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A sixth-order central WENO scheme for nonlinear

degenerate parabolic equations

Samala Rathan∗, Jiaxi Gu†

Abstract

In this paper we develop a new sixth-order finite difference central
weighted essentially non-oscillatory (WENO) scheme with Z-type non-
linear weights for nonlinear degenerate parabolic equations. The cen-
tered polynomial is introduced for the WENO reconstruction in order
to avoid the negative linear weights. We choose the Z-type nonlinear
weights based on the L2-norm smoothness indicators, yielding the new
WENO scheme with more accurate resolution. It is also confirmed
that the proposed central WENO scheme with the devised nonlinear
weights achieves sixth order accuracy in smooth regions. One- and
two-dimensional numerical examples are presented to demonstrate the
improved performance of the proposed central WENO scheme.

Keywords: Finite difference, Central WENO scheme, Z-type nonlinear weights,

Nonlinear degenerate parabolic equation.

AMS subject classification: 41A10, 65M06

1 Introduction

In this paper we are interested in solving the one-dimensional parabolic
equation

ut = b(u)xx, (1)

where u = u(x, t) is a scalar quantity and b′(u) > 0.
One example of such nonlinear equation is the porous medium equation

(PME) of the degenerate parabolic type,

ut = (um)xx, m > 1, (2)

which describes the flow of an isentropic gas through a porous medium
[6, 23], the heat radiation in plasmas [30], and various physical processes.
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The classical linear heat equation can be considered to be the limit of PME
(2) as m → 1. Assuming u > 0, the PME could be written in the form

ut =
(

mum−1ux
)

x
.

Then the PME is parabolic only at those points where u 6= 0, while it degen-
erates as the vanishing of the term mum−1 wherever u = 0. In other words,
the PME is a degenerate parabolic equation. One important property of
the PME is the finite propagation, which is different from the infinite speed
of propagation in the classical heat equation. This property implies the ap-
pearance of free boundaries that separate the regions where the solution is
positive from those where u = 0, giving rise to the sharp interfaces [28].
Since the free boundaries move with respect to time, their behavior looks
similar to the behavior of shocks in the hyperbolic conservation laws. So
it is reasonable to apply the weighted essentially non-oscillatory (WENO)
philosophy to the PME, enabling the free boundaries to be well resolved.

Before we discuss the WENO schemes, we would like to mention several
different schemes that specialize in nonlinear degenerate parabolic equations
in the literature. For example, the explicit diffusive kinetic schemes have
been designed in [5]. Also, the high-order relaxation scheme has been in-
troduced in [11]. A local discontinuous Galerkin finite element method for
the PME was studied in [31]. Other approaches based on the finite volume
method were investigated in [8, 4]. In the more general nonlinear degenerate
convection-diffusion case, the entropy stable finite difference schemes were
proposed in [17].

Our focus of this paper is on the WENO schemes. In [21], Liu et al. con-
structed the finite difference WENO (WENO-LSZ) schemes for the equation
(1), which approximate the second derivative term directly by a conserva-
tive flux difference. However, unlike the positive linear weights of WENO
schemes for hyperbolic conservation laws [18, 26], the negative linear weights
exist so that some special care, such as the technique in [25], was applied
to guarantee the non-oscillatory performance in regions of sharp interfaces.
Following the definition of the smoothness indicators in [18, 26] and invok-
ing the mapped function in [16], the resulting nonlinear weights meet the re-
quirement of sixth order accuracy. In [15], Hajipour and Malek proposed the
modified WENO (MWENO) scheme with Z-type nonlinear weights [9] and
nonstandard Runge–Kutta (NRK) schemes. Further, the hybrid scheme,
based on the spatial MWENO and the temporal NRK schemes, was em-
ployed to solve the equation (1) numerically. Recently, Abedian et al. [2, 1]
aimed at avoiding negative linear weights and presented some modifications
to the numerical flux. In [24], Rathan et al. showed a new type of local
and global smoothness indicators in L1 norm via undivided differences and
subsequently constructed the new Z-type nonlinear weights. Christelieb et
al. employed a kernel based approach with the philosophy of the method of
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lines transpose, giving a high-order WENO method with a nonlinear filter in
[12]. In [19], Jiang designed an alternative formulation to approximate the
second derivatives in a conservative form, where the odd order derivatives
at half points were used to construct the numerical flux.

In this paper we present the central WENO (CWENO) scheme based
on the point values for the diffusion term, following the notion of compact
CWENO schemes based on the cell avarages for the convection term pro-
posed by Levy et al. in [22]. The negative linear weights in [21], which
require some special care, can be circumvented in our scheme. We further
devise the Z-type nonlinear weights [9], which are dependent on the smooth-
ness indicators in [21] of L2 norms. The global smoothness indicator can be
designed to attain higher order so that we do not need the power to maintain
the order of accuracy. In our scheme, not only is the computational cost re-
duced without estimating the mapped function in WENO-LSZ or applying
the splitting technique to treat the negative weights in both WENO-LSZ and
MWENO, but the non-oscillatory performance is improved since there exist
small-scale oscillations around the sharp interfaces for WENO-LSZ in some
cases as the time advances whereas those oscillations are largely damped
by our scheme. We also provide the sufficient conditions for sixth order
accuracy in smooth regions and an analysis of nonlinear weights shows that
the proposed WENO scheme is in compliance with those criteria. The im-
plementation of WENO schemes for the equation (1) could be extended to
the convection–diffusion equations with the WENO schemes for convection
terms [9, 16, 18, 26, 14] and to multi-space dimensions in a dimension-by-
dimension approach.

The paper is organized as follows. In Section 2, the sixth-order WENO
scheme for the parabolic equation (1) and some of the relevant analytical
results are reviewed. Section 3 presents the CWENO approximation for the
diffusion term with the new Z-type nonlinear weights based on L2 norms, and
the sufficient conditions for sixth order accuracy in smooth regions, which
the devised nonlinear weights satisfy. In Section 4, the proposed CWENO
scheme and the WENO-LSZ and MWENO schemes are compared with the
simulation of one- and two-dimensional numerical experiments, including
1D and 2D heat equations for the sixth-order verification; 1D and 2D PMEs
with various initial conditions; 1D and 2D Buckley–Leverett equations; 1D
and 2D strongly degenerate parabolic convection-diffusion equations. A brief
concluding remark is presented in Section 5.

2 WENO approximation to the second derivative

In this section, we review the direct WENO discretization to the second
derivative in the conservation form [21]. Consider a uniform grid defined
by the points x0 < x1 < · · · < xN−1 < xN with xi±1/2 = xi ± ∆x/2, i =
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0, . . . N , where ∆x = xi+1 − xi is the uniform grid spacing. Then the
spatial domain is discretized by this uniform grid. The semi-discrete form
of Equation (1) with respect to t, yields

dui(t)

dt
=

∂2b

∂x2

∣

∣

∣

∣

x=xi

, (3)

where ui(t) is the numerical approximation to the point value u(xi, t). Define
the function h(x) implicitly by

b(u(x)) =
1

∆x2

∫ x+∆x/2

x−∆x/2

(

∫ η+∆x/2

η−∆x/2
h(ξ)dξ

)

dη. (4)

Differentiating both sides twice with respect to x, we obtain

b(u)xx =
h(x+∆x)− 2h(x) + h(x−∆x)

∆x2
.

Setting g(x) = h(x+∆x/2) − h(x−∆x/2) gives the equation

∂2b

∂x2

∣

∣

∣

∣

x=xi

=
gi+1/2 − gi−1/2

∆x2
,

where gi±1/2 = g(xi±1/2). Then the equation (3) becomes

dui(t)

dt
=

gi+1/2 − gi−1/2

∆x2
. (5)

In order to approximate gi+1/2, a polynomial approximation q(x) to h(x)
of degree at most 5,

q(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5,

can be constructed on the 6-point stencil S6, as shown in Figure 1. The

x
i-2

x
i-1

x
i

x
i+1

x
i+2

x
i+3

S6
C
, 

6
S

0 0
 = 

L

S
1 1

 = 
M

S
2 2

 = 
R

Figure 1: The numerical flux ĝi+1/2 is constructed on the stencil S6 =
{xi−2, · · · , xi+3} with six uniform points, as well as three 4-point substencils
S0, S1, S2.
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polynomial q(x) interpolates bi+j = b(u(xi+j , t)), j = −2, · · · , 3, in the
sense of (4), which gives

a0 =
2bi−2 − 23bi−1 + 222bi − 23bi+1 + 2bi+2

180
,

a1 =
8bi−2 − 55bi−1 − 70bi + 160bi+1 − 50bi+2 + 7bi+3

120∆x
,

a2 = −bi−2 − 10bi−1 + 18bi − 10bi+1 + bi+2

120∆x2
,

a3 = −bi−2 + 4bi−1 − 20bi + 26bi+1 − 13bi+2 + 2bi+3

36∆x3
,

a4 =
bi−2 − 4bi−1 + 6bi − 4bi+1 + bi+2

24∆x4
,

a5 = −bi−2 − 5bi−1 + 10bi − 10bi+1 + 5bi+2 − bi+3

120∆x5
.

The polynomial p(x) of degree at most 4 approximating g(x) is obtained by
taking the difference of q(x+∆x/2) and q(x−∆x/2),

g(x) = h(x+∆x/2)− h(x−∆x/2) ≈ q(x+∆x/2)− q(x−∆x/2) = p(x).

Then we have
p(x) = c0 + c1x+ c2x

2 + c3x
3 + c4x

4, (6)

where

c0 =
341bi−2 − 2785bi−1 − 2590bi + 6670bi+1 − 1895bi+2 + 259bi+3

5760
,

c1 = −bi−2 − 12bi−1 + 22bi − 12bi+1 + bi+2

8∆x
,

c2 = −5bi−2 + 11bi−1 − 70bi + 94bi+1 − 47bi+2 + 7bi+3

48∆x2
,

c3 =
bi−2 − 4bi−1 + 6bi − 4bi+1 + bi+2

6∆x3
,

c4 = −bi−2 − 5bi−1 + 10bi − 10bi+1 + 5bi+2 − bi+3

24∆x4
.

Evaluating p(x) at x = xi+1/2 yields the finite difference numerical flux

ĝFDi+1/2 = p(xi+1/2) = − 1

90
bi−2 +

5

36
bi−1 −

49

36
bi +

49

36
bi+1 −

5

36
bi+2 +

1

90
bi+3.

(7)
The numerical flux ĝFDi−1/2 is obtained directly by shifting one grid to the
left,

ĝFDi−1/2 = − 1

90
bi−3 +

5

36
bi−2 −

49

36
bi−1 +

49

36
bi −

5

36
bi+1 +

1

90
bi+2. (8)
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Applying the Taylor expansions to ĝFDi±1/2 (7) and (8) would give

ĝFDi+1/2 = gi+1/2 +
1

560
h
(7)
i ∆x7 +O(∆x8), (9)

ĝFDi−1/2 = gi−1/2 +
1

560
h
(7)
i ∆x7 +O(∆x8). (10)

Replacing gi±1/2 in (5) by (9) and (10), respectively, we have the sixth-order
approximation

dui(t)

dt
=

ĝFDi+1/2 − ĝFDi−1/2

∆x2
+O(∆x6). (11)

A similar approach can be used to obtain a polynomial pk(x) of degree at
most 2 on each 4-point substentil Sk = {xi−2+k, · · · , xi+1+k} with k = 0, 1, 2,
where

p0(x) =
5bi−2 − 27bi−1 + 15bi + 7bi+1

24
+

bi−1 − 2bi + bi+1

∆x
x− bi−2 − 3bi−1 + 3bi − bi+1

2∆x2
x2,

p1(x) = −7bi−1 + 15bi − 27bi+1 + 5bi+2

24
+

bi−1 − 2bi + bi+1

∆x
x− bi−1 − 3bi + 3bi+1 − bi+2

2∆x2
x2,

p2(x) = −43bi − 69bi+1 + 33bi+2 − 7bi+3

24
+

2bi − 5bi+1 + 4bi+2 − bi+3

∆x
x− bi − 3bi+1 + 3bi+2 − bi+3

2∆x2
x2.

(12)
This results in the numerical fluxes ĝki+1/2,

ĝ0i+1/2 =
1

12
bi−2 −

1

4
bi−1 −

3

4
bi +

11

12
bi+1,

ĝ1i+1/2 =
1

12
bi−1 −

5

4
bi +

5

4
bi+1 −

1

12
bi+2,

ĝ2i+1/2 = −11

12
bi +

3

4
bi+1 +

1

4
bi+2 −

1

12
bi+3.

(13)

We could obtain the numerical fluxes ĝki−1/2 after shifting each index by -1.
Hence the Taylor series expansion gives

ĝ0i±1/2 = gi±1/2 +
1

12
h
(4)
i ∆x4 +O(∆x5),

ĝ1i±1/2 = gi±1/2 −
1

90
h
(5)
i ∆x5 +O(∆x6),

ĝ2i±1/2 = gi±1/2 −
1

12
h
(4)
i ∆x4 +O(∆x5).

(14)

It is clear that the linear combination of all ĝki+1/2 can produce ĝFDi+1/2 that

approximates the flux gi+1/2 in (5), that is, there are linear weights d0 =

d2 = − 2
15 and d1 =

19
15 such that

ĝFDi+1/2 =
2
∑

k=0

dkĝ
k
i+1/2. (15)
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Similarly, an index shift by -1 returns the corresponding relation between
ĝFDi−1/2 and ĝki−1/2.

Since (15) is not a convex combination of (13) as the linear weights d0
and d2 are negative, the WENO procedure cannot be applied directly to
obtain a stable scheme. The test cases in [25] showed that WENO schemes
without special treatment to the negative weights may lead to the blow-up of
the numerical solution. Thus the splitting technique in [25] could be utilized
to treat the negative weights d0 and d2. The linear weights are split into
positive and negative parts,

γ̃+k =
1

2
(dk + 3|dk|) , γ̃−k = γ̃+k − dk, k = 0, 1, 2.

Then dk = γ̃+k − γ̃−k and

γ̃+0 =
2

15
, γ̃+1 =

38

15
, γ̃+2 =

2

15
;

γ̃−0 =
4

15
, γ̃−1 =

19

15
, γ̃+2 =

4

15
.

We scale them by

σ± =

2
∑

k=0

γ̃±k , γ±k = γ̃±k /σ
±, k = 0, 1, 2.

Then the linear positive and negative weights γ±k are given by

γ+0 =
1

21
, γ+1 =

19

21
, γ+2 =

1

21
;

γ−0 =
4

27
, γ−1 =

19

27
, γ+2 =

4

27
,

(16)

which satisfy
dk = σ+γ+k − σ−γ−k . (17)

Following the definition of the smoothness indicators in [18, 26], which
measure the regularity of the polynomial approximation pk(x) over some
interval, the smoothness indicators are defined as

βk =

2
∑

l=1

∆x2l−1

∫ xi+1

xi

(

dl

dxl
pk(x)

)2

dx,

which gives

β0 =
13

12
(bi−2 − 3bi−1 + 3bi − bi+1)

2 +
1

4
(bi−2 − 5bi−1 + 7bi − 3bi+1)

2 ,

β1 =
13

12
(bi−1 − 3bi + 3bi+1 − bi+2)

2 +
1

4
(bi−1 − bi − bi+1 + bi+2)

2 ,

β2 =
13

12
(bi − 3bi+1 + 3bi+2 − bi+3)

2 +
1

4
(−3bi + 7bi+1 − 5bi+2 + bi+3)

2 .

(18)
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The integration over the interval [xi, xi+1] is performed to satisfy the symme-
try property of the parabolic equation, and the factor ∆x2l−1 is introduced
to remove any ∆x dependency in the derivatives.

Depending on the linear weights (16) and the smoothness indicators (18),
the nonlinear weights could be defined for the WENO approximation. In
[21], Liu et al. derived the sufficient conditions to attain sixth order accuracy
in smooth regions,

ω0 − ω2 = O(∆x4), (19)

ωk − dk = O(∆x3). (20)

In [21], the nonlinear positive and negative weights ω±

k are defined as

ω±

k =
α±

k
∑2

l=0 α
±

l

, α±

k =
γ±k

(βk + ǫ)2
, k = 0, 1, 2, (21)

where ǫ > 0 is known to avoid the denominator becoming zero. Based on
the relation (17) for the linear weights, the nonlinear weights are defined by

ωk = σ+ω+
k − σ−ω−

k . (22)

However, the nonlinear weights defined in (21) and (22) give

ωk − dk = O(∆x),

where the condition (20) is not satisfied. To increase the accuracy of the
nonlinear weights, the mapped function in [16] is employed:

gk(ω) =
ω(dk + d2k − 3dkω + ω2)

d2k + ω(1− 2dk)
, k = 0, 1, 2.

The final nonlinear weights are formulated as

ωLSZ

k =
αk

∑2
l=0 αl

, αk = gk(ωk), k = 0, 1, 2.

It is shown in [21] with Taylor expansion that

ωLSZ

0 − ωLSZ

2 = O(∆x4),

ωLSZ

k − dk = O(∆x3).

So both conditions (19) and (20) are satisfied.

Remark 2.1. As ǫ = 10−6 is used in [21], it causes some small-scale os-
cillations around the sharp interfaces, e.g., in Examples 4.2, 4.3 and 4.8,
Section 4, and the NAN values in some computer systems, e.g., in Example
4.8, Section 4. The value of ǫ is thus replaced by 10−10 in the WENO-LSZ
scheme for all numerical experiments in Section 4, so that some oscillations
are smoothed and there is none NAN value for all tested computer systems.
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In [15], the MWENO scheme were proposed with Z-type nonlinear weights
[9], where the global smoothness indicator is supposed to give higher order,
which implies that the lower order terms happen to cancel out if the function
is smooth in the stencil. The global smoothness indicator τ is simply the
absolute difference between β0 and β2,

τ = |β0 − β2|,

and the nonlinear positive and negative weights are defined as

ω±

k =
α±

k
∑2

l=0 α
±

l

, α±

k = γ±k

(

1 +

(

τ

βk + ǫ

)2
)

, k = 0, 1, 2, (23)

with γ±k in (16) and ǫ = 10−30. As defined in (22), the MWENO nonlinear
weights are

ωMWENO

k = σ+ω+
k − σ−ω−

k ,

which satisfy the sufficient conditions for sixth order accuracy in smooth
regions as shown in [15].

Hence the WENO numerical flux is

ĝi+1/2 =

2
∑

k=0

ωkĝ
k
i+1/2,

where ĝki+1/2, k = 0, 1, 2 are given by (13). Then the semi-discrete finite
difference WENO scheme of the conservation form is

dui(t)

dt
=

ĝi+1/2 − ĝi−1/2

∆x2
. (24)

Remark 2.2. A major difference between the WENO approximations to
the first and second derivatives is that in one stencil, two numerical fluxes
f̂+
i−1/2 and f̂−

i+1/2 at the respective points xi−1/2 and xi+1/2 need evaluating
for the first derivative, while only one numerical flux ĝi+1/2 at xi+1/2 is
estimated for the second derivative.

3 Central WENO approximation to the second

derivative

Our goal is to obtain a convex combination of the numerical fluxes ĝki+1/2

in (13) as a new approximation to gi+1/2 in (5). Motivated by the compact
central WENO schemes for hyperbolic conservation laws [22], a centered
polynomial pC(x) is introduced for the WENO approximation, such that
all linear weights are positive without the concern about dealing with neg-
ative linear weights. To conform to the notation in [22], we set pOPT(x) =

9



p(x), pL(x) = p0(x), pM(x) = p1(x), pR(x) = p2(x) with p(x) (6) and
p0(x), p1(x), p2(x) (12), and apply this setting to every related term in the
previous section accordingly. The centered polynomial pC(x) is constructed
by the following relation

pOPT(x) = CLpL(x)+CMpM(x)+CRpR(x)+CCpC(x),
∑

k

Ck = 1, k ∈ {L,M, R, C},

(25)
where CL, CM, CR and CC are positive constants. It is required that CL =
CR, as discussed further in the following subsection. With different combi-
nations of (CL, CM, CR) attempted, we pick out (CL, CM, CR) =

(

1
6 ,

1
3 ,

1
6

)

.
Then

pC(x) = 3pOPT(x)−
1

2
pL(x)− pM(x)−

1

2
pR(x).

The evaluation of the polynomial at x = xi+1/2 gives rise to the central
numerical flux ĝC

i+1/2

ĝC

i+1/2 = pC(xi+1/2) = − 3

40
bi−2+

11

24
bi−1−2bi+2bi+1−

11

24
bi+2+

3

40
bi+3, (26)

and the Taylor series expansion shows that

ĝC

i+1/2 = gi+1/2 +
23

360
h
(5)
i ∆x5 +O(∆x6). (27)

From (25), we have

ĝFDi+1/2 =
∑

k

Ckĝ
k
i+1/2, k ∈ {L,M, R, C}. (28)

It is straightforward to obtain the corresponding ĝC

i−1/2 and the relation be-

tween ĝFDi−1/2 and ĝki−1/2 with every index shifted by -1. Similarly, expanding
in Taylor series gives

ĝC

i−1/2 = gi−1/2 +
23

360
h
(5)
i ∆x5 +O(∆x6). (29)

We define the central smoothness indicator as

βC =

4
∑

l=1

∆x2l−1

∫ xi+1

xi

(

dl

dxl
pOPT(x)

)2

dx,

where the polynomial pC(x) is not used but replaced by pOPT(x), and the
order of the derivative is up to 4. After some algebra, the central smoothness
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indicator could be written as

βC =
4273

20160
(bi−2 − 5bi−1 + 10bi − 10bi+1 + 5bi+2 − bi+3)

2 +

29

345600
(5bi−2 + 11bi−1 − 70bi + 94bi+1 − 47bi+2 + 7bi+3)

2 +

1

3600
(35bi−2 − 139bi−1 + 230bi − 206bi+1 + 103bi+2 − 23bi+3)

2 +

1

576
(7bi−2 − 51bi−1 + 134bi − 166bi+1 + 99bi+2 − 23bi+3)

2 +

1

2304
(7bi−2 − 56bi−1 + 106bi − 76bi+1 + 23bi+2 − 4bi+3)

2 +

1

9216
(65bi−2 − 353bi−1 + 690bi − 602bi+1 + 221bi+2 − 21bi+3)

2 +

1

9216
(23bi−2 − 63bi−1 − 34bi + 186bi+1 − 133bi+2 + 21bi+3)

2 +

1

2304
(13bi−2 − 28bi−1 + 30bi − 28bi+1 + 13bi+2)

2 +

2

15
(bi−2 − 4bi−1 + 6bi − 4bi+1 + bi+2)

2 +
1

1152
(bi−2 − 12bi−1 + 22bi − 12bi+1 + bi+2)

2 .

(30)
We set the new global smoothness indicator τ6 on the stencil S6 as

τ6 =

∣

∣

∣

∣

βC − 1

24
(5βL + 14βM + 5βR)

∣

∣

∣

∣

.

The nonlinear weights are defined by

ωCWENO

k =
αk
∑

l αl
, αk = Ck

(

1 +

(

τ6
βk + ǫ

)p)

, k, l ∈ {L,M, R, C}, (31)

with CL = CR = 1
6 , CM = CC = 1

3 and ǫ = 10−40. The free parameter
p is important to achieve sixth order accuracy in smooth regions, as well
as control the amount of numerical dissipation. The choice of p will be
discussed below. We end up with the CWENO numerical flux

ĝi+1/2 =
∑

k

ωCWENO

k ĝki+1/2, k ∈ {L,M, R, C}. (32)

Note that the central numerical flux ĝC

i−1/2 is used in smooth regions. Other-
wise its contribution vanishes and the WENO numerical flux is determined
by the nonlinear weight(s) corresponding to the smoothness indicators of
smaller magnitude.

3.1 Spatial sixth order accuracy in smooth regions

We next consider the sufficient conditions of the finite difference WENO
scheme (24) with the new numerical flux (32) so as to maintain sixth order
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accuracy in smooth regions. Let

ĝi±1/2 =
∑

k

ω±

k ĝ
k
i±1/2, k ∈ {L,M, R, C}.

Here we drop the superscript CWENO in (32) to simplify the notation.
The superscripts ± in the nonlinear weights ω±

k represent two different sten-
cils, with + for {xi−2, · · · , xi+3} and − for {xi−1, · · · , xi+2}. The nonlinear
weights ω±

k in this subsection are not the nonlinear positive and negative
weights ω±

k (21) and (23) in Section 2. From the relation (28), the numerical
flux (32) can be rewritten as

ĝi+1/2 =
∑

k

Ckĝ
k
i+1/2 +

∑

k

(ω+
k − Ck)ĝ

k
i+1/2 = ĝFDi+1/2 +

∑

k

(ω+
k − Ck)ĝ

k
i+1/2.

We expand the last term by using (14) and (27),

∑

k

(ω+
k − Ck)ĝ

k
i+1/2 = (ω+

L
− CL)

[

gi+1/2 +
1

12
h
(4)
i ∆x4 +O(∆x5)

]

+

(ω+
M
− CM)

[

gi+1/2 −
1

90
h
(5)
i ∆x5 +O(∆x6)

]

+

(ω+
R
− CR)

[

gi+1/2 −
1

12
h
(4)
i ∆x4 +O(∆x5)

]

+

(ω+
C
− CC)

[

gi+1/2 +
23

360
h
(5)
i ∆x5 +O(∆x6)

]

= gi+1/2

∑

k

(ω+
k − Ck) +

1

12
h
(4)
i ∆x4(ω+

L
− ω+

R
) +

∑

k

(ω+
k − Ck)O(∆x5)

=
1

12
h
(4)
i ∆x4(ω+

L
− ω+

R
) +

∑

k

(ω+
k − Ck)O(∆x5).

Then

ĝi+1/2 = ĝFDi+1/2 +
1

12
h
(4)
i ∆x4(ω+

L
− ω+

R
) +

∑

k

(ω+
k − Ck)O(∆x5).

Similarly, with the help of (14) and (29), we find that

ĝi−1/2 = ĝFDi−1/2 +
1

12
h
(4)
i ∆x4(ω−

L
− ω−

R
) +

∑

k

(ω−

k − Ck)O(∆x5).

By (9) and (10), we have

ĝi+1/2 − ĝi−1/2

∆x2
=

gi+1/2 − gi−1/2

∆x2
+O(∆x6) +

1

12
h
(4)
i ∆x2(ω+

L
− ω+

R
)− 1

12
h
(4)
i ∆x2(ω−

L
− ω−

R
)

+
∑

k

(ω+
k −Ck)O(∆x3)−

∑

k

(ω−

k − Ck)O(∆x3).
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Thus the sufficient conditions for sixth order accuracy are given by

ωL − ωR = O(∆x4), (33)

ωk − Ck = O(∆x3), (34)

where the superscripts are dropped, meaning that the nonlinear weights ωk

for each stencil S6 are supposed to satisfy both conditions in smooth regions
for sixth order accuracy.

Expanding the smoothness indicators βk, k ∈ {L,M, R, C} (18) and (30)
in Taylor series at x = xi+1/2, we obtain

βL = b′′2i+1/2∆x4 +

(

13

12
b′′′2i+1/2 −

7

12
b′′i+1/2b

(4)
i+1/2

)

∆x6

+

(

−13

6
b′′′i+1/2b

(4)
i+1/2 +

1

2
b′′i+1/2b

(5)
i+1/2

)

∆x7 +O(∆x8),

βM = b′′2i+1/2∆x4 +

(

13

12
b′′′2i+1/2 +

5

12
b′′i+1/2b

(4)
i+1/2

)

∆x6 +O(∆x8),

βR = b′′2i+1/2∆x4 +

(

13

12
b′′′2i+1/2 −

7

12
b′′i+1/2b

(4)
i+1/2

)

∆x6

+

(

13

6
b′′′i+1/2b

(4)
i+1/2 −

1

2
b′′i+1/2b

(5)
i+1/2

)

∆x7 +O(∆x8),

βC = b′′2i+1/2∆x4 +
13

12
b′′′2i+1/2∆x6 +O(∆x8).

If there is no inflection (or undulation) point at xi+1/2, i.e., the second
derivative is nonzero, then τ6 = O(∆x8). Since τ6 is of order O(∆x8) and
each βk is of order O(∆x4), one can find that

(

τ6
βk

)p

= O(∆x4p),

by setting ǫ = 0 in the Taylor expansion analysis. From the definitions (31),

ωCWENO

k = Ck +O(∆x4p). (35)

The minimum value p to satisfy both conditions (33) and (34) is p = 1.
Note that the condition (33) combined with (35) explains the requirement
CL = CR.

Now we consider the convergence behavior of the nonlinear weights when
there exists an inflection point at xi+1/2, that is, the second derivative is
zero but the third derivative is nonzero. Then it can be verified through the
Taylor expansion analysis above that

ωCWENO

k = Ck +O(∆x2p),

13



and it is clear that p = 2 is the minimum value to maintain sixth order
accuracy.

As pointed out by Borges et al. [9], increasing the value of p amplifies
the numerical dissipation around the discontinuities. We then choose p = 1
in this paper even if it does not satisfy the sufficient conditions (33) and
(34) at the inflection points. However, our numerical experiments in the
next section show that it still provide sixth order accuracy overall.

4 Numerical results

This section presents some numerical experiments to demonstrate the perfor-
mance of the proposed central WENO scheme and compare with the WENO-
LSZ and MWENO schemes. We examine the accuracy of the WENO
schemes for one- and two-dimensional heat equations in terms of L1, L2

and L∞ error norms:

L1 =
1

N + 1

N
∑

i=0

|ui(T )− u(xi, T )| ,

L2 =

√

√

√

√

1

N + 1

N
∑

i=0

(ui(T )− u(xi, T ))
2,

L∞ = max
06i6N

|ui(T )− u(xi, T )| ,

where u(xi, T ) denotes the exact solution and ui(T ) is the numerical ap-
proximation at the final time t = T . The rest numerical experiments show
the resolution of the numerical solutions with the WENO-LSZ, MWENO
and central WENO schemes. For time discretization, we use the explicit
third-order total variation diminishing Runge-Kutta method [27]

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL

(

u(1)
)

,

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL

(

u(2)
)

,

where L is the spatial operator. We follow the CFL condition in [21] to set
CFL = 0.4 unless otherwise stated. The central WENO scheme in Section
3 is termed as CWENO-DZ with p = 1. We choose ǫ = 10−40 for the
CWENO-DZ scheme whereas ǫ = 10−15 is set for WENO-LSZ as explained
in Remark 2.1 and ǫ = 10−30 for MWENO as in [15].
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4.1 One-dimensional numerical examples

Example 4.1. We test the accuracy of those WENO schemes for the one-
dimensional heat equation

ut = uxx, − π 6 x 6 π, t > 0

with the following initial data

u(x, 0) = sin(x),

and the periodic boundary condition. The exact solution is given by

u(x, t) = e−t sin(x).

The numerical solution is computed up to the time T = 2 with the time
step ∆t = CFL ·∆x2. We present the L1, L2 and L∞ errors versus N , as
well as the order of accuracy, for the WENO-LSZ, MWENO, CWENO-DZ
schemes in Tables 1, 2 and 3, respectively. It is clear that the expected order
of accuracy is achieved for all schemes. Although the errors of the CWENO-
DZ scheme are larger than WENO-LSZ for N = 10, CWENO-DZ yields the
most accurate results as N increases.

Table 1: L1 error and order of accuracy for Example 4.1.

N WENO-LSZ MWENO CWENO-DZ
Error Order Error Order Error Order

10 6.31E-6 – 3.17E-5 – 4.15E-5 –
20 1.41E-7 5.4883 2.16E-7 7.1985 1.77E-8 11.1951
40 2.27E-9 5.9514 2.36E-9 6.5124 1.94E-9 3.1896
80 3.54E-11 6.0028 3.55E-11 6.0562 3.47E-11 5.8050
160 5.70E-13 5.9582 5.70E-13 5.9613 5.69E-13 5.9304

Table 2: L2 error and order of accuracy for Example 4.1.

N WENO-LSZ MWENO CWENO-DZ
Error Order Error Order Error Order

10 7.50E-6 – 3.79E-5 – 4.91E-5 –
20 1.61E-7 5.5422 2.47E-7 7.2580 2.11E-8 11.1843
40 2.56E-9 5.9742 2.66E-9 6.5387 2.21E-9 3.2551
80 3.96E-11 6.0136 3.97E-11 6.0664 3.89E-11 5.8281
160 6.35E-13 5.9633 6.35E-13 5.9663 6.34E-13 5.9391
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Table 3: L∞ error and order of accuracy for Example 4.1.

N WENO-LSZ MWENO CWENO-DZ
Error Order Error Order Error Order

10 1.01E-5 – 5.22E-5 – 6.43E-5 –
20 2.31E-7 5.4501 3.54E-7 7.2038 3.74E-8 10.7476
40 3.66E-9 5.9780 3.80E-9 6.5398 3.21E-9 3.5424
80 5.64E-11 6.0217 5.65E-11 6.0722 5.54E-11 5.8565
160 9.01E-13 5.9677 9.02E-13 5.9702 8.99E-13 5.9454

Example 4.2. Consider the PME (2). If the initial condition is set as the
Dirac delta, the Barenblatt solution Bm(x, t) [7, 29], representing the heat
release from a point source, takes the explicit formula

Bm(x, t) = t−q

[(

1− q(m− 1)

2m

x2

t2q

)

+

]1/(m−1)

, m > 1 (36)

where s+ = max(s, 0) and q = (m + 1)−1. For t > 0, the solution has a
compact support [−am(t), am(t)], where

αm(t) =

√

2m

k(m− 1)
tk,

and the interfaces |x| = am(t) move outward at a finite speed. Moreover, the
larger the value of p, the sharper the interfaces that separate the compact
support and the zero solution.

We simulate the Barenblatt solution (36) of the PME (2) with the initial
condition as the Barenblatt solution at t = 1, u(x, 0) = Bm(x, 1), and the
boundary conditions u(±6, t) = 0 for t > 0. The final time is T = 2 and the
time step is ∆t = CFL ·∆x2/m. We take N = 160 and plot the numerical
solutions at the final time for m = 5, 7 and 9, in Figures 2, 3 and 4, re-
spectively. We can see that the solution of the proposed CWENO-DZ almost
overlaps the one of MWENO but both give more accurate solution profiles
around the interfaces than WENO-LSZ. This is also demonstrated by Table
4, which provides the L1, L2 and L∞ errors for the WENO-LSZ, MWENO
and CWENO-DZ schemes.

Example 4.3. We continue to consider the PME (2), where the shape of
the initial condition is two separate boxes. If the solution u represents the
temperature, the PME models the variations in temperature when two hot
spots are situated in the domain.

We first consider the PME with m = 5, where the initial condition is
given by

u(x, 0) =

{

1, x ∈ (−3.7,−0.7) ∪ (0.7, 3.7),

0, otherwise,
(37)
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Figure 2: Barenblatt solution profiles for Example 4.2 with m = 5 at T = 2
(left), close-up view of the solutions in the boxes on the left/right (mid-
dle/right) computed by WENO-LSZ (red), MWENO (green) and CWENO-
DZ (blue) with N = 160. The dashed black lines are the exact solution.
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Figure 3: Barenblatt solution profiles for Example 4.2 with m = 7 at T = 2
(left), close-up view of the solutions in the boxes on the left/right (mid-
dle/right) computed by WENO-LSZ (red), MWENO (green) and CWENO-
DZ (blue) with N = 160. The dashed black lines are the exact solution.
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Figure 4: Barenblatt solution profiles for Example 4.2 with m = 9 at T = 2
(left), close-up view of the solutions in the boxes on the left/right (mid-
dle/right) computed by WENO-LSZ (red), MWENO (green) and CWENO-
DZ (blue) with N = 160. The dashed black lines are the exact solution.

in which the two boxes have the same height, and the boundary conditions are
u(±5.5, t) = 0 for t > 0. We divide the computational domain [−5.5, 5.5]
into N = 220 uniform cells. The final time is T = 1.5 and the time step is
∆t = CFL ·∆x2/m. We present the numerical solutions at t = 0.5, 1.0, 1.5,
as shown in Figure 5. The numerical solution, computed by MWENO with
a high resolution of N = 11000 points, will be referred to as the “exact”
solution.
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Table 4: L1, L2 and L∞ errors for Example 4.2.

m error WENO-LSZ MWENO CWENO-DZ

5
L1 2.81E-3 1.47E-3 1.45E-3
L2 1.82E-2 1.15E-2 1.14E-2
L∞ 1.77E-1 1.03E-1 1.02E-1

7
L1 2.77E-3 1.39E-3 1.37E-3
L2 1.74E-2 1.05E-2 1.04E-2
L∞ 1.73E-1 9.38E-2 9.31E-2

9
L1 3.25E-3 3.19E-3 3.19E-3
L2 2.48E-2 2.16E-2 2.15E-2
L∞ 2.45E-1 1.92E-1 1.91E-1

Now we consider the PME with m = 6. The initial condition in this case
is

u(x, 0) =











1, −4 < x < −1,

2, 0 < x < 3,

0, otherwise,

(38)

and the boundary conditions are u(±6, t) = 0 for t > 0. We select N = 240
for the computational domain [−6, 6]. Figure 6 shows the approximate
results obtained when solving PME up to the final time T = 0.15 with the
time step ∆t = CFL · ∆x2

/ (

m2m−1
)

. We still take the solution computed
by MWENO with N = 6000 points as the “exact” solution.

As seen in Figures 5 and 6, all schemes are able to capture the sharp
interfaces, and MWENO and CWENO-DZ yield very similar solution pro-
files.
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Figure 5: Solution profiles for PME (2) (m = 5) with the initial condition
(37) at t = 0.5 (left), 1.0 (middle) and 1.5 (right) approximated by WENO-
LSZ (red), MWENO (green) and CWENO-DZ (blue) with N = 220. The
black lines are generated by MWENO with N = 11000.

Next, we solve the one-dimensional scalar convection-diffusion equation
of the form

ut + f(u)x = g(u)xx.
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Figure 6: Solution profiles for PME (2) (m = 6) with the initial condi-
tion (38) at t = 0.05 (left), 0.1 (middle) and 0.15 (right) approximated by
WENO-LSZ (red), MWENO (green) and CWENO-DZ (blue) with N = 240.
The black lines are generated by MWENO with N = 6000.

For the convection term, the fifth-order finite difference Lax–Friedrichs flux
splitting WENO scheme, WENO-JS [18, 26], is employed as we want to see
how those WENO schemes for the diffusion term affect the numerical solu-
tions. The numerical solution, computed by WENO-M [16] and MWENO
for the respective convection and diffusion terms with a high resolution, will
be referred to as the “exact” solution.

Example 4.4. The Buckley-Leverett equation [10] is of the form

ut + f(u)x = ǫ (ν(u)ux)x , ǫν(u) > 0, (39)

which is a prototype model for oil reservoir simulation. This is an example
of degenerate parabolic equations since ν(u) vanishes at some values of u.
Following [20], the convection flux f(u) is of the s-shaped form

f(u) =
u2

u2 + (1− u)2
, (40)

ǫ = 0.01, and

ν(u) =

{

4u(1 − u), 0 6 u 6 1,

0, otherwise.
(41)

The diffusion term ǫ (ν(u)ux)x can be written in the form of g(u)xx, where

g(u) =











0, u < 0,

ǫ
(

−4
3u

3 + 2u2
)

, 0 6 u 6 1,
2
3ǫ, u > 1.

The initial condition is given by

u(x, 0) =

{

1− 3x, 0 6 x 6 1/3,

0, 1/3 < x 6 1.
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and the Dirichlet boundary condition is u(0, t) = 1. The computational
domain [0, 1] is divided into N = 100 uniform cells and the time step is
∆t = CFL · ∆x2. The numerical solution computed by CWENO-DZ at
T = 0.2 is very close to those by WENO-LSZ and MWENO. This results in
the overlapping in Figure 7.
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Figure 7: Solution profiles for Buckley-Leverett equation in Example 4.4
at T = 0.2 (left), close-up view of the solutions in the boxes on the
left/right (middle/right) computed by WENO-LSZ (red), MWENO (green)
and CWENO-DZ (blue) withN = 100. The dashed black lines are generated
by WENO-M and MWENO with N = 1000.

Example 4.5. We continue to consider the Buckley-Leverett equation (39)
with the same ǫ = 0.01 and ν(u) (41) as in Example 4.4. The flux function
f(u) with gravitational effects is

f(u) =
u2

u2 + (1− u)2
(1− 5(1− u)2), (42)

where the sign of f ′(u) changes in [0, 1]. The Riemann initial condition is

u(x, 0) =

{

0, 0 6 x < 1− 1/
√
2,

1, 1− 1/
√
2 6 x 6 1.

We divide the computational domain [0, 1] into N = 100 uniform cells and
the time step is ∆t = CFL · ∆x2. Figure 8 shows the numerical solutions
at T = 0.2 for the convection flux f(u) (42) with gravitational effects while
Figure 9 presents the ones for f(u) (40) without gravitational effects. In
Figure 8, all WENO schemes yield comparable results, while in Figure 9,
CWENO-DZ produces the numerical solution slightly closer to the reference
solution than WENO-LSZ and MWENO around the shock.

Example 4.6. In this example, we consider the strongly degenerate parabolic
convection-diffusion equation

ut + f(u)x = ǫ (ν(u)ux)x , ǫν(u) > 0. (43)
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Figure 8: Solution profiles for Buckley-Leverett equation (39) with gravi-
tation in Example 4.5 at T = 0.2 (left), close-up view of the solutions in
the boxes on the left/right (middle/right) computed by WENO-LSZ (red),
MWENO (green) and CWENO-DZ (blue) with N = 100. The dashed black
lines are generated by WENO-M and MWENO with N = 1000.
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Figure 9: Solution profiles for Buckley-Leverett equation (39) without grav-
itation in Example 4.5 at T = 0.2 (left), close-up view of the solutions in
the boxes on the left/right (middle/right) computed by WENO-LSZ (red),
MWENO (green) and CWENO-DZ (blue) with N = 100. The dashed black
lines are generated by WENO-M and WENO-LSZ with N = 1000.

We take ǫ = 0.1, f(u) = u2, and

ν(u) =

{

0, |u| 6 0.25,

1, |u| > 0.25.
(44)

If |u| 6 0.25, the equation (43) returns to the hyperbolic equation. The
diffusion term ǫ (ν(u)ux)x can be written in the form of g(u)xx, where

g(u) =











ǫ(u+ 0.25), u < −0.25,

ǫ(u− 0.25), u > 0.25,

0, otherwise.

The initial condition is given by

u(x, 0) =











1, −1/
√
2− 0.4 < x < −1/

√
2 + 0.4,

−1, 1/
√
2− 0.4 < x < 1/

√
2 + 0.4,

0, otherwise.
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We divide the computational domain [−2, 2] into N = 200 uniform cells and
the time step is ∆t = CFL ·∆x2. The simulations at T = 0.7 are presented
in Figure 10, where the numerical result with CWENO-DZ is comparable to
those with WENO-LSZ and MWENO.
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Figure 10: Solution profiles for Example 4.6 at T = 0.7 (top left), close-up
view of the solutions in the boxes on the left/middle/right (top right/bottom
left/bottom right) computed by WENO-LSZ (red), MWENO (green) and
CWENO-DZ (blue) with N = 200. The dashed black lines are generated by
WENO-M and WENO-LSZ with N = 2000.

4.2 Two-dimensional numerical examples

Example 4.7. We test the accuracy of those WENO schemes for the two-
dimensional heat equation

ut = uxx + uyy, − π 6 x, y 6 π, t > 0

subject to the initial data

u(x, y, 0) = sin(x+ y),

and the periodic boundary conditions in both directions. The exact solution
is

u(x, t) = e−2t sin(x+ y).
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The numerical solutions are computed at the final time T = 2 with the
time step ∆t = 0.2 ·min(∆x,∆y)2. The L1, L2, and L∞ errors, along with
the orders of accuracy, are provided in Tables 5, 6 and 7, respectively. All
WENO schemes exhibit sixth order accuracy overall. As in Examples 4.1,
the errors produced by CWENO-DZ are larger than WENO-LSZ for N = 10,
but we see that the proposed CWENO-DZ scheme performs the best in terms
of accuracy subsequently.

Table 5: L1 errors and order of convergence for Example 4.7.

N WENO-LSZ MWENO CWENO-DZ
Error Order Error Order Error Order

10 × 10 1.83E-6 – 9.20E-6 – 1.20E-5 –
20 × 20 3.97E-8 5.5240 6.10E-8 7.2381 3.18E-9 11.8756
40 × 40 6.30E-10 5.9785 6.55E-10 6.5412 5.40E-10 2.5608
80 × 80 9.71E-12 6.0189 9.73E-12 6.0719 9.51E-12 5.8271
160 × 160 1.55E-13 5.9665 1.55E-13 5.9696 1.55E-13 5.9402

Table 6: L2 errors and order of convergence for Example 4.7.

N WENO-LSZ MWENO CWENO-DZ
Error Order Error Order Error Order

10 × 10 2.09E-6 – 1.06E-5 – 1.37E-5 –
20 × 20 4.44E-8 5.5563 6.83E-8 7.2737 4.16E-9 11.6802
40 × 40 7.01E-10 5.9869 7.29E-10 6.5513 6.04E-10 2.7848
80 × 80 1.08E-11 6.0212 1.08E-11 6.0740 1.06E-11 5.8355
160 × 160 1.72E-13 5.9672 1.72E-13 5.9702 1.72E-13 5.9419

Table 7: L∞ errors and order of convergence for Example 4.7.

N WENO-LSZ MWENO CWENO-DZ
Error Order Error Order Error Order

10 × 10 2.76E-6 – 1.41E-5 – 1.78E-5 –
20 × 20 6.26E-8 5.4641 9.61E-8 7.1989 7.46E-9 11.2224
40 × 40 9.91E-10 5.9814 1.03E-9 6.5445 8.61E-10 3.1154
80 × 80 1.53E-11 6.0212 1.53E-11 6.0728 1.50E-11 5.8460
160 × 160 2.44E-13 5.9673 2.44E-13 5.9701 2.43E-13 5.9433

Example 4.8. Consider the two-dimensional PME given by

ut =
(

u2
)

xx
+
(

u2
)

yy
,
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with the initial condition

u(x, y, 0) =















exp
(

− 1
6−(x−2)2−(y+2)2

)

, (x− 2)2 + (y + 2)2 < 6,

exp
(

− 1
6−(x+2)2−(y−2)2

)

, (x+ 2)2 + (y − 2)2 < 6,

0, otherwise,

and the periodic boundary condition in each direction. We divide the square
computational domain [−10, 10]× [−10, 10] into Nx×Ny = 80×80 uniform
cells and the time step ∆t = CFL·min(∆x,∆y)4/2. The numerical solutions
at t = 1 and t = 4 are shown in Figures 11 and 12, respectively. At the time
t = 1, there are some small-scale oscillations around the free boundaries
in the solution by WENO-LSZ, which are implied by the white spots in the
surface plot on the top left of Figure 11. The oscillations are largely damped
by MWENO and CWENO-DZ as there is no obvious white spot in the surface
plot on the top middle and right, respectively. However, at the time t = 4, all
WENO schemes are able to capture the free boundaries without noticeable
oscillation, as shown in Figure 12. Table 8 shows the minimum value of
every numerical solution, which agrees with our observation above.
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Figure 11: Solutions in the surface (top) and contour (bottom) plots for Ex-
ample 4.8 at t = 1 by WENO-LSZ (left), MWENO (middle) and CWENO-
DZ (right) with Nx ×Ny = 80× 80. Each contour plot includes 18 contours
of u.

Finally, we use WENO schemes to solve the two-dimensional scalar
convection-diffusion equations. The WENO-JS scheme for the convection
term is combined with WENO-LSZ for the diffusion term, while WENO-ZR
[14], which gives sharper approximations around the shocks, is applied with
both MWENO and CWENO-DZ.
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Figure 12: Solutions in the surface (top) and contour (bottom) plots for Ex-
ample 4.8 at t = 4 by WENO-LSZ (left), MWENO (middle) and CWENO-
DZ (right) with Nx ×Ny = 80× 80. Each contour plot includes 18 contours
of u.

Table 8: Minimum values of the numerical solutions at t = 1 and t = 4 for
Example 4.8.

t WENO-LSZ MWENO CWENO-DZ

1 -9.0127E-2 -1.1547e-16 -4.5836e-22

4 -2.0504E-8 -2.3381e-16 -9.6261e-22

Example 4.9. We consider the two-dimensional Buckley-Leverett equation
of the form

ut + f1(u)x + f2(u)y = ǫ (uxx + uyy) ,

with ǫ = 0.01 and the flux functions given by

f1(u) =
u2

u2 + (1− u)2
, f2(u) =

(

1− 5(1 − u)2
)

f1(u).

Then the equation includes gravitational effects only in the y-direction. The
initial condition is

u(x, y, 0) =

{

1, x2 + y2 < 0.5,

0, otherwise.

The square computational domain [−1.5, 1.5] × [−1.5, 1.5] is divided into
Nx × Ny = 120 × 120 uniform cells and the time step is ∆t = CFL ·
min(∆x,∆y)2. The solutions at T = 0.5 are plotted in Figure 13. The
white spot in the surface plot on the top left indicates the small-scale oscil-
lations around the discontinuities in the solution by WENO-JS and WENO-
LSZ. Those oscillations are smoothed by WENO-ZR with both MWENO and
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CWENO-ZR, corresponding to the surface plot on the top middle and right,
respectively. We also provide Table 9 showing the minimum value of each
solution.
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Figure 13: Solutions in the surface (top) and contour (bottom) plots
for Example 4.9 at T = 0.5 by WENO-JS/WENO-LSZ (left), WENO-
ZR/MWENO (middle) and WENO-ZR/CWENO-DZ (right) with Nx ×
Ny = 120× 120. Each contour plot includes 18 contours of u.

Table 9: Minimum values of the numerical solutions at T = 0.5 for Example
4.9.

T WENO-LSZ MWENO CWENO-DZ

0.5 -6.2550E-3 1.5645E-39 8.0662E-39

Example 4.10. We conclude this section with the two-dimensional strongly
degenerate parabolic convection-diffusion equation

ut + f(u)x + f(u)y = ǫ (ν(u)ux)x + ǫ (ν(u)uy)y ,

where ǫ = 0.1, f(u) = u2, and ν(u) (44) are the same as in Example 4.6.
The initial condition is

u(x, y, 0) =











1, (x+ 0.5)2 + (y + 0.5)2 < 0.16,

−1, (x− 0.5)2 + (y − 0.5)2 < 0.16,

0, otherwise.

We divide the computational domain [−1.5, 1.5]×[−1.5, 1.5] into Nx×Ny =
120× 120 uniform cells and the time step is ∆t = CFL ·min(∆x,∆y)2. The
numerical solutions at T = 0.5, generated by those WENO schemes, look
similar in Figure 14.
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Figure 14: Solutions in the surface (top) and contour (bottom) plots
for Example 4.10 at T = 0.5 by WENO-JS/WENO-LSZ (left), WENO-
ZR/MWENO (middle) and WENO-ZR/CWENO-DZ (right) with Nx ×
Ny = 120× 120. Each contour plot includes 18 contours of u.

5 Conclusion

In this paper, we proposed a six-order finite difference CWENO scheme to
solve nonlinear degenerate parabolic equations. The key idea is to introduce
a centered polynomial such that the positivity of linear weights is guaran-
teed. Numerical examples show that the proposed CWENO scheme achieves
sixth order accuracy with smaller errors than WENO-LSZ and MWENO,
and inhibits the small-scale oscillations introduced by WENO-LSZ.
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