0.8 with 20 contours at [0.2,2.2]. Comparing the computational

results of the various schemes shows that the unstable Kelvin-Helmholtz microstructure constructed by WENO-SIF is

significantly more abundant than other WENO schemes.

4.5.3. Implosion Problem

This problem is usually used to test the ability of numerical schemes to capture contact discontinuities and maintain

symmetry: if the scheme does not maintain symmetry, the jet will be distorted[49, 50]. The initial conditions

(ρ, u, v, p) =




(0.125, 0, 0, 0.14), 0 ≤ |x|+ |y| < 0.15,

(1, 0, 0, 1), otherwise.
(50)

All four edges of the problem are reflection boundaries. Figure 18 shows the density contours for the various WENO

schemes using 800 × 800 cells until t = 2.5 with 12 contours at [0.45,1.0]. Comparing the jets on the diagonal in each

graph, we can see that the length of WENO-SIF (F) is longer than others. That shows the present scheme is better than

the rest in computing this problem.
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Fig. 17: Results of 2-D Riemann Problem for case 2: 20 density contours at [0.2, 2.2] with 800× 800 cells.

4.5.4. Double-Mach reflection problem

This problem has widely used as a test example for high-order schemes. The initial conditions of double-Mach reflection

problem on the computational region [0, 4]× [0, 1] given as[3, 13, 47]

(ρ, u, v, p) =




(8, 57.1597,−33.0012, 563.544), y <

√
3(x− 1/6),

(1.4, 0, 0, 2.5), y ≥
√
3(x− 1/6),

(51)

The boundary conditions for this problem are: on the bottom, exact post-shock conditions are imposed in the interval

[0, 1/6], and we use the reflection boundary for the rest. We set the top to be the exact motion of a Mach 10 shock.

Inflow and outflow for the left and right, respectively. Figure 19 shows the density contours for the various WENO schemes

using 1024× 256 cells until t = 0.2 with 30 contours at [2,22]. At the interface, WENO-SIF has a richer vortex structure

than the rest of the solutions. That shows the present WENO-SIF has a better resolution than others.

4.5.5. RT instability problem

The initial conditions on the computational region [0, 0.25]× [0, 1] given as[12, 49, 50]

(ρ, u, v, p) =




(2, 0,−0.025

√
γp/ρcos(8πx), 2y + 1), 0 ≤ y < 0.5,

(1, 0,−0.025
√

γp/ρcos(8πx), y + 1.5), 0.5 ≤ y < 1.
(52)
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Fig. 18: Results of Implosion Problem: 12 density contours at [0.45, 1.0] with 800× 800 cells.

This problem, as a benchmark, examines the performance of various schemes to capture complex vortex structures and

maintain symmetry. We set the boundaries of the problem: the bottom and top are the incoming and outgoing flow

boundaries, respectively, and both the left and right are the reflection boundaries. Figure 20 shows the density contour

profiles for various WENO methods using 256× 1024 grids up to t = 1.95, 13 density contours at [0.9, 2.2]. Comparing

the results of all schemes, one can see that the present WENO-SIF has the richest vortex structure and keeps symmetry.

4.5.6. Forward-facing step problem

The problem describes a supersonic fluid of Mach 3 entering a tunnel with a step reflected several times on the surface,

thus generating a shock wave of the disembodied body. This problem is commonly used to test the numerical stability and

resolution of different numerical schemes. The wind tunnel has a length of 3, a width of 1, and a step of 0.2 in height is at

0.6 of the wind tunnel. (ρ, u, v, p) = (1.0, 3.0, 0, 0, 0.71429) is on the left side of the wind tunnel, and outflow boundary

conditions on the right side. The surfaces of both the tunnel and the step are reflection boundaries. Figure 21 shows the

density contour profiles for various WENO methods using 900× 300 grids at t = 4.0, 45 density contours at [0.5, 6.0]. At

the interface of these shocks, WENO-SIF has a richer vortex structure than others. That indicates the present WENO-SIF

has a better resolution than other WENO schemes.
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Fig. 19: Results of Implosion Problem: 30 density contours at [2, 22] with 1024× 256 cells.
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Fig. 20: Results of RT instability Problem: 13 density contours at [0.9, 2.2] with 256× 1024 cells.
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Fig. 21: Results of Forward-facing step problem: 45 density contours at [0.5, 6.0] with 900× 300 cells.

4.5.7. Kelvin-Helmholtz instability problem

The initial conditions on the computational region [−0.5, 0.5]× [−0.5, 0.5] given as[12, 49, 50]

(ρ, u, v, p) =




(2,−0.5, 0.1sin(2πx), 2.5), 0 ≤ −0.25 ≤ y ≤ 0.5,

(1, 0.5, 0.1sin(2πx), 2.5), otherwise.
(53)

We set all boundaries for this problem to periodic boundaries. Figure 22 shows the density contours for the various WENO

schemes using 800 × 800 cells until t = 1 with 12 contours at [0.9,2.2]. We can see from the graph that the vortex

structure of the WENO-SIF scheme is larger than that of the rest of the schemes. That shows the present scheme has a

higher resolution than the rest of the schemes.

4.6. Computational time for 2-D problems

In this section, we will give the time consumed by various WENO methods to compute the 2D problem by using a

desktop with an Intel i7-9700 CPU @ 3.00 GHz processor, and we list the results in Table 10. In the table, we will take the

time taken by WENO-JS to get the relative time of the various WENO schemes. Among all WENO schemes, WENO-SIF

uses the least amount of CPU time. Compared with the WENO-JS scheme, WENO-SIF saves at least about 20% of

computation time. And the CPU time of WENO-SIF is even only 20% of WENO-PZ. Combining individual one- and

two-dimensional problems, the WENO-SIF scheme provided in this paper has a higher computational efficiency than other

WENO schemes.

23



(A)WENO-JS
-0.4

-0.4

-0.2

-0.2

0

0

0.2

0.2

0.4

0.4

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

(D)WENO-PZ
-0.4

-0.4

-0.2

-0.2

0

0

0.2

0.2

0.4

0.4

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

(F)WENO-SIF
-0.4

-0.4

-0.2

-0.2

0

0

0.2

0.2

0.4

0.4

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

(B)WENO-Z
-0.4

-0.4

-0.2

-0.2

0

0

0.2

0.2

0.4

0.4

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

(C)WENO-M
-0.4

-0.4

-0.2

-0.2

0

0

0.2

0.2

0.4

0.4

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

(E)WENO-MN
-0.4

-0.4

-0.2

-0.2

0

0

0.2

0.2

0.4

0.4

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

Fig. 22: Results of Forward-facing step problem: 45 density contours at [0.9, 2.2] with 800× 800 cells.

Table 10: CPU times for the 2-d problems with various WENO schemes.

Case WENO-JS WENO-Z WENO-M WENO-PZ WENO-MN WENO-SIF
2-D Riemann(case 1) 3059(1.00) 3502(1.14) 5031(1.64) 16080(5.26) 4380(1.43) 2319(0.76)
2-D Riemann(case 2) 7179(1.00) 7584(1.06) 10270(1.43) 26450(3.68) 9107(1.27) 5492(0.77)

Implosion 33440(1.00) 35690(1.07) 51430(1.54) 143300(4.29) 44210(1.32) 27060(0.81)
Double-Mach reflection 1361(1.00) 1491(1.10) 2194(1.61) 6305(4.63) 1918(1.41) 1021(0.75)

RT instability 10030(1.00) 10730(1.04) 14700(1.43) 38340(3.72) 12630(1.23) 7639(0.74)
Forward-facing step 10290(1.00) 10940(1.06) 15340(1.50) 44660(4.34) 13650(1.33) 8061(0.78)

Kelvin-Helmholtz instability 10610(1.00) 11430(1.08) 15560(1.47) 40220(3.79) 14130(1.33) 8897(0.84)

5. Conclusion

To improve the excitation capture capability of the third-order WENO-JS scheme and reduce the computational

consumption, in this paper, we propose a new WENO scheme independent of the smooth factor. The weight functions of

the WENO-SIF are the segmented linear functions of the ratio to the sub-stencil flux, which contain a tunable parameter

λ. This function satisfies ω0(0) = 1 (ω1(0) = 0) and ω0(∞) = 0 (ω1(∞) = 1), which ensures the new present WENO

scheme contains the ENO property. Numerical results show that the present WENO scheme can achieve the desired

accuracy at high-order critical points and can further improve the resolution of WENO-JS by suppressing the numerical

oscillations near the discontinuity points with a low extra computational cost.
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