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ABSTRACT

In this article, a new concept of LR-type interval-valued intuitionistic fuzzy numbers (L R-type
IVIFN) has been introduced. The theory has also been enriched by demonstrating diagrammatic
representations of L R-type IVIFNs and establishing arithmetic operations among these fuzzy
numbers. The total order properties of lexicographic criteria have been used for ranking LR-
type IVIFNSs. Further, a linear programming problem having both equality as well as inequality
type constraints with all the parameters as L R-type IVIFNs and unrestricted decision variables
has been formulated. An algorithm to find a unique optimal solution to the problem using the lex-
icographic ranking method has been developed. In the proposed methodology, the given linear
programming problem is converted to an equivalent mixed O —1 lexicographic non-linear pro-
gramming problem. Various theorems have been proved to show the equivalence of the proposed
problem and its different constructions. The model formulation, algorithm and discussed results
have not only developed a new idea but also generalized various well-known related works exist-
ing in the literature. A numerical problem has also been exemplified to show the steps involved
in the approach. Finally, a practical application in production planning is framed, solved and
analyzed to establish the applicability of the study.

1. Introduction
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Linear programming problems (LPPs) are the simplest kind of optimization problem that are widely used to solve
many real-life problems. In conventional LPPs, all the parameters and decision variables are taken to be precise real
numbers. However, in practical situations due to various uncontrollable factors, the data may not be available as crisp
values. It may involve some vagueness/ambiguity in all or some of the parameters and/or decision variables of the
problem. A general fuzzy LPP can be modeled as follows:

(P) max (or min) chxj

Jj=1

ij%j {(Z,=2}b;, i=12,....m,
j=1

ijO, j=12,...,n

Zadeh [1] developed the concept of fuzzy sets which incorporated imprecision in the data successfully. Motivated
by Zadeh’s concept of fuzzy sets, Zimmermann [2] initiated and developed the theory to solve fuzzy linear program-
ming problems (FLPPs). Tanaka and Asai [3] had first introduced the FLPPs in which both the parameters and decision
variables were represented by fuzzy numbers. Initially, the researchers had extended the classical methods which were
used to solve crisp LPPs to deal with FLPPs such as simplex algorithm, two-phase approach, etc. But, later on, these
were proven to be incompatible with fuzzy theory. After that, linear ranking functions have been widely employed to
convert FLPPs into crisp optimization problems. However, the ranking functions fail to order two such fuzzy numbers
(FNs) which seems to be distinguished to a decision-maker. To overcome such limitations for the ordering of FNs,
the idea of lexicographic ranking criteria came which uses multiple parameters at a time associated with an FN and
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hence is a more effective and powerful ordering criterion. The fuzzy theory was later on extended to the intuitionistic
fuzzy set theory, which is more general than the former. The detailed literature can be seen in Section 2 of this article.
It was observed that while handling the uncertain and hesitant data, the intuitionistic fuzzy sets utilize exact or crisp
real numbers to assign a membership and non-membership degrees for each element of the set. However, in practical
situations, a decision-maker may fails to give these degrees with full confidence. Consequently, the notion of intuition-
istic fuzzy sets are extended to the interval-valued intuitionistic fuzzy (IVIF) sets, which is the key motivation for our
present study. The IVIF sets use an interval to define the acceptance and rejection degrees of each element in the set.
Moreover, to represent a realistic situation mathematically, L R-type fuzzy numbers play a crucial role in optimization
theory since any type of variation in the input data can be reflected in the mathematical model using different L and R
functions. Thus, we have firstly defined the concept of L R-type IVIF numbers and then considered an LPP having all
the parameters and decision variables as L R-type IVIF numbers. Further, an approach for solving such LPPs using a
lexicographic ranking methodology has been proposed.

To the best of our knowledge, there is no study in the literature, describing the arithmetic operations on L R-type
IVIF numbers (IVIFNs) and to find the unique optimal IVIF solution for an interval-valued intuitionistic fuzzy linear
programming problem (IVIFLPP) having both linear equalities and inequalities with all the parameters represented by
LR-type IVIFNs and decision variables as unrestricted LR-type IVIFNs. In many practical problems like selling /
purchase of some units or profit / loss etc., unrestricted decision variables are required which can be handled through
this formulation. To sum up, the key features of the present work are listed as follows:

On the basis of (a, f)-cut of L R-type IVIFNs, we define the score and accuracy indices of these numbers.

The basic arithmetic operations on unrestricted L R-type IVIFNs are developed using the (a, f)-cut.

Using the total order properties of the lexicographic criterion, a ranking of L R-type IVIFNs has been proposed.

Based on the introduced lexicographic ranking criterion, the L R-type IVIFLPP is converted to an equivalent

mixed 0-1 lexicographic non-linear programming problem for finding a unique optimal IVIF solution of the

L R-type fully IVIFLPP.

5. Various theorems are established to show the equivalence between the various problems obtained in the proposed
algorithm.

6. A practical application in production planning is constructed, solved and examined using the proposed technique.

Sl e

The rest of the paper is summarized as follows: In Section 2, a detailed literature review on fuzzy, intuitionistic
fuzzy and IVIF theory is given. Section 3 includes some basic definitions and arithmetic operations on L R-type I'V-
IFNs. A lexicographic ranking criterion is also proposed to rank two L R-type IVIFNs. The mathematical formulation
of an IVIFLPP is described in Section 4 and a lexicographic method has been proposed to find the unique IVIF optimal
solution of L R-type IVIFLPPs. In Section 5, the advantages of the proposed method are listed. Section 6 illustrates
a numerical example to describe the proposed algorithm. A production planning problem along with its managerial
insights is discussed in Section 7. The last section sums up the conclusions and some interesting future directions.

2. Literature review

2.1. Fuzzy LPP

In the model (P), if all the parameters are taken to be fuzzy numbers (FNs), then the problem is described as
a fuzzy linear programming problem (FLPP). In the literature, several methods have been proposed to solve these
models depending on which parameters and/or decision variables are taken to be fuzzy. A comprehensive survey on
FLPPs can be found in Ebrahimnejad and Verdegay [4, ch. 2-4]. Hashemi et al. [5] considered a fully FLPP with
inequality constraints having all the parameters and decision variables to be given by symmetric L R-type FNs and
proposed a two-phase solution approach by using the lexicographic comparison of the mean and standard deviation
of FNs. Allahviranloo et al. [6] used a ranking function to develop a solution algorithm to deal with the fully FLPPs
having inequality constraints. Later on, Kumar et al. [7] proposed a methodology to solve the fully FLPPs with
equality constraints where parameters were taken to be unrestricted and decision variables as non-negative triangular
FNs. After that, Najafi and Edalatpanah [8] proposed some corrections to the methodology of Kumar et al. [7]. Khan
et al. [9] studied a fully FLPP where parameters and decision variables were taken to be triangular FNs and proposed
a method by making use of some ranking function. Ozkok et al. [10] extended the method of Kumar and Kaur [11] to
solve fully FLPP with all types of constraints having parameters as unrestricted and decision variables as non-negative
triangular FNs.
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Najafi et al. [12] examined a fully FLPP having equality constraints with parameters as well as decision variables
to be expressed by unrestricted triangular FNs and developed a solution technique by converting the original model to a
non-linear model. Later, Gong and Zhao [13] considered a fully FLPP with equality constraints and proposed a method
in which the problem is first transformed into a crisp multi-objective LPP and then solved by using various approaches.
Arana-Jiménez [14] presented a new method to find fuzzy optimal (nondominated) solutions of fully FLPPs having
inequality constraints with triangular fuzzy numbers and not necessarily symmetric, via solving a multiobjective linear
problem with crisp numbers. Kaur and Kumar [15] analyzed that by employing the existing approaches for solving
fully FLPP, the obtained optimal solution is not necessarily unique. To overcome this limitation, they have defined
a lexicographic criterion for ranking trapezoidal FNs and introduced an approach to find the unique optimal solution
of fully FLPP having equality constraints with unrestricted parameters and non-negative decision variables. On sim-
ilar lines, Ezzati et al. [16] introduced a lexicographic method to solve a fully FLPP with equality constraints having
parameters as unrestricted triangular fuzzy and decision variables to be non-negative triangular fuzzy. Further, Mot-
taghi et al. [17] solved a fully FLPP with inequality constraints by introducing non-negative fuzzy slack and surplus
variables for converting the inequalities into fuzzy equality constraints.

Based on a lexicographic criterion for ranking of LR-type FNs, Hosseinzadeh and Edalatpanah [18] devised a
method to solve a fully FLPP having only equality constraints where the parameters and decision variables were taken
to be non-positive or non-negative L R-type FNs. After that, Kaur and Kumar [19] introduced a lexicographic tech-
nique for obtaining the unique optimal solution of a fully FLPP with equality constraints having parameters and de-
cision variables as unrestricted L R-type FNs. They pointed out that no method exists to obtain the unique optimal
solution of a fully FLPP having inequalities in the set of constraints. But, some researchers [13, 17, 20] solved fully
FLPPs with inequality constraints by transforming them into equality constraints using fuzzy slack and surplus vari-
ables. However, in the case of FNs, such transformations are not correct mathematically and may lead to infeasible
solutions for the considered FLPP. Later, Das et al. [21] proposed a lexicographic method to solve a fully FLPP with
all types of constraints keeping parameters as unrestricted and decision variables as non-negative trapezoidal FNs.
But Ebrahimnejad and Verdegay [4, p. 298] demonstrated that this method is not suitable to deal with the fully FLPP
having inequality constraints as the authors utilized different order relation for inequality constraints than that was used
for the objective function, which is clearly false. Consequently, Ebrahimnejad and Verdegay [4, p. 299] suggested a
correction by replacing the inequalities with a set of crisp linear inequalities. Pérez-Cafiedo and Concepcién-Morales
[22] introduced a method to solve a fully FLPP having equality and inequality constraints with parameters and decision
variables as unrestricted L R-type FNs, using the lexicographic ranking criterion for the objective function and the set
of inequality constraints. Recently, Tadesse et al. [23] described a geometrical approach to handle the fully FLLP
having non-negative decision variables. Further, some other significant applications of fuzzy theory can be found in
studies of [24-26].

2.2. Intuitionistic fuzzy LPP

Atanassov [27] generalized Zadeh’s concept of fuzzy sets by introducing intuitionistic fuzzy sets (IFSs) in order to
include uncertainty as well as hesitation in the involved parameters. Angelov [28] was the first to apply the IFS theory
to optimization problems. Mahapatra and Roy [29] developed the arithmetic operations on triangular intuitionistic
fuzzy numbers (IFNs) and did reliability evaluation using these numbers. A linear programming problem (P) having
equality and inequality constraints with all the parameters and decision variables expressed by IFNs is classified as a
fully intuitionistic fuzzy linear programming problem (IFLPP). Nagoorgani and Ponnalagu [30] proposed a method
to solve an IFLPP with inequality constraints only. Using a ranking function for IFNs, Suresh et al. [31] introduced
a method to solve IFLPPs. Singh and Yadav [32] suggested the modelling and optimization of the multi-objective
non-linear programming problem in an intuitionistic fuzzy environment.

Later, Arefi and Taheri [33] proposed the product of L R-type IFNs when both the numbers are either non-negative
or non-positive or one is non-negative, and the other is non-positive. However, the remaining cases are not discussed.
Then, Singh and Yadav [34] introduced the product of unrestricted LR-type IFNs using (a, f)-cut and proposed a
method for solving fully IFLPPs using score and accuracy indices of LR-type IFNs. More review of IFS theory
and its application to fully IFLPP can be seen in [35—40]. Later on, Pérez-Cainedo and Concepcidon-Morales [41]
proposed a method using the total order properties of the lexicographic ranking criterion for finding the unique optimal
intuitionistic fuzzy solution of a fully IFLPP having equality as well as inequality constraints with all the parameters
and/or decision variables represented by unrestricted L R-type IFNs. Recently, Akram et al. [42] introduced a class of
fully Pythagorean fuzzy linear programming problems with equality constraints and suggested a linear ranking function
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based approach to handle such problems.

2.3. Interval-valued intuitionistic fuzzy LPP

In view of real-life situations, it is more flexible and viable to represent the membership and non-membership
degrees of an element by intervals rather than crisp real numbers. Hence, Atanassov and Gargov [43] proposed the
concept of interval-valued intuitionistic fuzzy (IVIF) sets. Optimizing a linear objective function over a set of linear
constraints (P) where all the parameters and decision variables expressed by interval-valued intuitionistic fuzzy num-
bers (IVIFNs) is termed as a fully interval-valued intuitionistic fuzzy linear programming problem (IVIFLPP). Several
researchers had used the idea of IVIF theory for dealing with realistic decision-making problems. Ishibuchi and Tanaka
[44] were the first to solve a multi-objective programming problem in which coefficients of the objective function are
intervals instead of crisp numbers. Sahin [45] suggested a ranking of IVIFNs. The basic theory and various rankings
of interval-valued fuzzy numbers can be reviewed in works of [46-51]. Yang et al. [52] had studied the combination
of interval-valued fuzzy sets and soft sets.

Zhang et al. [53] defined the L R-type interval-valued triangular FNs and proposed a method for solving multi-
criteria decision-making problems with L R-type interval —valued triangular fuzzy assessments and unknown weights.
Garg et al. [54] gave an intuitionistic fuzzy optimization approach using an interval environment to solve multi-
objective reliability optimization problems. Later on, Akbari and Hesamian [55] introduced signed-distance measures
to rank L R-type interval-valued FNs and applied it to solve a multi-criteria group-decision making problem. Bharati
and Singh [56] proposed a method to solve a multi-objective LPP in IVIF situations. Recently, Bharati and Singh [57]
introduced an approach for solving an IVIFLPP having unrestricted parameters while decision variables are taken to
be non-negative.

A brief description of the various approaches to deal with FLPPs, IFLPPs and our proposed methodology is pre-
sented in Table 1.

Table 1
Existing approaches to solve FLPPs, IFLPPs and contribution of our present study

Existing methods Type of FN/IFN/ Unrestricted Criterion Type of constraints

IVIFN variables (equality and/or inequality)
Hashemi et al. [5] LR-type FN X lexicographic inequality only
Lotfi et al. [58] Triangular FN X lexicographic equality only
Kaur and Kumar [15] Trapezoidal FN X lexicographic equality only
Kaur and Kumar [59] LR-type FN v ranking function equality and inequality both
Hosseinzadeh and Edalatpanah [18] LR-type FN X lexicographic equality only
Kaur and Kumar [19] LR-type FN v lexicographic equality only
Pérez-Cafiedo and Concepcién-Morales [22] LR-type FN v lexicographic equality and inequality both
Tadesse et al. [23] Triangular FN X geometric approach inequality only
Nagoorgani and Ponnalagu [30] Triangular IFN X score function inequality only
Singh and Yadav [34] LR-type IFN v weighted sum of score equality and inequality both

and accuracy indices

Pérez-Cafiedo and Concepcién-Morales [41] LR-type IFN v lexicographic equality and inequality both
Akram et al. [42] Pythagorean FN v ranking function equality only
Bharati and Singh [57] Triangular IVIFN X expected value function equality and inequality both
Present study LR-type IVIFN v lexicographic equality and inequality both

3. Preliminaries

In this section, we have introduced the basic concepts related to L R-type IVIFNSs followed by the arithmetic oper-
ations on them.

Definition 3.1 [43]. Let X be the universal set and I'nt[0, 1] denote the set of all subintervals of the interval [0, 1].
An interval-valued intuitionistic fuzzy set (IVIFS) is defined as a set A = {(x, pz(x),vi(x)) : x € X}, where
Mi © X — Int[0,1] and v; : X — Int[0, 1] represent the interval-valued membership and non-membership func-
tions respectively, provided 0 < Sup(y;(x)) + Sup(vz(x)) <1,V x € X.

Definition 3.2 A set A = {(x, p;(x),v;(x)) : x € X} where u; = [yg,y;{] and v; = [vﬁ, vA'f] is called a convex
IVIFSif V x;,x, € X, 0 £ 4 < 1, the following conditions are satisfied:
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o ukGx; + (1= A)xy) 2 min{uk(x)), ub(xy)),
o uY(Axy + (1 = A)xp) 2 min{ut] (x)), u% (xp)},
o vg(/lxl + (1= A)x,y) < max{vﬁ(xl), vé(xz)} and
° VQ(lxl +(1-MDx,y) <L max{vlf(xl), VQ(x2)}.
A A A
Definition 3.3 AnIVIF set A in X is called normal IVIFS if there exist xy, x, € X suchthat y7(x;) = landvz(x,) = 1.

Definition 3.4 An IVIF set A = {(x, u i(x),vz(x)) : x € R} is called an IVIFN if the following conditions hold:
e Aisaconvex IVIFS in R,
e A is anormal IVIFS and

° Mf;’ /4%, vE and vg are piecewise continuous functions from R to [0,1].

Mathematically, lower - upper membership and non-membership functions of an IVIFN A can be represented as:

_ 1, if x=a,
1, if x=a, h(x), if a=1 <x<a,
by = B i a M o< x < e W= |, if a<x<atr,
&), if a<x<a+r], A 0, otherwise,
0, otherwise, N
0, if x =a,
0, if x=a, m(x), if a-1) <x<a,
e L ifa-lp <x<a o vl |meo. ifa<x<atr,
L(x), if a<x<a+ry, A 1, otherwise
1, otherwise -
where

(i). g, hy, I, and m, are piecewise continuous and strictly increasing functions,

IEROERY) 2

(ii). g, h,, I; and m; are piecewise continuous and strictly decreasing functions,
(iii). g1(x) < hy(x), g(x) < hy(x), [1(x) < m(x), [H(x) < my(x), Vx €R,
(iv). ais called the mean value of A,

[Z 17 Y : L U L U

(v). 1 T IU, l I and lU are respectively the left spreads of H3> Hys VZ and Vi and

(i). 14, r;j’, ry and r} are respectively the right spreads of u /L{, y%, v§ and vg.

' FI.t czin be represented as A = (a; lﬁ, rﬁ, IZ‘, rZ‘; Iy,ry, 17, ). The graphical representation of an IVIFN Ais given
in Fig. 1.

Definition 3.5 [60]. A triangular IVIFN (TIVIEN) is denoted by A = {(a¥, al", a5, ¥, ay), (b}, Y, a5, b7, b})}, and
its membership and non-membership degrees are defined as follows:
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11(x)

Figure 1: Graphical representation of an IVIFN

e Lower and upper membership functions are respectively given by:

1 1, if x=a,,
1, if x= a, X — aij U
x_alL ' o 1fa1<x<a2,
T if alL<x<a2, J aZU_al
L a —a; U a; —x
L(x) = J(x) = 3 .
ﬂA(X) 3 ag‘—x | and ﬂA(x) = ,if a2<x<agj,
T s 1fa2<x<a§‘, a; —a
a; —a 0, otherwise
0, otherwise L
e Lower and upper non-membership functions are respectively defined as:
0, if x=a,,
0, if x=a,,
? T i W<x<a
a-x .. U —a’ 1 2
—, if by <x<a,, 1% 2
a, — bt ! U xX—a
L —
V(00 =1 ! and vi(x) = o if a2<x<b§]
ad, — X . U _ s )
2 o if a2<x<b3L, by —a,
a — b3 1, otherwise
1, otherwise

\

where bl < bY <a¥ <al <a, <af <af <b] <bL. The diagrammatic representation of a TIVIFN is shown in
Fig. 2.
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(kg (), 15 ()

(Vi (), v (%))
L —=qT U
v};(x) #}{ (x) Uz (x) Vg (\jc)
N \
vz(x) vg(x)
=0
- HAL
0 L U U L 1% L
by by ay ay a, 3 b3 X

Figure 2: Triangular interval-valued intuitionistic fuzzy number

Definition 3.6 [34]. A function f : [0, c0) — [0, 1] is said to be shape function or reference function if it satisfies the
following conditions:

@ fO)=1,
(ii) f is invertible on [0, c0),
(iii) f is continuous function on [0, c0),
(iv) f is strictly decreasing on [0, o0) and
() lim f(x)=0.
X—>00
Definition 3.7 An IVIEN A is said to be LR-type IVIFN if there exist shape functions L, R, L’ and R’, and positive
real constants lz, r’]i, IZ', rZ‘, Iy, ry, Iy and rpy, such that its

e Lower and upper membership functions, respectively are defined as:

( a—Xx
g x L'( ,M >, a—l{fﬁxﬁa,
L , a—lﬁﬁxﬁa, lU

() =5

and

a§x§a+ri,

otherwise

O

I
asx=Za+try,

otherwise
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( (), 15 ()
(Vi (), v{ ()

vg (%)

Figure 3: Graphical representation of an LR-type IVIFN

e Lower and upper non-membership functions, respectively are given by:

( a—Xx
1—L’( >, a-1""<x<a,
a—Xx llv U
I_L P’y a—lvﬁxsa» U
IAd L
L
<
Loy _ Ugy _ _
Vit =3 . and  vz()= 1—R’<x,va>, a<x<a+ry,
1-R > s a§x§a+r"L, Iy
L 1, otherwise
1, otherwise L

U L 'L=v 'L="w Lu=tue Ty =tu
0 < Sup{pz(x)} +Sup{vi(x)} <1, Vx €R. ais called the mean value of A4; l” Iy " l" and l"’ are respectively the
left spreads of uL yU, vL and VQ, and r” 'U r; and r v are the respective rlght spreads of ,u ,u , vA and v 2. An

L R-type IVIFN is denoted by A = (a; l” Z IZ’ 2’; 12, rs l{}’, ’J) g and its possible general graphlcal representa-

tion is shown in Fig. 3. Let IV (R) represents the set of all L R-type IVIFNs.

1l / Il /
Wherell?zl’i, RS>V P > Y 1V>l”,r >, > 1E Y > and

Remark 3.1 Taking L(x) = R(x) = L'(x) = R'(x) = max{0,1—x}, V x € R, the Definition 3.7 reduces to Definition
3.5.

Definition 3.8 An LR-type IVIFN A = (a: [}l Iif . rfls 1.7y 1y, 1) g is called an unrestricted LR-type IVIEN
if a is any real number.

Definition 3.9 An LR-type IVIFN A = (a; l” H l;}’ Z‘ Iy,ry, I;JV, r/UV) 1 r is called non-negative (positive) if

Page 8 of 43



a— 12 > (>) 0 and non-positive (negative) if a + r}_ <(x)0.

Theorem 3.1. Let A = (a; I, I}V, r! 1% Y 1Y, 1Y) g be an LR-type IVIFN. Then, ¥ a,p € (0, 1] and a+ f < 1,

(i). its lower a-cut for membership and lower B-cut for non-membership are respectively, given by
L _ M-l U p—1 L _ -1 -1
Ay =la-1; L™ (a),a+r, R ()] and Aﬁ =[a—- IZL 1-=p,a+ rZR a-p1.
(ii). its upper a-cut for membership and upper f-cut for non-membership, respectively are

AY = la= 1LY @, a+ rf (R @] and AY =[a— 15 L) (1= pa+ry(R)' (1 =P

(iiQ). its lower and upper (a, p)-cut respectively, are

Aiﬂ =la—1{ L™ (@),a+ R @] n [a—- 1} L7 (1 = p).a+ry R'(1 - p)] and

AY = la=- 1) @, a+ g (RY @) 0 la= (L)1 = p),a+ riy(R)™H (1 = pl.
Proof.

(i). Fora € (0, 1], u’j(x) > a implies

L<a—x> 2aandR<x_a) > a.
lll rﬂ
L L

Since L and R are decreasing functions, therefore

2 <L), 2 <R
r
L L
It further yields
a— lﬁL‘l(a) <x<a+ rﬁR‘l(a).
Hence,

L _ Hy—1 Hop—1
Aa—[a—lLL ((x),a+rLR ()]

Now, for f € (0,1] suchthata + f < 1,

1—L<a:x>§ﬂandl—R<x:a>§ﬂ
Iy "L

a—Xx _ X—da
o <L7'1-p), =
L L

v{g(x) < p gives

which implies
<R7'1-p).

Thus,
A/§ =la-1yL7'A = pa+r, R0 =P
This proves (i).

(ii). Applying a-cut on the upper membership function, that is, yg(x) >a,a € (0,1], we get

Ul X ) > qand R 222 | >
I P+
U U
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Using the fact that L’ and R’ are decreasing functions, it follows that

(@) and =

4 < (R Ya).

This after simplification gives
a—Ip(L) @) < x <a+rf (R ().

Therefore,
AY =a -1 @), a+ (R (@)

Similarly, for g € (0, 1] such that @ + f < 1, the expression vg(x) < fyields

1—L/<“ljvx> <fand1 —N(’%“) <p.
U U

Ay =la= 1y A = pra+ry R A= p).

This finally gives

Hence proved part (ii).
(iii). From (i), the lower a-cut for membership and the lower f-cut for non-membership of A are respectively, given
by
Al =la- 1L @.a+ /R (@] and Alg =la-1YL7'A - pa+r R (1= p)

It yields
L _ 4L L
ALy =ALnA;
=la-1YL7@),a+ R @] n [a=1; L7 (1 = p).a+ry R7' (1= p)].

On the same lines, the proof of AU ap €30 also be obtained. Hence, the result.

Definition 3.10 Let A = (a; l” H lg‘ /[7 12, rv, Zg s rg) r.r be an LR-type IVIFN. Then, the score and accuracy in-

dices of A are denoted by S(A) and A(A), respectively and are defined by:
1 1
- 1 _ - _ - 1 -
S(A) := Z/o (a=f LN @) +a+r R @) +a— 1} (L) (@) +a+ 7 (R) (@)da - Z/o (a=1,L7'(1-p)

+a+r RV =) +a—1YL) (A= p)+a+r(R)(1-)dp

1 1
A(A) '=i/0 (a_ZZL—l(a)+a+rﬁR—l(a)+a_ZZJ(LI)—I(Q)+a+r;7(R/)—l(a’))d(X+iA (Cl_IZL_l(l_ﬂ)
+a+r RV =) +a— 1LY A= p)+a+r(R)(1-)dp

Remark 3.2 If l’z = I’L’[‘, rL = rg‘, 12 = I’V and rL = r’UV, then the Definition 3.10 reduces to the corresponding

definition for L R-type IFNs given in Singh and Yadav [34].

Theorem 3.2. Let A = (a;a — a{‘,a§ —a,a— a?,ag] —a,a— b{‘,bé‘ —a,a— b?, 3 —a); g be an LR-type TIVIFN.

Then, the score and accuracy indices of LR-type TIVIFN A are respectively, given by:

L Ly U, U_pL_pL_ U _ U
ar +a; +a; +a; —by —by —bY —b

~ 1 3 1 3 1 3 1 3

S(A) = A ,

L L U U L L U U
ar +ay+a; +a; +8a+b1 +b3 +b1 +b3

A(A) = 2
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Proof. From Definition 3.10, we have
1

1
S(A) :=411/ (a—l’zL_l(a)+a+r’zR_l(a)+a—I;J”(L/)_l(a)+a+r'L’,‘(R’)_1(a))da—41—1/ (a=1yL7'(1=p)
0

0
ta+ry R A =P +a- 1A A= +a+ryR)'A-p))dp 1)
A(A) := % /01 (a=' LN @) +a+r RN @) +a— 1) (@) +a+ (R (@)da + i /01 (a=1y L7 (1= p)
+a+ry R A =P +a-1y AN A= +a+ryR)'1-p))dp )
Now, since A is a TIVIEN, therefore
L(x)=R(x)=L'(x) = R'(x) =max{0,1 —x}, Vx €R.
Hence, for « € (0, 1], we have
L@)=L'(0)= R@) = R(®) =1 -« S
This further implies
L @=R"'@=L) " @=KR)@=1-a @
Substituting the expressions from the equations (3) and (4) in (1) and (2), we obtain

Ly L, U_4  U_pL_pL_pU_ pU
5 ar+a;+a’ +a] —by—by —b7 —b
S(A) = 1 3 1 38 1 3 1 3 and
Ly, L, U U Ly pL, pU L pU
a +a3 +a1 +a3 +8a+b1 +b3 +bl +b3

8

A(A) =

Hence the result.

3.1. Arithmetic operations on LR-type IVIFNs
In this subsection, the basic arithmetic operations on L R-type IVIFNs are discussed. Here, we have introduced

the addition operator (@), subtraction operator (&) and product operator (®) for L R-type IVIFNs. The following

propositions discuss the detailed expressions for the addition, subtraction, scalar multiplication and product operations

on these numbers.

Proposntlon 3.1.1. Let A| = (a; 1" s 1L’ll1lz/’ ’I’ZJ I,.r 1L’II1VU’ w

l;‘;J, v LR be two LR-type IVIFNs. Then,

(). A @Ay =(ay+ayl¥, +15 1%,

l’# u. SJVopY

u
) and Ay = (ay; 2L’r2L’ 2w Mt o

+ r lly + llﬂ Iu + rlﬂ lv + v V llv + llv /v + 'JZVU)LR’

2L’ 20° ]U 20° 2L’ L’ 1U 207 lU

where the conditions for L R—type representation of A; @ A, are satisfied.

+ 1 e Y Y

(i) A, © Ay =(a; - a2’11L+r arhiy T Ty Ty YT

+ lv l/v +r/v /v llv )LR’

2L’ 1L 2L’ 20° lU

where the conditions for LR-type representation of A, © A, are fulfilled.

Proof. In view of Theorem 3.1, the @ and f-cuts of A , and A, are respectively, given by
Al =[a =1}, L™ (@), a; +r{, R (@)],

AY =a; -1 (L) (@), ay + Pl (R) TN @),

Afy=lay = 1{, L0 = p.a; +r{ R (1= p)],

Ay = lar = 1, )7 = a4 77y (RO (A= ).

(&)
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Ay, =lay =15, L™\ @), ay + 1y RN (@), ]

AY, = lay = Ly (L7 @), ay + Py (R @)1,

AL =lay =15, L1 = pay+ 7y R'A =B, (©)

ADy = lay = 15, (L)™' (A = ).y +r (RHTH (A = L.

(i). From the Eqgs. (5) and (6), we get
i i VL _ 4L L
(Al ® Az)a - Ala + A2a
=la; +ay — (I}, + 15 )L™ @), ay + ay + (7, + 75 RN (@)].
i iU _ U U
(A, ®Ay), =AY +4Y , , , ,
=la; +ay — (I}, + L YA N @), 0 + ay + (], + 1 (R (@)].
i i L _ 4L L
(4, EBAz)ﬂ =Ap+ A}
=la;+ay— (Y, + )L = B),ay +ay + (), + 1y DRI = p)].
i i \U _ 4U U
(AleaAZ)/j = Al + A7,

=la) +ay = (7 + 1 YA A = p),ay + ay + (7 + ) NR)THA = P

Since L, R, L' and R’ are decreasing functions on [0, co) with L(0) = R(0) = L'(0) = R’(0) = 1, there exists
ay € (0, 1], such that L™ (ap) = R~ () = (L") (ag) = (R")™!(ap) = 1. Hence,

- <\ L

(A& Az)a0 =lay+ay— (¥, +15 ), a1 +ay + (H, + 75 )
~ = \U

(A @ 4,), =la+a,~ U+ L) ay +ay + (8 + RO ®)

Also, choosing fiy = 1 — ay € (0, 1], we get

- < \L
(A ® AZ)ﬁ0 =lay+ay— (U}, +1).a +ay+ (), +r5,)l. )
- S \U
(A & Az)ﬂo = [ay +ay = (U}, + 5y)), a + ay + (ry, + 1)) (10)
Further,
~ ~ \L - ~ \U - ~ \L - ~ \U
(A @A) _ =4 ®4), _ =(4 @Az)ﬂzo =(4 @ Az)ﬂzo =la; +ay,a; + a5]. (1D

Now, since A; and A, are LR-type IVIFNSs, therefore

o>t >0, o> >0, 1Y >0 >0, Y, > >0, 1Y, >1" >0, Y, > >0,

w ="'1L w="1L 1L ="1U 1L ="1v 1L =1L 1L ="1L
o> >0, 7 > >0, and
Tu H /U H % rv v /v v H v H
12U212L>0, r2U2r2L>O, 12L212U>0, r2L2r2U>O, 12L212L>0, r2L2r2L>O,
v ' v un
12U 212U >0, oy er > 0.
Thus,
' ' H H y / H H v v v v
Ly thy 2+ >0 rgy +ryy 2y +ryp >0, 00 + 15, 2 1, + 1, >0,
\Y % /v /v v v H H \Y v H H
r1L+r2L2r1U+r2U>O, 11L+I2L211L+12L>0, r1L+r2L2r1L+r2L>O, (12)

v v 'u 'u IV rv /U u
Ly thy 2Ly +hy >0, riy +ryy 271 +ryy > 0.
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(ii).

Combining Egs. (7) — (11), we have

A A — .M H H
A1®A2—(01+a2,11L+l r1L+r

' - . qv VooV v
oL 11U+l r +r2U,llL+l riptr

v AY A%
2wy 2L +hy iy LR

M lIV
2L’ L 2L°°1U 207 1U

where the conditions for L R-type form of A; @ A, holds from (12).
Hence, (i) is proved.

Using equations (5) and (6), we can write
~ L _ _ _ _
A6 A2)a = AlLa — AZLa =la; —a, — l’;LL L) - r’2‘LR Ya), ay —ay + r’fLR L)+ lgLL L.

~ ~ U _ _ _ _
A0 Ay), =AY — AV =a;—a, = I' (L") (@) =} (R N(@), @y —ay + ) (RN @) + 1 (L)) ().

A © Az);’ = Aﬁfﬂ - Agﬂ =la; —ay = 1" (L)' (1 = ) = rly (RN (A = B), ay — ay + 7, (R)™H(1 = p)+
Dy (L1 = Pl

Now, taking @ = ag and f = f; € (0, 1], we get

- -\ L
(Al eA2)aO =[a, —a, - l’fL —rgL,a] —a, +r’1‘L +lgL],
~ ~ \U 12 / / !/
(40 A2) gy = lar —ay = Iy = rypear = ay + vy + 1y, (13)
\
~ ~ \ L v \ v
(4,8 AZ)ﬂO =lay—ay =1y, —rja —ay+ry, +15, ],
. - \U
(1 © As), =y =y~ Iy~ =y 3 15,
Further, on substituting & = 1 and § = 0, we obtain
~ ~ \L ~ ~ \U - ~ \L e - \U
(A0 4y),_ = (4184), =(Aeh) = (464),  =la-ara-al (19

Also, using the fact A, and A, are LR-type IVIFNs, we have

' 'u H H /u ' H M v v v v v v v v
11U+r2U211L+r2L>0, r1U+12U2r1L+12L>0, 11L+r2L211U+r2U>0, r1L+12L2r1U+12U>0,

v v M M v v H M v v 'y /U v v /U u
+ry, 21, +ry, > 0, T A e e 0, Ly +ry 2y +ry > 0, rythy 2y thy > 0.

Finally, from the Eqgs. (13) and (14), we have

A A _ .M H H H ' s 'n gy \Y v v v /v /v v
A1© Ay =(ay —aglyy +ry .y + 0 Ly g rig byl i H oLy g My by ees

along-with A; © A, retains the form of a L R-type IVIFN. This proves (ii).

Proposition 3.1.2. Let A = (a; lﬁ, rﬁ, IR r, l{}’, r’J)LR be an LR-type IVIFN and A be any real number. Then

vu’r
| Gas g ary, ALY A ALY ArY ALY AP R if >0,
A=
(Aaz —Art) =AY = Arl =AM —ArY =AY =AY =AY g if A <O,
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Proof. From Theorem 3.1, the a and f-cuts of A are given by

N

AL =[a- 1" L7 Y(@),a+ r R\ (a)],
AY =la— 17 (L) (@), a+ 1} (R @),

Aj=la=1L7'(0=p).a+rR7(1 =P,

AY = [a— 1Ly (1 = p)a+ ry(RY(1 = p)].

Using the expression (15), we have

(AAL = AAL =4, A]A(f =[A Alla— 15 L™ (@), a + r; RN ()],

AAY = AAY =2, NAY = [4, Ala - 1LY @), a+ r (R) @),

5)

(AD)E = 4AL = (4 DAL = (4, Alla =1, L7 (A = pa+ry R7I(L = P,

(A)] = AA] = (4. A1A] = [4, Alla = Ij(L)7 (1 = p).a + r/(R)™H (1 = B

Case 1. A is a non-negative L R-type IVIFN.

Sub-case 1. 4 > 0.

Since, A is a non-negative L R-type IVIFN, i.e., a — 12 > 0. Thus, a — l’i >0, a- 12’; >0, a- l‘i >0, a- lg > 0.
This further implies a — [¥ L~'(@) > 0, a = I¥(L) (@) > 0, a= 1Y L' (1= f) 2 0, a = /(L") (1 = §) > 0,

Y a, f € [0,1]. Hence, we get

(AL =4, Mla—1f L7 (@), a + ¥ RN (@)] = [A(a - I¥ L™ (@)), Aa + ' RN (a))],
(AAY = [Aa - 1} (LY @), A+ rf (R @),

(A} =[Aa =1y L7(1 = B), Ma+ry R (1 = P,

(2A)] = [Aa = 1LY (1 = p)), Aa+ iy (R)™' (1 = B))].

Further, as L, R, L' and R’ are decreasing functions on [0, co) with L(0) = R(0) = L'(0) =

ists & € (0, 1], such that L™ (ay) = R (ay) = (L") (ap) = (R")"(a,) = 1. Therefore,
(1) = [Aa = 1I]). Ma+r)] = [Aa— A}, da+ Ar]],
U _ u TUNT u i
(1A)y = [Ma =1}, Ma+rD] = [Aa = A}, da+ ],
Choosing fy = 1 — ag € (0, 1], we have
AL _— —
1Ay = [Ma=1})), Ma+r))]=[Aa= A}, da+iry],

(ﬂfi)g) = [Ma—1})), Ma+r)] = [Aa— AL, ha + Ar)].

Putting « = 1 and f§ = 0, we get

(2A),_, = WD, = QA = 1A = [Aa, da].

R'(0) = 1, there ex-

(16)

A7)

(18)
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Since A is an LR-type IVIFN and A > 0, we obtain
AF > A0 >0, Al > Ak >0, MY > ALY >0, Ay >y >0, Al > AN >0, A > 4 >0,
! Tu / Iu
A > ALY >0, Ay > Arl > 0.
Hence, combining (16) — (18), we have
AA = (da; ALY AP ALY Al ALy Ary ALY, AT k.
Sub-case 2. 41 <0.
Since, A is a non-negative LR-type IVIFN, i.e., a — 12 > 0. Thus, a — lﬁ >0, a— lg‘ >0, a— 12 >0, a— l;]V >0
= a-L' @20 a1 @) >0, a= LA =p) 20, a= 1YL A=) >0, Va,p €[0,1].
It follows that
AL =4, Mla—1f L7 (@), a+ r; RN (@)] = [Aa + ¥} R (@), Aa — 1§ L~ ()],
(AAY = [Aa+rf (R @), Ma — 1LY ()],
(1A)y = [Ma+ry R (1= B), Ma— 1] L7'(1 = P,
(2A)] = [Ma+ry(R)7'(1 = p), Aa = 17(L)~ (1 = B)).
Taking @ = ;, f = fiy = 1 — & and using the fact that L~!(ay) = R™'(ag) = (L") !(ay) = (R")"(ap) = 1, we have
L _ U HNT 7 Uy )
(AAL = [Ma+rh), Ma = 1)) = [Aa+ iry, da = Alf],

(AAY = [Aa+r), AMa— 1)) = [Aa+ Arf, da = A},

(/115)50 =[Ma+ ri), AMa — 12)] =[Ada+ /1r2, Aa — /112], ( 19
(ﬂﬁ)go = [Ma + rg), Ma — lg’)] =[da+ /lrbv, A- /1[8’]. )
Putting @« = 1 and § = 0, we obtain
(A, = QA = QA5 = AA)_, = [Aa, Aal. (20)
Further, from the fact that A is an LR-type IVIFN and 4 < 0, we have
=AY == >0, = A 2= >0, =AY > A >0, —Arh > —Ary >0, — iy >—ilY >0,

H ’ 'u / /U
—Arp 2 =Ar; >0, ALy >2=Al; >0, —Arj=—Ar; >0.
Hence, the expressions (19) and (20) finally yield
AA = (hay Al =AY = Al = ALY = A = ALy = Ary = AL .
Therefore, the result is proved for a non-negative L R-type IVIFN.

Case 2. A is an LR-type IVIFN such that a — I, <Oanda—1I} >0.
Since, a—14>0,a=1}>0,a-1'>0
— a- L@ 20, a- M@ 20, a- L) (1= 20, Va,fe0,1]
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So, expressions for (/15)5, (/I/T)g and (/lfi);] are same as derived in Case 1, and
(M)g = AAIQ =[A, A]A/g =[AAla- 1Y L' A= p)a+r, R7'(1 - p)).
Now, if a — 12 < 0, then either

a-L'1-p<0 = S <L7'1-p) = ﬁ>1—L<iv>
lL lL

or

a- LN 1-p20 = —>L7'1-p) = p<1-L[ = ).
Iy Iy

L

Hence, a — IZL_I(I —p<0forf>1- L<l%> and a - IZL_I(l —p)y=>0forp <1 —L(%).
L

(a). Let 1 —L<liv> <p<lora-INL7'(1-p)<0.

L
Sub-case 1. 4> 0.

(A)g =4, Ala =17 L7 (1 = pa+ry RN (1= Pl = [Aa— 1} L7 (1 = p), Aa+ry R™' (1 = B)).

On the similar lines as in Case 1, we get
(M)lg0 =[Ma—13), Ma+r)] = [Aa— Ay, da+ ArY],
This yields
~ !/

AA = (Aa; Al’z, ﬂr’z, /lllj‘, ArZ‘; Ay, Ary, /11;]”, /lr/UV)LR.
Sub-case 2. A< 0.

(AA)y = [Ma+ry R (1 =), Ma =1y L' (1 = p).
Further, we have

(/IA);;O =[Ma+r}), Ma—=1))]=[Aa+ Ar}, da— Al ]

which gives
AA = Qha; =Ar =21 = arl = ALY = A = AL = Ary = AL) k-

(). Let0<p<1— L(%) or a— IZL_I(I -p)=>0.

L
Sub-case 1. 4> 0.

(A)y =4, Mla =1y L7 (1 = pa+ry RN (1= Pl = [Aa— 1} L7 (1 = p), Ma+ry R (1 = p))].

Following the steps of Case 1, we obtain
AA)p = [Aa—1}), Ma+r)] = [Aa— My, Aa+ ir}]

which yields
e / l v
AA = (Ag; /Uﬁ, Ar’z, /llé‘, Arl’;; ALy, ary, /llg, /1r’U)LR.

Sub-case 2. 4 <0.

(M)g =[Ma+rR'1 = p), AMa— 1Y L1 - B

Page 16 of 43



Proceeding on the lines of Case 1 and taking f = f,, we get
(2A); = [Ma+ry). Ma~1))] = [Aa+ Ary, Aa— Al}].

Therefore, we have
/ !/ Y v v v
= (Aq; —Arﬁ, —ilﬁ, —Arl’;, —/11[7; —Ary,—Aly, —ir'U, —Aléj)LR.

Thus, the result follows. Rest all the Cases can also be proved on the similar lines. This completes the proof.

Corollary 3.1.1 Proposition 3.1.2 can also be restated as: If A be an LR-type IVIFN and A be any arbitrary real num-
ber, then

AA = (Aa;max{ Y, —Ar } max {Arh ,— A1)}, max{ ALY, —Arl ) max{Ar), = ALY} max (ALY, =AY},

max{Ary, —Al} }, max{Al}}, —Ary/}, max{ir}, —/II’V})

LR
Proposition 3.1.3. Let A, = (al;l’l‘L,r’l‘L,{'l’;], R AN L w, r\¥ Vg be an LR-type IVIFN such that a; — 1%, <0,
a; — l;‘z/ >0and A, = (az;l’;L,rgL,lz’;], 2’; 5, ;L, e )LR be any LR-type IVIFN. Then
A @Ay =(a; i F I P 1Y ) where
a=a\a,

I} = aja, —min{(ay = I{ Nay = 1)), (ay + 1% )ay = 1))},
i =max{(a; = I Nay +75)), (ay + 71 Yay +75)) — ayay,
U _

l;] =aa, — mm{(al - l;’:/)(aQ ;’;]) (al +r’1’;j)(02 - l;’;/)},

rZ‘ = max{(a; — )(a2+r ), (a; +l‘ )(612+" y)} —ara;,
Iy —alaz_min{(al 1L)(“2+"2L) (01 +"1L)(az )},
rE = max{(a; — llVL)(a2 " ) (@ +rV ay +rV P —aa,
l;}’ = a,a, — min{(a, — 1U)(az - l o) (al + rlU)(a2 - l o))
ry = max{(ay + iy )ay +15), (01 1) ay + 1)) = aja,,

where the conditions for LR—type representation of A, ® fiz are satisfied.

i — T ) /Mv LA Ao ./4/4/;4 ’ﬂv A
Proof. Let Ay = (ays 1y i L Mg U i o Lys Mg )k and Ay = (ao; 2L’r2L’12U’ 2w b T by Ty ) LR b8
: % v v v 'y
t\lzvo LR-type IVIFN with a; — llL <0, a - llU >0and a, — lZL’ a, 12U, 12U, H — lzL’ a,, a +r2L, a, +
rz’;J, a, + rzu’ a, + r; L be any real numbers. Then, in view of Theorem 3.1, we can write

) = AL X AL la; — l’fLL_l(a), a + r’fLR_l(a)] X [ay — lgLL_l(a), a, + rgLR_l(a)].

104y =AY x AY = [a; I (L)Y (@) ay + P4 (R @) % [ay — 12 (L) @), ay + F (R (@)

2

(4
(4
(A, ) —AL xAL la; =1}, L7' A = p),ay + 1Y, RN A= B)] X [ay =13, L7' (1 = p),ap + 1y, R (1 = p)].
(4 ) = ADXAL = [a, =17y (L) A=p), a1+ (RN (1=P)] X [ay =Ly, (L)' (1=p), ay+ry (R)' 1=p)).

: _Jv _Jlv
Since ay —I], <Oand a; — [}, > 0, therefore

a
—I’V y (L)~ 1=p)>0forp€[0,1] and q, —IYLL‘I(I -H< >)0forp< (@)1 —L<lv—1>.

1L
Now, to find the product A; ® A,, the following nine cases will arise and in each case, based on the sign of
a, — IYLL‘l(l — f), two sub-cases are there.

Casel.a, - I3, >0.

Then, ay — 15, L' (1= ) 2 0, ay =1y (L)' (1= ) 2 0,a, — 1}, L™ (@) 2 0, a, =L} (L)™' (@) 2 OV &, § € [0, 1].
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Sub-case 1.1. a; — I‘I’LL‘I(I -p) <0.

A OA )L = [(a; = I¥, L™ @)@y = 1§, LN (@)), (ay + 7, RN (@))(ay + 5, R™ ()]

a

a

A 04 2)U—[(a1 — @Y @)y - L (L) @), (ag + rly (RYT @) ay + rfp (R (@))]
A

104y, =@ =1y, L7 A = p))ay +ry, R = §)), (ag + 7}, R7 (1 = p))ay + 5, R (1 = p))]

th

L)
Ay) = Iay = 17 (L' = P))ay = 1y (LY (1 = ). (ay + ry (RDTN(1 = P))ay + ryy (RN (1 = P)L.

Further, as L, R, L' and R’ are decreasing functions on [0, co) with L(0) = R(0) = L'(0) = R’(0) = 1, there exists
ay € (0,1], such that L™!(ay) = R~ (ag) = (L") () = (R")" () = 1. Hence,

N

~ ~ \L
(4 ®A2)a0 = [(a; =1 )ay = 1})), (ay + 7 )y +15))], on
9
- ~\U
(4, OAz)aO =1[(ay = I’ Yay = 1)), (ay + 71 ay + 0.
Also, choosing fiy = 1 — ag € (0, 1], we have
~ ~ \L
(4,0 Az)ﬂo =[(a; — ¥ Nay +75)), (ay +1Y Nay + 75 )], )
5
- ~\U
(4,0 Az)ﬂo = [(ay = Iy )ay = Iyy)), (ay + 1) (ay + )]
Taking « = 1 and § = 0, we obtain
~ ~ \L ~ -~ \U - ~ \L ~ ~\U
(Al © A2)a=1 = (A] © A2)a=1 = (Al © A2)ﬂ=0 = (Al © A2)ﬂ=0 = alaz. (23)

Now, using the property that A, and A, are LR-type IVIFNs, we obtain

li
aja, —(a) — )(az—l y) = a1a; — (a —I’I’L)(a2 " ) = 1” >1”
/
(a1+r1l:j)(02+rzu)—alaz>(al+r” )(a2+rM ) alaz — r >rL.
(ay + 1Y Nay +715) —ayay 2 (ay + 1) ay + 1)y ) — aja, = rL>r’V.
(ay+ry Nay+ry,) = ala2>(a1+r )((12+r2L) aja, = rLZrL
/
a8, —(a = lU)(a2_l )2 aja, — (a = I\))ay = 1) = 1) 2 1)
’ ) '
(al +r1‘£])(a2 +r2U) —a)ay > (al + r]U)(a2 + rZU) —aa > rl‘]/ > rU
a _I‘I/L Sal -

s /
Further, since a, — 17, < ap +r} Iyanda, =17, <ap— 1’y therefore

2L’ iy 20°
aja, —(a) — l’lvU)(az - l;‘;]) <aja, —(ay =1 XMay +r3)), that is, Iy <1y
v H
and froma; — 1], <0, ay — 1] <a2+r2L, 1= LSal llL, a — 1 <a2—12L,wehave

aa, — (a —l’llL)(az 1% )< aja, — (a2+r2L)(a1 — 1Y), thatis, I < 12

>0 and a;rf, +a2r +ri ), >0 yield I¥ >0and r} >0, respectively.

Moreover, % (a; — )+a21 L 2

> 2L 1L =

Finally, in view of these inequalities and combining expressions (21), (22) and (23), we get
e e ! !
AL OA = (alaZ;alaQ - (al - lfL) (a2 - l’;L) , (al + r’fL) (a2 + rgL) —aay,a,a, — (al - ll’;]) (a2 - 12’;]) ,

(a1 +7y) (a2 + 7)) = araziaga; = ( —hp) (aa+ry ) (ar+ry)) (a2 473, ) —ara,
ayay = (ay = I%)) (ay = 15y,) . (ay + 1)) (ay + 7y, ) = ayaz) e

Sub-case 1.2. a; — IYLL_l(l -p=0.
Now,
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(A0 Az)ﬂ =[(a; =1y, L7'A =) (aa =13, L' A =), (ay+r, RT'A=P) (e + 15, RTIA = p))].
Choosing f = f,, we have
(4, OAZ);];O =[(a1 = 1) (2= 13,) (a1 + 7)) (a2 + 75, )] 24)

Hence, we have I} = aja, — (al - IYL) (a2 -0 L) and remaining spreads of A; ® A, will be same as derived in
Sub-case 1.1. Further,

(ay = 1Y Nay = 13,) < (ay = 'Y Yay = 1Y) = IV > and

(ay =1y Nay = 13,) < (a; — I’I‘L)(az - lé’L) = I} > l’£.

Finally, combining Sub-cases 1.1 and 1.2, we get

A @ Ay = (a1 r T P Py 1Y ) | g where

a=aa,,

llz =a|ay — (al - llllL)(az - lgL)’

r; =(a; + r’;L)(az + rgL) —aa,,

I =ajay — (ay = I Yay = 1)),

/ / /

r; =(a; + r1lz[)(a2 + rz’zvj) — a4y, ) )

I} = ajay —min{(a; — 1] Yay +r3,),(a; — 1], )ay = I3,)},

rp =@ +r{ay+r3)} —ajay,

l;“; =ay\ap; — (al - lll‘;])(a2 - l;‘;] 5

r’[y =(a; + r’IVU)(az + r’2VU) —aa,.

Case2. a, -1y, <Oanda, -1} >0.

Then, we have
a

ay =15, L' (1 =)< (2)0 for < (2)1-L <lv_2>

2L

Sub-case 2.1. a; =1}, L™'(1 - §) <0.

Then, (A, ® fiz)i, (4, OA~2)Z], (A,© AZ)Z remain same as in Sub-case 1.1, however, the expression for (4, © 4,)
will be changed and is given by

L
B

(4,0 A2)§ = AL x Al

=[(a =1, L7 A = p) (o + i RIA= )] X [(a =13, L7 A= )., (@ + 75, R = )]
= [min {(a; =1}, LA = p)) (e + 1, RIA = P)), (ay =15, L7 A=) (ay + 7}, R7'A =)},
max {(a; = 1Y, L7'A = §)) (ay = 13, L7'A = B)), (a; + Y, R7 (A = p)) (ay +ry, R7H(1 = HE

Choosing f = f,, we get

("il o AZ);;O = [min{(al - l‘fL) (a2 +r;L) ’ (a2 - l‘Z/L) (al +r‘1/L)} ’

max {(a; =1, ) (ax=135,) . (@ +7r7,) (a2 +75,)}].

(25)

Hence,
[2 =aja, — min{(al - I‘I/L) (az +";L) , (‘12 - IZL) (al + r‘l/L)} K

r‘]: = max{(al - l‘l’L) (a2 - l‘z/L) s (al +r‘1/L) (a2 +r§L)} —a,a,.
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A%

Further, since a; — I}, <a; =1}, ay =1}y < a, +7rly,

o ay +rhy, < ay,+ry, anda; — 1}, <0, therefore
(a; - l%)(az - l;VU) > (ay = 1] Nay +13)).

Also, ay = 1I'", < ay+r), <ay+r|, anda, — I}, <0 implies
(a; — l;‘;])(az - l;‘;]) > (ay +r] Nay = 13)).

It follows from the inequalities (26) and (27) that

(a; - l’IVU)(az - 15‘2]) > min{(a; — 1] )ay +r5,), (ay + 1\, )Nay =I5 )}, thatis, [}) <1}

Now, if (a; — l‘l’L)(az - IZL) <(a; + r‘l/L)(az + r;L), then
(ay + ) ay + 1) < (ay + 7] Nay +15))
and if (a; — IYL)(az — l;L) > (a; + rYL)(az + r;L), then
(ay + ) ay + 1) < (ay + 1Y Nag +75,) < (ag = 1] Yay = 15).

Thus, the inequalities (28) and (29) yield

/ / : /
(a; + rIVU)(az + rzvu) < max{(a; + r‘l/L)(az + r;L), (a; — l‘fL)(az - l;L)}, that is, r[‘]’ <r}.

Further, a; — 1Y, <ay =14, a; =1}, <0give
(ay = 1)y = 1)) 2 (ay =1} )ay +73,)

and (a; — li‘L)(az - l';L) >(a; — l’I‘L)(aQ - l;L) > (a; + r‘l’L)(az - l;L).

It follows from the expressions (30) and (31) that

(ay = I Nay = 1)) 2 min{(ay = I} Nay +713), (ay + 1Y, )ay = 13)}, thatis, I} <.

Now, if (a; — l‘l’L)(az - l;L) <(a; + r‘l/L)(az + r;L), then
(a; + ri‘L)(az + rgL) <(ay+ryay+71y))
and if (a; — l‘l’L)(az - l;L) > (a) + rYL)(az + r;L), then

(ay + i Nay +75) < (ay + 7] Nag +1y,) < (ay = 1] )@y = 1))

Hence, the inequalities (32) and (33) give

(ay + M )ay + 1) <max{(ay + 1Y )ay +15,), () =1}, )ay = 1)}, thatis, i < 7.
Sub-case 2.2. a, —I{, L7'(1-p) > 0.
The proof of this part follows on the lines of Sub-case 1.1.

Hence, now combining Cases 1 and 2, we get
g g

A A . Tw . o

Al O] A2 = (a’lz’rli’l(_l;’réf’lZer,lJ,r[}/)LR where

a= alaz,

Ho_ 7 U

lL =ayap; — (al — llL)(aZ - IZL)’

Ho_ H H

rp = +r Nay+r;,)—aa,,

m _ u Iu

ly =ayay —(a; = llU)(a2 — le),

(26)

27

(28)

(29)

(30)

3D

(32)

(33)
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rg = (ay+ e + 1)) — aya,
I} =aja, —min{(al — l‘l’L) (a2 + rEL) , (a2 - l;L) (al +rYL)} ,
ry =max{(a =1y, ) (a2 =15, ) (a1 +rYp) (a2 + 73, ) } = @y,
18'/ =a|ap — (al - l;‘zj)(az - l;\ij),
ry = (ay + 1l ay + 1)) — aja;.

Case3.a, — )y <Oanda, — L)}, > 0.

Then ay =y (L)1 =By < ()0 for f< ()1 _L'<2>
5 9 U < (2 < (2 .

v
12U

Sub-case 3.1. a; -1}, L™'(1 - §) <0.
Then, the expressions (fil OAZ)QL, (Al @Az)g, (Al @Az)j are same as discussed in Case 2 but (51 @Az)z is given by:

(4,0 4y), =AY x AL,
= [(a; +riy RN A = P)) (ay = 1, (LA = B)), (ag + (RN A = §)) (ay + 5 (R (A = )] -

Taking § = f,, we get

(A1 0 &)y = [(ar +ry) (a2 = 157)  ay + 17y ) (an + 15 )]

which gives Iy = ajay — (a; + 11 Nay = 1)),
Also, we have
. !/ !
IV =ajay—min{(a; = 1¥,) (ay+7},). (aa=1%,) (ay+r¢,)} and I} =aja,—(a) - L ay = 1.
: v v T
Now, we claim that 12 > lU and lU > IU.

Since a, — 15, <0, a, =15, <a,—1} anda; +r, < aj+r|,, therefore, we obtain

2L U — 1L’
(a; + r’l‘;])(aQ - lQZJ) > (ay +r{ Nay = 13,), 34
(a; + r'l‘zj)(az - l;‘b) > (a) = 1] Nay +13,). (35)

Thus, the inequalities (34) and (35) yield

(ay + 7% Nay = 15%)) > min{(ay + 1Y ay = 15)). (ay = 1Y, ay +r5,)} thatis, 1Y <1V

implies

g _qH v _ g _H
Further, a, — 15, <0, ay = I}, Say+r,, aa— 1, <ay— 1,

10’

(ay + riy)ay = 1hy) < (ay = 1)ay = Uy) < (ay = 1} )ay = Lyy) thatis, I > 1.
Sub-case 3.2. a; — IYLL‘I(I -p)>0.
The proof of this part follows on the lines of Sub-cases 1.1 and 2.2.

Hence, it is concluded from Cases 1 — 3 that

A @ Ay = (a1 r T P rY 1Y ) | g where
a=aa,,

I =aay = (a =1 )@ = 1)),

r; =(a; + r’;L)(az + rgL) —aa,,

! / /
1Y =ajay — (ay = 1 Yay — 1)),

o= (ay + P ay + ) — ayay,
12 = a;a, —min {(al _I‘I/L) (02 +r;L) s (a2 - IEL) ((11 +r‘1/L)} >
rp=max{(a; =1y, ) (e =13, ) . (a1 + 7, ) (a2 + 73, ) } — @y,
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I'V—a1a2 min {(a; — Iy Yay =15 ), (ag + 7y )ay =157}
(a1+r )(a2+r ) —aia,.

Case 4. az—l;’z]<0anda2—l” > 0.

2L —
Then, ay— I} (L) N a) £ (2) 0 for a > () L' ( aj )
2U

Sub-case 4.1. a; =1}, L™'(1 - ) <0.
Then, the expressions (A; ® A})f, (A, @Az)/];, (A0 142) are same as in Cases 2 and 3 but (A, @Az) is given by

2a
= [(ay + L, (R @) (ay = 1 (L) @) , (a) + 1L (R @) (ay + ) (R H@))] -

Choosing a = ag, we get

(4,0 Az)go = [(a; + r’l’;]) (ay - l;’;]) . (ap + r'l’;]) (ay + r;’;])] :

This further yields 1Y =ayay — (ay + i )ay = 1))

Moreover, from the preceding Case 3, we have
Ho_ u H vo_ ’ ’
I, =aiay—(ay = 1], Nay = I5,), I} =ajay —(a; +ri ) ay =1,

Next, it remain to prove that [} S l” and lg’ > lg‘

; _ _ _H _H
Since ay — 1, <0, ay =1, <a,— 1, and a; -}, <a +r <a +r1U,therefore

aja, —(a —lgL)(al - li’L) <aja, —(a; — )(a] +r ) = l” < lm

Further, a, — Iy < a, — I;IZ]’ a, — l;’z] < 0yield

aja — (a )(al + r ) < aay — (a2 )(al + r ) = l/ﬂ 18,

Sub-case 4.2. a; — IYLL‘I(I -p)>0.
It follows on the lines of Sub-case 3.2.

Hence, clubbing the Cases 1 — 4, we obtain
/
A @ Ay = (a1 r T P Y 1Y ) | g where
a=aa,
lL - a1a2 - (al - lilL)(aZ - lgL)7

; (a1+r’;L)(a2+r’2‘L)—a1a2,

%—Wzmﬂ@ Thiay = L), (ay + 78 Yay =18}
rL’; (a1+r )(a2+r ) — a,ay,

I}, =aja; — mm{(al 11L) (aa+r3,). (aa=135,) (@ +7Y,)}.
r}‘—max{(al—lh) (ay - l;L) (a1+rv) (a2+r" )} —aja,,
ll/yv—alaz min{(al—l")(az—l’v) (a; + Y ay =10 )}

ry (a; + r )(a2 + r ) a,a,.

Now, for the succeeding cases, we have only derived the expressions for newer (or changed) spreads of the product
A © A, because the proofs for the bounds on the other spreads can be carried out in the similar pattern as is discussed
in the preceding four cases.
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Case5. a, -1}, <Oanda, €R.

a
Then, a, — lgLL—l(a) < (>0 fora> (L)L <172>

2L
Sub-case 5.1. a; =1}, L™'(1 - §) <0.

Then,
~ ~ L _ _ _ _
(A, 0 4y), = AL x AL =[(a) +r| RN @) (ay — I}, L)), (a; +r{, R (@))(ay + 5, R (@))].
Taking o = a, we get
z \L
(4,0 A2)a0 = [(a) + i ay = 15), (ay + ¥ Yay + 15 .

It further yields Y = ajay — (a; + 4 YNay = 1))

Moreover, from above Cases, we have
i . i 7 'u u
1Y = ayay —min {(a; = I} )ay = 1)), (ay + r'} Yay = 1)}
12 = aja, — min{ (al - IYL) (a2 + r;L) s (a2 - l;L) (al + rYL)}.

Next, the claim that IZ‘ > l’z and I} > l’z can be proved following the lines of Sub-case 3.1.

Sub-case 5.2. a; — IYLL‘I(I -p) =0.

The proof can be carried out following the lines of Sub-case 1.1.

H z
Case 6. a, +r,, <Oanday +ry, >0.

Then, a + 1}, R (@) < (2) 0 for a < (Z)R(—%)
"L
Sub-case 6.1. a; — I}, L™'(1 = §) < 0.

Then,
- -~ \L
(A, 0 4y), = AL x AL =[(a) +r|, R™N @)y = I}, L)), (a) = 1], L™ (@))(ay + 5, R™ (@))].

Choosing a = «, we obtain

(4,0 Az)oL,O = [(ay +ryp)ay = 1)), (ay = Iy )ay + 73]

C o Ho_ 7 "
which gives rp =y =1 Nay+r5,)—aa,.
Further, we have
mo_ n 'n -
rg =@ +r)ay+ry)—aja, and r; = max{(a; — IYL) (ay — I;L) ,(ay + rYL) (ay + r;L)} —a,a,.

The proof that rg‘ > rﬁ andry > r’z can be obtained on the lines of Sub-cases 2.1 and 3.1.

Sub-case 6.2. a; — IYLL‘I(I —-p)>0.

This part can be proved on the lines of Sub-case 1.1.

'u /v
Case7. ay +r,, <Oanday +ry, 20.

I

Then, ay + 2 (RY @) < (2)0 for a < (2) R <—2>
"
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Sub-case 7.1. a; — IYLL‘I(I -p) <0.

Then,
(A0 4y)" = 4Y x AY = [(a, + " (RY (@) ay — I (L) @), (@) = I (LY (@) ay + 2 (R @))].

Taking @ = a;, we obtain

: 2 \U
(410 4,), =@+ PRy =12, (@) = 1 ) ay + ).
It follows that ri=(a - l’l’zl)(az + r;IZ/) —aa,.
Also, we have
i =max{(a; = I )ay +r5,), (ay + 7 Nay+ 1))} —ajay and r}) = (ay + 1/ ) ay + 1) —aja,.

Further, the inequalities r "> r and ré‘} > r;j‘ can be established on the lines of Sub-cases 2.1 and 3.1.

Sub-case 7.2. a; — IYLL‘I(I -p) =0.
This part can be proved on the similar lines as Sub-case 1.1.

Case 8. a2+r <0Oanda, +r}, >0.

2L =
Then, a2+r (RY'1=p < ()0 for f> (K)1-R <— (,13 >
"u
Sub-case 8.1. a; — IYLL‘I(I -p) <0.
Then,
(4 © 4,)Y = AV x4l

= [(a1 + 7, (RN = p))ay = 1y (L)' (1 = B)), (ay = 17, (L)1 (A = P))ag + by (R)™H(A = p))].

Choosing f = f,, we get

A i \U \% \%
(A] ®A2)ﬂ0 = [(al +r’1U)(a2 _l;U)’ (al )(a2 +r2U)]
This further yields ry = (@ =) ay + 1)) = aya;.

Moreover, we have

ry = max{(al —IYL) (a2 —I;L) , (a] +rYL) (a2 +r;L)} —aja, and

' __ u u i i
ry = max {(al —lip)ay +ry), (ap +r ) ap + rZU)} —aya,.

Next, r; > rpj and rj} > r can be proved following the lines of Sub-cases 2.1 and 3.1.

Sub-case 8.2. a; — IYLL‘I(I -p)=>0.
The proof of this part follows on the lines of Sub-case 1.1.

v
Case9. a, +r;, <O0.

Then, a+r5, R (1= < (20 for f2 ()1 —R(— - )

2L
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Sub-case 9.1. a; — I‘I’LL‘I(I -p) <0.

Then,
- ~ \L
(A 0 4y), = Al x A,

=[(a; +r} R7'(1 = P))ay = Iy, L7 (1 = P)), (@ =1}, L7' (A = p))ay = I, L~

Taking f = f,, we obtain

(410 &y), = [y + 7@y = 13 (@ = 1}, )ay = 151

It follows that r2 =(a; — l‘l’L)(az -1
Further,

;L) —aa.

U—max{(a1+r )(az+r ), (a) — l;‘;])(02+r;‘2])}—a1a2 and

ri =max {(a; = I¥ Yay +15)), () + ¥ YNay +75))} — aya,.

. . . ,
Finally, the proof of the inequalities r}; > r}

Sub-case 9.2. a; =1}, L7'(1- ) > 0.
The proof of this part can be established on the lines of Sub-case 1.1.

Flnally, combining all the Cases (1) — (9), we have
A 0 A = @1, 1] 127 Z[ Iy,ry 1y, 1) L r Where
a=aa,,
l” = a1a2 min{(al - l'u )(612 'u ) (al +r’llL)(a2 ” )}
L = max{(a; — llL)(az + r2L) (al + rlL)(az + r2L)} - alaz,
IJ =aa - mm{(al - 11U>(a2 I, (a1 + ’”IU)(az ),
'
U
L

;4

r” =max{(a; — )(a2+r ), (a4 +r )(a2 +r )} a,a,,

IY =aja, — mm{(al 1L)(az+r2L) (al +r1L)(a2 L)},

r2 =max{(a; — I}, )ay = 17,), (ay +r{ )ay +r},)} — aja,

Iy " = a,a, — min{(a; — lw)(a2 /V ) (al + r’l‘b)(aQ - lé‘;j)}

Y = max{(ay + 7% )ay + 720), (ay — 1% Yay + 720 )) = ayas

where [¥ > 11 >0, #l > >0, IV >1V>0, r¥ >0V >0, IV >14 >0, rY
’J > r/L’; > 0.

Hence, the result.

'a-pl

and rVL > r’z can be obtained on the lines of Sub-cases 2.1 and 3.1.

H v s
ZrL>O, 1U21U>0,

o e ! /
Propo’sntlon 3.1.4.~LetA1 = (al;l’I‘L,r’l‘L,lll’Z,, YN 1L,I'IVU, 1/ LR be an LR-type IVIFN such that a; - 17, <0,
-1 ” > 0and Ay = (ay; gL,r’Z'L,lz’z], 2’;,,1;L, 2L,1;‘2], v LR be any LR-type IVIFN. Then

A1®A2—(a o T PR 1Y Y g where
a=aa,,

I = aya, — min{(a, +r’fL)(a2 ” 1) (ap — l’;L)(aZ - lgL)},
= max{(a; + rlL)(az + rZL) (al 1L)((12 + r‘z‘L)} a,a,,
= a,a, — min{(a, +r1U)(a2 s (@ =1 )(az—l'” )}
rg = max{(a; + rlU)(az +r2U) (al Ik )@ +r )} = aya,
IL =aja, —min{(a; — 1L)(az + r2L) (al + rlL)(az 2L)},
rp =max{(a; +ry Nay +r3y,), (ay = 1], Nay = I5,)} — ajay,
ll/ = aja, —minf{(ay = I\ )ay +rly), (ay + i )ay = 15)},
ry = max{(ay + '\ Nay +rly), (ay =1} )ay = 15 )} — ayay,

L
U
L
I _
lU
;4
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where the conditions for LR—type representation of A, © A, are satisfied.

Proof. Similar to the Proposition 3.1.3.

Propositi0n3 1.5. Let/il = (al; l’fL,,i"fL,fll’;], ,1’;], l‘l’L, 1L,l’1‘;], lU)LR be an LR-type IVIFN such that a; — l;’;] <0,
— li‘L > 0and A2 = (a2, oL’ 'SL’%’ ZIZI’l;L’ 2L’l;vU’ U)LR be any LR-type IVIFN. Then

A1 O Ay = (@i ri I Pl 1Y Y 1Y ) g where

a=a\a,

l’i = aya, —min{(a; — l’llL)(az - l’;L), (a; + r’I‘L)(az - lgL)},

= max{(a; + " Ya, + '), (a; = 1" Ya, + 1 )}—aa,

L 1 1L\ 2T s W T p A2 T 192

l;“,‘ =aa, —min{(a; — 1U)((12+r2u) (a1+r1U)(a2—l )},

rZ‘ = max{(a; + r'l’;])(az + rZU), (a; — 1U)(c12 — le)} a,a,,

12 = a,a, —min{(a; — IYL)(aZ + r;L), (a; + rYL)(aZ — l;L)},

r/}“ =max{(a; +r{; )Nay +13,), (al I Nay 7 )Yy - ‘flaz’

ll,}’ = a,a, —min{(a, —l )(a2 +r ) Ea] +r1VU)I(a2 — l v )}

ry = max{(a; + rw)(az + rzu) (al Ly ay =15 )} = a1a2,

where the conditions for LR—type representation of A ® fiz are satisfied.

Proof. Similar to the Proposition 3.1.3.

Proposition 3.1.6. Let A, = (ap; I}, ri 1. r s l;L, Y AP ) g be an LR-type IVIFN such that a; — 1% <0,
a, > 0and A, = (a,; 2L,r’24L,l;’;], ;’;],l;L, 2L,l;‘2], v LR be any LR-type IVIFN. Then

A, 052—(a,17‘, r l;f ;7 1,1y 1Y) g where

a=aa,

IV = ajay —min{(ay = I{ Yay +715,), (ay + 7 Yay = 15)},
; = max{(a; + rlL)(a2 + r2L) (a) — ’fL)(az - lgL)} alaz,
l%}‘ =aa, — mm{(al 1U)(c12 + r2U) (al + rlU)(az —l )b
u

rU —max{(a1+r )(a2+r ), (al )(az—l )} _alaZ’
I; =aja; - mzn{(al )(a2 + r 2 (al + rlL)(az )}
ry = max{(a; + r‘l’L)(az + s (al =l Nay=15,)} = 0102,
l;jv = a,a, — min{(q, —l’ )(a2+r ), (a +I‘1U)(l12—llv )}

~

ry = max{(a; + r’IVU)(az +r5), (al 1) ay = [2U)~} a,ay,
where the conditions for L R—type representation of A; © A, are satisfied.

Proof. Similar to the Proposition 3.1.3.

Proposition 3.1.7. Let A| = (ay; ’I’L,r’I‘L,l;’z], . T 1L’l,1VU’ ‘ZJ)LR be an LR-type IVIFN such that a; < 0,
! /

ap + rlL >0 an;i AZ —,M(az,,ﬂ oL’ ’;L,lz‘;j, 2’2/ l‘2/L, ZL,l;‘;j, U)LR be any LR-type IVIFN. Then
/

A0 A, = (a Larp by sy sy U)LR where

a=a\a,

llz =a,a, —min{(a; — l” ay + r2L) (a; + rlL)(a2 2L)},

r/’z = max{(a; + r’l’L)(az + r2L) (al ¥ ) ay = 15,)) = a4,

ll}; = a,a, —min{(a; — )(a2 + rZU) (a; + rlU)(az - s

7 /
ry = max{(a * rl!Z])(GZ + rzu)’ (a; - 1U)(a2 - IZU)} %12
Iy = ajay —min{(ay = Iy )ay + 1y ), (ay + 17 )ay = 15 )}

r/2 = max{(a, '?'rh)(@ /‘" ) (a} — 1)@, B B - ‘flaz’
ll,}/ =a)a) — mm{(al - ll‘;])(az + rz\;])’ (al + rl‘ij)(az - l 0 )}

ry = max{(ay + iy Nay + 1Y), (ay =17 )ay — l;VU)~} alaz,
where the conditions for L R—type representation of A; © A, are satisfied.
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Proof. Similar to the Proposition 3.1.3.

Proposnt10n3 1.8. Let A = (al, TN SV L 1L,I’VU, r' Vg be an LR-type IVIFN such that a; +r}, <0,
/
a; + rlU > 0and Ay = (ay; 1% - ’24L,l2’;], ZZ,IZL, 2L,l;‘2], v LR be any LR-type IVIFN. Then

I 0 A = (g I" M n

A © Ay = (&}, Lt L 1Y ) g where
a=a|a,

lﬁ =aa, — min{l(lal + rlllL);Eaz +rh)), ,Sal - l’llL)lEaz +rh0h
I,}_ max{(ay — I} Nay —15,), (ay + 7| Nay =15, )} — alaz,
U

' =aya, - mm{(al ’” )(a2 + r’” ) (al +r1U)(a2 —l )b
r'L’; —max{(a1+r )(a2+r ), (al )(a2—l )} —alaz,
12 =aa, — mm{(al 1L)(az + rzL) (al + rlL)(az )}
rp =max{(a; +r{ Nay +r3y,), (al =l Nay=15,)} = alaz,
Iy = ajay —min{(ay = I\ )ay +rhy), (ay + 177 )ay = 15 )},
ry = max{(a; + r’IVU)(az +r5), (al I ay =15 )} — ayay,

where the conditions for L R—type representation 0f A, © A, are satisfied.

Proof. Similar to the Proposition 3.1.3.

Propositi0n3 1.9. Let A, = (al;l’l‘L,r’l‘L,l;’Z], . Y IL,l;‘;], 1U)LR be an LR-type IVIFN such that a; +r| ” <0,
/ / v v

a; + r > 0 anﬂd Aﬂz —,M(az,;l oL gL,lz’;j, 2’;1 IZL, 2L’léu’ U)LR be any LR-type IVIFN. Then
/

1@142—(0 l l U 127 lJ, U)LRwhere

a=aa,

l,L4 =aja, —min{(a; + r’fL),Eaz + rgL), ;Eal - l’fL)lgaz + r’zlL)},

/L = max{(a; — 1L)((12 B 55, (a1,+ rlL)(az 2L)} alaz,

Iy = ajay —min{(ay +r\/)ay +ry), (al )(a2 + r Y

rll’; = max{(a; — l’llzl)(az /” v (ap + r )(a2 - 12U)} a,a,,

Iy =ajay —min{(a; - )(a2+r ), (a1+r Nay =17 )},

rlz = max{(a, -?-rh)(a2 ;I— ry)s (al I ay =15,)} —ayay,

lL‘; =a,a, — mm{(al = Iay +r2U) (al +r1U)(a2 -1 v )b

rU = max{(a; +r (@ +r2U) (a; — U)(a2 2U)} alaz,
where the condmons for LR—type representation of A| ©® A, are satisfied.

Proof. Similar to the Proposition 3.1.3.

Proposition 3.1.10. Let A| = (a;; 1" - ’I‘L,l;’z], 'l’z,,llVL, lL,lng, \)Lr bean LR- typeIVIFNsuchthata1+r <0,
! /
a; + rlL > 0and A, = (ay; 1Y o 2L’12’ZJ’ z’z, I, 2L’l;\21’ U)LR be any LR-type IVIFN. Then

A @Ay = (@ 1y, P L ey e 1Y i) g where
a=aa,
l;L4 = ayay — min{(ay +r| Nay +715,), (a; = I Nay +15))},
L = max{(a; — 1L)(c12 - l’;L), (a; + r’fL)(az - lgL)} a,a,,
lU = aja, — min{(a; + ' YNay + 1} ), (a) — 1)@y + )},
r[;‘ = max{(a; — I;IZI)(“2 - l;’z]), (a; + r’l’zl)(az 2U)} aa,,
l% = ajay —min{(a; — Iy )ay +r3y,), (a; +r{, Nay =15 )},
rp =max{(a; +r{ Nay +r3y,), (a =1}, Nay = 17,)} — a;a,,
Iy = aya; - min{(al + r’IVU)(az +r,), (a = %)(% +rh)),
r/U = max{(a; — )(a2 - l y) (ap + rlU)(a2 - IZU)} —aja,,
where the condmons for LR—type representation of A, ® A, are satisfied.
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Proof. Similar to the Proposition 3.1.3.

Proposition 3.1.11. Let A; = (ay; 1}, r ’;L,l;’zj, . sy s By Ty ) LR be an LR-type IVIFN such that ay +ry
T !/ /
and Ay = (ay; gL, gL’IZI;J’ 2’;1 IEL, ZL,I’Z‘;], U)LR be any LR-type IVIFN. Then

Ay @Ay = (@) r TN I Y 1Y ) g where

vlvo '’

a=aa,

IV = ayay —min{(ay +r{ Nay +15,), (a; = I{ )y +15))},
i—max{(al ¥ Nay = 15)), (a +r’fL)(a2 ’;L)} alaz,
lU = a,a, — min{(a, +r'1’£,)(a2+r'2’z]) (a; — )(a2+r )
L’; = max{(a; — ’” )(az—l”) (a1+rw)(a2—12u)} aa,,
IV =aya)— mm{(a1+r )(02+" ). (ay = I{ Xay +r5 )}
ry =max{(a; — 1] Nay = 1},), (al +V1L)(az 13,)} —aya,,
Iy = ajay —min{(ay + 1\ YNay + 1), (ay =1 )ay + 1l )},
A%

ry = max{(a; — llU)(az - IZU) (a; + r'lVU)(az - l;‘b)~} —ayay,
where the conditions for L R—type representation of A; © A, are satisfied.

Proof. Similar to the Proposition 3.1.3.

Proposition 3.1.12. Let A; = (a;; 1%, ’I‘L,l/” Sy 1.1 ) L be an LR-type IVIFN such that a, =1},

W lU’ Mot lL’ 1’

A= (a 1" 1R ey rv

and A, = (ay; 1 oL 2L’/lzu; U lZL’ 2L’12U’ U)LR be any LR-type IVIFN. Then
H H H H. v rv v lv

A0 A, =(a Lo Uy U Iy ) g where

a—ala2,

lL = aja, —min{(a; — l” ay — L), (ay + r’;]_)(az - lgL)},

’z = max{(a; =1} )a, + ) @+ ey + 15 ) = ajay,
lU =aa, — mm{(al ;’z])(az ;’ll]) (al + r’llzj)(az - ’2’;])},
ré‘ = max{(a; — )(a2 + r ) (al + r )(a2 + r )} a,ay,
Iy =ajay — min{(al 1L)(L12 5 (al + rlL)(a2 5%
r‘é =max{(a; —I],)a, +13)), (al +ri Nay+r3)} —aja,,

Iy = ayay —minf(a; — l;VU)(az l'V ), (a +r1U)(a2 =1y s
A%

ry = max{(a; + r'lVU)(az + r'ZVU) (al I'V yay + r2U)} —aa,,
where the conditions for L R—type representatlon of A, © A, are satisfied.

Proof. Similar to the Proposition 3.1.3.

3.2. Proposed lexicographic criteria for the ranking of L R-type IVIFNs

<0

>0

In the literature, there exist several ranking criteria to define the ordering of FNs, IFNs and IVIFNs. Most of the
researchers have used linear ranking function which maps the set of these numbers to real-line and then a compari-
son is carried out on the basis of the usual ordering of real numbers. However, as pointed out in Pérez-Cafiedo and
Concepcién-Morales [41] that it may possible that two of these numbers may look different for the decision-maker but
can be mapped to the same real number. To overcome this limitation, lexicographic ranking criteria with total order
properties seems to be more logical and relevant [19, 22, 61]. In this section, we discuss the lexicographic criteria for

the ordering of L R-type IVIFNs.

Definition 3.2.1 [22]. For x, y € R”, the strict lexicographic inequality x <;,, y holds, iff there is 1 < i < n so that

x; = y; holds for j <iand x; < y;. The weak lexicographic inequality x <;,, y holds, iff x <., y or x = y.

Definition 3.2.2 Let A; = (a;; 1t [y it I Py pand Ay = (ar; 1Y 0 00 P 1Y I

i hoe e by 1U
be two LR-type IVIFNs, then A, = A, iff

2022 b v o 2L’

— M N ’M_’Hv_vv lv_/v PA——Y
/ o1 l l I l I

_ H
ap =ay,ly; =1y, ]L 2t T i T e s = 2w T = v
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Definition 3.2.3 Let <, be the lexicographic order relation on R”. For A = (a; lﬁ, e 127 g’ Iy,ry, l;}’, r;]V)LR €

IV (R), let S(A) and A(A) be the score and accuracy indices of A, respectively; let M (A) = a (the mean value of A),
CA) :=a-1",DA) :=a- lg‘, G(A) :=a -1}y and H(A) := a—1}. Then, for any A, A, € IV(R), the strict
inequality A, < A, holds iff

(S(A)), A(A)), M(A)), C(A)), D(A)), G(A)), H(A))) <jex (S(Ay), A(Ay), M(A,), C(Ay), D(A,), G(Ay), H(Ay)).

The weak inequality A; < A, holds iff either

(S(A), A(A)), M(A)), C(A)), D(A)), G(A)), H(A))) <jex (S(A3), A(Ay), M(Ay), C(A,), D(A,), G(Ay), H(A)))
r (S(A)), A(A)), M(A)),C(A)), D(A)),G(A)), H(A))) = (S(Ay), A(4,), M(A,),C(A,y), D(A,),G(A,), H(A,)).

Remark 3.2.1 The specific order in which the functions S, A, M,C, D,G and H appear in the ranking of L R-type
IVIFNs gives a description of the relative importance of these functions in deciding the ordering of the IVIFNs. How-
ever, one may consider a different permutation of these parameters depending on the priority of these functions.

Remark 3.2.2 Since the expressions of all the functions .S, A, M, C, D, G, H are linear, therefore, each ® € {.S, A, M,
C, D, G, H} follows the linearity property, that is,

DL A ® AhAy) = L, P(A)) + A,D(A,) forall A, A, € IV(R)and 1, 4, € R.

Theorem 3.2.1. The order relation on 1V (R) given in Definition 3.2.3, has the total order properties and yields a
complete ranking on the set of all LR-type IVIFNs of the same type.
Proof. The order relation given in Definition 3.2.3 is a total order due to its following properties:

1. (reflexivity) Al < Al v Al e IV(R),
2. (anti-symmetry) A1 < A2 and A, < A,

= A1 = A2 VAI,AZ e IV(R),
3. (transitivity) A1 < A2 and A2 < A3

= A, < A3 VAI,A2,A3 e IV(R),
4. (comparability) A, < A, or A, < A; V A, A, € IV(R).
Further, it is to be noted that the system of linear equations S(Al) = S(Az) A(Al) = A(Az) M(Al) = M(Az)
C(Al) = C(Az) D(Al) = D(Az) G(Al) = G(Az) and H(Al) = H(Az) has a unique solution, that is, Al = A2 as the
absolute value of the determinant of this linear system is 2bd where b = fo “I(x)dx > 0andd = /0 “T1-x)dx >
0. Hence, the result.

4. Model formulation and solution algorithm

Consider a linear programming problem in which each parameter ¢;, a;;, b; and decision variables % ; are taken
to be in the form of LR-type IVIFNs. The model of such a fully L R-type interval-valued intuitionistic fuzzy linear
programming problem along-with unrestricted decision variables can be mathematically formulated as:

n
(P1) max Z =)' ¢ 0%,
j=1

=

1

foriel, :={L2,...,m},

~.
Il

i, foriely, :={m+1,m +2,...,my},

M=
=
~.
O]
=
~.
IA
S

~.

x|l

™x
O]
=
Y
S

i, foriely i={my+1,my+2,...,m},

~.
Il
—_
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where the inequalities "<

5cj are unrestricted in sign, for j € J :={1,2,...,n}

"and ">" in the problem (P1) is in accordance with the lexicographic ranking given in Defi-

nition 3.2.3.

Definition 4.1 Let X denote the set of all feasible solutions of (P1). A vector X = (X, X, ...,

X,) € X is said to be an

optimal solution of (P1) if

n n
Yoz <Y 0k, forali=E.5....%,) €X.
j=1 j=1

Next, we propose a method to find the unique optimal solution of (P1). We use lexicographic ranking criteria for

ordering of L R-type IVIFNs. The steps of the proposed approach are as follows:

~ . H . v v 2% P ’M v v
Step 1. Let aij—(aA« o ﬂl}U’ ijL’ [jL’aijU’ﬂijU)LR’ Cj—(c L’ij’ U’p]U’ jL’ij’ U’ij)LR’

2 7ijLe IJL’ tJU’

';4 'y ! ! Iu 'M v
5 51L,Vl[‘}’5 v)LRv and -x - (x g L’rlJL’éjU’ 5 L’"/L’g U”’IJU)LR'

v
(b”yzL’ ir Vv % Vi

Then, (P1) can be recast as:
2 v v v v
max Z( L’ij’ jU’ij’ jL’ij’GJU’ jU)LR G)(x],§ L’rle’éjU’rIjU’ jL’r]_]L’éjU’ ]U)LR

m . v v v Iu \ v
s.L. Z(a’J’ le’ UL’ IJU"BijU’aijL’ ijL’ ljU’ﬁljU)LRQ(xJ’gL’rle’ng’rljU’ jL’rIjL’ng’ ]U)LR

/ .
= (by 8 v Sy 8 Y ke fori €I,

. v v v v . gH o I, gy v A
Z(au’ i le’ tjU’ﬂijU’aijL’ﬂijL’aijU’ﬁijU)LRG(xj’éjL’n L’§/U”7'U’ LM Sjue iu)LR

)¢

s VS LR, fori € I,

= (b”y 8, lL’le’

iL’> i’ th’ iu’ J/tL’

u

'/4 . v v v 2% . gH ' ’.M v
Z(au’ s B Fu B % By %o B LR © (X5 &5 iy 5 i3

v
L’ 7’IJL,§ U’rl U)LR

v gl i
>(b,a}’,L,élL,}’IU,5,U,7,L,5,L,JQU,5 )LR; fOI‘l 6137

. gH H v v v . . . .
(xj,é‘jL,njL,é U’"/U’ L, HE jU’”jU)LR are unrestricted in sign, for j € J.

Step 2. After applying the multiplication operation (Section 3.1), let

~ ~ LM H Iu /i v v v
¢ OX; = ST @i Ty @y JL’ij’TjU’ij)LR and

~ ~ " 'y wo. v v v v
di; © X; = (my; sz’/luL’ o Aot S A Siue Aju) LR

Then, the problem (P1) in step 1 becomes:

LM H Iu /u vV A%
(P2)max Y (p;iely .oy T e ) Tl )k

LM TN Y /T v Iv
Z(mij’sijL’AijL’sijU’A'ijU’ zJL’/luL’ iju’ sz)LR
Jj=1
— s JAANAY

(b17 V,L, lL’ le’ 51U’ ylL’(le7 le95U)LR’ fOrl € I]’
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1;4 /7 v v
Z(ml/’ t]L’ le’ tjU’llljU’ le’AIjL’ IjU’j' U)LR

l,ué

<(bl’y1L’ lL’}/lU’ IU’}/IL’

v v
61L’le’5 U)LR’ fOI'l (S 12,
Z(m ’M ){’M csV AV AV )

ij> tJL’ th’ t]U’ iju’ IJL’ ijL’ IJU’ ‘jU LR

u voosly :
> (b"yzL’ 1L’th’5zU’y1L’51L’y1U’5 vir. fori€ls,

u /v
(xj,gjL,njL,ng, &Y L’njL’§ U’"JU)LR are unrestricted in sign, for j € J.
~ /M /7 v v v
Step 3. Define /; := E(m,], SiL uL’ S Ao St AL uU’/lijU)LR and

Step 4.

' v AN
(bl’ytL’atL’th’atU’ytL’étL’ 1U’5 )LR

Further, by taking the order relation <,,, as in Definition 3.2.3, according to the addition operation from Section
3.1 and the equality between L R-type IVIFNs given in Definition 3.2.2, we can write the constraint set of (P2) as:

n n n n
— — _ SH I _ — —
Z mj = b, l/L yzL’ Z /Ith 51L’ Z sz 1U’ Z /lljU lU’ Z lij - iVL’
J j—l j j=1 j j=1
2 AL = 2 Siu =i 2 Ay =06y, forie Iy, Ga)
Jj=1 j=1
(S(l,-), A, M), €, D), GT), H)) <jex (SF), A, M(F), C(F)), D(F)), G(F), H(F)), fori € I,
(3b)
(S, A, M(T,), €T, D), GA), HT)) =0 (S, A, M(%), C(F,), D), G(F), H(F,)), fori € I,
(3¢)
gl >yt >y 2y, & 2 e = >l 2
jUu — ;L ju — jL’ ]L =>ju’ jL = ju’ jL> "L — jL’ PjU ju’ v = o
LZO’”,-LZO@, >0'1 20, ¢, >0,f1; >0, ¢, 20,1, 20, forjeJ. (d)

The objective function of the problem (P2) can be recast as:
lex max (S(2), A(Z), M(Z),C(Z),D(Z),G(Z), H(Z))

n

5 - ~ o’ Vi u u v v v
where Z = Z ¢;OX; = Z(pj,‘er,ij,TjU,ij, /L’ij’TjU’ij)LR'
4 o

Jj=1

Hence, the problem (P1) is finally transformed into the following optimization problem (P3):

(P3) lex max (S(Z), A(Z), M(Z),C(Z2),D(Z),G(Z), H(Z))
subject to constraints (3a) —(3d)

S 24, zM 2C 2P 2

By introducing new binary variables z; L2 and zH for i € I, U I; following Pérez-Cafiedo
and Concepcién-Morales [41] along- w1th a new constraint (4p) for positive real values of k and K sufficiently
small and large respectively, the lexicographic constraints (35) and (3¢) can be converted into the following set

of constraints (4a) — (4p):
kzP < S(F)—-SU) < Kz, fori€ Iy, (4a)

—KzP +kz! < A(F)— A() < Kz, fori € I, (4b)
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—K(zZ+zM+kzM < M(F)-M (1) < KzM, fori € I, (4¢)

—K(z+z24zM)+kzC < C(7)-C(I) < KzE, fori € I, (4d)
—K(zF+z2+zM+25)+kzP < D(F)-D(I)) < KzP, fori € I,, (4e)
—K(zP+z4+zM+25420)+kz% < G(F)-G() < KZC, fori € I, (4f)
—K(zf+zlf4+le+ziC+zf)+z?)+szI < H(F,-)—H(f,-) < Kle, fori € I,, (4g)
kzs < S(I)-SF) < Kz5, fori € I, (4h)
—-KzP +kz! < A(l) - A(F) < Kz, fori € I, (4i)
—K(zP+z)+kzM < M(I)-M (%) < KzM, fori € I, 4j)
—K(zf +z +zM) +kzE < C(I)-C(F) < Kz€, fori € I, (4k)
—K(z5 + 20 +2M +28) + kzP < D) - D(F) < KzP, fori € I, )
—K(zF + 20 +2M + 28+ 2P)+ k28 < GUI) - G(F) < KzC, fori € I, (4m)
—K@ZP +z0+2M + 28+ 2P+ 20 + k2 < H(I) - HF) < KzH, fori € I, (4n)
zf,z;“,zf”,zic,zll), G HE{O 1}, fori€ LUl;, (40)

20 <zh <z2M <28 < 2P <28 < 2H, for i € LI, (4p)

1

Step 5. Convert problem (P3) into the following mixed 0 — 1 lexicographic non-linear programming problem (P4):

(P4) lex max (S(Z), A(Z), M(Z),C(Z2),D(Z),G(Z), H(Z))
subject to constraints (3a), (3d), (4a) — (4p).

Step 6. Solve the problem (P4) by optimizing orderly one objective at a time subject to constraints (3a), (3d), (4a)
— (4p); including all previously optimized objectives in the constraint set. Thus, by using the lexicographic
method of multi- objectlve optimization [62] and a suitable optimization solver, we can find the optimal solution

v v . =~ / /
j’ jL’ ﬂjL, ;}U’ ”IJU, f iL’ ”]jL, é’U’ rl]U for J € J. Hence, xj = (xj9 éjL’ ”IJL, é]!{]’ ” évL’ W;L, g/U’ rIJU)LR fOr
j € J canbe obtamed
Step 7. Finally, by substituting the values of X;’s into Z ¢; © X;, we obtain the optimal interval-valued intuitionistic
j=1
fuzzy value of the problem (P1).

Now, we present Theorems 4.1 and 4.2 to prove the equivalence of the models (P1), (P3) and (P3), (P4), respec-
tively. The similar results for fuzzy LPP were discussed by Pérez-Cafiedo and Concepcién-Morales [22]. However,
we have shown the results for L R-type IVIFLPPs.

Theorem 4.1. If X = (X, X,, X3, ..., X,,) is an optimal solution of problem (P3), then it is also an optimal solution of
(P1).

Proof. We will prove the result by the method of contradiction. Let = (fcl s )%2, )%3, e, fcn) be an optimal solution of

problem (P3) but not an optimal solution of (P1). Then, there exists a feasible solution X* = (i’lk, )”c;, ..., Xr) of the
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problem (P1), such that

M
™
><1>

In view of Definition 3.2.3, X* is a feasible solution of the problem (P3) for which

<S<zn:c~jo;%j),A(zn:Ejo;%j),M(iajo§j>,c<iajo§j>,p<zﬂ:c OX; ) G< :1 5jo§cj>,

j=1 j=1 j=1 j=1 j=1

H(anejoﬁj)) <lex (S( ’n qox;’f),A(zn:c,osC) <2c,@x> (anéjox;f),D( n Ejofcj>,

j=1 j=1

Jj=1

that is, there exists a feasible solution of (P3) with the higher objective function value. This contradicts the fact that X
is an optimal solution of (P3). Hence, the result.

Theorem 4.2. The optimal solution of the problem (P4) is also optimal for (P3). The converse of the statement is also
true.

7 '/4 o, v v ~ HocH U clu AN
Proof. Letl[ Z(mll’ th’ le’ l]U’)'I]U’ uL’/{uL’ ZJU’/1 U)LR’ Fi - (b”ylL’élL’ lU’(SzU’ylL’étL’th’(S )LR

S,zA,zM 7€, 70,z G H)
1 1] 1

and z; 1= (z e Z;

In order to prove this theorem, we need to establish the equivalence between constraint sets (3)[(3b), (3¢)] and (4)
[(4a) — (4p)] for positive real values of k and K sufficiently small and large, respectively. Here, we will prove the result
for the I, set of constraints only. For the remaining set of constraints, the result can be proved on the same lines.

To show that any solution satisfying constraint set (4) also satisfies set (3), we consider the following cases:

1. If z; = (1, %, %, %, %, %, %), where x = O or 1, then by substituting into constraint set (4), we get k < S(Fi)—S(Ti) <
K, which implies .S (ii) < S(7;); hence, according to Definition 3.2.3, set of constraints (3) are satisfied.

2. If z; = (0,1, %, %, %, %, %), where * = 0 or 1, then by the constraint set (4) we get 0 < S(%;) — S(ii) < 0, and
k < A(#;) — A(l;) < K, which implies S(/;) = S(7;) and A(l;) < A(#;) ; hence, from Definition 3.2.3, the constraint
set (3) are satisfied.

The remaining cases z; = (0,0, 1, %, %, %, %), z; = (0,0,0, 1, %, %, %), z; = (0,0,0,0, 1, %, x), z; = (0,0,0,0,0, 1, x),
=(0,0,0,0,0,0,1) and z; = (0,0,0,0,0,0,0) can be proved similarly.

Now, it is to be shown that any solution satisfying constraint set (3) also satisfies constraints (4). For this, let us consider

the following cases:

1. If S(7) = SU,), AF) = A(), M(#,) = M), C(#) = C(,), D) = D(,), G(#) = G(I,) and H(#,) = H(I,),
then by constraint set (4), we get z; = (0,0,0,0,0,0,0).

2. If S(7) > S(l~,»), ie., S(F) — S(Ti) = s5; > 0, then by constraint (4a), we get sz <s; < Kzf, this inequality
is satisfied for z = 1 and for positive real values of k and K, sufficiently small and large. Further, (40) and (4p)
give (z2, zM, zC zP,z G zH) = (1,1,1,1,1, 1), due to which rest of the constraints (4b) — (4g) are automatically
satlsﬁed Also S(fi) > S(l i) implies that the constraint (3b) is satisfied.

3. If S(7) = S(I,) and A(7;) > A(l)) i.e., A(F;)) — A(I}) = a; > 0, then by constraints (4a) and (4b), we get s; = 0
and kzlf“ <a < Kzl'f‘, this inequality is satisfied for zf =0, zl‘.“ = 1 and for positive real values of k and K,
sufficiently small and large. Further, (40) and (4p) yield (zM, z€, zP, Z,G’ zH) = (1,1,1,1,1), due to which rest of
the constraints (4c) — (4g) are obviously satisfied. Further, S(7;) = S(/;) and A(7;) > A(/;) implies (3b) holds.

The remaining cases can be similarly obtained. This establishes that the problems (P3) and (P4) are equivalent.
Hence proved.
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5. Advantages of the proposed method

Some of the main advantages of the proposed algorithm over the existing approaches are listed below:

1. The existing method [57] can only be used to solve IVIFLPPs in which all the decision variables are taken
to be non-negative crisp parameters. However, our proposed method can be employed successfully to handle
IVIFLPPs having all the decision variables represented by unrestricted IVIFNs.

2. The existing study [34] defined a new product operator and the basic arithmetic operations on unrestricted L R-
type IFNs. But, there is no study on LR-type IVIFNs. Consequently, we have introduced the definition of
L R-type IVIFNs and developed the arithmetic operations on unrestricted L R-type IVIFNs.

3. The existing models [19, 22, 34, 41] can be used only to deal with LR-type FLPPs and IFLPPs. But, in this
article, we have solved the IVIFLPP in which all the parameters and decision variables are represented by L R-
type IVIFNs, which is more general. Hence, the proposed method can be successfully reduced to solve IFLPPs
as well as FLPPs.

4. In the present study, we have considered the model parameters and decision variables to be L R-type IVIFNs, as
a result, the proposed method can also be utilized to solve LPPs where parameters and variables are represented
by Triangular/Trapezoidal IVIFNs.

5. The proposed algorithm can be used to solve the models having some/all decision variables as unrestricted L R-
type IVIFNs or non-negative L R-type IVIFNs.

6. Numerical illustration
In this section, we present a numerical example to demonstrate the steps involved in the proposed algorithm.
Consider the following LPP having all the parameters as L R-type IVIFN and unrestricted crisp variables:

(S1) max Z=50x, ®80x,
s.t. 20x, ®40 x, =100,
60x; ®100 x, <150,
x; and x, are unrestricted in sign

where

5=(52,2,3,3:5554 8 8=(8:1,1,2,2;4,4,2,3); p, 12=(12:2,3,4,4:6,8,4,4),z.
4=(4;1,1,2,2:4,4,2,2); g, 6=1(6:3,4,4,4,6,6,4,4), p, 10=(10;3,4,4,5;6,8,5,5); g
100 = (100; 25, 35, 50, 50; 80, 100, 50, 50), . 150 = (150; 50, 60, 50, 70; 120, 100, 80, 70), .
L(x)=R(x) = L'(x) = R'(x) = max{0,1 —x} Vx € R.

Solution:

Step 1. Substituting the expressions of various parameters, the problem (S1) can be re-written as follows:
max Z =(5;2,2,3,3;5,5,5,4) g ©x; & (8;1,1,2,2;4,4,2,3), O x,
s.tt. (12;2,3,4,4;6,8,4,4); r O x; D (4;1,1,2,2;4,4,2,2); r © x, = (1005 25, 35, 50, 50; 80, 100, 50, 50); g,
(6;3,4,4,4,6,6,4,4); rOx; D (10;3,4,4,5;6,8,5,5); r ©x, < (150; 50, 60, 50, 70; 120, 100, 80, 70) ; r>
x; and x, are unrestricted in sign.
Step 2. Using the multiplication operation (Corollary 3.1.1) on L R-type IVIFNs along-with the fact that
max{a, b} = %(a + b+ |a— b)),
the problem (S1) is converted to the following equivalent problem:
- 1 1
(82) max Z = (5xy320xy ], 21x 1, 31,1, 31x |3 51 1, 51x, |, 5O+ 91X, 5(=x + xiD), x®

1 1
(8X2; [x2, %21, 215 |, 2[x5 |5 4x, |, 41x5 ], 5(—x2 +5[x3), z(xz + 5|x2|))LR
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Step 3.

Step 4.

Step 5.

Step 6.

1 1
S.t. (lle, 5(—x1 +5|x1|), E(xl + 5|X1|),4|X1|,4|X1|;_X1 + 7|x1|,x1 +7|x1|,4|x1|,4|x1|)LR
& (43 131, %], 21,1, 2133 413, 4131, 2151, 20,1, = (1003 25,35, 50, 50; 80, 100, 50, 50) .z,
1 1 1
(6361; E(_xl +71x11)s E(xl + 7|x1|),4|x1|,4|x1|;6|x1|,6|x1|,4|x1|,4|x1|)LR @ (10X2; 5(—x2+

1 1 1
71x,1), E(Xz + 71x,0), 5(—x2 +91x,1), E(Xz +91x21)s =x3 + 71xa s x5 + 71%,1, 51%,1, 51%,1) |, &
< (150; 50, 60, 50, 70; 120, 100, 80, 70) ; g,
x; and x, are unrestricted in sign.

By employing the lexicographic ordering as in Definition 3.2.3, using the addition operation, equality between
L R-type IVIFNs and the corresponding definitions of S, A, M, C, D, G and H, we get the following non-linear
programming problem:

(S3) lex max <%(x1 - Xy), %(79x1 + 129x,), 5x; 4+ 8x5, 5x1 + 8xy — 2|x1| — |x5], 5x1 4+ 8xy — 3|x1| = 2|x,],

2x + Hx
27172
S.t. 3x1 +x2 = 25, — X +5|x1| +2|.X2| = 50, X1 +5|x1| +2|x2| = 70,
20x( |+ |x5] =25, —x; +7|x;| +4|x5] =80, x; +7|x;| +4|x,| =100,
xp 1 13 21 7 7 21
3 §(97x1 + 164x2),6x1 + 10x,, Eaal + X~ §|x1| - §|x2|,6x1 + 3X2 - 4)x,|—

9 5
2 §|x1| - §|x2|,5x1 +8x; — 3xy| —4[x,|

§|x2|,6x1 +10x, — 4]x,| = 51y, 6x; + 11x, — 6]x,] 7|x2|>

<lex (7.5,300, 150, 100, 100, 70, 30),
x; and x, are unrestricted in sign.

To convert the lexicographic constraint <, into its equivalent form, we introduce the binary variables zf ,
z{‘, zf”, zlc, z?, zlG and zf’ and for k = 107 and K = 1000, we have the following set of constraints:

sz <75- é(m) < Kzf, (5a)

1
—Kz} + kzf <300 - 5 (97x; +164x;) < Kzf, (5b)
—K (2% + 20 + kzM <150 — 6x; — 10x, < Kz}, (5¢)
13 21 7 7
—K(z% 4z + z2M) + kz€ <100 - SX1 = X+ gl + Sl < Kz€, (5d)
21 9

—K(zf + z‘l4 + z{w + zlc) + kle <100 — 6x; — 3% +4|x| + §|x2| < Kz{), (5e)
—K (2% + 28+ 27 4 28 4 20) + k28 <70 — 6x) — 10x, + 41| + 5]x,| < K29, 51
—K(zf + z‘l4 + z{"f + zlc + zf) + z]G) + kz{{ <30 —6x; — 11xy 4+ 6]x1| + 7|x,| < Kz]H, (5¢g)
zf,z‘l“,z{”,zlc,zf),z?,z{{ e {0,1}, (5h)
zfgz‘fﬁz{”ﬁzfﬁz?ﬁzfﬁzfi- €
Finally, the equivalent mixed O — 1 lexicographic non-linear optimization problem obtained is as follows:

(S4) lex max <é(x1 —x)), %(79x1 +129x,), 5x; + 8%y, 5x; + 8%y — 2]x;| = |xal, 5% + 8%, — 3]x |-

17
57X
st 3x; +x, =25, —x; +5]x(| +2|x,] =50, x;+5|x;]| +2|x,| =70,

2 x|+ 1x5] =25, —x; +7|x;| +4|x5] =80, x; +7|x(| +4|x,| = 100,

constraints (5a) — (5i),

x; and x, are unrestricted in sign.

9 9 5
2|X2|, le + 2 §|X1| - §|X2|,5xl + 8X2 - 5|x1| _4|X2|

To solve the problem (S4), we start by optimizing the first component of the objective function along-with
imposing all the constraints of problem (S4). As a result, we solve the single-objective non-linear programming
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problem (S4-1) given by:

(S4-1) max S = %(x1 —x))
s.t. all the constraints of (S4).
Here, we have solved all the crisp optimization models by using a software "LINGO—17.0" on a MacBook Air
system with 1.8 GHz Dual-Core Intel Core i5 processor and 8 GB RAM. The optimal solution of (S4-1) gives

the optimal objective value as .S = 1.875. Next, for optimizing the second component of objective function of
(S4), we solve the problem (S4-2).

(S4-2) max A = %(79x1 +129x,)
s.t. all the constraints of (S4),
%(xl - X2) Z 1875

The optimal objective value of (S4-2) is A = 18.125 and for optimizing the third objective, the problem (S4-3)
is solved.

(S4-3) max M = 5x; + 8x,
s.t. all the constraints of (S4),
%(xl - X2) > 1875,

%(79x1 +129x,) > 18.125.

The optimal solution of (S4-3) gives M = 10. Further, the fourth objective is optimized by solving the problem
(S4-4).

(S4'4) max C=5x1 +8x2—2|x1| - |X2|
s.t. all the constraints of (S4),
%(x1 _x)) > 1.875,

é(79x1 +129x,) > 18.125,
5x1 + 8XZ Z 10

The optimal objective value of (S4-4) is C = —15 and for optimizing the fifth objective, we solve the problem
(54-5).

(S4-5) max D = 5x; + 8x5 — 3|x;| — 2|x,|
s.t. all the constraints of (S4),
%(Xl - XZ) > 1875,

é(79x1 +129x,) > 18.125,
5x1 + 8X2 > 10,
le + SXZ - 2|x1| - |X2| Z —15

The optimal solution of (S4-5) gives the optimal objective value as D = —30 and to optimize the sixth objective,
the problem (S4-6) is solved.

(S4-6) max G = gxl + 1—7x2 - 2|X1| - %lle

s.t. all the constraints of (S4),
%(xl —Xx,) > 1.875,

%(79x1 +129x,) > 18.125,

le + 8XZ > 107

le + 8XZ - 2|x1| - IX2| > —15,
SXI + 8X2 - 3|x1| - 2|X2| Z _30
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The optimal solution of (S4-6) gives G = —55. Finally, the seventh objective is optimized by solving the problem

(S4-7).
(S4-7) max H = 5x; + 8x, — 5|x;| — 4|x;]
s.t. all the constraints of (S§4),

%(xl — Xy) > 1.875,

%(79x1 +129x,) > 18.125,

le + 8X2 > 10,

5x1+8xy = 2[x;| = [x5] 2 15,

5x; 4+ 8x5 = 3|x| —2|x,| > =30,

9 5

le + 7X2 - §|X1| - §|X2| > -55.
The optimal objective value and optimal solution of problem (S4-7) are respectively equal to H = —60, and

X = 10, Xy = -5.

Step 7. By putting the optimal solution values as obtained in step 6, we get the unique optimal IVIF value

7 = (10,25, 25,40, 40; 70,70, 65, 50), &.

7. An application in production planning

A bicycle manufacturing company produces two models of bicycles, namely, road bikes and mountain bikes. Steel
alloy and rubber constitute the primary raw materials required in the production process of the main body of the
bicycles. It is observed from the past experiences that no complete unit of a road bicycle can be manufactured if 1.5
hours of skilled labourers are employed per unit. On the other hand, the company can’t bear to spend more than 2.5
hours of labour time per unit of the road bike as it will reduce the efficiency of the process. From the past data, it is
estimated that complete manufacturing of each unit of a road bike requires about 1.75 to 2.25 hours of skilled labourers.
It was also judged that the production curve of road bikes peaks near to 2 hours of labour time per unit. Further, it is
known from the judgement of the decision-maker that values of all the parameters follow linear variations and involve
uncertainty as well as some inherent hesitation. In this context, all the information related to the skilled labour hours
is summarized in Table 2 while the data referring to the requirement of raw material is tabulated in Table 3.

The manager of the company has approximated that about 100 hours of labour time is available for the production
process. Further, due to the various uncontrollable factors, there occurs a fluctuation in the supply and consumption
of Steel alloy and rubber in the manufacturing firm. Thus, the manager has estimated that around 300 units of Steel
alloy and nearly 120 units of rubber will be available for this production run. However, the manufacturing firm can
purchase the additional required units of Steel alloy at a price of about $10 or can sell leftover units at the same price.
The company estimated the selling price per unit of road bike at a price nearly $80 and that of mountain bike at about
$120. Finally, the firm manager wants to find the number of optimal units of Steel alloy need to be purchased or sold
and units of the road bikes and mountain bikes be produced consequently so as to maximize the total profit.

Table 2
Data related to the requirement of skilled labour hours per bicycle
Type of bicycle Time in which Estimated time Peak Production Time unacceptable
no unit prepared range to prepare Time by the company
completely each unit for each unit!
Road bike 1.5 1.75 to 2.25 2 2.5
Mountain bike 3 375 to 4.5 4 4.7

! This represents the labour hours which, if employed for a unit of the bicycle then it will reduce the efficiency of the production
run.
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Table 3
Raw material requirement (in Kilograms) per unit of bicycle

Type of bicycle Type of Amount of material that ~ Estimated range  Amount of material  Units of material
material can't produce one of material giving maximum can't be utilized
complete frame of bicycle  per unit of bike production rate per bicycle?
Road bike Steel alloy 5 6 to 8 7 8.5
Rubber 1.5 1.75 to 2.3 2 2.7
Mountain bike  Steel alloy 6.5 7.2 to 8.9 8 10
Rubber 3 3.5 to 4.7 4 5

2 It describes the units of the raw material which if used per frame of the bicycle then it will reduce the profit of the company.

Problem formulation: Since all the parameters of the problem are known to be in the estimated/uncertain form,
therefore, it is more relevant to represent these estimated numbers by L R-type IVIFNs. Following, the data given in
Tables 2 and 3, the given estimated parameters can be presented as follows:

1. Labour time (hrs.):
(a). For Road bike: 2 (2;0.1,0.1,0.25,0.25;0.5,0.5,0.3,0.3) . g
(b). For Mountain bike: 4 =(4;0.2,0.2,0.25,0.5;1,0.7,0.5,0.6) ; &.

2. Raw material (Kgs.):
(a). For Road bike:

(i). Steelalloy: 7=(7;05,0.5,1,1;2,1.5,1.5,1) .

(ii). Rubber: 2=(2;0.1,0.2,0.25,0.3; 0.5,0.7,0.3,0.5) g
(b). For Mountain bike:

(i). Steel alloy: 8 =(8;0.5,0.5,0.8,0.9;1.5,2,1.2,1.5);

(ii). Rubber: 4 =(4;03,0.3,0.5,0.7;1,1,0.7,0.8) z.

3. Availability:
(a). Labour time (hrs.):
(b). Steel alloy (Kgs.):
(c). Rubber (Kgs.):

4. Estimated Cost ($):

100 = (100; 8,8, 10, 10;20,22, 15, 15) 4.
300 = (300; 10, 12, 15, 15; 30,30, 20,25), .
120 = (120; 10,8, 15, 1530, 30, 18, 20) p.

(a). For Steel alloy:
(b). For Road bike:
(¢). For Mountain bike:

0= (10;1,1.5,2,2;4,5,3,3.5) .
0 = (80:5,5,7.7:10,10,8,9), p.
120 = (120;8,7,10,10; 15,15,12,11) 4.

Based on this data and as per the statement of the problem, it can be formulated as follows:

(M1) max Z_SOQxleBIEO(szEBIOGyl
s.t. 7®x1®8®x2€|9y1 = 300,
2®x1 @4®X2< 120
20%, ®40 %, <100,
X|,%, >0, ¥, unrestricted

where X; = (x; éle, '71L’ Zle, '71U’ éVL, '71L’ ;] niVU)LR = Number of units of road bike to be produced,

" _ . L
Xy = (xp; §2L, ’72L’ izu’ an §2L, 112L, ‘§2u’ My LR = Number of units of mountain bike to be produced,

Heﬂ

1;4 u
1L’ -1r’ o

/v v
lU’ 10’ 0

v
o v

m/, .0, )r.r = Number of additional units of Steel alloy to be purchased or sold.

=07
Solution: Substituting the values of the parameters, the problem (M1) can be further expressed as:

(M2) max Z = (80;5,5,7,7;10,10,8,9); z © %, @ (120;8,7,10,10;15,15,12,11); z © %,®

(10;1,1.5,2,2:4,5,3,3.5), . ©
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1684.1  2088.55 2403.28 2728.5 3138.94 3708.12 3862.86 4368.91 4808.33

Figure 4: Representation of the optimal profit function as an LR-type TIVIFN

$.t.(7;0.5,0.5,1,1;2,1.5,1.5,1); r © X; ©(8;0.5,0.5,0.8,0.9;1.5,2,1.2,1.5); R © X, ® J;
= (3005 10, 12, 15, 15; 30, 30, 20, 25) ; &,
(2;0.1,0.2,0.25,0.3;0.5,0.7,0.3,0.5); r © X; & (4;0.3,0.3,0.5,0.7;1,1,0.7,0.8) ;. g © X,
< (120510, 8, 15, 15; 30, 30, 18,20) .
(2;0.1,0.1,0.25,0.25;0.5,0.5,0.3,0.3); r © %; & (4;0.2,0.2,0.25,0.5;1,0.7,0.5,0.6); r © X,
<(100;8,8,10,10;20,22,15,15) .
X{,X, = 0, y, unrestricted.

Now, since the input data follows the linear trend, therefore, L(x) = R(x) = L'(x) = R'(x) = max{0,1-x}Vx € R.
Further, using "LINGO-17.0" software for solving the equivalent crisp model obtained after applying Steps 1 — 7 of
the proposed algorithm, we get the following optimal solution of problem (M1):

X, =(1.71;0,0,0,0;1.7,0,0.64,0); p, X, =(3.05;1.02,1.13,1.5,1.18;2.08,2.13,1.5,1.97); g and

71 =(263.69;0,0,0,0;0,0,0,0); r

with the optimal IVIF value of the objective function equals

Z = (3138.94;410.44, 569.18, 735.66, 723.92; 1454.84, 1669.39, 1050.39, 1229.97), »

7.1. Results and discussion

The optimal solution of problem (M1) calls for selling nearly 263 Kgs. of leftover Steel alloy, manufacturing about
2 units of the road bike and 3 units of mountain bike to gain the maximum profit in the given scenario. The graphical
representation of the objective function value Z as an LR-type IVIFN is shown in Fig. 4. The interpretation of the
profit function can be viewed as follows:
The company’s acceptance increases if the profit value increases from nearly $2403.28 to $3138.94 while the degree
of attainability of profit decreases if profit further increases from $3138.94 to $3862.86. The manager is fully satisfied
at a profit of $3138.94. However, when the profit increases from nearly $1684.1 to $3138.94, the degree of non
—attainability (or rejection) decreases continuously while the non —attainability degree increases if the profit grows
from $3138.94 to $4808.33. Further, the company’s profit can’t go below $1684.1 and a profit above $4808.33 is also
not achievable.

7.2. Managerial insights
Our modelling of linear optimization problems in L R-type IVIF environment integrates two significant variations in
the data to solve the realistic problems. Firstly, this modelling allows different types of variation in the input data using
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the suitable choice of L and R functions. Secondly, the model parameters are taken as IVIFNs with interval degrees
which handle the uncertain data in a most appropriate manner. Hence, it is crucial for a policy-maker to understand
and judge how the optimal strategy varies using different L, R functions and to evaluate the optimal solution which
suits best to the concerned organization.

The formulation, solution and analysis of the production planning problem (M1) successfully incorporate the un-
certain and vague data in the model and further provides the flexible and optimal production strategy to the company
manager.

7.3. Comparison with other cases

The problem (M1) is also solved by transforming the inequality constraints of the model into equality by introducing
the non-negative L R-type IVIF slack variables. Additionally, the model is alternatively solved using the usual order
relation < in place of <,,,. The values obtained are mentioned in Table 4.

Further, by comparing the optimal values of Z, it is observed that the solution obtained by the proposed methodol-
ogy yields better results. However, it may also be noticed that the optimal solutions are close to each other. Moreover,
using the Definition 3.2.3 for comparing the objective function values, we get

S(Zslack) =-7534 < S(Zorder relation 5) =-58.96 < S(Zproposed) =-30.89
implying that Z .0k < Zorder retation < < Zproposed- Therefore, it can be inferred that the proposed algorithm yields
better results than the two alternative approaches.
Table 4
Optimal solution obtained using other cases and proposed algorithm
Solution Proposed method Adding non-negative LR-type Using order relation <
IVIF slack variables instead of <,
X, (1.71;0,0,0,0; (0;0,0,0,0; (0;0,0,0,0.1;
1.7,0,0.64,0), x 0,0.3,0,0.875), 0,0.794,0,0.687),
X, (3.05;1.02,1.13,1.5,1.18; (3.682;0,0,0,0; (5.75;0,0,0,0;
2.08,2.13,1.5,1.97), 0,0,0,0), x 1.5,0,0.294,0), x
¥ (263.69;0,0,0,0; (246.67;7,8.67,9.67,9; (240; 6.25,8.25,9, 8.25;
0,0,0,0), x 16.67,20,12,15), 5 9,18.25,9,15.25),

z (3138.94;410.44,569.18,735.66,723.92; (2908.54;339.13,495.48,607.52,638.16; (3090;342.25,495.12,609.5, 645.2;
1454.84,1669.39, 1050.39, 1229.97), & 1141.93,1615.58,868.19,1184.22), » 1257.75,1631.46,883.75,1170.27) , »

8. Conclusions and future research scope

The study proposes the definition of L R-type interval-valued intuitionistic fuzzy numbers and defines the basic
operation on unrestricted L R-type IVIFNs with the help of a-cut and f-cut. We have also derived the expressions of
the various ranking indices for these numbers. Further, a methodology has been proposed to solve a class of unre-
stricted fully LR-type IVIF linear programming problems. The current study also generalizes the results and theory
of fuzzy, intuitionistic fuzzy and L R-type fuzzy / intuitionistic fuzzy numbers. Finally, it is to be pointed out that all
the existing models of LPPs [19, 22, 30, 34, 41] can also be solved using the proposed algorithm. However, many
real-world problems which fail to have crisp parameters can only be solved efficiently using the proposed technique by
representing the uncertain data using intervals. Moreover, for ranking of the L R-type IVIFNs, a lexicographic criteria
(S,A,M,C, D,G, H) has been used. However, the choice of this ranking criterion is not fixed. There are a total of 7!
permutations possible. It totally depends on the decision-maker’s attitude towards the preferences of various parame-
ters involved in the lexicographic ranking. Furthermore, the practical applicability of the proposed model and solution
algorithm is demonstrated by solving the production planning problem of a manufacturing company. Additionally, the
optimal solution values are also compared with the two alternative approaches that can be used to solve the problem.
The comparative results conclude that the proposed technique perform better than the alternate methods.

Some of the future directions of the present work are as follows:
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1. It can be observed that although the method is able to handle a very generalized class of linear optimization
problems under uncertain conditions but the algorithm involves a large number of computation steps. Since, to
obtain the final optimal value, one needs to solve seven mixed 0 — 1 integer non-linear programming problems.
Therefore, it will be interesting to devise a more computationally efficient approach to handle such problems.

2. In the future, different optimization problems such as supply chain problems, portfolio optimization problems,
transportation problems, etc. can be solved under the L R-type IVIF environment.

3. An important futuristic research aspect would be to formulate and to devise a solution algorithm for multi-
objective LPPs under IVIF scenario.

4. In future research, the methodology can be extended to solve the quadratic programming problems, non-linear /
fractional problems having parameters / variables as L R-type [VIFNs.
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