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Abstract For a graph G with vertex set VG and edge set EG, the symmetric division deg
index is defined as SDD(G) =

∑

uv∈EG

(du
dv

+ dv
du
), where du denotes the degree of vertex u in

G. In 2018, Furtula et al. confirmed the quality of SDD index exceeds that of some more
popular VDB indices, in particular that of the GA index. They shown a close connection
between the SDD index and the earlier well-established GA index. Thus it is meaningful
and important to consider the chemical and mathematical properties of the SDD index.
In this paper, we determine some sharp bounds on the symmetric division deg index of
graphs and line graphs and characterize the corresponding extremal graphs.

Keywords line graph, symmetric division deg index, bound.
Mathematics Subject Classification: 05C07, 05C09, 05C92

1 Introduction

We use |U | to denote the cardinality of set U . Let G = (VG, EG) be a graph with vertex

set VG and edge set EG. Let nG := |VG| and mG := |EG| be the order and size of G,

respectively. Denote by NG(u) the neighbors of vertex u, dG(u) := |NG(u)| the degree

of vertex u in G. We use ∆G and δG to denote the maximum degree and minimum

degree in G, respectively. We call G is a δ-regular graph if du = δ for any u ∈ VG. A

(∆, δ)-biregular graph is the bipartite graph with du = ∆, dv = δ for any uv ∈ EG. For

convenience, we sometimes write dG(u) as du without causing confusion. If EG 6= ∅, we
call G is a nontrivial graph, we only consider connected nontrivial graphs in this paper.

Denote by Cn, Kn, Sn and Pn, the cycle, complete graph, star graph and path with order

n, respectively. In this paper, all notations and terminologies used but not defined can

refer to Bondy and Murty [2].
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The line graph L(G) is the graph whose vertices set is the edge sets of G and two

vertices in L(G) are adjacent if the corresponding two edges has one common vertex in G.

We use ∆G (resp., δG) to denote the maximum degree (resp., minimum degree) of graph

G. We use ∆L(G) (resp., δL(G)) to denote the maximum degree (resp., minimum degree)

of line graph L(G).

The first and second Zagreb indices [14] are defined as

M1(G) =
∑

uv∈EG

(du + dv) =
∑

u∈VG

d2u, M2(G) =
∑

uv∈EG

dudv.

They are often used to study molecular complexity, chirality, and other chemical proper-

ties. Others see [7, 12, 13, 18] and the references within.

The first and second general Zagreb indices [3, 23] are defined as

Mα
1 (G) =

∑

u∈VG

dαu , Mα
2 (G) =

∑

uv∈EG

(dudv)
α,

with α ∈ R.

The general sum-connectivity index [33] is defined as

χα(G) =
∑

uv∈EG

(du + dv)
α,

with α ∈ R.

The geometric-arithmetic index (GA) [30] is defined as

GA(G) =
∑

uv∈EG

2
√
dudv

du + dv
.

In 2010, Vukičević and Gašperov proposed the symmetric division deg index (SDD)

[32], which is defined as

SDD(G) =
∑

uv∈EG

(
du
dv

+
dv
du

).

Since then, the SDD index has attracted much attention of researchers. Furtula et al. [11]

showed that the SDD index gains the comparable correlation coefficient with a well-

known geometric-arithmetic index, the applicative potential of SDD is comparable to

already well-established VDB structure descriptors. Vasilyev [31] determined lower and

upper bounds of symmetric division deg index in some classes of graphs and determine

the corresponding extremal graphs. Das et al. [6] obtained some new bounds for SDD

index and presented a relation between SDD index and other topological indices. Pan et
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al. [26] determined the extremal SDD index among trees, unicyclic graphs and bicyclic

graphs. They also determined the minimum SDD index of tricyclic graphs [21]. Ali et

al. [1] characterized the graphs with fifth to ninth minimum SDD indices from the class

of all molecular trees. One can refer to [9, 15–17, 25, 28, 29] for more details about SDD

index.

The relations between GA index (resp. AG index, general sum-connectivity index,

Harmonic index) and the line graphs had been considered in [4,5,24,27]. We take further

the line by investigating the SDD index. In this paper, we first determine some sharp

bounds on the SDD index of graphs, then determine some sharp bounds on the SDD index

of line graphs. In this paper, we only consider connected nontrivial graphs. Let Gn be

the set of connected nontrivial graphs with order n, Gn,m the set of connected nontrivial

graphs with order n and size m.

2 Preliminaries

Recall that we only consider connected nontrivial graphs in this paper. We write graphs

to denote connected nontrivial graphs without causing confusion.

Lemma 2.1 Let f(x, y) = x
y
+ y

x
, and real number a, b satisfied that 0 < a ≤ x ≤ y ≤ b.

Then 1 ≤ f(x, y) ≤ a
b
+ b

a
, with left equality if and only if x = y, right equality if and only

if x = a, y = b.

Proof. The binary functions f(x, y) = x
y
+ y

x
and 0 < a ≤ x ≤ y ≤ b. Let g(t) = t + 1

t

(t ≥ 1). Since g′(t) = 1− 1
t2
≥ 0, then g(t) is monotonically increasing for t ≥ 1.

Since 0 < a ≤ x ≤ y ≤ b, then 1 ≤ y

x
≤ b

a
. Thus 2 = g(1) ≤ f(x, y) = g(t) ≤ g( b

a
) =

a
b
+ b

a
, with left equality if and only if x = y, right equality if and only if x = a, y = b. �

Lemma 2.2 ( [20]) Let G be a graph with maximum degree ∆ and minimum degree δ,

and α > 0. Then
δα

2
Mα+1

1 (G) ≤ Mα
2 (G) ≤ ∆α

2
Mα+1

1 (G),

with both equalities hold if and only if G is regular.

Lemma 2.3 ( [27]) Let G be a graph and G ≇ Pn. Then mG ≤ mL(G).

Lemma 2.4 ( [4]) Let G be a graph. Then mL(G) =
1
2
M1(G)−mG.
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We also need these simple Facts in the proof of our results.

Fact 2.5 ( [24])

(i) If L(G) ∼= S2, then G ∼= P3;

(ii) If L(G) ∼= S3, then G ∼= P4;

(iii) If L(G) ∼= Sn (n ≥ 4), then G = ∅;
(iv) If L(G) ∼= C3, then G ∼= C3 or S4;

(v) If L(G) ∼= Cn (n ≥ 4), then G = ∅;
(vi) If L(G) ∼= Pn, then G ∼= Pn+1.

Fact 2.6 ( [27]) Let G be a connected nontrivial graph. Then L(G) is regular if and only

if G is regular or biregular.

Fact 2.7 ( [24]) Let G be a connected nontrivial graph with maximum degree ∆, min-

imum degree δ. If e = uv ∈ EG, then e ∈ VL(G), dL(G)(e) = dG(u) + dG(v) − 2 and

max{2δ − 2, 1} ≤ δL(G) ≤ ∆L(G) ≤ 2∆ − 2, with left equality if and only if G is

max{2δ − 2, 1}-regular, with right equality if and only if G is 2∆− 2-regular.

3 Sharp bounds for the SDD index of graphs

Vasilyev [31] obtained some bounds for the SDD index of graphs, including the following

lower bound of Theorem 3.1.

Theorem 3.1 Let G ∈ Gn,m. Then 2m ≤ SDD(G) ≤ m(n− 1 + 1
n−1

), with left equality

if and only if G is regular, right equality if and only if G ∼= Sn.

Proof. By Lemma 2.1, one has

SDD(G) =
∑

uv∈EG

(
du
dv

+
dv
du

) ≥ 2m,

with equality if and only if G is regular.

SDD(G) =
∑

uv∈EG

(
du
dv

+
dv
du

) ≤
∑

uv∈EG

(n− 1 +
1

n− 1
) = m(n− 1 +

1

n− 1
),

with equality if and only if G ∼= Sn. �

Since the numbers of cycle η = m− n + 1 ≥ 0, thus m ≥ n− 1. By Theorem 3.1, we

have
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Corollary 3.2 Let G ∈ Gn. Then SDD(G) ≥ 2(n − 1), with equality if and only if

G ∼= K2.

ID(G) =
∑

u∈VG

1
du

is called the inverse degree index [19].

Theorem 3.3 Let G ∈ Gn with maximum degree ∆ and minimum degree δ. Then

δ2 · ID(G) ≤ SDD(G) ≤ ∆2 · ID(G),

with both equalities if and only if G is regular.

Proof. By the definition of SDD index

SDD(G) =
∑

uv∈EG

(
du
dv

+
dv
du

)

=
∑

uv∈EG

(
1

d2v
+

1

d2u
)dudv

≥ δ2
∑

uv∈EG

(
1

d2v
+

1

d2u
)

= δ2 · ID(G),

with equality if and only if G is regular.

The proof of the upper bound is similar, we omit it. �

Theorem 3.4 Let G be a graph with |EG| = m, maximum degree ∆ and minimum degree

δ. Then

SDD(G) ≤ m(
∆

δ
+

δ

∆
),

with equality if and only if G is regular or biregular.

Proof. Suppose that 1 ≤ δ ≤ dv ≤ du ≤ ∆, and by Lemma 2.1, we have

SDD(G) =
∑

uv∈EG

(
du
dv

+
dv
du

)

≤
∑

uv∈EG

(
∆

δ
+

δ

∆
)

= m(
∆

δ
+

δ

∆
),

with equality if and only if du = ∆ and dv = δ for all uv ∈ EG, i.e., G is regular or

biregular. �
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Corollary 3.5 Let G ∈ Gn,m with maximum degree ∆ ≤ n− 2. Then

SDD(G) < m(n− 2 +
1

n− 2
).

Proof. Suppose that 1 ≤ δ ≤ ∆ ≤ n− 2, by Theorem 3.4, we have SDD(G) ≤ m(n− 2+

1
n−2

) with equality if and only if G is (n− 2, 1)-biregular, which is a contradiction with G

is a connected graph. Thus SDD(G) < m(n− 2 + 1
n−2

). �

Theorem 3.6 Let G be a graph with |EG| = m, maximum degree ∆ and minimum degree

δ. Then

SDD(G) ≥ 2δ2m
α+1
α

(Mα
2 (G))

1
α

, SDD(G) ≥ δ2(2m)
α+1
α

∆(Mα
1 (G))

1
α

with both equalities if and only if G is regular.

Proof. By the definition of SDD index, we have

1

m
SDD(G) =

1

m

∑

uv∈EG

(
d2u + d2v
dudv

)

≥
(

∏

uv∈EG

d2u + d2v
dudv

)
1
m

≥
(

2mδ2m
∏

uv∈EG

1

dudv

)
1
m

,

with first equality if and only if d2u+d2v
dudv

is a constant for any uv ∈ EG, second equality if

and only if du = dv = δ for all uv ∈ EG. Thus

(SDD(G))α ≥ (2m)αδ2α

(

∏

uv∈EG

(
1

dudv
)α

)
1
m

≥ (2m)αδ2α · m
∑

uv∈EG

(dudv)α

=
2αmα+1δ2α

Mα
2 (G)

,

with first equality if and only if G is regular, second equality if and only if dudv is a

constant for any uv ∈ EG. Thus SDD(G) ≥ 2δ2m
α+1
α

(Mα
2 (G))

1
α

with equality if and only if G is

regular.

By Lemma 2.2, Mα
2 (G) ≤ ∆α

2
Mα+1

1 (G) with equality if and only if G is regular. Thus

SDD(G) ≥ δ2(2m)
α+1
α

∆(Mα
1 (G))

1
α

with equality if and only if G is regular. �

F (G) =
∑

uv∈EG

(d2u + d2v) is called the forgotten index [10].
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Theorem 3.7 Let G be a graph with |EG| = m. Then

SDD(G) ≥ 2m2

M2(G)
, SDD(G) ≥ 4m2

F (G)

with both equalities if and only if G ∼= K2.

Proof. Since

m =
∑

uv∈EG

(

dudv
d2u + d2v

)
1
2
(

d2u + d2v
dudv

)
1
2

≤
(

∑

uv∈EG

dudv
d2u + d2v

)
1
2
(

∑

uv∈EG

d2u + d2v
dudv

)
1
2

,

with equality if and only if d2u+d2v
dudv

is a constant for any uv ∈ EG.

Since du ≥ 1 for any u ∈ VG, then
∑

uv∈EG

dudv
d2u+d2v

≤ 1
2

∑

uv∈EG

dudv =
1
2
M2(G), with equality

if and only if du = dv = 1 for any uv ∈ EG. Thus SDD(G) ≥ 2m2

M2(G)
with equality if and

only if G ∼= K2.

Since du ≥ 1 for any u ∈ VG, then
dudv
d2u+d2v

≤ d2u+d2v
4

, with equality if and only if du = dv =

1 for any uv ∈ EG. Then
∑

uv∈EG

dudv
d2u+d2v

≤ 1
4

∑

uv∈EG

d2u + d2v =
1
4
F (G). Thus SDD(G) ≥ 4m2

F (G)

with equality if and only if G ∼= K2. �

In the following, we consider the connected graphs with minimal SDD index.

Theorem 3.8 Let G ∈ Gn,m. Then

(i) SDD(G) ≥ 2, with equality if and only if G ∼= K2;

(ii) There is no such graphs with 2 < SDD(G) ≤ 4;

(iii) If 4 < SDD(G) ≤ 6, then G ∈ {S3, C3} with SDD(S3) = 5 and SDD(C3) = 6;

(iv) If 6 < SDD(G) ≤ 8, then G ∈ {P4, C4} with SDD(P4) = 7 and SDD(C4) = 8.

Proof. (i) By Theorem 3.1, SDD(G) ≥ 2m ≥ 2, with equality if and only if G ∼= K2.

Suppose that n ≥ 3, then we have (ii) If 2 < SDD(G) ≤ 4, then 4 ≤ 2(n−1) ≤ 2m ≤
SDD(G) ≤ 4, then n = 3 and m = 2. Thus G ∼= S3, while SDD(S3) = 5 > 4, which is a

contradiction.

(iii) If 4 < SDD(G) ≤ 6, then 4 ≤ 2(n − 1) ≤ 2m ≤ SDD(G) ≤ 6, then n = 3

or 4 and m ≤ 3. Thus G ∈ {S3, S4, P4, C3}, while SDD(S3) = 5, SDD(S4) = 10 > 6,

SDD(P4) = 7 > 6, SDD(C3) = 6. Thus G ∈ {S3, C3}.
(iv) If 6 < SDD(G) ≤ 8, then 4 ≤ 2(n − 1) ≤ 2m ≤ SDD(G) ≤ 8, then n = 3 or 4

or 5 and m ≤ 4. If n = 3 and m ≤ 4, then G ∈ {S3, C3} which is a contradiction with

7



SDD(G) ≤ 8. If n = 4 and m ≤ 4, then G ∈ {S4, C4, P4, C
∗
3}, where C∗

3 is the graph

obtained from C3 by adding a pendent vertex to one vertex of C3. SDD(S4) = 10 > 8,

SDD(P4) = 7, SDD(C4) = 8, SDD(C∗
3) = 9 + 2

3
> 8. Thus G ∈ {P4, C4} in this case.

If n = 5 and m ≤ 4, since m ≥ n− 1 = 4, thus m = 4. then G ∈ {P5, P
∗
4 , S5}, where

P ∗
4 is the graph obtained from P4 by adding a pendent vertex to one vertex with degree

two of P4. SDD(P5) = 9 > 8, SDD(P ∗
4 ) = 11 + 1

3
> 8, SDD(S5) = 17 > 8. Thus G = ∅

in this case. �

The inverse problem for the SDD index is also interesting, thus we propose the follow-

ing problem.

Problem 3.1 Solve the inverse problem for the SDD index of graphs or chemical graphs.

We call u0v0 ∈ EG is a minimal edge in G if du0 ≤ du for all u ∈ NG(u0) \ {v0} and

dv0 ≤ du for all u ∈ NG(v0) \ {u0}.

Theorem 3.9 Let G be a graph with a minimal edge u0v0. Let G∗ = G− u0v0. Then

SDD(G∗) > SDD(G)− (du0)
2 + (dv0)

2

du0dv0
.

Proof. Since G∗ = G−u0v0, then VG = VG∗ . Let du ∈ VG and d∗u ∈ VG∗ , then d∗u0
= du0−1,

d∗v0 = dv0 − 1 and d∗u = du for all u ∈ VG \ {u0, v0}.
Let EG ⊇ E0 = {uv ∈ EG|u /∈ {u0, v0}, v /∈ {u0, v0}}. Then

SDD(G)− SDD(G∗)

=
∑

uv∈E0

(

d2u + d2v
dudv

− (d∗u)
2 + (d∗v)

2

d∗ud
∗
v

)

+
∑

u∈NG∗ (u0)

(

d2u0
+ d2u

du0du
− (d∗u0

)2 + (d∗u)
2

d∗u0
d∗u

)

+
∑

u∈NG∗(v0)

(

d2v0 + d2u
dv0du

− (d∗v0)
2 + (d∗u)

2

d∗v0d
∗
u

)

+
d2u0

+ d2v0
du0dv0

=
∑

u∈NG∗(u0)

(

d2u0
+ d2u

du0du
− (d∗u0

)2 + (d∗u)
2

d∗u0
d∗u

)

+
∑

u∈NG∗(v0)

(

d2v0 + d2u
dv0du

− (d∗v0)
2 + (d∗u)

2

d∗v0d
∗
u

)

+
d2u0

+ d2v0
du0dv0

.

Since u0v0 is a minimal edge in G, then 1 ≤ du0 ≤ du for all u ∈ NG(u0) \ {v0}.
Since du(du0 − 1)(d2u0

+ d2u)− dudu0((du0 − 1)2 + d2v) = du(d
2
u0
− d2u − 1) < 0, then

d2u0
+d2u

du0du
−

(d∗u0 )
2+(d∗u)

2

d∗u0
d∗u

< 0. Similarly, we also have
d2v0

+d2u

dv0du
− (d∗v0 )

2+(d∗u)
2

d∗v0
d∗u

< 0. Thus we have SDD(G∗) >

SDD(G)− (du0 )
2+(dv0 )

2

du0dv0
. �
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4 Sharp bounds for the SDD index of line graphs

It is obvious that SDD(L(G)) = 0 if and only if G is a trivial graph, i.e., G ∼= K2. Thus

in the following, we suppose G ≇ K2.

Theorem 4.1 Let G be a graph with |EG| = m. Then

(i) If G ≇ Pm+1, then SDD(L(G)) ≥ 2m, with equality if and only if G ∈ {S4, Cm};
(ii) If G ≇ K2, then SDD(L(G)) ≤ (1

2
M1(G)−mG)(mG − 1+ 1

mG−1
), with equality if

and only if G ∈ {P3, P4}.

Proof. By Lemma 2.3, mL(G) ≥ mG = nL(G) with equality if and only if L(G) is a unicyclic

graph. By Theorem 3.1, SDD(L(G)) ≥ 2mL(G) ≥ 2m, with equality if and only if L(G)

is regular unicyclic graph, i.e., L(G) ∼= Cm, then G ∈ {S4, Cm}.
By Fact 2.5, Theorem 3.1 and Lemma 2.4, we have that ifG ≇ K2, then SDD(L(G)) ≤

(1
2
M1(G)−mG)(mG − 1 + 1

mG−1
), with equality if and only if G ∈ {P3, P4}. �

Combine Theorem 3.3 and Fact 2.5, we have

Theorem 4.2 Let G be a graph with maximum degree ∆ and minimum degree δ. If

G ≇ K2 , then

max{4(δ − 1)2, 1} · ID(L(G)) ≤ SDD(L(G)) ≤ 4(∆− 1)2 · ID(L(G)),

with left equality if and only if G is regular or G ∼= S3, right equality if and only if G is

regular.

Theorem 4.3 Let G be a graph with |EG| = m, maximum degree ∆ and minimum degree

δ. If G ≇ K2 , then

M1(G)− 2m ≤ SDD(L(G)) ≤ 1

2
(M1(G)− 2m)

(

2∆− 2

max{2δ − 2, 1} +
max{2δ − 2, 1}

2∆− 2

)

,

with left equality if and only if G is regular or biregular, right equality if and only if G ∼= P4

or G is regular.

Proof. By Lemma 2.4 and Theorem 3.1, we have SDD(L(G)) ≥ 2mL(G) = M1(G)− 2m,

with equality if and only if L(G) is regular, i.e., G is regular or biregular.

By Theorem 3.4,Lemma 2.1, Lemma 2.4 and Fact 2.7, we have

SDD(L(G)) ≤ mL(G)

(

∆L(G)

δL(G)
+

δL(G)

∆L(G)

)

9



=
1

2
(M1(G)− 2m)

(

∆L(G)

δL(G)

+
δL(G)

∆L(G)

)

≤ 1

2
(M1(G)− 2m)

(

2∆− 2

max{2δ − 2, 1} +
max{2δ − 2, 1}

2∆− 2

)

,

with first equality if and only if L(G) is regular or biregular, second equality if and only

if δL(G) = max{2δ − 2, 1} and ∆L(G) = 2∆− 2.

If G ∼= P4 or G is regular, we have the equality holds. SDD(L(P4)) = SDD(S3) =

5 = 1
2
(10−2×3)(2×2−2

1
+ 1

2×2−2
), and SDD(L(G)) = 2mL(G) = M1(G)−2m = 1

2
(M1(G)−

2m)
(

2∆−2
max{2δ−2,1}

+ max{2δ−2,1}
2∆−2

)

.

In the following, we suppose that L(G) is regular or biregular, and δL(G) = max{2δ −
2, 1} and ∆L(G) = 2∆− 2.

Case 1. δ = 1.

Then δL(G) = max{2δ−2, 1} = 1. Since G ≇ K2, then ∆ ≥ 2 and ∆L(G) = 2∆−2 ≥ 2.

Then L(G) is a (∆L(G), 1)-biregular graph. Thus L(G) ∼= S∆L(G)+1 with nL(G) = ∆L(G) +

1 ≥ 3. By Fact 2.5, we have G ∼= P4.

Case 2. δ ≥ 2.

In this case, L(G) is regular or biregular, and 2δ − 2 = δL(G) ≤ ∆L(G) = 2∆ − 2. If

L(G) is biregular, we have δL(G) < ∆L(G), then δ < ∆, which is a contradiction with the

definition of biregular graphs and 2δ−2 = δL(G) ≤ ∆L(G) = 2∆−2. Then L(G) is regular,

thus 2δ − 2 = δL(G) = ∆L(G) = 2∆− 2. Thus G is regular in this case. �

In the following, we consider the Nordhaus-Gaddum-type results for the SDD index

of a graph G and its line graph L(G).

Corollary 4.4 Let G be a graph with maximum degree ∆ and minimum degree δ. If

G ≇ K2 , then

M1(G) ≤ SDD(G) + SDD(L(G)) ≤ 1

2
M1(G)

(

2∆− 2

max{2δ − 2, 1} +
max{2δ − 2, 1}

2∆− 2

)

,

with both equalities if and only if G is regular.

Proof. Combine Theorem 3.1 and Theorem 4.3, we have SDD(G) + SDD(L(G)) ≥
M1(G), with equality if and only if G is regular.

For the upper bound of SDD(G) + SDD(L(G)), we consider the following two cases.

Case 1. δ = 1.

10



Then G is not a regular graph (G ≇ K2), thus ∆ ≥ 2. By Theorem 3.4 and Theorem

4.3, we have

SDD(G) + SDD(L(G))

< m

(

∆2 + 1

∆

)

+
1

2
(M1(G)− 2m)

(

4(∆− 1)2 + 1

2(∆− 1)

)

=
1

4
M1(G)

(

4(∆− 1)2 + 1

∆− 1

)

+m

(

∆2 + 1

∆
− 4(∆− 1)2 + 1

2(∆− 1)

)

≤ 1

4
M1(G)

(

4(∆− 1)2 + 1

∆− 1

)

.

Case 2. δ ≥ 2.

It is easy to proof that ∆2+δ2

∆δ
≤ (∆−1)2+(δ−1)2

(∆−1)(δ−1)
. Then

SDD(G) + SDD(L(G))

≤ m

(

∆2 + δ2

∆δ

)

+
1

2
(M1(G)− 2m)

(

(∆− 1)2 + (δ − 1)2

(∆− 1)(δ − 1)

)

≤ m

(

(∆− 1)2 + (δ − 1)2

(∆− 1)(δ − 1)

)

+
1

2
(M1(G)− 2m)

(

(∆− 1)2 + (δ − 1)2

(∆− 1)(δ − 1)

)

=
1

2
M1(G)

(

(∆− 1)2 + (δ − 1)2

(∆− 1)(δ − 1)

)

,

with equality if and only if G is regular.

Thus we have SDD(G) + SDD(L(G)) ≤ 1
2
M1(G)

(

2∆−2
max{2δ−2,1}

+ max{2δ−2,1}
2∆−2

)

, with

equality if and only if G is regular. �

Theorem 4.5 Let G be a graph with |EG| = m, maximum degree ∆ and minimum degree

δ. Then

SDD(L(G)) ≥ ∆δ2χα+1(G)

(∆− 1)2(χα(G))
1
α

,

with equality if and only if G is regular.

Proof. It is obvious that the conclusion holds for δ = 1. In the following, we consider

δ ≥ 2.

By Fact 2.7, Lemma 2.4 and Theorem 3.6, we have

SDD(L(G)) ≥ (δL(G))
2(2mL(G))

α+1
α

∆L(G)(Mα
1 (L(G)))

1
α

≥ 2(δ − 1)2(M1(G)− 2m)
α+1
α

(∆− 1)(Mα
1 (L(G)))

1
α

,

with equality if and only if L(G) is (2∆− 2)-regular.

Since Mα
1 (L(G)) ≤ (∆−1

∆
)αχα(G) for α > 0, with equality if and only if G is ∆-

regular [24]. Thus SDD(L(G)) ≥ ∆δ2χα+1(G)

(∆−1)2(χα(G))
1
α

, with equality if and only if G is regular.

�
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Theorem 4.6 Let G be a graph with |EG| = m and maximum degree ∆. If G ≇ K2, then

SDD(L(G)) >
∆3(M1(G)− 2m)2

(∆− 1)3χ3(G)
.

Proof. Since du+dv−2
du+dv

≤ ∆−1
∆

for any vertices u, v ∈ VG with maximum ∆, the equality

holds if and only if du = dv = ∆. Then dL(G)(uv) = du + dv − 2 ≤ (du + dv)
∆−1
∆

.

Since F (L(G)) =
∑

uv∈VL(G)

(dL(G)(uv))
3 ≤ (∆−1

∆
)3
∑

uv∈EG

(du + dv)
3 = ∆3(M1(G)−2m)2

(∆−1)3χ3(G)
, with

equality if and only if G is ∆-regular.

Then By Lemma 2.4 and Theorem 3.7, we have

SDD(L(G)) ≥ 4(mL(G))
2

F (L(G))
=

(M1(G)− 2m)2

F (L(G))
≥ ∆3(M1(G)− 2m)2

(∆− 1)3χ3(G)
,

with first equality if and only if L(G) ∼= P2, i.e., G ∼= P3, second equality if and only if G

is regular. This is a contradiction. SDD(L(G)) > ∆3(M1(G)−2m)2

(∆−1)3χ3(G)
. �

In the following, we consider the line graphs with minimal SDD index. Combine the

Fact 2.5 and Theorem 3.8, we have the following result. The proof of 4.7 is similar to

Theorem 3.8, we omit it.

Theorem 4.7 Let G be a graph with G ≇ K2. Then

(i) SDD(L(G)) ≥ 2, with equality if and only if G ∼= P3;

(ii) There is no such graphs with 2 < SDD(L(G)) ≤ 4;

(iii) If 4 < SDD(L(G)) ≤ 6, then G ∈ {P4, C3, S4} with SDD(L(P4)) = 5 and

SDD(L(C3)) = SDD(L(S4)) = 6;

(iv) If 6 < SDD(L(G)) ≤ 8, then G ∈ {P5, C4} with SDD(L(P5)) = 7 and SDD(L(C4)) =

8.

The inverse problem for the SDD index of line graphs L(G) is also interesting, thus

we propose the following problem.

Problem 4.1 Solve the inverse problem for the SDD index of line graphs L(G).

Theorem 4.8 Let G ∈ Gn with maximum degree ∆ and minimum degree δ, and G ≇ K2.

Then
SDD(L(G))

SDD(G)
≤ ∆2 − δ

4δ

(

4(∆− 1)2 + (max{2δ − 2, 1})2
(∆− 1) ·max{2δ − 2, 1}

)

,

with equality if and only if G is regular.

12



Proof. We know that G ≇ K2, ∆L(G) ≤ 2∆− 2, δL(G) ≥ max{2δ − 2, 1}.
Since M1(G) ≤ 2m∆2

δ
, with equality if and only if G is regular [24]. By Theorem 3.4

and Lemma 2.1, we have

SDD(L(G)) ≤ mL(G)

(

∆L(G)

δL(G)

+
δL(G)

∆L(G)

)

=
1

2
(M1(G)− 2m)

(

∆L(G)

δL(G)

+
δL(G)

∆L(G)

)

≤ 1

2
(M1(G)− 2m)

(

2∆− 2

max{2δ − 2, 1} +
max{2δ − 2, 1}

2∆− 2

)

≤ (
m∆2

δ
−m)

(

2∆− 2

max{2δ − 2, 1} +
max{2δ − 2, 1}

2∆− 2

)

= 2m(
∆2 − δ

2δ
)

(

2∆− 2

max{2δ − 2, 1} +
max{2δ − 2, 1}

2∆− 2

)

≤ SDD(G) · (∆
2 − δ

2δ
)

(

2∆− 2

max{2δ − 2, 1} +
max{2δ − 2, 1}

2∆− 2

)

,

with equality if and only if G is regular. �

5 Conclusions

In a recent paper [11], Furtula et al. determined the quality of SDD index exceeds that

of some more popular VDB indices, in particular that of the GA index. They shown a

close connection between the SDD index and the earlier well-established GA index. Thus

it is meaningful and important to consider the chemical and mathematical properties of

the SDD index.

Liu et al. [21] determined the minimum and second minimum SDD index of tricyclic

graphs. By the way, using a similar way of [8, 22], we can also determine minimum and

second minimum SDD index of tetracyclic (chemical) graphs.
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