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The wave stability of solitary waves over a bump

for the full Euler equations

Marcelo V. Flamarion 1, & Roberto Ribeiro-Jr2

Abstract: In this work, we present a numerical study of the wave stability of steady

solitary waves over a localised topographic obstacle through the full Euler equations.

There are two branches of the solutions: one from the perturbed uniform flow and the

other from the perturbed solitary-wave flow. We find that steady waves from the

perturbed uniform flow are always stable with respect to perturbations of its amplitude.

Regarding the perturbed solitary-wave, when the perturbed initial condition has smaller

amplitude than the steady solution we notice a certain type of stability. Yet, when the

perturbed initial condition has larger amplitude than the steady solution an onset of

wave-breaking seem to occur.
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1. Introduction

Water waves is a field of many interesting physical problems. For instance, problems
related to the propagation of water waves over topographic obstacles [3, 17], ship
wakes and ocean waves generated by storms [15].

The interaction wave-current-topography has been extensively studied in the
past few years using different mathematical models. Perhaps, the forced Korteweg-
de Vries equation (fKdV) is the more commonly nonlinear model used. The fKdV
equation arises as a model for submerged obstacles with small amplitudes in nearly-
critical flows, i.e., when the Froude number defined as

F =
U0√
gh0

, (1.1)

is close to 1. Here, U0 is the uniform flow speed, g is the gravity and h0 is the average
depth of the channel. The flow is called supercritical or subcriticall depending on
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whether F > 1 or F < 1. A careful study on this model was first done by Wu and
Wu [22] and later by several other authors [1, 9, 21, 22, 16, 11, 12, 10].

On the light of the full Euler equations, Vanden-Broeck and Tuck [20] inves-
tigated steady subcritical waves generated by a moving pressure distribution and
their connection with ship generated waves. Later, Asavanant et al. [2] studied
the same problem considering both the subcritical and supercritical regimes. They
explored different parameter regimes, including effects of pressure intensity and dis-
tribution length. Binder et al. [4] used the boundary integral method to compute
steady supercritical solutions in the presence of two triangles along the bottom.

More recently, Grimshaw and Maleewong [14] studied the stability of steady
solutions of fKdV equation in both subcritical and supercritical regimes. They
found their steady wave from the transient fKdV solution, whose stability was
then analyzed through the Euler equations in the presence of a moving pressure
distribution. In the presence of a constant current and a topography, Vanden-
Broeck [19] used a boundary integral method to compute steady solutions for the
Euler equations. Several types of steady waves were found but their stability was
not analyzed. Later, Flamarion et al. [11] presented an iterative numerical method
based on conformal mapping technique to study waves generated by a current-
topography interaction for the full Euler equations and compared their results with
the ones produced by the fKdV equation. They observed that the two models agreed
well in the weakly nonlinear weakly dispersive regime. In addition, a few types of
steady waves were computed through a Newton’s method type.

In this work, we compute numerically steady waves for the full Euler equations
in the presence of a topographic obstacle and study their wave stability. Although
other authors have already study the same problem, the novelty of the present
work is the study of the wave stability. We find two branches of solutions: the
perturbed uniform flow and the perturbed solitary-wave flow. The steady waves
from the perturbed uniform flow are always stable with respect to perturbations of
its amplitude. Regarding the perturbed solitary-wave, when the perturbed initial
condition has smaller amplitude than the steady solution we find a certain type
of stability. However, the steady wave solutions are unstable when the perturbed
initial condition has larger amplitude than the steady solution and an onset of a
wave-breaking seem to occur at later times. This study is a natural step up from
fKdV results reported by Chardad et al. [7].

This article is organized as follows. In section 2 we present the mathematical
formulation of the Euler equations. In section 3 we describe the conformal mapping
technique and rewrite the Euler equations in the canonical domain, which is a
uniform strip. In section 4 we present a numerical method to solve them. Section
5 contains the numerical results and section 6 the conclusion.

2. Mathematical Formulation

We consider a two-dimensional incompressible and irrotational flow of an inviscid
fluid with constant density (ρ) in the presence of gravity (g), a uniform upstream

2



current (U0) in the presence of a topographic obstacle h(x) in a channel with typical
depth h0 in the far field. We denote the velocity potential by φ(x, y, t) and the free
surface profile by ζ̄(x, t). We choose h0, (gh0)

1/2 and (h0/g)
1/2 as our reference units

in space, speed and time, respectively. Thus, the dimensionless Euler equations are

φxx + φyy = 0, for − 1 + h(x) < y < ζ(x, t),

Fhx + φxhx = φy, at y = −1 + h(x),

ζt + Fζx + φxζx − φy = 0, at y = ζ(x, t),

φt + Fφx +
1

2
(φ

2

x + φ
2

y) + ζ = 0, at y = ζ(x, t),

(2.1)

where F = U0/(gh0)
1/2 is the Froude number.

In the next section we rewrite equations (2.1) using the conformal mapping
technique, which allow us to solve them numerically.

3. Conformal mapping

Consider the conformal mapping from the canonical w-plane (w = ξ + iη) onto the
physical z-plane (z = x+ iy),

z(ξ, η, t) = x(ξ, η, t) + iy(ξ, η, t),

satisfying the boundary conditions

y(ξ, 0, t) = ζ(x(ξ, 0, t), t) and y(ξ,−D, t) = −1 +H(ξ, t),

where H(ξ, t) = h(x(ξ,−D, t)). It is required that the canonical strip’s height
D is a function of time t. D = D(t) depends on the wave profile and will be
determined later. We denote by φ(ξ, η, t) = φ̄(x(ξ, η, t), y(ξ, η, t), t) and ψ(ξ, η, t) =
ψ̄(x(ξ, η, t), y(ξ, η, t), t) the potential and its harmonic conjugate in the canonical
domain. Let Φ(ξ, t), Ψ(ξ, t), X(ξ, t) and Y(ξ, t) be the traces of φ, ψ, x and y
at η = 0, respectively. Substituting these variables in Kinematic and Bernoulli
conditions (2.1)3,4 a straight-forward computation shows that the Euler equations
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in the canonical domain are

Xξ = 1− C
[
Yξ −F−1

(
Ĥξ(kj , t)

cosh(kjD)

)]
,

Φξ = −C
[
Ψξ(ξ, t) + F−1

(
F Ĥξ(kj , t)

cosh(kjD)

)]
,

Yt = YξC
[
Θξ

J

]
−Xξ

Θξ

J
,

Φt = −Y − 1

2J
(Φ2

ξ −Ψ
2
ξ) +ΦξC

[
Θξ

J

]
− 1

J
FXξΦξ,

Xb(ξ, t) = x(ξ,−D, t) = ξ − C
[
F−1

(
Ŷ(kj , t)

cosh(kjD)
− Ĥ(kj , t)

cosh2(kjD)

)]
+ T

[
H(kj , t)

]
,

(3.1)

where Θξ(ξ, t) = Ψξ+FYξ, J = X
2
ξ+Y

2
ξ is the Jacobian of the conformal mapping

evaluated at η = 0, C and T are the operators

C = F−1
kj 6=0i coth(kjD)Fkj 6=0 and T = F−1

kj 6=0i tanh(kjD)Fkj 6=0,

where the Fourier modes are given by

Fkj
[g(ξ)] = ĝ(kj) =

1

2L

∫ L

−L

g(ξ)e−ikjξ dξ,

F−1
kj

[ĝ(kj)](ξ) = g(ξ) =
∞∑

j=−∞

ĝ(kj)e
ikjξ,

with kj = (π/L)j, j ∈ Z. According to our formulation 2L is the length of the
canonical domain. By imposing the physical and canonical domain to have the
same length we find that

D(t) = 1 +
1

2L

∫ L

−L

Y(ξ, t) −H(ξ, t)dξ.

More details of this conformal mapping are presented in [8, 11, 13].

Steady waves are obtained from the set of equations (3.1) imposing ∂t = 0.
Following [11] we conclude that Θ = 0 and

Ψξ(ξ) = −FYξ(ξ).
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Therefore, equations (3.1) are now written as

Xξ(ξ) = 1− C
[
Yξ −F−1

(
Ĥξ(kj)

cosh(kjD)

)]
,

Φξ(ξ) = −C
[(

Ψξ(kj) + F−1

(
F Ĥξ(kj)

cosh(kjD)

))]
,

Y +
1

2J
(Φ2

ξ −Ψ
2
ξ) +

1

J
FXξΦξ = 0,

Xb(ξ) = x(ξ,−D) = ξ − C
[
F−1

(
Ŷ(kj)

cosh(kjD)
− Ĥ(kj)

cosh2(kjD)

)]
+ T

[
H(kj)

]
,

(3.2)

In the next section, we present the numerical methods to compute steady waves
and their evolution.

4. Numerical Methods

The numerical approachs presented bellow is the same reported in [11]. Here, we
only summarise the main steps.

4.1. Steady wave solutions

Numerical steady waves of the Euler equations (3.2) are found on a domain ξ ∈
[−L,L], with N uniformily spaced points with grid size ∆ξ = 2L/N . On the grid
points ξn, n = 1, 2, ...N, the free surface elevation is denoted by Yn = Y(ξn). The
steady Bernoulli equation is written as

Gn(Y1, Y2, ..., YN ) := Y(ξn) +
1

2J
(Φ2

ξ,n −Ψ
2
ξ,n) +

1

J
FXξ,nΦξ,n = 0. (4.1)

Fourier transforms and the operator C are approximated by the FFT on the uniform
grid, and all derivatives are performed spectrally [18]. The Jacobian for Newton’s
method is computed using

∂Gn

∂Yl
=
Gn(Y1, Y2, ..., Yl + δ, ..., YN)−Gn(Y1, Y2, ..., Yl, ..., YN )

δ
, (4.2)

and the stopping criteria for the Newton’s method is

∑N
j=1 |Gn(Y1, Y2, ..., YN )|

N
< 10−16.

The topography H(ξ) is computed iteratively by solving

X
l
b(ξ) = ξ − C

[
F−1

(
Ŷ(kj)

cosh(kjD)
− Ĥ

l(kj)

cosh2(kjD)

)]
+ T

[
H

l(kj)
]
,

H
l+1(ξ) = h(Xl

b(ξ)).

(4.3)
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The initial step is X
0
b(ξ) = ξ and H

0(ξ) = h(ξ). The scheme is performed with the
stopping criteria

max
ξ∈[−L,L]

∣∣∣Hl+1(ξ)−H
l(ξ)
∣∣∣

max
ξ∈[−L,L]

∣∣∣Hl(ξ)
∣∣∣

< 10−16.

4.1.1. Initial guess for the Newton’s method and topography’s profile

We are interested in studying steady solitary waves solutions for the full Euler
equations.

It is well known that, in the nearly-critical regime (F = 1 + ǫf , where f is
a small parameter) and for obstacles of small amplitudes, the forced Korteweg-de
Vries equation

ζ̄t + f ζ̄x − 3

2
ζ̄ ζ̄x − 1

6
ζ̄xxx =

1

2
hx(x), (4.4)

can be obtained asymptotically from equations (2.1) its solutions agree well with
the solutions of the Euler equations [11]. This motivates us to use steady wave
solutions of fKdV as initial guess of the Newton’s method. To this end, we proceed
in the same fashion as presented in [7]. We impose

ζ̄(x) = A sech2(βx), (4.5)

to be a steady solution of (4.4). Thus, the topography satisfies

h(x) = 2f ζ̄ − 3

2
ζ̄2 − 1

3
ζ̄xx.

In other words,

h(x) =
A

6

(
12f − 8β2

cosh2(βx)
+

12β2 − 9A

cosh4(βx)

)
. (4.6)

Choosing the topographic obstacle to be a sech2-type we obtain the two branch of
solutions

A = f ±
√
f2 −G,

β =

√
3A

4
,

(4.7)

where G is the amplitude of the obstacle. Camassa and Wu [5, 6] showed that the

perturbed solitary-wave solution with A = f +
√
f2 −G is always unstable. On the

other hand the perturbed uniform flow solution A = f −
√
f2 −G is stable only if

G ≤ 80
81f

2.
The fKdV variables are related to the Euler’s ones according to the transforma-

tions
x→ ǫ1/2x, t→ ǫ3/2t, ζ̄ → ǫζ̄, h→ ǫ−2h and F = 1 + ǫf. (4.8)
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We set the topographic obstacle for the Euler equations to be the rescaled to-
pography of the fKdV (4.6)

h(x) = ǫ2G sech2(ǫ1/2βx), (4.9)

where ǫ > 0 is a small parameter.
For this choice of topography, it is natural to consider as initial guess for the

Newton’s method
Y(ξ) = ǫA sech2(ǫ1/2βξ), (4.10)

where A and β are determined by equation (4.7) with f = 0.32 and G = 0.1.
These solutions are then continued in the parameter f using the Newton’s Method
continuation, which allow us to determine two branch of solutions: solutions of the
perturbed solitary-wave and solutions of the perturbed uniform flow.

4.2. Time-dependent wave solutions

The evolution of the initial data of equations (3.1) is found by integrating in time
the family of ordinary differential equations through the fourth-order Runge–Kutta
method and the derivatives in ξ are performed using the Fast Fourier Transform
(FFT) [18]. The topography H(ξ, tm) at time t = tm is computed iteratively by
solving

X
l+1
b (ξ, tm) = ξ − C

[
F−1

(
Ŷ(kj , tm)

cosh(kjD)
− Ĥ

l(kj , tm)

cosh2(kjD)

)]
+ T

[
H

l(kj , tm)
]
,

H
l+1(ξ, tm) = h(Xl

b(ξ, tm)),

(4.11)

for l ≥ 0. Equation (4.11) is solved using as initial step X
0
b(ξ, tm) = ξ and

H
0(ξ, tm) = h(ξ). The scheme is performed with the stopping criteria

max
ξ∈[−L,L]

∣∣∣Hl+1(ξ, tm)−H
l(ξ, tm)

∣∣∣

max
ξ∈[−L,L]

∣∣∣Hl(ξ, tm)
∣∣∣

< 10−16.

5. Numerical Results

In this section we compute steady solutions using different values of ǫ. The branches
of steady solutions is compared with the ones of the fKdV equation. We then
perturb the initial data (steady wave) and compute its evolution numerically in
order to investigate wether these solutions are stable.

For the fKdV equation, steady waves and their related stability properties were
studied in [5, 6, 7]. More recently, Grimshaw and Maleewong [14] analysed the
stability of steady fKdV solutions in both the subcritical (F < 1) and supercritical
(F > 1) regimes. They found steady waves from the transient fKdV solution, whose
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stability was then analysed through the Euler equations in the presence of a moving
pressure distribution. In the presence of a constant current and a topography,
Vanden-Broeck [19] used a boundary integral method to compute steady solutions
to the Euler equations. Different steady waves were found, but their stability was
not analysed numerically.

1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

Figure 1: Comparison between the the branch of steady solutions of the full Euler
equations for different values of the parameter ǫ and the branch of steady solutions
of the fKdV model.

Initially, we compute steady solutions using different values of ǫ through the
numerical method described in the previous section. When ǫ approaches zero and
the Froude number is nearly-critical (F ≈ 1), the two branches (the uniform flow
and the solitary-wave) of steady solutions of the full nonlinear model is close to
the one predicted by the weakly nonlinear weakly dispersive theory. However, as
the Froude number increases the solitary-wave solutions no longer agree with the
solutions of the fKdV model, which does not occur in the uniform flow solutions.
More details are given in Figure 1. As it can be seen, as we allow for a gradual
increase of the topography’s amplitude, the solutions of the two models start to
differ and the nonlinear theory predicts solutions of the solitary-wave branch with
higher amplitude.

Now, we investigate the wave stability of the steady waves computed through
the Newton’s method type by disturbing its initial amplitude and setting it as an
initial data for the time-dependent Euler equations (2.1). It is natural to expect
that for small values of ǫ, the results produced by performing numerical simulations
with the full nonlinear model to be similar to the ones reported using the fKdV
model – for instance see Chardard et al. [7].
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Figure 2: The evolution of the stable perturbed uniform flow solution of the Euler
equations when ǫ = 0.1 and F = 1.035. The initial condition is the steady wave
times 1.5 (left) and 0.5 (right).

Figure 2 displays the evolution of a perturbed solution of the uniform flow with
ǫ = 0.1. The solution is stable in the sense that, when its amplitude is perturbed,
the numerical solution tend to recover its natural steady state (the decrease in
amplitude of the wave on the right of Figure 2 and the increase in amplitude of the
wave on the left of Figure 2).
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Figure 3: The evolution of the unstable perturbed solitary-wave solution of the
Euler equations when ǫ = 0.1 and F = 1.035. The initial condition is the steady
wave times 1.5 (left) and 0.5 (right).

Differently from the perturbed uniform flow, the perturbed solitary-wave does
not recover its initial state after disturbing its initial amplitude. However, the sys-
tem is somehow stable in the sense that a perturbed uniform flow solution arises
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above the obstacle for large times. When the perturbed initial condition has am-
plitude smaller than the steady solution, its amplitude decreases in time and ap-
proaches to the perturbed uniform flow solution. On the other hand, when the
perturbed initial condition has larger amplitude than the steady solution, a large
solitary wave propagates upstream, leaving behind a small steady wave, which hap-
pens to be the perturbed uniform flow solution. These behaviours are depicted in
Figure 3.
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Figure 4: The evolution of the stable perturbed uniform flow solution of the Euler
equations when ǫ = 0.5 and F = 1.175. The initial condition is the steady wave
times 1.5 (left) and 0.5 (right).

Next, we allow the amplitude of the topographic obstacle increases. Fixing
ǫ = 0.5, the perturbed solution of the uniform flow turns out to be stable for small
perturbation in the amplitude. A typical example is depicted in Figure 4. The
behaviour is qualitatively similar to the one predicted by the fKdV model.

Regarding the solitary-wave perturbed solutions, we see that the weakly non-
linear weakly dispersive model is no longer appropriate to study steady waves, for
instance ǫ = 0.5. When the perturbed initial condition has amplitude smaller than
the steady solution, its amplitude decreases in time and approaches to the perturbed
uniform flow solution. However, when the perturbed initial condition has amplitude
larger than the steady solution, its amplitude increases with time towards to a value
which indicates that this wave may break. This behaviour is similar to the ones
reported in the works of Grimshaw and Maleewong [14] and Flamarion et al. [11]
in the context of generated waves by moving disturbances.

6. Conclusions

In this article, we have presented a numerical method to study the wave stability of
steady solitary water waves over an uneven topography using a conformal mapping.
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Figure 5: The evolution of the unstable perturbed solitary-wave solution of the
Euler equations when ǫ = 0.5 and F = 1.175. The initial condition is the exact
solution times 1.05 (left) and 0.95 (right).

We showed that the solitary waves perturbed from the uniform flow are always
stable while the ones from the perturbed solitary-wave present a certain type of
stability when the perturbed initial condition has smaller amplitude and are un-
stable when the perturbed initial condition has larger amplitude than the steady
solution. Besides, we noticed that in the previous case an onset of wave-breaking
might occur.
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