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Abstract
Mark–recapture sampling schemes are conventional approaches for population size (N )
estimation. In this paper, we mainly focus on providing fixed-length confidence interval
estimation methodologies for N under a mark–recapture–mark sampling scheme, where,
during the resampling phase, non-marked items are marked before they are released back
in the population. Using a Monte Carlo method, the interval estimates for N are obtained
through a purely sequential procedure with an adaptive stopping rule. Such an adaptive deci-
sion criterion enables the user to “learn” with the subsequent marked and newly tagged items.
The method is then compared with a recently developed accelerated sequential procedure in
terms of coverage probability and expected number of captured items during the resampling
stage. To illustrate, we explain how the proposed procedure could be applied to estimate
the number of infected COVID-19 individuals in a near-closed population. In addition, we
present a numeric application inspired on the problem of estimating the population size of
endangered monkeys of the Atlantic forest in Brazil.

Keywords Markov chain · Population size estimation · Fixed-length confidence intervals ·
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1 Introduction

When it comes to ecological studies and biodiversity conservation, it is important to know
or estimate the population size of the concerned species. However, determining population
size is not an easy task. This could be due to the difficulty of catching or the impracticality of
enumerating a whole natural population of a species. One is referred to Creel et al. (2003) and
Grimm et al. (2014) for more information. Way back in history, Laplace (1786) attempted
to estimate the population of France using the registered births for the whole population, the
number of parishes of the known total population size, and the number of births in those
parishes. Applications in estimating the size of population of American duck and size of
population of smolts can be found in Lincoln (1930) and Schwarz and Dempson (1994),
respectively. Estimating birth/death rates and extent of registration was discussed in Sekar
and Deming (1949). Given a large data set of diabetic persons consisting of a list obtained
from a survey and a list obtained from doctors’ records, Seber et al. (2000) applied this
method to estimate both the probabilities of making list errors and the population size.

This article is on a modification of the the well-known mark–recapture tool which also
sometimes referred as the capture–mark–release–recapture (CMRR)methodology. Typically
mark–recapture is carried out in three phases: first, one catches a random sample of size t ,
without replacement, from the entire population of N (unknown) individuals; then, these t
individuals are tagged and released back to the population; in the third phase, individuals are
recaptured and the number (s) of tagged individuals is recorded to get the final estimate of N .
The first use ofmark-recapture is often attributed to Peterson (1896). In Villella et al (2004),
one would find use of mark–recapture techniques to estimate survival and recruitment in
a freshwater mussel population at a site on the Cacapon River, a tributary to the Potomac
River. Lincoln–Peterson estimates from mark–recapture strategy were used by Moore et al.
(2010) for estimating census for tuatara, a burrowing Reptile. It is important to note that the
‘mark–recapture’ method is under the assumption that the samples experience no change in
the population, such as birth, death, or migration. In other words, the population is considered
‘closed’, according to Seber and Schofield (2019).

The marking process is not just limited to two samples but can be repeated furthermore
to multi-record systems. For instance, when a third sample is constructed, the unmarked
subjects will be marked and the already marked could be marked again using a different
marker or number if numbered tags are applied. As a result, a capture history is created for
the population. This method is called multiple capture–recapture (MCR) method by Seber
and Schofield (2019) or the K-sample method. Schnabel (1938) was recognized as the first to
apply it to a closed population in a lake to estimate the total number of fish. The theory of this
model was further developed by Chapman (1952) and Darroch (1958) developed a sequential
Bayes algorithm in population estimation frommultiple mark–recapture experiments, which
was discussed to work for all cases regardless of the sample size, number of sequences,
and sampling procedures. Smith (1988) presented Bayesian methods for obtaining point and
interval estimates from data gathered from capture–recapture surveys. Smout et al. (2010)
implemented an integrated approachwhere they simultaneously analyzed data obtained using
three different marking techniques (permanent brands, tags, and natural pelage markings),
assuming that animals can be cross-classified across the different mark types. They also
provided estimates of mark-loss probabilities for tag and pelage individuals by essentially
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comparing the capture histories with those for the branded seals. Bonner and Holmberg
(2013) provided a method of modeling a population’s dynamics using data from multiple,
non-invasive marks by constructing an explicit model of the observation process that allows
for multiple marks and applying Bayesian methods of inference via Markov chain Monte
Carlo sampling. They modeled the aggregation of whale sharks in NingalooMarine Park, off
the west coast of Australia. Epopa et al. (2017) estimated the seasonal variation in population
size and the survival and dispersal of male Anopheles coluzzii mosquitoes in a small sub-
Saharan Africa village via repeated mark–recapture experiments.

However, there is not much literature focusing on estimating a population size while
providing an adequate stopping rule using the mark–recapture method. As for real-life prob-
lems, it is often the case that people need to balance between of cost of sampling and the
accuracy of estimation. Thus, it is of great importance to make the best estimation with the
minimum required sample. In the framework of a mark–recapture strategy, Mukhopadhyay
and Bhattacharjee (2018) proposed sequential methodologies to come up with bounded risk
point estimators of an optimal choice of recaptured number of tagged individuals, which
led to an appropriate sequential estimator of N . Zhuang and Bhattacharjee (2021) further
developed purely sequential and accelerated sequential sampling schemes to obtain the total
number of tagged individuals to observe in the recapturing phase, incorporating the cost of
each observation into a weighted squared-error loss function and with the goal of achieving
minimum risk for estimating the size of a population.

Many researchers apply sequential analysis to solve a wide variety of problems in areas,
such as reliability and quality control, clinical trials, and life tests, with the fact that sequential
analysis is more efficient than a customary fixed-sample-size method and it often requires
fewer sampling inspections with accurate outcome.Moreover, for some problems, sequential
analysis is essential, because no fixed-sample-size proceduremaywork, according toDantzig
(1940).A comprehensive reviewof sequentialmethodologies can be found inMukhopadhyay
and de Silva (2009). In the spirit of Anscombe (1952) and Chow and Robbins (1965), fixed-
width confidence interval for a parameter θ is defined as (θ − d, θ + d) with 2d to be the
prefixedwidth of the constructed interval. Then, due to the fact that for a positive parameter θ ,
the lower bound of a fixed-width confidence interval, θ−dmaypossibly be a negative number,
in the spirit of Banerjee and Mukhopadhyay (2016), it may be more appropriate to construct
a fixed-accuracy confidence interval typically given by (θ/δ, θδ) with δ to be the prefixed
accuracy measurement. For most recent work in sequential analysis and confidence interval
estimation, one is referred to Chattopadhyay and Mukhopadhyay (2013), Mukhopadhyay
and Zhuang (2017), Zhuang et al. (2020), Khalifeh et al. (2020), and Hu et al. (2021).

In this paper, we will provide solutions for constructing confidence interval estimations
of the unknown population size, N , considering both fixed-length and traditional intervals,
under a sequential s-adaptive multiple mark–recapture sampling scheme. We use a with-
replacement procedure where a recaptured non-marked item will be marked before being
put back into the population, named as a mark–recapture–mark scheme, which substantially
decreases the recapturing effort by the end of the analysis. We would like to point out that
Leslie and Chitty (1951) had proposed a similar mark–recapture sampling scheme to estimate
population parameters where the authors are marking all the items after recapturing. They
proposed repeated marking on items that are already marked. In our process, marked items
are not marked again. This way, when the marking process is difficult and re-marking is
potentially harmful for an organism, our method becomes more suitable. Schnabel (1938),
Jackson (1939), and Bailey (1951) have used similar ideas, but they are doing multiple
recaptures in groups to observe the number of tagged items without changing the number
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of tagged items in the population by marking the unmarked before releasing back to the
population.

The rest of the paper develops in the following sequence. For the non-fixed-length confi-
dence interval, the exact solution is offered in the first part of Sect. 2. In Sect. 2.1, the solution
for the fixed-length interval is derived using both exact and Monte Carlo approaches, where
the latter is recommended in practice for computational viability. Section3 contains the
results of a simulation study comparing the proposed method with the Practical Accelerated
Sequential Procedure introduced by Zhuang and Bhattacharjee (2021). In Sect. 4, the pro-
posed mark–recapture–mark procedure is illustrated in two situations using simulated data.
The first one is inspired by the problem of estimating the number of persons infected by the
COVID-19 virus, and the second one is based on the experiment by Screnci-Ribeiro (2016)
to estimate the population size of the endangered golden lion tamarin in Brazil. The paper is
finished in Sect. 5 with the concluding remarks.

2 Mark–recapture–mark

Let t denote the number of marked items in a target population of unknown size, say N . Items
are sampled, with replacement, one-by-one from the population. If a sampled item is already
tagged, then it is just put back in the population. Otherwise, the item is marked before being
returned to the population. This way, let Xn denote the number of marked items appearing
up to the nth resampled item. Because Xn is a Markovian process, for a given population
with size being N , its probability function for n ≥ 2 can be expressed through as a recursion
using the law of total probability, as follows:

Pr [Xn = x; N ] = Pr [Xn = x |Xn−1 = x − 1; N ]Pr [Xn−1 = x − 1; N ]
+Pr [Xn = x |Xn−1 = x; N ]Pr [Xn−1 = x; N ]

= Pr
[
Xn−1 = x − 1; N

] (t + n − x)

N
+ Pr

[
Xn−1 = x; N

] (N − t − n + x + 1)

N
,

(1)

where x = max(0, n − N + t), . . . , n.
In addition, let Ys denote the number of resampled items until XYs = s, where s(≥ 1) is

fixed in advance.
The probability of {Ys = y} is given by

Pr [Ys = y; N ] = Pr
[
Xy−1 = s − 1; N

] (t + y − s)

N
, y = s, . . . , N − t + s. (2)

For fixed N , the probability in (2) can be calculated by running the Markov chain related
to (1). Using the same routine, if an actual value Ys = y0 is observed, one can evaluate the
likelihood, L(N |y0), through (2), that is

L(N |y0) = Pr [Ys = y0; N ]. (3)

To find themaximum-likelihood estimator (MLE) for N , here denoted by N̂s(Ys), we use a
trisection method, which is a modification of the classical bisection algorithm by Burden and
Faires (1985) to get theMLEof N . The intuition behind thismethod is the following. Suppose
that lower and upper bounds for the MLE are available, say N1 and N4, respectively. Note
that even the naive approach based on scanning each integer in the set N1, N1 + 1, . . . , N4
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will find the maximum of L(N |y0). Naturally, to save execution time in comparison to such
an exhaustive procedure, it is more efficient to divide the range [N1, N4] into sub-intervals
to be scanned in parallel. As demonstrated by Van Der Burg (1995), the bisection method is
the optimal choice in comparison to dividing the ranges in a larger number of sub-intervals
at each iteration of the algorithm. And most recently, from Sathasivam and Alzaeemi (2022),
the trisection method was discussed as a modification of the classical bisection method, and
they stated that dividing an interval into two sections leads to slow convergence. For brevity,
we will not get into too many details of the discussion on finding the optimal number of
sub-intervals, because it is clear that one will find the optimal value either way and it is the
difference between slower or faster convergence. The bisection algorithm is typically applied
to find the roots for the gradient function in problems of optimization.Here,we are looking for
a point to maximize a function where derivatives do not apply. For our problem specifically,
the traditional bisection method does not apply, and hence, we consider a modification of the
process. We decide to divide the range [N1, N4] in three parts, [N1, N2), [N2, N3), and
[N3, N4] and state the steps in details in the following.

Because themaximumpoint of L(N |y0) is in one of the sub-intervals [N1, N2), [N2, N3),
or [N3, N4), the range of integers at which the solution is confined is updated by comparing
the likelihood for each of these Ni candidates. This way, the algorithm is as follows. Take
the initial auxiliary tuning parameters N4 = max(y0, y0 − s + t, Nnaive) and a = L(N4|y0),
and update N4 := N4 + Nnaive, where

Nnaive = t
Ys
s

,

would be theMLE of N under a without-replacement sampling scheme, which is not the case
in the present context. Because Nnaive is the maximum-likelihood estimator and an unbiased
estimator of N under the with-replacement mark–recapture scheme (Mukhopadhyay and
Bhattacharjee 2018), and we are seeking for a N4 value greater than the maximum-likelihood
estimator of N , it is intuitive to start the search for N4 among values greater than Nnaive.

In the initial auxiliary tuning parameters described above, we do three calculations: (1)
N4 = max(y0, y0 − s + t, Nnaive), then (2) a = L(N4|y0), and then (3) N4 := N4 + Nnaive.
Note that a is based on the old N4. The new N4, after calculation (2), will provide the first
iteration of Step (i) below.

– Step (i)While L(N4|y0) ≥ a, update a = L(N4|y0), and at this point N4 := N4+Nnaive.
– Step (ii) Define N1 = max(y0, y0 − s + t), N2 = N1 + �(N4 − N1)/3�, and N3 =

N2 + �(N4 − N1)/3�.
– Step (iii) For i = 1, 2, 3, 4, if maxi L(Ni |y0) = L(N1|y0), then update N4 as

N4 := N2. If maxi L(Ni |y0) = L(N2|y0), then update N4 := N3. If maxi L(Ni |y0) =
L(N3|y0), then update N1 as N1 := N2. However, if maxi L(Ni |y0) = L(N4|y0), then
update N1 := N3.

– Step (iv) Update N2 := N1 + �(N4 − N1)/3�, and N3 := N2 + �(N4 − N1)/3�.
– Step (v) If N4 − N1 ≤ 6, then stop the iterations and go to Step (vi) below. Otherwise,

run Step (iii) again.
– Step (vi) Take N̂s(Ys) = argmaxN∗∈{N1,N1+1,...,N4}L(N∗|y0).
To find the lower bound, N1, to initiate the search, the trivial choice is the maximum

between y0 and y0 − s + t . Thus, to ensure that the algorithm converges, it is sufficient to
show that step (i) always run in a finite number of iterations to deliver the upper bound, N4.
Note from (2) and (3), for fixed y0, the likelihood converges to zero with N , and it is because
L(N |y0) = Pr [Ys = y0; N ] ≤ (t+y0−s)

N → 0 as N → +∞. That is, there always exists
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Table 1 Expectation and standard deviation of N̂s (Ys ) calculated for N = 100, 200, . . . , 1000 with t = s =
50, 100, 200

N t = 50 t = 100 t = 200

E[N̂s (Ys )] sd[N̂s (Ys )]0 E[N̂s (Ys )] sd[N̂s (Ys )] E[N̂s (Ys )] sd[N̂s (Ys )]
100 100.63 8.30 100.00 0 na na

200 200.66 20.26 200.41 11.04 200.00 0

300 300.16 33.44 300.80 20.12 300.19 9.68

400 400.23 46.31 400.22 29.17 400.03 15.92

500 499.95 59.32 500.05 38.18 500.67 22.33

600 599.87 72.68 600.47 47.50 600.46 28.69

700 699.85 85.79 700.56 56.45 700.26 35.01

800 799.69 99.04 800.54 65.60 800.23 41.24

900 899.58 112.47 900.47 74.84 900.77 48.05

1000 999.53 125.90 100.40 84.06 1000.80 53.99

an integer N0, such that for N4 > N0, we have L(N4|y0) < L(N0|y0). Therefore, step (i) is
always executable in a finite number of iterations.

In step (ii), we setup the first division of the feasible interval in three sub-intervals.
Step (iii) is meant to update N1 and N4 to obtain a shorter feasible interval according to the

maximum likelihood among the four initial Ni choices, namely interimmaximum. Note that,
if N1 promotes the interim maximum, it means that the global maximum is not in [N2, N4],
and thus, we have a new upper bound given by N4 := N2. However, if the interim maximum
was obtained with N2, it means that the global maximum is not in [N3, N4], and hence, we
can update N4 := N3. If N3 promoted the interim maximum, then the global maximum is
not in [N1, N2], and then, we can update N1 := N2. Finally, if interim maximum occurs
with N4, then the global cannot be in [N1, N3], and thus, we can updated N1 := N3.

Step (iv) performs the division of the updated feasible interval in three new sub-intervals
for each iteration of step (iii).

Regarding step (v), by evaluating the likelihood on each new sequence of Ni s, and fol-
lowing the updates in step (iii), these intervals are made narrower and narrower by following
the maximum likelihood among these four interim candidates. Because of the ceiling and
floor truncation operators for getting the integer candidate for N in steps (iii) and (iv), the
method can end up with N4 − N1 = 3, or there may occur a difference of two units between
Ni − Ni−1 for i = 2, 3, 4, case where N4 − N1 = 6. If N4 − N1 > 6, then the algorithm
will still have a different sequence of Ni ’s to pass through step (iii).

Finally, in step (vi), the MLE is the argument of maximum in the sequence of remaining
candidates N1, N1 + 1, . . . , N4.

Let FN̂s
(n; N ) denote the probability distribution of N̂s(Ys), which can be computed

through (2) for any point N∗ in the parameter space. Analogously, one can calculate the r th
moment of N̂s(Ys) in the following way:

E[N̂ r
s (Ys)] =

N−t+1∑

y=s

N̂ r
s (y)Pr [Ys = y; N ].

For example, for t = s = 50, 100, 200, the values of E[N̂s(Ys)] and of sd[N̂s(Ys)] =√
Var [N̂s(Ys)] are shown in Table 1 for N = 100, 200, . . . , 1000.
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Although small disturbs are found in the decimals due to the numeric precision of the prob-
abilities calculated while running the Markov chain, the MLE of N is apparently unbiased.
It is also evident that the variance of N̂s(Ys) decreases with t .

Note that FN̂s
(n; N ) is decreasing with N , since N̂s(Ys) tends to increase with N . This

way, for a given observation Ys = y0 and an arbitrary α ∈ (0, 1), the 100(1−α)%confidence
interval for N is given by

[Ls
α(y0), Us

α(y0)], (4)

where Ls
α(y0) is the largest N∗, such that 1 − FN̂s

(N̂s(y0); N∗) ≤ α/2, and Us
α(y0) is the

smallest N∗, such that FN̂s
(N̂s(y0); N∗) ≤ α/2.

2.1 Fixed-length confidence intervals

The length of the confidence interval in (4) is random, but onemay desire an interval estimator
with length somehow fixed in advance. One option is the fixed-width interval of the form
[N̂s(Ys) − d, N̂s(Ys) + d], where d(> 0) is an user-defined precision of interest. Another
possibility is the fixed-accuracy interval of the form [δ−1 N̂s(Ys), δ N̂s(Ys)], where δ(> 1)
is interpreted as an user-defined interval accuracy. Hence, the sequential procedure may be
extended as follows.

Denote the fixed-width (or fixed-accuracy) interval simply by [Ls(y0), Us(y0)], which
shall be calculated with the information Ys = y0. The resampling is stopped and the interval
[Ls(y0), Us(y0)] is a (1 − α)100% confidence interval for N if

β0 = Pr[Ys > y0; N = Ls(y0)] + Pr[Ys ≤ y0; N = Us(y0)] ≤ α. (5)

Otherwise, the resampling shall continue until (s + 1)st marked item is observed. Let
Ys+1 represent the total number of resampled items needed to collect (s + 1) marked ones.
Define �0, the set of points in the sample space of Ys for which (5) does not hold. Then, for
an observation Ys+1 = y1, [Ls+1(y1), Us+1(y1)] is a (1 − α)100% confidence interval for
N if

β1 = Pr[Ys+1 > y1, Y0 ∈ �0; N = Ls+1(y1)] + Pr[Ys+1 ≤ y1,

Y0 ∈ �0; N = Us+1(y1)] ≤ α. (6)

Otherwise, the resampling is continued until the next marked items is observed, and the
stopping rule is the same as before, that is, having the set �1 of points from the sample space
of Ys+1 for which (6) does not hold, one needs to evaluate the inequality β2 ≤ α.

Generalizing, define� j−1, the set formed by the points of the sample space of Ys+ j−1 for
which β j−1 > α. The sequential procedure is stopped at the (s + j)th marked observation
only if, for j = 1, 2, 3..

β j = Pr
[
Ys+ j > y j , ∩ j−1

i=1 {Yi ∈ �i } ; N = Ls+ j
d (y j )

]
+

+Pr
[
Ys+ j ≤ y j , ∩ j−1

i=1 {Yi ∈ �i } ; N = Us+ j
d (y j )

]
≤ α. (7)

The confidence interval resulting from this sequential procedure is exact, because it is
based on the comprehensive method of inverting a family of (1− α)-level two-tailed testing
as described in page 181, Section 8.5, by Jennison and Turnbull (1999). The measure β j is
the sum of the lower tail and the upper tail distributions of Ys , which can be solved for N
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to find the upper and the lower confidence limits. This way, the 100(1 − α)% confidence
interval for N is exact by construction.

TheMLE of N , needed for calculating Ls+ j (y j ) andUs+ j (y j ), can be calculated with the
steps (i)–(vi) already described. For this, the likelihood function for the adaptive procedure
is given by

L(N |y0, . . . , y j ) = Pr [Ys = y0|N ]
j∏

i=1

q(yi )
t + yi − s − i

N
,

where

q(yi ) =
{∏yi−yi−1−1

k=1
N−(t+yi−1−s+k−i)

N for (yi − yi−1) > 1,
1 otherwise.

2.2 Monte Carlo solution

The exact solution for the fixed-length confidence interval with the mark–recapture–mark
procedure is computationally intensive. Seeking a simpler approach, now, we introduce an
alternative adaptive sequential stopping rule for the mark–recapture–mark scheme based on
a Monte Carlo bound, say β̂ j , for β j .

Note from (7) that

β j ≤ Pr
[
Ys+ j > y j ; N = Ls+ j

d (y j )
]

+ Pr
[
Ys+ j ≤ y j ; N = Us+ j

d (y j )
]
. (8)

Therefore, if the right-hand side of the inequality in (8) is smaller than α, so is β j .

Let Y (l)
1 ( j), Y (l)

2 ( j), . . . , Y (l)
m ( j) denote a m-dimensional Monte Carlo sample of Ys+ j

generated under N = Ls+ j
d (y j ). Likewise, Y

(u)
1 ( j), Y (u)

2 ( j), . . . , Y (u)
m ( j) denote a Monte

Carlo sample of Ys+ j generated under N = Us+ j
d (y j ). This way, by the law of large numbers

β̂ j =
#

{
Y (l)
k ( j) > y j

}

m + 1
+

1 + #
{
Y (u)
k ( j) ≤ y j

}

m + 1
ae→ Pr

[
Ys+ j > y j ; N = Ls+ j

d (y j )
]

+ Pr
[
Ys+ j ≤ y j ; N = Us+ j

d (y j )
]
, (9)

as m → ∞, where ‘ae’ means almost everywhere convergence.
Therefore, the adaptive sequential Monte Carlo procedure for a fixed-length confidence

interval is stopped at the (s + j)th marked observation only if

β̂ j ≤ α.

This method shall be referred simply by MRM. In MRM procedure, a total of Ys+ j−1

items should be resampled to observe s + j marked items, where j = 1, 2, 3....

3 Comparison of MRMwith the accelerated sequential method

The problem of determining the size of a finite population can also be addressed by standard
sequential procedures and references of those were already provided in the Introduction.
One of the main goal of the MRM strategy is to expedite the estimation process. Likewise,
accelerated sequential procedure also aims at achieving a reasonable estimate quicker in
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time than what would be required in a regular sequential procedure. In this section, we
will consider a mark–recapture sampling and we will adopt the Practical Accelerated
Sequential Procedure proposed by Zhuang and Bhattacharjee (2021) to compare with the
MRM procedure.

Let us define p = t/N , where N and t are same as defined in the MRM from Sect. 2.
Suppose that at the recapturing phase, we wish to gather a random sample of appropriate
size that will afford us with exactly s observed tagged elements where s is fixed for now.

Let Xi stand for the number of independent and identically distributed (i.i.d.) trials
required to observe the i th tagged item, i = 1, ..., s. Then, the Xi ’s are i.i.d. having the
common geometric distribution, referred to as geometric(p), with the following probability
mass function (p.m.f.):

f (x; p) = qx−1 p, x = 1, 2, . . . , and q = 1 − p, 0 < p < 1, with

mean μ = 1/p and variance σ 2 = q/p2. (10)

Consider the total number of items observed, namely

Y ≡ X1 + ... + Xs,

at the recapture phase. Clearly, in view of (10), we have Ep[Y ] ≡ sμ = s/p and Varp[Y ] ≡
sσ 2 = sq/p2. Now, an unbiased estimator of 1/p being Xs = s−1Y , the population size
will be estimated unbiasedly by

N̂s ≡ t̂p−1 = t Xs with an estimated variance t2s−1(X
2
s − Xs) for a fixed s(≥ 1). (11)

As s → ∞, by Central Limit Theorem and (11), we have

√
s
(
N̂s − N

)
£→ N (0, σ 2), where σ 2 = t2(p−2 − p−1). (12)

Slutsky’s theorem and (12) together will imply

√
s
(
log(N̂s) − log(N )

)
£→ N (0, τ 2), , as s → ∞, where τ 2 ≡ 1 − p. (13)

3.1 Fixed-width confidence interval

Again, for a (1 − α)100% confidence interval, with fixed pre-assigned width 2d (> 0), we

want to construct a confidence interval for N of the form Js =
[
N̂s − d, N̂s + d

]
. For large

s, in view of (12), we will have PrN [N ∈ Js] approximately greater than or equal to (1−α)

if

s is the smallest integer ≥ a2σ 2/d2 ≡ s∗
d ,

where a = zα/2 is the upper 100(α/2)% point of N (0, 1). Since s∗
d remains unknown, from

Zhuang and Bhattacharjee (2021), we propose the following accelerated sequential stopping
rule.

For a fixed number ρ ∈ (0, 1), we take one observation at-a-time as needed according to
the stopping rule

T0 ≡ T0 (ρ) = inf
{
s ≥ 1 : s ≥ ρa2d−2t2

(
X
2
s − Xs + s−γ

)}
; (14)
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with arbitrary, but fixed γ (> 1
2 ). Upon termination of the stopping rule in (14), we define

the final terminated variable T as

T ≡ T (ρ) = ⌊
ρ−1T0

⌋ + 1, (15)

where �x� is the greatest integer less than or equal to x . After determining T , we adopt the
Practical Accelerated Sequential Procedure proposed by Zhuang and Bhattacharjee (2021),
to gather the remaining number of tagged items. According to that procedure, one has to
collect BT items in a batch and count the number of tagged items in that batch where

BT =
[

(T − T0)(t X̄T0 + 1)

t

]
, (16)

with [x] being the greatest integer less than or equal to x . The final estimator of the population
size will be given by

N̂T = t

(
BT + ∑T0

i=1 Xi

tBT + T0

)

, (17)

where tBT is the number of tagged items observed in a batch of BT . Observe that T is a positive
integer-valued observable random variable. Based on finally gathered data, {T , X1, . . . , XT },
upon termination, we propose the fixed-width approximate (1−α)100% confidence interval
for N

JTd =
[
N̂T − d, N̂T + d

]
. (18)

One should note that, for the accelerate sequential procedure given by, (14)–(18), the
factor ρ accelerates the termination process. Moreover, for the second batch of sampling,
one is required to take samples in a batch, instead of one-at-a-time, without checking the
stopping rule (Tables 2, 3).

3.2 Fixed-accuracy confidence interval

The lower confidence bound N̂T − d from (18) may be negative with a positive probability.
Hence, for arbitrary δ(> 1), we may require a fixed-accuracy confidence interval for N

Ks =
[
δ−1 N̂s, δ N̂s

]
. (19)

For ‘large’ s, in view of (13) and (19), wewill have, approximately, PN [N ∈ Ks] ≥ 1−α,
with arbitrary α ∈ (0, 1), if

s is the smallest integer ≥ a2τ 2/(log δ)2 ≡ s∗
δ ,

where recall that a = zα/2 is the upper 100(α/2)% point of N (0, 1). Since s∗
δ remains

unknown, we propose the following purely sequential stopping rule.
For 0 < ρ < 1, let

R0 ≡ R0 (ρ) = inf
{
s ≥ 1 : s ≥ ρa2(log δ)−2(τ̂ 2s + s−γ )

}
, where τ̂ 2s = 1 − X̄−1

s , (20)

with arbitrary, but fixed γ (> 1
2 ). Upon termination of the stopping rule in (20), we define

the final terminated variable R as

R ≡ R (ρ) = ⌊
ρ−1R0

⌋ + 1. (21)
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Again, following the Practical Accelerated Sequential Procedure, one should collect BR

items in a batch leading to the final estimator:

N̂R = t

(
BR + ∑R0

i=1 Xi

tBR + T0

)

,

where

BR =
[

(R − R0)(t X̄ R0 + 1)

t

]
,

and tBR is the number of tagged items observed in a batch of BR . Observe that R is a positive
integer-valued observable random variable. Based on finally gathered data, {R, X1, . . . , XR},
upon termination, we propose the fixed-accuracy approximate (1−α)100% confidence inter-
val for N

JRδ =
[
δ−1 N̂R, δ N̂R

]
. (22)

3.3 Discussions on the comparisons

An important criterion to compare sampling strategies for confidence interval estimations of
population sizes is the coverage probability. Moreover, the expected total recaptures under
each procedure are also critical to understand the efficiency of the procedures. In the fol-
lowing discussions, we will use MRM to denote the mark–recapture–mark procedure that is
developed in Sect. 2 and AS to denoted the accelerated sequential procedures discussed in
Sect. 3.

We compare the simulation results for both MRM and AS with the unknown population
sizes being N = 500, 1000, and initial tagged items to be t = 50, 100, 200. For the fixed-
width confidence interval, we choose the fixed-width measurement, d , to be 50, 100, 200;
for the fixed-accuracy confidence interval, we choose the fixed-accuracy measurement, δ, to
be 1.1, 1.2, 1.3. Moreover, for AS, we further fixed ρ = 0.9 and γ = 0.7; and for MRM, we
further fixed s = 50, 100, 200. The coverage probabilities for Tables 4 and 5 are estimates
for 1 − α. It is calculated as the ratio of the number of intervals which includes the true
population size and the number of total intervals that are created. Here, for brevity, we only
include the simulation results with α = 0.1. For AS, the total number of recaptures are given
by the following expressions:

Fixed-width procedure: YT = BT +
T0∑

i=1

Xi ;

Fixed-accuracy procedure: YR = BR +
R0∑

i=1

Xi .

Corresponding to each replication in the simulation, one would get a value of YT and YR

for fixed-width and fixed-accuracy confidence intervals, respectively. The average values of
YT and YR obtained from all the simulations are estimates of the expected total recaptures.

Now, we are in a position to summarize the comparisons of MRM and AS according to
the simulation studies. First of all, the MRM requires much less recaptures than the AS for
most scenarios. MRM increases the number of tagged items in the population by tagging
recaptured and non-tagged items before putting them back to the population, while the AS
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Table 2 Expected sample size at the recapture stage of MRM and AS for N = 500, 1000 with α = 0.1,
t = 50, 100, 200, and d = 50, 100, 200

d t = 50 t = 100 t = 200

MRM AS MRM AS MRM AS

N = 500

50 370.13 2396.86 315.09 1066.93 351.44 403.47

100 203.26 500.88 263.69 242.04 351.01 95.32

200 195.04 112.61 164.24 50.25 351.48 34.49

N = 1000

50 923.29 – 935.90 – 581.80 4323.29

100 563.24 4791.02 517.28 2387.25 523.47 1070.50

200 302.99 1055.55 390.46 503.71 525.87 244.69

Table 3 Expected sample size at
the recapture stage of MRM and
AS for N = 500, 1000 with
α = 0.1, t = 50, 100, 200, and
δ = 1.1, 1.2, 1.3

δ t = 50 t = 100 t = 200
MRM AS MRM AS MRM AS

N = 500

1.1 387.77 2753.33 332.16 1230.81 351.50 468.80

1.2 203.03 781.94 264.40 351.43 351.41 136.97

1.3 194.67 392.89 263.64 179.12 351.23 70.69

N = 1000

1.1 602.93 5793.77 549.72 2752.96 528.49 1231.66

1.2 314.71 1656.19 390.54 780.45 528.25 352.11

1.3 285.91 836.96 390.78 392.70 528.99 179.26

Table 4 Coverage probability at
the recapture stage of MRM and
AS for N = 500, 1000 with
α = 0.1, t = 50, 100, 200, and
d = 50, 100, 200

d t = 50 t = 100 t = 200
MRM AS MRM AS MRM AS

N = 500

50 0.90 0.89 0.91 0.89 0.94 0.88

100 0.93 0.72 0.95 0.78 0.97 0.79

200 0.98 0.65 0.99 0.66 0.99 0.82

N = 1000

50 0.91 – 0.90 – 0.90 0.90

100 0.90 0.84 0.92 0.88 0.93 0.89

200 0.92 0.72 0.97 0.73 0.95 0.79

procedure requires one to do recapturing one-at-a-time with replacement for the first stage
without changing the number of tagged items for the whole process.

Second, the coverage probability of MRM procedure is uniformly well for all values of
N , t , and d , according to Tables 4 and 5. However, the AS procedure does not show the
90% coverage probability for the fixed-width confidence intervals when d = 100, 200, as
per Table 4. The confidence intervals in (18) and (22) are known to have the property of
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Table 5 Coverage probability at
the recapture stage of MRM and
AS for N = 500, 1000 with
α = 0.1, t = 50, 100, 200, and
δ = 1.1, 1.2, 1.3. The coverage
probability estimates are shown
in parentheses

δ t = 50 t = 100 t = 200
MRM AS MRM AS MRM AS

N = 500

1.1 0.90 0.91 0.91 0.90 0.98 0.90

1.2 0.90 0.92 0.98 0.90 0.99 0.90

1.3 0.97 0.92 0.99 0.91 1.00 0.91

N = 1000

1.1 0.90 0.91 0.90 0.91 0.93 0.91

1.2 0.90 0.91 0.96 0.91 0.99 0.90

1.3 0.96 0.92 0.99 0.91 1.00 0.92

asymptotic consistency in the sense that

lim
d→0

P[N ∈ JTd ] = 1 − α, and lim
δ→1

P[N ∈ JRδ ] = 1 − α,

which means that the AS procedure holds the asymptotic consistency property only when d
is small (close to 0) and δ is small (close to 1).

Third, both of the procedures are giving at least 0.90 coverage probabilities for the chosen
values of δ in case of fixed-accuracy confidence intervals. However, the MRM outperforms
the AS in many cases as is shown in Table 5.

As one last note, the AS procedure would perform well when one looks for confidence
intervals that have high coverage probability but smallwidth.Onemaynote that the simulation
results are missing when N = 1000, d = 50, and t = 50, 100 in Tables 2 and 4. This is
due to a limitation of the AS procedure. Let us consider the fixed-width procedure to briefly
illustrate the limitation of AS. Because T0 is a random variable whose value is determined
from the stopping rule in (14), the remaining T −T0 tagged item to be collected at the second
stage may turn out to be greater than t , the actual number of tagged items in the population.
For the practical sequential approach, the estimate of BT (16) may become less meaningful
in such a scenario and it would be absurd to do the recapturing for the second stage.

4 Illustrative examples

This section presents two applications of MRM to illustrate the dynamics of the mark–
recapture–mark procedure, as well as how it will be used to construct fixed-length confidence
interval for population sizes in real-life problems.

4.1 Estimating the number of COVID-19 cases

We first consider an application of MRM procedure in estimating the number of COVID-19
cases. In the occurrence of any pandemic, it is critical to know the number of affected individ-
uals residing in an area. It is crucial to estimate the true total number of COVID-19 infections,
because it affects the decisions of policy-makers. However, due to a large number of asymp-
tomatic cases, most of them are undetected. Recently, applications of capture–recapture
procedures for estimating the number of COVID-19 cases were discussed by Böhning et al.
(2020) and Kumar and Mishra (2020). Thus, we propose to use our newly developed MRM
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procedure to estimate the total number of infected cases including both detected and unde-
tected. The necessity of this is still being felt in many countries, since COVID-19 is very
much present. Given that many countries have adopted strict lock-downs in many areas to
arrest the spread of the disease, we can reasonably assume that, at least during the period of
lock-down, the population is considered to be “near-closed”.

In the light of Tuite and Fisman (2020), we start with a brief discussion on the estimation
of the true outbreak size of infected in Italy, where the reported case count is 1128 on Feb 29,
2020. It is impossible for us to go back to February of 2020 to conduct our MRM procedure,
but we try to explain the procedure here to illustrate how one can use our procedure for
estimating future outbreak sizes. A given population can be considered to comprise two
groups, affected and unaffected. For the affected (cases) group, there are two sub-groups,
detected (who are formally reported) and undetected (who will be detected when tested).
To implement the MRM procedure on COVID-19 cases, one can treat the newly detected
cases as newly added marked individuals. Thus, in this illustration, we will only collect data
on the group of affected individuals, and implement the MRM procedure focusing on their
status of being reported or undetected. Here, we simulate the data based on a true outbreak
size of N = 3971 cases, because Tuite and Fisman (2020) estimated a true outbreak size of
3971 cases, and t = 1128, since there are 1128 reported cases. For our reference, the 95%
CI given by Tuite and Fisman (2020) is [2907, 5297]. After applying the MRM method for
a fixed-accuracy (δ = 1.2) 95% CI, we have obtained the interval estimate [3433, 4944] and
the MLE estimate N̂ = 4119, which required a sample size of 2482 affected individuals.

Naturally, it is questionable if an entire country could be put under a lock-down as it
strongly depends on ideological, political, economic, logistical, and many other social con-
ditions of each country. Anyways, it seems safe to propose that the method has a practical
appeal if applied at the very beginning of the pandemic in a small area, such as a county or
a well-delimited subregion of a city, when only a few dozens of individuals are reported by
the time. With that in mind, now we consider a situation where t = 50 infected individuals
were initially tested and identified. This new simulation is based on a hypothetical outbreak
size of N = 500 in a region of 20,000 residents. This way, with s = 50, we applied MRM
to the simulated data to obtain a fixed-accuracy (δ = 1.1) 90% CI for N , which returned the
interval estimate [466, 565], and a point MLE estimate equal to N̂ = 513.

To better explain theMRMprocedure for the COVID-19 problem, consider Table 6, which
shows the details on the number of tagged individuals for the first and last six withdrawals.
In the beginning, we know that t = 50 infected individuals have been detected (tagged) by
tests. Also, remind that we fixed s = t = 50. Now, one would start the MRM procedure by
randomly selecting an individual in the area of interest. If the person was not among the 50
tested individuals, then a test for COVID-19 will be performed. If the test is negative, we
would ignore the data and consider the person to be unaffected. If the test is positive, then we
would record the data and that means marking one more person and we would have X1 = 0,
and then, there will be 51 identified positive (tagged) individuals in the area. Then, we would
randomly select another individual. Suppose the test was positive and the person was not one
of the previously tested individuals. Then, X2 = 0, and there will be 52 tagged individuals
after this step. Suppose that the third person turned out to be one of the previously tested
(tagged) persons. Then, we still have 52 tested individuals with X3 = 1. This process will
continue until we have observed 50 tested individuals. After that, the sequential procedure
would stop if (5) holds. Otherwise, s is increased in on unity and onemore person is randomly
selected for continuing with the same resampling scheme. The experiment that we performed
demanded 91 updates of s, i.e., it reached up to s = 50 + 91 = 141 when the sequential
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Table 6 Detailed output of MRM based on the simulated data with N = 500 and t = 50 in a hypothetical
region with 20, 000 residents. The MRM parametrization was s = t = 50, δ = 1.1, and α = 0.05

Draw no. (i) Tagged (Y/N) Xi s Total tagged after the i th draw

1 N 0 50 51

2 N 0 50 52

3 Y 1 50 52

4 N 1 50 53

5 N 1 50 54

6 Y 2 50 54

... ... ... ... ...

379 Y 137 140 293

380 Y 138 140 293

381 Y 139 140 293

382 N 139 141 294

383 Y 140 141 294

384 Y 141 141 294

process finished, and it has identified 294 − 51 + 1 = 244 new infected persons among the
384 draws.

Naturally, the assumption of confinement is fragile, and this application would work only
if the time between mark and recapture is sufficiently short. Another relevant limitation is the
fact that the individuals exposed to the virus may not be infectious by the time of the test for
the disease. Also, we have to take into account the false-positive and false-negative rates of
the COVID-19 tests. Hence, while the present example aims to start the elaboration on using
mark–recapture sampling for epidemiological applications, these practical issues should be
addressed for avoiding underestimate the size of the affected population.

4.2 Population size of endangered species

We exemplify the applicability of the MRM method using the context of estimating the
population size of endangered golden lion tamarin (Leontopithecus rosalia), here called GL,
and construct a 90%fixed-accuracy confidence interval with the accuracy parameter δ chosen
to be 1.1.

The goal is to illustrate how the method works in practice. For this, we have simulated
one trajectory of the variable Ys for a fixed N = 1000. The real empirical part is the number
of tagged animals, t = 27, from the study by Screnci-Ribeiro (2016).

In the work of Screnci-Ribeiro (2016), t = 27 individuals in the population of GL were
tagged and monitored in the year of 2014. The study was performed in the farm Fazenda Boa
Esperança, Silva Jardim city, Rio de Janeiro, Brazil. GL is a neotropical callitrichid monkey
endemic to the Atlantic forest of Brazil, a global biodiversity hotspot.

As the real data related to the mark-remark experiment of Screnci-Ribeiro (2016) did not
involve marking the non-marked captured animals, it is not possible to actually apply the
MRM procedure to that real data. Therefore, aiming to show the status of Ys each time that
s is updated in the course of the sequential procedure, here, we simulate the data based on a
population size of N = 1000. This way, the dynamic of the Ys process can be accompanied.
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Fig. 1 Values of Ys and Ys − Ys−1 for the sequential estimation of N using MRM for a fixed-accuracy
(δ = 1.1) 90% confidence interval. The turning parameters

Figure1a shows the entire trajectory of Ys , from the starting point where s = 27 tagged
animals were captured, which occurred for Y27 = 188, to the stopping point, where the
final adaptive value was s = 167 with Y167 = 596. Note the decreasing rate at which Ys
evolves over the s updates. It seems that the procedure behaviors as if it is ‘learning’ with the
proportions of marked and unmarked animals, decreasing the variability of Ys in the direction
of requiring less recaptures to reach the next tagged animal. This behavior is more evident
with Fig. 1b, where the first difference (Ys −Ys−1, s = 28, . . . , 167) highlights the smaller
variability of the required captures among two consecutive s updates, just like it is expected
to happen when the number of marked items is dense enough in the population. With these
very simulated data, the estimate of N was N̂ = 942.5, leading to the confidence interval
[942.5/1.1, 942.5 × 1.1] = [856.82, 1036.75].

5 Concluding remarks

The MRM method presents a satisfactory performance as it demands much less resampling
effort in the recapture stage than one of the most prominent methods for population size esti-
mation, the AS.Moreover,MRMkeeps the coverage probability over the nominal confidence
coefficient.

The drawback of MRM relates to the necessity of using Monte Carlo approximation to
make the method computationally viable. While the exact solution would probably present
a superior performance, the Monte Carlo version can, sometimes, lead to the inconvenience
of keeping recapturing items from the population even when all the items are already tagged.
For instance, take Tables 2 and 3. There, we can see that the expected recaptures dropped
down as d or δ gets larger for t = 50 and t = 100. However, when t = 200, the expected
recaptures are very close for different values of d and δ. The Monte Carlo approximation in
(9) is conservative by construction. Therefore, depending on the choices of d , δ, and t , it can
require more recaptures than necessary before reaching the stopping point. However, MRM
keeps the nominal confidence coefficient under control and it saves many resampling efforts
comparing with AS. Thus, MRM is a powerful tool for sequential population size estimation.

To solve the disadvantage of MRM, one could try a simpler decision rule for the exact
solution to make the calculations simpler too. Another possibility would be an asymptotic
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solutions in the spirit of AS, which could lead to gains comparable to those with the MRM.
The efforts of the authors to find such alternative solutions were unsuccessful by the moment;
therefore, this is a pending issue for future investigations.
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