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Abstract
In this paper, we explore an optimization problem in which a working agent with an option to
retire wants to maximize her expected lifetime utility. The agent receives labor (or annuity)
incomebefore/after retirement and experiences dis-utility due to labor.Additionally, the agent
can partially borrow against her future income before/after retirement. We demonstrate that
when pre-retirement borrowing constraints are strict, the agent retires early, while strong post-
retirement borrowing constraints result in a late retirement. Our numerical results reveal that
the retirement threshold level changes with varying interest rates, with an increase in interest
rates leading to a general decrease in the retirement threshold level. However, in certain cases
with borrowing constraints, the declining effects of pre-/post-retirement discounted income
strongly influence the retirement decision as the interest rate increases. Additionally, our
findings indicate that the impact of the volatility of the risky asset and the interest rate on the
retirement wealth level varies. Specifically, at low interest rates, higher volatility is associated
with an increased retirement wealth level, while at high interest rates, lower volatility results
in a marginal increase in the retirement wealth level. These findings suggest a diminishing
influence of volatility on the retirement wealth level as interest rates rise.
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1 Introduction

In this article, we discuss the problem of an agent’s portfolio selection which was initially
studied by Merton (1969, 1971). Since then, various researchers have investigated this prob-
lem under different economic conditions. Merton (1969, 1971) and Karatzas et al. (1986)
used dynamic programming approaches to solve this problem by deriving the Hamilton-
Jacobi-Bellman (HJB) equations. In other studies, Karatzas et al. (1987) and Cox and Huang
(1989) designed martingale approaches that use the dual of the problem.

Furthermore, several researchers have studied the problem of optimal consumption and
portfolio selection with a (voluntary) retirement option, including (Choi and Shim, 2006;
Farhi and Panageas, 2007; Choi et al., 2008; Dybvig and Liu, 2010), and Lim and Shin
(2011), etc. In thesemodels, the retirement time is considered as the optimal stopping time (see
Karatzas and Wang (2000)), and the agent cannot return to her previous job after retirement.
In contrast, in job-switching models, such as those proposed by Shim and Shin (2014), Shim
et al. (2018), and Lee et al. (2019), an agent can switch jobs based on their wealth levels.

In this work, we employ a model similar to the one used in Shim et al. (2018). The model
in Shim et al. (2018) comprises two types of jobs (or income sources): One with high income
and high dis-utility, and the other with low income and low dis-utility. There are two main
differences between the model in Shim et al. (2018) and our model. First, Shim et al. (2018)
did not account for borrowing constraints, while we did. Second, Shim et al. (2018) focused
on job switching rather than (voluntary) retirement.

Another model similar to ours is presented in the research of Ding and Marazzina (2022).
In Ding and Marazzina (2022), the authors investigated an optimal retirement problem with
varying liquidity constraints and cash flows over different periods. The impact of borrowing
constraints in our study is consistent with their results. Specifically, strict pre-retirement
borrowing constraints lead to an optimal retirement at a lower wealth level, while strict post-
retirement borrowing constraints lead to an optimal retirement at a higher wealth level. There
are several differences between the two studies. Firstly, our model considers labor/dis-utility
policy based on Choi and Shim (2006), whereas the model in Ding and Marazzina (2022)
considers consumption-portfolio-leisure policy based on Choi et al. (2008). Moreover, we
derive closed-form solutions to our optimization problems. Secondly we focus on the impact
of interest rates and the stock volatility on the retirement threshold level to achieve a more
sensitive analysis of the solution in our model.

In this paper,we analyze the optimizationproblemof an infinitely-livedworking agentwith
an option to retirewho aims tomaximize her expected lifetime utility. The agent receives labor
income before retirement and may earn money, such as from a part-time job or an annuity,
after retirement.1 The agent also incurs dis-utility stemming from her labor or part-time job.
Additionally, the agent can partially borrow against her future labor income or annuity income

1 We choose to consider re-employment as one of the significant issues in the labor market since many
countries worldwide are experiencing an aging population. According to a report ‘Pensions at a Glance 2021’
from OECD (2021), this phenomenon is putting long-term financial pressure on these countries. However,
promoting an age-inclusiveworkforce bygivingolderworkers greater opportunities towork could help increase
GDP, as noted in theOECDpublication, ‘Promoting anAge-InclusiveWorkforce’ (OECD2020).Moreover, the
Labour and Social Affairs Committee of the OECD recommends that societies should “strengthen incentives
for workers to build up longer careers and to continue working at an older age” in ‘Recommendation of the
Council on Aging and Employment Policies’ OECD (2022). Further, according to an article by the World
Economic Forum, “many older people left the workforce during the pandemic, but the waning of COVID-19
and the soaring cost of living are reversing this trend. The phenomenon known as the ‘Great Unretirement’
is seeing older workers (over 50) return to paid employment across advanced economies” (Manktelow 2022).
Therefore, we incorporate re-employment as a key aspect of our model.
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before/after retirement. Furthermore, our model considers borrowing constraints both before
and after retirement simultaneously, distinguishing it from other models that only incorporate
borrowing constraints before retirement, such as Park and Jang (2014) and Lee et al. (2017).

One of the significant issues in the labor market is re-employment, especially for older
workers. Therefore, we set our problem to consider the impact of pre-/post- retirement bor-
rowing constraints on retirement decisions. Specifically, we examine howdifferent borrowing
constraints affect the determination of the threshold wealth level for (voluntary) retirement
when the interest rate is fixed, as well as under different interest rate conditions.2

We provide some numerical implications about the effects of the strength of borrowing
constraints and the interest rate on the retirement wealth level. Our research found that when
pre-retirement borrowing constraints become strong, the agentmay retire early to avoid them.
Conversely, when post-retirement borrowing constraints become strong, the agent may retire
later to avoid them. Additionally, the retirement threshold level generally decreases as the
interest rate increases. However, under certain conditions, the retirement threshold level
may first increase and then decrease as the interest rate increases because the decreasing
effect of post-retirement (resp. pre-retirement) discounted income is stronger than that of
pre-retirement (resp. post-retirement) discounted income.

In addition, this study examines the effects of both stock volatility and interest rates on
retirement wealth levels. The impact of the interest rate on the threshold wealth level remains
significant even when different volatility levels are implemented. Specifically, at low interest
rates, the threshold wealth level increases as volatility increases. However, at high interest
rates, the threshold wealth level increases despite decreasing volatility. Furthermore, the
impact of volatility on the threshold wealth level is relatively small at high interest rates. This
suggests that at high interest rates, the impact of interest rates on retirement wealth levels
is much stronger than that of volatility. In other words, as interest rates increase, the effect
of volatility decreases, resulting in threshold wealth levels that tend to have similar values
regardless of the volatilities.

The remainder of the paper is structured as follows. In Sect. 2, we present the financial
market model. In Sect. 3, we derive an analytic solution to the optimal consumption and
portfolio selection problem with a retirement option and borrowing constraints. Section4
provides numerical implications about the effects of the strength of borrowing constraints,
stock volatility and the interest rate on the retirement wealth level. Finally, we conclude the
paper in Sect. 5.

2 The financial market

We consider our financial market on an infinite-time horizon. We assume that there are two
kinds of assets in the financial market: One risk-free asset with a constant interest rate r > 0
and one risky asset. The risky asset (or stock) St at time t conforms to the geometric Brownian
motion (GBM)

dSt = μStdt + σ StdBt ,

2 It is worth noting that on November 3, 2022, the Federal Reserve announced that interest rates were being
raised to 4 percent in response to post-pandemic inflation caused by near-zero ranged interest rates during the
COVID-19 pandemic. In addition, according to the U.S. central bank’s own projections, this interest rate is
expected to increase further to 4.5% or up to 4.75% in 2023. Since the funds rate of the U.S. fed significantly
affects the global financial market, we analyze how interest rates affect individual retirement in our study.
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where {Bt }t≥0 is a standard Brownian motion on a proper complete probability space(
�,F, {Ft }t≥0,P

)
. The rate of return of the risky asset μ(> r) and the volatility of the

risky asset σ > 0 are both assumed to be constants. Let {Ft }t≥0 be an augmentation of
the filtration generated by the Brownian motion {Bt }t≥0 under the probability measure P.
Moreover, let us define the market price of risk (or Sharpe ratio) as

θ � μ − r

σ
> 0.

Next, we denote πt as the amount of money invested in the risky asset St at time t and we
denote ct as the non-negative consumption rate at time t . τ is denoted as the agent’s (volun-
tary) retirement time from labor. We assume that {πt }t≥0 and {ct }t≥0 are Ft -progressively
measurable satisfying

∫ t

0
π2
s ds < ∞ and

∫ t

0
csds < ∞, for all t ≥ 0, almost surely (a.s.).

The (voluntary) retirement time τ of the agent from labor is considered as the Ft -stopping
time. The agent receives labor income I1 > 0 before retirement. Since the agent works during
this period, she experiences stress as a result of her labor. This is expressed as dis-utility
L1 > 0 (see Choi and Shim 2006). After retirement, she may make money from (relatively)
weaker labor or annuities; by contrast, it may also be impossible for her to make money.
Therefore, we assume that the agent receives non-negative labor (or annuity) income I2 ≥ 0
with dis-utility L2 ≥ 0 after retirement. Obviously we see that I1 > I2 since, in general,
she cannot earn more money from the labor market after retirement. Now we summarize the
inequalities derived from income Ii , i = 1, 2 and dis-utility Li , i = 1, 2 as follows:

Assumption 1

I1 > I2 ≥ 0, L1 > L2 ≥ 0.

Remark 2 If I1 is smaller than I2, then the agent should retire right away to earn more money,
and it is not a case which considers (voluntary) retirement time.

Remark 3 This model is similar to that used by Shim et al. (2018). In the model of Shim et al.
(2018), the agent can change her job (between a high income, high dis-utility job and a low
income, low dis-utility job) infinitely without any restriction. However in this model, if the
agent once decides to retire irreversibly, then she cannot return to her previous job. This is
the main difference between two models.

Therefore, the agent’s wealth process Xt at time t is as follows:

dXt = [
r Xt + πt (μ − r) − ct + I1 · 1{0≤t<τ } + I2 · 1{τ≤t}

]
dt + σπt d Bt , X0 = x,

(2.1)

where 1A is an indicator function equal to 1 if x ∈ A, and equal to 0 otherwise.
In the real world, it is possible for people to borrow some amount of money relative to

their future income. In this paper, we allow the agent to borrow as much money as a certain
portion of her future (labor or annuity) income. It follows that the agent’s wealth can be
negative. The agent has to abide by the negative wealth constraint (or borrowing constraint),
so her wealth process should satisfy the inequalities below:

Xt ≥ −ν1
I1
r

, ∀t ∈ [0, τ ), ν1 ∈ [0, 1) (2.2)
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and

Xt ≥ −ν2
I2
r

, ∀t ∈ [τ,∞), ν2 ∈ [0, 1). (2.3)

There are different borrowing constraints (2.2) and (2.3) before and after retirement, respec-
tively. If ν1 = ν2 = 1, there are no borrowing constraints. If ν1 = ν2 = 0, there are
non-negative wealth constraints, that is, Xt ≥ 0, for all t ≥ 0. It is intuitive that, as
νi (i = 1, 2) increases, the borrowing constraints become weaker.

Definition 4 A control (c,π , τ ) �
({ct }t≥0, {πt }t≥0, τ

)
is admissible at x if the correspond-

ing wealth process with initial wealth x satisfies borrowing constraints (2.2) and (2.3).

3 The optimization problem

Throughout the paper, we assume that the agent has a constant relative risk aversion (CRRA)
utility function of consumption, that is, the utility function u(c) is defined as

u(c) � c1−γ

1 − γ
, (3.1)

where γ > 0 (γ �= 1) is the coefficient of relative risk aversion.
With the CRRA utility function (3.1), the agent aims to maximize

V ∗(x) = max
(c,π ,τ )

E

[∫ ∞

0
e−βt {u(ct ) − L1 · 1{0≤t<τ } − L2 · 1{τ≤t}

}
dt

]
(3.2)

subject to borrowing constraints (2.2) and (2.3) with the wealth process (2.1). Here, β > 0
is a subjective discount factor.

Assumption 5 We assume that the Merton’s constant K > 0 is always positive such that the
optimization problem (3.2) is well-defined,

K � r + β − r

γ
+ γ − 1

2γ 2 θ2 > 0.

Assumption 6 If the agent’s wealth level reaches the minimum wealth level (or borrowing
limit) (pre-retirement borrowing limit is x̂1 � −ν1 · I1/r and post-retirement one is x̂2 �
−ν2 · I2/r ), she liquidates all risky assets.

Remark 7 We consider the quadratic equation below for later use

g(m) � 1

2
θ2m2 +

(
β − r + 1

2
θ2

)
m − r = 0. (3.3)

m+ > 0 and m− < −1 are two real roots of the quadratic equation (3.3). We have the
following properties for the roots m±:

r − 1
2θ

2m±
β

= m±
m± + 1

and

m− < − 1

γ
< m+ ⇒ γm− + 1 < 0

since g(−1/γ ) = −K < 0.
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Assumption 8 We assume that the below inequality always holds:

κ � βm+(I1 − I2)

r(m+ + 1)(L1 − L2)
< c̄γ , (3.4)

where c̄ is the consumption level of the retirement time that corresponds to the threshold
retirement wealth level, which will be determined shortly (see Theorem 9).

We use the dynamic programming approach (see Merton 1969, 1971 and Karatzas et al.
(1986), etc.) to derive the following Bellman equations. For 0 ≤ t < τ , the Bellman equation
induced by the optimization problem (3.2) with the wealth process (2.1) is given by

βV (x) = max
(c,π)

[
{r x + π(μ − r) − c + I1} V ′(x) + 1

2
π2σ 2V ′′(x) + c1−γ

1 − γ
− L1

]

(3.5)

and, for t ≥ τ , we obtain the Bellman equation similar to the pre-retirement Bellman equation
(3.5) as follows:

βV (x) = max
(c,π)

[
{r x − c + π(μ − r) + I2} V ′(x) + 1

2
π2σ 2V ′′(x) + c1−γ

1 − γ
− L2

]
.

(3.6)

The next theorem presents the solutions to the Bellman equations (3.5) and (3.6) with bor-
rowing constraints (2.2) and (2.3).

Theorem 9 The solutions to the Bellman equations (3.5) and (3.6) are given by

V (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Vpre(x) = m+
m+ + 1

A1ζ
−γ (m++1)
1 + m−

m− + 1
A2ζ

−γ (m−+1)
1

+ 1

(1 − γ )K
ζ
1−γ
1 − L1

β
, for 0 ≤ t < τ,

Vpost (x) = m+
m+ + 1

B1ζ
−γ (m++1)
2 + 1

(1 − γ )K
ζ
1−γ
2 − L2

β
, for t ≥ τ,

(3.7)

where ζ1 and ζ2 are solutions to the algebraic equations

x = A1ζ
−γm+
1 + A2ζ

−γm−
1 + 1

K
ζ1 − I1

r

and

x = B1ζ
−γm+
2 + 1

K
ζ2 − I2

r
,

respectively. Here

B1 = 1

γm+K
ĉγm++1
2 > 0, ĉ2 = γm+K

γm+ + 1
(1 − ν2)

I2
r

> 0.

Moreover, if we determine the pair solution (c̄, ξ), ξ ∈ (0, 1) to the system of the following
algebraic equations

0 = γ (m+ + 1)(m− + 1)(L1 − L2)

β
c̄γ − γm− + 1

K
ξγm++1c̄ + γm−(1 − ν1)I1

r
ξγm+

− γm−(m+ + 1)(I1 − I2)

r
+ m+ − m−

m+K

[
γm+K (1 − ν2)I2

r(γm+ + 1)

]γm++1

c̄−γm+
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and

0 = γ (m+ + 1)(m− + 1)(L1 − L2)

β
c̄γ − γm+ + 1

K
ξγm−+1c̄ + γm+(1 − ν1)I1

r
ξγm−

− γm+(m− + 1)(I1 − I2)

r
,

then we derive

A1 = (m+ + 1)(m− + 1)

m+ − m−

(
L1 − L2

β
c̄γ − m−

m− + 1

I1 − I2
r

)
c̄γm+ ,

+ 1

γm+K

[
γm+K

γm+ + 1
(1 − ν2)

I2
r

]γm++1

,

A2 = − (m+ + 1)(m− + 1)

m+ − m−

(
L1 − L2

β
c̄γ − m+

m+ + 1

I1 − I2
r

)
c̄γm− ,

x̄ = A1c̄
−γm+ + A2c̄

−γm− + 1

K
c̄ − I1

r

= B1c̄
−γm+ + 1

K
c̄ − I2

r
,

where x̄ is the threshold wealth level for (voluntary) retirement.
Further, the candidate optimal policies (c∗, π∗, τ ∗) are given by

c∗
t =

{
ζ1, for 0 ≤ t < τ

ζ2, for t ≥ τ

π∗
t =

⎧
⎪⎪⎨

⎪⎪⎩

θ

σγ

(
−γm+A1ζ

−γm+
1 − γm−A2ζ

−γm−
1 + 1

K
ζ1

)
, for 0 ≤ t < τ

θ

σγ

(
−γm+B1ζ

−γm+
2 + 1

K
ζ2

)
, for t ≥ τ

and the optimal stopping time is given by

τ ∗ = inf {t ≥ 0 : Xt ≥ x̄} ,

where

Xt = A1ζ
−γm+
1 + A2ζ

−γm−
1 + 1

K
ζ1 − I1

r
, for 0 ≤ t < τ

and

Xt = B1ζ
−γm+
2 + 1

K
ζ2 − I2

r
, for t ≥ τ,

respectively.

Proof First, we take the pre-retirement case into consideration. For 0 ≤ t < τ , the first order
conditions (FOCs) of the Bellman equation (3.5) yield

c∗ = (V ′(x))−
1
γ , π∗ = − θ

σ

V ′(x)
V ′′(x)

. (3.8)

Inserting these FOCs (3.8) into equation (3.5), we obtain

− βV (x) + r xV ′(x) − 1

2
θ2

(V ′(x))2

V ′′(x)
+ γ

1 − γ
(V ′(x))−

1−γ
γ + I1V

′(x) − L1 = 0.

(3.9)
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We assume that the optimal consumption c is a function of wealth. Specifically, we assume
that there exists a function C(·) such that c = C(x), and X(·) is the inverse function of C(·),
that is, X(C(x)) = x . The functions X(·) and C(·) are both increasing functions (as will be
shown in Lemma 11). These functions with FOCs (3.8) suggests

V ′(x) = (C(x))−γ , V ′′(x) = −γ (C(x))−γ−1C ′(x) = −γ
(C(x))−γ−1

X ′(c)
. (3.10)

Substituting (3.10) back into the equation (3.9), we obtain

− βV (X(c)) + rc−γ X(c) + 1

2γ
θ2c1−γ X ′(c) + γ

1 − γ
c1−γ + I1c

−γ − L1 = 0.

(3.11)

Taking the derivative of equation (3.11) with respect to c and dividing it by c−γ−1, we obtain
the second-order ordinary differential equation (ODE)

1

2γ
θ2c2X ′′(c) +

(
r − β + 1 − γ

2γ
θ2

)
cX ′(c) − rγ X(c) + γ c − γ I1 = 0. (3.12)

If we conjecture a general solution of the form Xg(c) = c−γm to the homogeneous equation
of the ODE (3.12), then we obtain the quadratic equation

1

2
θ2m2 +

(
β − r + 1

2
θ2

)
m − r = 0

with two real roots m+ > 0 and m− < −1. We also get the particular solution to the ODE
(3.12) of the form

X p(c) = 1

K
c − I1

r
.

Therefore, we have the solution to the ODE (3.12) as

X pre(c) = A1c
−γm+ + A2c

−γm− + 1

K
c − I1

r
, (3.13)

where A1 and A2 are constants determined later. The solution to Bellman equation (3.5) can
be determined from equation (3.11) as follows:

V (x) = Vpre(x) = m+
m+ + 1

A1ζ
−γ (m++1)
1 + m−

m− + 1
A2ζ

−γ (m−+1)
1

+ 1

(1 − γ )K
ζ
1−γ
1 − L1

β
, (3.14)

where ζ1 is a solution to the algebraic equation

x = A1ζ
−γm+
1 + A2ζ

−γm−
1 + 1

K
ζ1 − I1

r
. (3.15)

FOCs (3.8) and (3.10) imply that the optimal consumption c∗ is ζ1—which is the unique
solution to algebraic equation (3.15)—and that the optimal portfolio π∗ is given by

π∗ = θ

σγ
ζ1X

′(ζ1) = θ

σγ

(
−γm+A1ζ

−γm+
1 − γm−A2ζ

−γm−
1 + 1

K
ζ1

)
. (3.16)

For t ≥ τ , we obtainBellman equation (3.6) in amanner similar to the pre-retirementBellman
equation (3.5),

123



The effects of pre-/post-retirement borrowing constraints... Page 9 of 22 170

and the solution to Bellman equation (3.6) is

V (x) = Vpost (x) = m+
m+ + 1

B1ζ
−γ (m++1)
2 + 1

(1 − γ )K
ζ
1−γ
2 − L2

β
(3.17)

and

X post (c) = B1c
−γm+ + 1

K
c − I2

r
. (3.18)

Here, B1 is a constant determined later (see 3.30), and ζ2 is a solution to the algebraic equation

x = B1ζ
−γm+
2 + 1

K
ζ2 − I2

r
. (3.19)

Similarly, the FOCs to Bellman equation (3.6) imply that the optimal consumption c∗ is
ζ2—which is the unique solution to algebraic equation (3.19)—and that the optimal portfolio
π∗ is given by

π∗ = θ

σγ
ζ2X

′(ζ2) = θ

σγ

(
−γm+B1ζ

−γm+
2 + 1

K
ζ2

)
(3.20)

(indeed, the FOCs to Bellman equation (3.6) are the same as FOCs (3.8) and (3.10)). We now
consider the boundary conditions of this problem. We denote x̄ as the threshold wealth level
for (voluntary) retirement. This implies that the agent chooses to retire from labor when her
wealth level exceeds the critical wealth level x̄ . Indeed, for −ν1 · I1/r ≤ x < x̄ , the solution
to Bellman equation (3.5) is Vpre(x) in (3.14) and for x ≥ x̄ , the solution to the Bellman
equation (3.6) is Vpost (x) in (3.17). Along with x̄ , there exists a consumption level c̄ > 0
such that

X pre(c̄) = x̄ = X post (c̄), (3.21)

that is

x̄ = X pre(c̄) = A1c̄
−γm+ + A2c̄

−γm− + 1

K
c̄ − I1

r
, (3.22)

x̄ = X post (c̄) = B1c̄
−γm+ + 1

K
c̄ − I2

r
. (3.23)

Simplifying the two equations (3.22) and (3.23) by equating x̄ , we get

(A1 − B1)c̄
−γm+ + A2c̄

−γm− − I1 − I2
r

= 0.

Moreover, Assumption 6 assures that there is zero risky investment (π∗ ≡ 0) when the
wealth level reaches the minimum levels x̂1 and x̂2 of pre-/post-retirement, respectively.
This is because the agent should stop investing in the risky asset due to borrowing constraints
(2.2) and (2.3). Thuswe haveminimumwealth levels x̂1 and x̂2 with correspondingminimum
consumption levels ĉ1 and ĉ2, respectively, as follows:

x̂1 = X pre (̂c1) = A1ĉ
−γm+
1 + A2ĉ

−γm−
1 + 1

K
ĉ1 − I1

r
= −ν1

I1
r

, (3.24)

x̂2 = X post (̂c2) = B1ĉ
−γm+
2 + 1

K
ĉ2 − I2

r
= −ν2

I2
r

. (3.25)
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Moreover, from (3.16) and (3.20), we see that X ′
pre (̂c1) = 0 and X ′

post (̂c2) = 0 guarantee
π∗ = 0, that is,

X ′
pre (̂c1) = −γm+A1ĉ

−γm+−1
1 − γm−A2ĉ

−γm−−1
1 + 1

K
= 0, (3.26)

X ′
post (̂c2) = −γm+B1ĉ

−γm+−1
2 + 1

K
= 0. (3.27)

From (3.24) and (3.26), we get

A1 = (γm− + 1) 1
K ĉ1 − γm−(1 − ν1)

I1
r

γ (m+ − m−)
ĉγm+
1 , (3.28)

A2 = − (γm+ + 1) 1
K ĉ1 − γm+(1 − ν1)

I1
r

γ (m+ − m−)
ĉγm−
1 . (3.29)

From (3.25) and (3.27), we also get

ĉ2 = γm+K

γm+ + 1
(1 − ν2)

I2
r

> 0,

B1 = 1

γm+K
ĉγm++1
2 > 0. (3.30)

From the above paragraph, we see that the domain of function X pre(c) is [̂c1, c̄) whereas
that of X post (c) is [̂c2,∞). We can also see that the relationship between ĉi (i = 1, 2) and
c̄ is

0 < ĉi < c̄, i = 1, 2.

Now, we define

ξ � ĉ1
c̄

∈ (0, 1). (3.31)

By using ĉ1 = ξ c̄ in (3.31), A1 in (3.28) and A2 in (3.29) are rewritten as follows:

A1 = (γm− + 1) 1
K ξ c̄ − γm−(1 − ν1)

I1
r

γ (m+ − m−)
(ξ c̄)γm+ , (3.32)

A2 = − (γm+ + 1) 1
K ξ c̄ − γm+(1 − ν1)

I1
r

γ (m+ − m−)
(ξ c̄)γm− . (3.33)

Further, the smooth-pasting condition of V (x) at x = x̄ implies

Vpre(x̄) = Vpost (x̄), V ′
pre(x̄) = V ′

post (x̄).

From Vpre(x̄) = Vpost (x̄), we get

m+
m+ + 1

(A1 − B1)c̄
−γ (m++1) + m−

m− + 1
A2c̄

−γ (m−+1) − L1 − L2

β
= 0. (3.34)

Further, from V ′
pre(x̄) = V ′

post (x̄) and (3.10), we get

V ′
pre(x̄) = V ′

post (x̄) = c̄−γ ⇒ X pre(c̄) = x̄ = X post (c̄),

that is,

(A1 − B1)c̄
−γm+ + A2c̄

−γm− − I1 − I2
r

= 0. (3.35)
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From (3.34) and (3.35), we get

A1 = (m+ + 1)(m− + 1)

m+ − m−

(
L1 − L2

β
c̄γ − m−

m− + 1

I1 − I2
r

)
c̄γm+

+ 1

γm+K

[
γm+K

γm+ + 1
(1 − ν2)

I2
r

]γm++1

, (3.36)

A2 = − (m+ + 1)(m− + 1)

m+ − m−

(
L1 − L2

β
c̄γ − m+

m+ + 1

I1 − I2
r

)
c̄γm− . (3.37)

We now have two versions of each A1 and A2. Setting (3.32) equal to (3.36), we get

0 = γ (m+ + 1)(m− + 1)(L1 − L2)

β
c̄γ − γm− + 1

K
ξγm++1c̄ + γm−(1 − ν1)I1

r
ξγm+

− γm−(m+ + 1)(I1 − I2)

r
+ m+ − m−

m+K

[
γm+K (1 − ν2)I2

r(γm+ + 1)

]γm++1

c̄−γm+ (3.38)

and setting (3.33) equal to (3.37), we get

0 = γ (m+ + 1)(m− + 1)(L1 − L2)

β
c̄γ − γm+ + 1

K
ξγm−+1c̄ + γm+(1 − ν1)I1

r
ξγm−

− γm+(m− + 1)(I1 − I2)

r
(3.39)

(wewill show the existence anduniqueness of the solution to the systemof algebraic equations
(3.38) and (3.39) in Lemma 14 with the specific case of I2 = L2 = 0). Hence, if we can solve
the system of algebraic equations (3.38) and (3.39), we can decide ξ and c̄ and consequently
obtain A1, A2 and x̄ . �
Lemma 10 We see that

A1 > 0, and A2 > 0.

Proof From A2 in (3.37), the below term is always positive

L1 − L2

β
c̄γ − m+

m+ + 1

I1 − I2
r

> 0

according to the inequality (3.4) in Assumption 8. Thus we see that A2 > 0. From A2 in
(3.29), A2 > 0 implies

ĉ1 <
γm+K (1 − ν1)I1

r(γm+ + 1)
<

K (1 − ν1)I1
r

. (3.40)

From A1 in (3.28), the below term is always positive

(γm− + 1)
1

K
ĉ1 − γm−(1 − ν1)

I1
r

> (γm− + 1)
(1 − ν1)I1

r
− γm−(1 − ν1)

I1
r

= (1 − ν1)I1
r

[
(γm− + 1) − γm−

] = (1 − ν1)I1
r

> 0,

where the first inequality is derived from γm− + 1 < 0 and the inequality (3.40). Thus we
see that A1 > 0. �
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Lemma 11 Functions X pre(c) for c ∈ [̂c1, c̄) in (3.13) and X post (c) for c ∈ [̂c2,∞) in (3.18)
are both increasing functions.

Proof First, let us consider the function

X pre(c) = A1c
−γm+ + A2c

−γm− + 1

K
c − I1

r
for c ∈ [̂c1, c̄).

We derive the first and second derivatives of X pre(c) as follows:

X ′
pre(c) = −γm+A1c

−γm+−1 − γm−A2c
−γm−−1 + 1

K
,

X ′′
pre(c) = γm+(γm+ + 1)A1c

−γm+−2 + γm−(γm− + 1)A2c
−γm−−2.

Since m− < −1 and γm− + 1 < 0 from Remark 7, and A1 > 0 and A2 > 0 from
Lemma 10, X ′′

pre(c) > 0 for c ∈ (̂c1, c̄). Moreover, since X ′
pre (̂c1) = 0 in (3.26) and

X ′
pre(c) is increasing for c ∈ (̂c1, c̄), X ′

pre(c) > 0 for c ∈ (̂c1, c̄), and consequently, X pre(c)
is increasing for c ∈ [̂c1, c̄).

Let us consider the function

X post (c) = B1c
−γm+ + 1

K
c − I2

r
, for c ∈ [̂c2,∞).

We derive the first and second derivatives of X post (c) as follows:

X ′
post (c) = −γm+B1c

−γm+−1 + 1

K
,

X ′′
post (c) = γm+(γm+ + 1)B1c

−γm+−2.

Since B1 > 0 in (3.30), X ′′
post (c) > 0 for c ∈ (̂c2,∞). Since X ′

post (̂c2) = 0 in (3.27) and
X ′

post (c) is increasing for c ∈ (̂c2,∞), X ′
post (c) > 0 for c ∈ (̂c2,∞), and consequently,

X post (c) is increasing for c ∈ [̂c2,∞). �

To demonstrate the existence and uniqueness of the solution to the system of algebraic
equations (3.38) and (3.39) in the case of I2 = L2 = 0, we need the two lemmas below.

Lemma 12 Let

f1(ξ) � (1 − ν1)
(
m+ξγm− − m−ξγm+) − (m+ − m−), for ξ ∈ (0, 1).

The function f1(ξ) is decreasing for 0 < ξ < 1 and f1(ξ) > 0 for 0 < ξ < ξ̂ , where
ξ̂ (0 < ξ̂ < 1) satisfies f1(̂ξ ) = 0.

Proof First we see that

f1(0+) = +∞, f1(1−) = −ν1(m+ − m−) < 0.

Now we consider the derivative of f1(ξ) as follows:

f ′
1(ξ) = γm+m−(1 − ν1)

(
ξγm− − ξγm+)

ξ−1 < 0, for ξ ∈ (0, 1)

since m− < 0 and ξγm− > ξγm+ for 0 < ξ < 1. Thus f1(ξ) is decreasing for 0 < ξ < 1.
Since f1(0+) > 0 and f1(1−) < 0, there exists a unique ξ̂ > 0 (0 < ξ̂ < 1) such that
f1(̂ξ ) = 0. Therefore, f1(ξ) > 0 for 0 < ξ < ξ̂ . �
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Lemma 13 Let

f2(ξ) � (γm+ + 1)ξγm−+1 − (γm− + 1)ξγm++1, for ξ ∈ (0, 1).

Then f2(ξ) > 0 for 0 < ξ < 1.

Proof First, we see that

f2(0+) = +∞, f2(1−) = γ (m+ − m−) > 0

since γm− + 1 < 0. Now we consider the derivative of f2(ξ) as follows:

f ′
2(ξ) = (γm+ + 1)(γm− + 1)

(
ξγm− − ξγm+)

< 0, for ξ ∈ (0, 1)

since γm− + 1 < 0 and ξγm− > ξγm+ for 0 < ξ < 1. Thus, f2(ξ) is decreasing for
0 < ξ < 1, and consequently, f2(ξ) > 0 for 0 < ξ < 1, since f2(0+) > 0 and f2(1−) > 0.

�
UsingLemmas 12 and 13,wewill demonstrate the existence and uniqueness of the solution

to the system of algebraic equations (3.38) and (3.39) in the case of I2 = L2 = 0 in the
following lemma:

Lemma 14 (I2 = L2 = 0) The system of algebraic equations (3.38) and (3.39) has a unique
solution.

Proof We present a proof in the case of I2 = L2 = 0. In this case, (3.38) is given by

γ (m+ + 1)(m− + 1)L1

β
c̄γ = γm− + 1

K
ξγm++1c̄ − γm−(1 − ν1)I1

r
ξγm+

+γm−(m+ + 1)I1
r

(3.41)

and (3.39) is given by

γ (m+ + 1)(m− + 1)L1

β
c̄γ = γm+ + 1

K
ξγm−+1c̄ − γm+(1 − ν1)I1

r
ξγm−

+γm+(m− + 1)I1
r

. (3.42)

Here, setting (3.41) equal to (3.42), we get

c̄ = f3(ξ) � γ K I1
r

· (1 − ν1) (m+ξγm− − m−ξγm+) − (m+ − m−)

(γm+ + 1)ξγm−+1 − (γm− + 1)ξγm++1

= γ K I1
r

· f1(ξ)

f2(ξ)
, (3.43)

where functions f1(ξ) and f2(ξ) are defined in Lemmas 12 and 13, respectively. Then, we
see that

f3(0+) = γ K I1
r

lim
ξ→0+

[
(1 − ν1)m+
(γm+ + 1)ξ

− m+ − m−
γm+ + 1

ξ−(γm−+1)
]

= +∞

since γm− + 1 < 0 and

f3(̂ξ ) = γ K I1
r

· f1(̂ξ )

f2(̂ξ )
= 0,
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where ξ̂ (0 < ξ̂ < 1) satisfying f1(̂ξ ) = 0 is given in Lemma 12. Thus, we see that

c̄ = f3(ξ) > 0, for 0 < ξ < ξ̂

(since we need c̄ > 0, we consider this proof process for 0 < ξ < ξ̂ ).
Now, let us consider the function h(ξ) � f ′

1(ξ) f2(ξ) − f1(ξ) f ′
2(ξ) for 0 < ξ < ξ̂ as

follows:

h(ξ) = (1 − ν1)
(
ξγm− − ξγm+)

[
γm+m−

{
(γm+ + 1)ξγm− − (γm− + 1)ξγm+}

− (γm+ + 1)(γm− + 1)
(
m+ξγm− − m−ξγm+)

]

+ (m+ − m−)(γm+ + 1)(γm− + 1)
(
ξγm− − ξγm+)

= (1 − ν1)
(
ξγm− − ξγm+)

[
m−(γm− + 1)ξγm+ − m+(γm+ + 1)ξγm−

]

+ (m+ − m−)(γm+ + 1)(γm− + 1)
(
ξγm− − ξγm+)

< (1 − ν1)
(
ξγm− − ξγm+)

[
m−(γm− + 1) − m+(γm+ + 1)

]

+ (m+ − m−)(γm+ + 1)(γm− + 1)
(
ξγm− − ξγm+)

= (m+ − m−)
(
ξγm− − ξγm+)

×
[

− (1 − ν1)(γm+ + γm− + 1) + (γm+ + 1)(γm− + 1)

]

< 0, (3.44)

where the first inequality is derived from ξγm+ < 1 < ξγm− for 0 < ξ < ξ̂ , and the second
inequality holds if γm+ + γm− + 1 ≥ 0. If γm+ + γm− + 1 < 0, then from (3.44), we
obtain

h(ξ) < (m+ − m−)
(
ξγm− − ξγm+) [

− (1 − ν1)(γm+ + γm− + 1) + (γm+ + 1)(γm− + 1)

]

≤ (m+ − m−)
(
ξγm− − ξγm+)

[
− (γm+ + γm− + 1) + (γ 2m+m− + γm+ + γm− + 1)

]

= γ 2m+m−(m+ − m−)
(
ξγm− − ξγm+)

< 0,

where the second inequality is derived from (1 − ν1) ≤ 1. Thus, we see that h(ξ) < 0 for
0 < ξ < ξ̂ regardless of the sign of γm+ +γm− +1. This implies that f3(ξ) is a decreasing
function for 0 < ξ < ξ̂ .

Now, plugging (3.43) into (3.41), we obtain the algebraic equation with respect to ξ as
follows:

γ (m+ + 1)(m− + 1)L1

β
f3(ξ)γ − γm− + 1

K
ξγm++1 f3(ξ) + γm−(1 − ν1)I1

r
ξγm+

−γm−(m+ + 1)I1
r

= 0.

Let us define a function F(ξ) as follows: For ξ ∈ (0, ξ̂ ),
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F(ξ) � γ (m+ + 1)(m− + 1)L1
β

f3(ξ)γ − γm− + 1

K
ξγm++1 f3(ξ) + γm−(1 − ν1)I1

r
ξγm+

−γm−(m+ + 1)I1
r

.

Then, we see that

F(0+) = γ (m+ + 1)(m− + 1)L1

β
f3(0+)γ − γm−(m+ + 1)I1

r
= −∞

since m− < −1, and

F (̂ξ−) = γm− I1
r

[
(1 − ν1)̂ξ

γm+ − (m+ + 1)
]

= γm− I1
r

[
(1 − ν1)̂ξ

γm+ − 1
] − γm+m− I1

r
> 0

since m+ > 0, m− < −1 and (1 − ν1)̂ξ
γm+ < 1. Thus, F(ξ) = 0 has at least one solution

for ξ ∈ (0, ξ̂ ).
Now, we suppose that there are two different solutions to the algebraic equation F(ξ) = 0

for ξ ∈ (0, ξ̂ ), that is, there are ξ1 and ξ2 (0 < ξ1 < ξ2 < ξ̂ ) such that F(ξ1) = 0 and
F(ξ2) = 0. From (3.43), there exist c̄i (i=1,2) such that c̄i = f3(ξi ) (i = 1, 2). Since f3(ξ)

is a decreasing function, we have

c̄1 = f3(ξ1) > f3(ξ2) = c̄2.

However, Lemma 11 implies that X pre(c) for c ∈ [̂c1, c̄) in (3.13) and X post (c) for c ∈
[̂c2,∞) in (3.18) are both increasing functions, and x̄ is determined uniquely from (3.21).
So c̄ = c̄1 = c̄2. This is contradiction to the assumption ξ1 < ξ2, so we have ξ1 = ξ2. �
Theorem 15 (Verification Theorem) The value function V ∗(x) of the optimization problem
(3.2) is equal to the solution V (x) in (3.7) to the Bellman equations (3.5) and (3.6). It therefore
follows that the candidate optimal polices in Theorem 9 are also the optimal policies of the
optimization problem (3.2).

Proof The proof is similar to that of Theorem 3 in Lee et al. (2017), so we omit it. �

4 Numerical illustrations

In this section, we present numerical illustrations. Firstly, we demonstrate how different bor-
rowing constraints before/after retirement impact the determination of the threshold wealth
level x̄ for (voluntary) retirementwhen the interest rate r is fixed. Then,we observe the thresh-
old wealth level x̄ under different borrowing constraints when the interest rate r changes.
Finally, we analyze the impact of the volatility of the risky asset and interest rate on the
threshold wealth level.

Remark 16 It can be observed that a stronger borrowing constraint corresponds to a lower
value of νi (i = 1, 2), while a weaker borrowing constraint corresponds to a higher value of
νi (i = 1, 2). In addition, a lower threshold retirement wealth level x̄ leads to an earlier retire-
ment time, whereas a higher threshold retirement wealth level x̄ results in a later retirement
time.
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Table 4 Threshold wealth level x̄ when r and ν1 are changed with ν2 = 0.4 (I1 = L1 = 1 , I2 = L2 =
0.2, β = 0.08, μ = 0.08, σ = 0.2, γ = 2)

ν1 = 0.1 0.2 0.3 0.4 0.5 0.6

r = 0.01 19.773 26.070 31.011 35.177 38.810 42.036

0.02 21.117 23.705 25.849 27.677 29.258 30.631

0.03 20.079 21.329 22.372 23.249 23.986 24.599

0.04 18.288 18.899 19.397 19.797 20.115 20.359

0.05 16.172 16.450 16.661 16.816 16.925 16.998

0.06 13.977 14.079 14.145 14.183 14.205 14.215

First, we examine how the threshold wealth level x̄ changes with different values of
νi , i = 1, 2. Tables 1 and 2 display the results for low and high interest rates, r = 0.02 and
r = 0.05, respectively. Both Tables 1 and 2 show that, as ν1 increases while ν2 remains fixed,
x̄ also increases. This effect is particularly pronounced when the interest rate r is 0.02. On
the other hand, when ν2 increases while ν1 remains fixed, x̄ decreases, although this effect
is relatively minor. This implies that if the borrowing constraint becomes stronger before
retirement (i.e., ν1 decreases), the agent is likely to retire early to avoid the strong borrowing
constraint. Conversely, if the borrowing constraint becomes stronger after retirement (i.e., ν2
decreases), the agent is likely to delay retirement to avoid the strong borrowing constraint
after retirement. However, the impact of post-retirement borrowing constraint on retirement
decisions is less significant compared to the pre-retirement borrowing constraint. This is
because the pre-retirement borrowing constraint has a much stronger impact on retirement
decisions than the post-retirement borrowing constraint.

The results of Table 3 show that as ν2 increases with fixed ν1, x̄ decreases under low
interest rate. However, when the interest rate r is 0.06, there is little change in x̄ (x̄ ≈ 13.98)
as ν2 increases. Hence, it can be observed that if the interest rate is relatively high, then ν2
has almost no impact on retirement decisions. Conversely, if the interest rate is relatively
low, ν2 affects retirement decisions to some degree. As the post-retirement borrowing con-
straint weakens, the agent retires earlier under a low interest rate to avoid the pre-retirement
borrowing constraint.

Furthermore, it can be observed that as the interest rate increases, the retirement threshold
level x̄ decreases under low ν2. However, under high ν2, x̄ increases and then decreases as
the interest rate increases, which is one of the novel features of our numerical results. It
can be seen that as the interest rate increases, both the pre-retirement discounted income
I1/r and the post-retirement discounted income I2/r decrease. Consequently, as the interest
rate increases, the retirement threshold level becomes lower under low ν2. However, in the
case of high ν2, the decreasing effect of post-retirement discounted income is stronger than
that of pre-retirement discounted income. Thus, even though the interest rate increases, the
retirement threshold level x̄ may increase and then decrease.

In addition, Table 4 presents similar results to those in Table 3 for a fixed ν2. It is evident
that for a fixed ν2, x̄ increases as ν1 increases. However, the rate of change of x̄ differs
depending on the interest rate r . When the interest rate is low, x̄ increases significantly as ν1
increases. On the other hand, if the interest rate is relatively high, such as r = 0.06, x̄ hardly
changes (x̄ ≈ 13.98 ∼ 14.22) as ν1 increases. Similar to the above results of Table 3, ν1 has
almost no impact on retirement decisions if the interest rate is relatively high. Conversely,
when the interest rate is relatively low, ν1 affects retirement decisions to a certain extent; in
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Fig. 1 I1 = L1 = 1 , I2 = L2 = 0.2, β = 0.08, μ = 0.08, γ = 2

particular, as the pre-retirement borrowing constraint becomes weak, the agent retires late
under a low interest rate to avoid the post-retirement borrowing constraint.

Furthermore, it can be observed that if ν1 is relatively high, the retirement threshold level
x̄ decreases as the interest rate increases. However, if ν1 is relatively low, x̄ initially increases
and then decreases as the interest rate rises. This indicates that when ν1 is considerably
low, the impact of the decreasing pre-retirement discounted income is stronger than that of
post-retirement discounted income. Consequently, even though the interest rate increases,
the retirement threshold level x̄ may first increase and then decrease.

In the final analysis, we examine the effects of the volatility of the risky asset σ and the
interest rate r on the retirement wealth level x̄ . The impact of the interest rate on the threshold
wealth level remains significant even when different levels of volatility are implemented. It
is noteworthy that as interest rates increase, the effect of σ on x̄ diminishes. For instance,
in Fig. 1(a), when the interest rate is 0.01, the values of x̄ vary significantly across different
σ values, approximately 14, 22, and 24. However, when the interest rate is raised to 0.06,
the values of x̄ become similar for each σ , briefly 14. This implies that, at low interest rates,
the threshold wealth level increases as volatility increases. However, at high interest rates,
the threshold wealth level increases despite decreasing volatility. Furthermore, the impact of
volatility on the threshold wealth level is relatively small. This proposes that at high interest
rates, the impact of interest rates on retirement wealth levels is much stronger than that of
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volatility. In other words, as interest rates increase, the effect of volatility decreases, result-
ing in threshold wealth levels that tend to have similar values regardless of the volatilities.
This indicates that high interest rates minimize the impact of market liquidity on individual
retirement.

5 Concluding remarks

In this paper, we have investigated an optimization problem in which an infinitely-lived
working agent with an option to retire maximizes her expected lifetime utility. The agent
receives labor (or annuity) income before/after retirement and experiences dis-utility due to
labor. Additionally, there are pre-/post-retirement borrowing constraints that allow the agent
to partially borrow against her future labor income before/after retirement. In light of these
conditions, we derived closed-form solutions for the utility maximization problem.

Our numerical illustrations reveal three primary findings. Firstly, when the interest rate is
held constant, different pre-/post-retirement borrowing constraints have varying effects on
the determination of the retirement threshold level. Specifically, when pre-retirement (resp.
post-retirement) borrowing constraints become strong, the agent retires early (resp. late) to
avoid pre-retirement (resp. post-retirement) borrowing constraints.

Secondly, we observed how the retirement threshold level responds to different interest
rates, which is one of the main features of our numerical results. Generally, as the interest rate
increases, the retirement threshold level decreases. However, under certain conditions, the
retirement threshold levelmay increase and then decrease. This occurs because the decreasing
effect of post-retirement (resp. pre-retirement) discounted income is stronger than that of
pre-retirement (resp. post-retirement) discounted income. As a result, even if the interest rate
increases, the retirement threshold level may increase and then decrease.

Finally, we analyzed the impact of the volatility of the risky asset and the interest rate
on the retirement wealth level. Notably, we found that at low levels of interest rates, the
retirement wealth level increases as the volatility increases, while at high levels of interest
rates, the retirement wealth level increases with relatively little change despite the volatility
decreasing. This insists that as interest rates increase, the effect of volatility on the threshold
wealth level diminishes.
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