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Abstract
For the approximate solution of the Kepler equations and some related problems, a fourth-
order convergent functionally-fitted block hybrid Falkner method which is based on the
concepts of interpolation and collocation of the fitting function given as a linear combination
of {1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)} is presented. The proposed method uses vari-
able coefficients that are based on the product of the dominant frequency and the integration
step length. This hybrid formula uses a block-wise implementation strategy to get over the
difficulties of the predictor–corrector mode. In addition to being zero stable, the proposed
method is applied to the Lambert–Watson linear stability test, which allows obtaining its
stability region. Six numerical examples are provided to establish the performance of the
proposed method.

Keywords Block hybrid method · Convergent · Falkner formulas · Kepler problem ·
Non-linear

Mathematics Subject Classification 65L05 · 65L06 · 65L12

1 Introduction

In science and engineering, problems involving non-linear equations to simulate real-life
processes have a long history. Non-linear equations are used to describe the majority of
phenomena in our environment. As a result, research on nonlinear oscillatory problems in
physics, engineering andother physical sciences is of great importance.Non-linear oscillatory
problems are important tools in physical sciences and other engineering disciplines, and
non-linear differential equations with oscillatory solutions are linked to a variety of practical
problems, including the Kepler’s problem.
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In classical mechanics, the Kepler problem is a special case of the two-body problem, in
which two bodies interact according to a certain law that provides closed orbits for every
possible set of initial conditions. The magnitude, structure, and direction of the orbit can
be deduced using the specified orbital elements. Depending on the kind of orbit, the ellip-
tic, parabolic, hyperbolic, extended elliptic, extended hyperbolic, Gaussian, and universal
Kepler problems are distinct. With the exception of the parabolic case, these equations have
no analytical solutions and must be solved numerically (Fukushima 2003, 1996a, b). The
structure of the Kepler problem and its significance can be found in the classical textbook
by Butcher (2008). The Kepler problem, according to Stickler (2016), is used to introduce
basic integrators. This problem is an excellent choice for evaluating numerical integration
algorithms, and therefore the purpose of this research.

Our goal is to develop a functionally-fitted block-hybrid Falkner method and to evaluate
its performance considering Kepler-type equations. Functionally-fitted methods have been
widely employed to solve IVPs. In particular, when the solution presents an oscillatory
behavior, the trigonometrically-fitted methods have shown their higher efficiency compared
to non-fitted ones. Some methods of this type have appeared in Simos and Vigo-Aguiar
(2001), Franco (2004), Wang (2006), and Fang and Wu (2008), or Abdulganiy et al. (2018)
among others. The underlying idea is to consider approximate solutions expressed in terms of
polynomials and trigonometric functions. The novelty of our approach is to also incorporate
hyperbolic functions in the approximate solution, as described in the following sections.

In what follows, the numerical solution of second-order differential equations of the form

y′′(x) = f (x, y(x)) , (1)

specifically when the system exhibits oscillatory or periodic behavior, and the frequency,ω,is
approximately known in advance is investigated under the following initial conditions

y (x0) = y0, y′ (x0) = y′
0, x ∈ [x0, xN ] ⊂ R, (2)

where the existence and uniqueness of the solution is guaranteed by assuming well-known
appropriate conditions on f . Besides the Kepler problem, classical mechanics, circuit simu-
lation, molecular dynamics, electronics, and astrophysics are only a few examples of Eq. (1)
in applied sciences and engineering.

The effectiveness of numerical approaches for solving oscillatory problems can be
improved, according to Kosti and Anastassi (2015), by exploiting crucial features that are
specifically stated for oscillatory equations. Recent studies have proved the importance of two
of these features, notably phase-lag and amplification error. If these quantities are nullified,
for example by solving for part of the free coefficients, a technique with variable coefficients
based on the product of the dominant frequency and the integration step-length is achieved
(which is the approach adopted in this study).
In this paper, we propose a fourth-order convergent functionally-fitted block Falkner Method
based on the concept of interpolation and collocation of the fitting function given by a linear
combination of χ = {1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)}. Ramos et al. (2021) and
Abdulganiy et al. (2021a, b) introduced this functional basis, which is a linear combination
of monomial, trigonometric, and hyperbolic terms. It is motivated by its ease of analysis
and the expectation that it will provide better approximations for second-order initial-value
problems with periodic or oscillatory solutions.
According to Nguyen et al. (2006), functionally-fitted methods are generalizations of collo-
cation techniques that integrate an IVP exactly if the solution is a linear combination of a set
of specified basis functions. Classic algebraic collocation methods are recovered when these
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basis functions are chosen as power functions. Non-polynomial functions or a combination
of polynomial and non-polynomial functions are commonly employed as the fitted function
in functionally-fitted methods.
The Falkner method, whose explicit and implicit forms are due to Falkner (1936) and Col-
latz (1966), is one of the classical numerical integrators considered to directly solve Eq. (1)
subject to the conditions (2). Ramos et al. (2016, 2017), Ramos and Lorenzo (2010), Ramos
and Rufai (2018) and Ramos (2019) presented some variations of the traditional Falkner
methods whose basis functions are either polynomials or rational functions. In Ramos et al.
(2017), a unified approach of k-step Falkner methods was given. In Ramos et al. (2016) it
was presented a rational Falkner-type method for solving the kind of problems in (1) without
assuming an oscillatory solution. A modification of k-step block Falkner methods including
third derivatives was presented in Ramos and Rufai (2018). Finally, Ramos and Lorenzo
(2010) and Ramos (2019) considered different explicit and implicit formulations of Falkner
methods for solving the special second-order IVP. On the other hand, the adapted Falkner
methods, which can be found in the works of Ehigie and Okunuga (2018), and Ramos et al.
(2021), take advantage of the special periodic feature of the IVP solution. The use of adapted
methods began with Gautschi (1961) elegant work. Few of the many extensions of such
adapted methods that have been investigated are reported in Jator et al. (2013), Ramos and
Vigo-Aguiar (2010) and Vigo-Aguiar and Ramos (2014). Only a few works in the literature,
such as Ramos et al. (2021) and Abdulganiy et al. (2021a, b), have considered the use of
a basis function other than a linear combination of polynomials and trigonometric terms,
which is why the current study was motivated.

The need for more order of convergence in a numerical method while retaining excellent
stability encouraged the use of the hybrid formulas. Hybrid formulas were first proposed
to overcome the Dahlquist (1956) barrier in such a way that the traditional linear multistep
formulas were improved by considering hybrid points between some grid points during the
formulation process (Gear 1965). Despite the fact that these formulas retain both higher order
and superb stability properties, hybrid formulas are marred by the need to develop predictors
for the computation of the corrector at hybrid points, making the methodologymore tiresome
and inefficient (Lambert 1973). In this paper, a block-wise implementation approach is used
instead of the traditional stepwise execution to avoid the predictor–corrector mode difficulty.

The following is how this paper is structured: Section2 presents themathematical formulation
of the proposed BHFM. Section3 investigates the BHFM’s important properties. Section4
includes some numerical experiments to show the good performance of the method, and
Sect. 5 concludes with some closing remarks.

2 Mathematical formulation of the BHFM

For the mathematical formulation of the proposed method, we first consider y(x) as a scalar
function, although, as can be seen in the numerical section, the method can be applied in a
component-wise formulation for solving differential systems. After that, a Continuous Block
Hybrid Falkner Method (CBHFM) on the interval

[
xn, xn+1

]
that produces two discrete

formulas (one principal and one secondary) is constructed.One formula to approximate the
first derivative is generated through the evaluation of CBHFMat xn+1. The three formulas are
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then combined as a Block numerical integrator to form the proposed Block Hybrid Falkner
Method (BHFM).

The CBHFM has the general form

φ(x, u) = yn + αhy′
n + h2

(
τ0 (x, u) fn + τ� (x, u) fn+� + τ1 (x, u) fn+1

)
, (3)

where u = ωh is explicitly included into φ(x, u) to highlight the dependence on this param-
eter, � = 1

2 is the selected hybrid point, α, τ j are coefficients to be determined uniquely, that
depend on the parameter frequency ω, xn+� = xn + h

2 is an intermediate point on the interval[
xn, xn+1

]
and h is the step size. As usual, yn+ j , y′

n+ j , fn+ j are respectively the numerical

approximations of the exact values y
(
xn+ j

)
, y′(xn+ j ), and f (xn+ j , y(xn+ j )).

We consider that the true solution y(x) is locally approximated on the block interval[
xn, xn+1

]
by a fitting function φ(x) of the form

φ(x) = η0 + η1sin (ωx) + η2cos (ωx) + η3sinh (ωx) + η4cosh (ωx), (4)

where the coefficients ηi will be obtained demanding that the following system of equations
is satisfied

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(xn) = yn

φ′(xn) = y′
n

φ′′(xn+ j ) = fn+ j , j = 0, �, 1.

(5)

The construction of the CBHFM follows from the following proposition.

Proposition 1 Let φ(x) be the function given in Eq. (4) which satisfies the system in Eq. (5).
The continuous approximation that will be used to obtain the BHFM is given by

φ (x) = ϒT (
σ−1)T

[
(�−1)

T
χ(x)

]
, (6)

where σ and � are 5 × 5 invertible lower and upper triangular matrices given by

σ =

⎛

⎜⎜⎜⎜
⎝

1 0 0 0 0
σ2,1 1 0 0 0
σ3,1 σ3,2 1 0 0
σ4,1 σ4,2 σ4,3 1 0
σ5,1 σ5,2 σ5,3 σ5,4 1

⎞

⎟⎟⎟⎟
⎠

, � =

⎛

⎜⎜⎜⎜
⎝

�1,1 �1,2 �1,3 �1,4 �1,5
0 �2,2 �2,3 �2,4 �2,5
0 0 �3,3 �3,4 �3,5
0 0 0 �4,4 �4,5
0 0 0 0 �5,5

⎞

⎟⎟⎟⎟
⎠

,

χ and ϒ are vectors defined by χ (x) =(χ0 (x) , χ1 (x) , χ2 (x) , χ3 (x) , χ4 (x))T , with{
χ j (x)

}4
j=0 ={1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)}andϒ= (

yn, y′
n, fn, fn+�, fn+1

)
,

respectively (the superscript T denotes the transpose).

Proof The proof can be easily obtained following Abdulganiy et al. (2021a) with little mod-
ifications to the symbols. ��
Remark 1 • The specific form of matrices σ and � is provided in the “Appendix”.
• We emphasize that Eq. (6) is of the form presented in Eq. (3) whose coefficients after

substituting for xn+1 = xn + h and xn+� = xn + �h and some simplifications are stated
as follows

α =

⎛

⎜
⎜
⎝

− sin (u/2) sinh
(
u(h−x+xn )

h

)
+ sin (u) sinh

(
u(h−2 x+2 xn )

2 h

)
+ sin (u/2) sinh

(
u(x−xn )

h

)

− sinh (u) sin
(
u(h−2 x+2 xn )

2 h

)
+ sinh (u/2) sin

(
u(h−x+xn )

h

)
− sinh (u/2) sin

(
u(x−xn )

h

)

+2 sin (u/2) sinh (u) − 2 sinh (u/2) sin (u)

⎞

⎟
⎟
⎠

u

(
sin (u/2) cosh (u) + cos (u/2) sinh (u) − sinh (u/2) cos (u)

− cosh (u/2) sin (u) + sin (u/2) − sinh (u/2)

) ,
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τ0 (x, u) =

⎛

⎜
⎜
⎝

− cos (u) sinh
(
u(h+2 xn−2 x)

2 h

)
− cosh (u) sin

(
u(h+2 xn−2 x)

2 h

)
+ cos (u/2) sinh

(
u(xn+h−x)

h

)

+ cosh (u/2) sin
(
u(xn+h−x)

h

)
+ sin (u/2) cosh

(
u(x−xn )

h

)
+ sinh (u/2) cos

(
u(x−xn )

h

)

− cosh (u/2) sin (u) + (cos (u) − 1) sinh (u/2) − cos (u/2) sinh (u) + sin (u/2) (cosh (u) − 1)

⎞

⎟
⎟
⎠

u

(
sin (u/2) cosh (u) + cos (u/2) sinh (u) − sinh (u/2) cos (u)

− cosh (u/2) sin (u) + sin (u/2) − sinh (u/2)

) ,

τ� (x, u)

⎛

⎝
cos (u) sinh

(
u(x−xn )

h

)
+ sin (u) cosh

(
u(x−xn )

h

)
+ cosh (u) sin

(
u(x−xn )

h

)
+ sinh (u) cos

(
u(x−xn )

h

)

−2 sin (u) − 2 sinh (u) + sinh
(
u(xn+h−x)

h

)
+ sin

(
u(xn+h−x)

h

)

⎞

⎠

u2
(
sinh (u/2) cos (u) + cosh (u/2) sin (u) − sin (u/2) cosh (u)

− cos (u/2) sinh (u) + sinh (u/2) − sin (u/2)

) ,

τ1 (x, u) =

⎛

⎝
− cos (u/2) sinh

(
u(x−xn )

h

)
− sin (u/2) cosh

(
u(x−xn )

h

)
− cosh (u/2) sin

(
u(x−xn )

h

)

− sinh (u/2) cos
(
u(x−xn )

h

)
2 sinh (u/2) + 2 sin (u/2) − sinh

(
u(h+2 xn−2 x)

2 h

)
− sin

(
u(h+2 xn−2 x)

2 h

)

⎞

⎠

u2
(
sinh (u/2) cos (u) + cosh (u/2) sin (u) − sin (u/2) cosh (u)

− cos (u/2) sinh (u) + sinh (u/2) − sin (u/2)

) ,

2.1 Specification of the BHFM

We evaluate the continuous formula in Eq. (3) at x = xn+1 and x = xn+�, while its first
derivative is evaluated at x = xn+1 respectively to obtain two primary formulas (one for
method and one for derivative) and one secondary formula that forms the functionally fitted
block method BHFM as follows

yn+� = yn + α1
1(u)hy′

n + h2(γ 1
0 (u) fn + γ 1

� (u) fn+� + γ 1
1 (u) fn+1)

yn+1 = yn + α1(u)hy′
n + h2(γ0 (u) fn + γ� (u) fn+� + γ1 (u) fn+1)

hy′
n+1 = hy′

n + h2(γ̄0 (u) fn + γ̄� (u) fn+� + γ̄1 (u) fn+1)

(7)

where the coefficients of Eq. (7) are respectively obtained as follows

α1
1(u) = 2

sin (u/2) sinh (u/2)

u (sinh (u/2) cos (u/2) + sin (u/2) cosh (u/2))

γ 1
0 (u) =

(
(− cos (u) − 2 cos (u/2) + 1) sinh (u/2) + (− cosh (u) − 2 cosh (u/2) + 1) sin (u/2)

+ cosh (u/2) sin (u) + cos (u/2) sinh (u)

)

u2
(

(cos (u) + 1) sinh (u/2) + (− cosh (u) − 1) sin (u/2)
+ cosh (u/2) sin (u) − cos (u/2) sinh (u)

)

γ 1
� (u) =

(
(cos (u) + 1) sinh (u/2) + sin (u/2) (cosh (u) + 1) + cosh (u/2) sin (u)

+ cos (u/2) sinh (u) − 2 sin (u) − 2 sinh (u)

)

u2
(

(cos (u) + 1) sinh (u/2) + (− cosh (u) − 1) sin (u/2)
+ cosh (u/2) sin (u) − cos (u/2) sinh (u)

)

γ 1
1 (u) = (−2 cos (u/2) + 2) sinh (u/2) − 2 sin (u/2) (cosh (u/2) − 1)

u2 ((cos (u) + 1) sinh (u/2) + (− cosh (u) − 1) sin (u/2) + cosh (u/2) sin (u) − cos (u/2) sinh (u))

α1(u) = 4 sin (u/2) sinh (u/2)

u (sinh (u/2) cos (u/2) + sin (u/2) cosh (u/2))

γ0(u) = (−3 cos (u) + 1) sinh (u/2) + (−3 cosh (u) + 1) sin (u/2) + cosh (u/2) sin (u) + cos (u/2) sinh (u)

u2 ((cos (u) + 1) sinh (u/2) + (− cosh (u) − 1) sin (u/2) + cosh (u/2) sin (u) − cos (u/2) sinh (u))

γ�(u) = (cos (u) − 1) sinh (u) + sin (u) (cosh (u) − 1)

u2 (− cosh (u/2) + cos (u/2)) (sinh (u/2) cos (u/2) + sin (u/2) cosh (u/2))

γ1(u) = (− cos (u) + 3) sinh (u/2) + (− cosh (u) + 3) sin (u/2) − cosh (u/2) sin (u) − cos (u/2) sinh (u)

u2 ((cos (u) + 1) sinh (u/2) + (− cosh (u) − 1) sin (u/2) + cosh (u/2) sin (u) − cos (u/2) sinh (u))

γ̄0(u) = γ̄1(u) =

(− cosh (u/2) cos (u) + sinh (u/2) sin (u) − cos (u/2) cosh (u)

− sin (u/2) sinh (u) + cosh (u/2) + cos (u/2)

)

u

(
cosh (u/2) sin (u) + sinh (u/2) cos (u) − cos (u/2) sinh (u)

− sin (u/2) cosh (u) + sinh (u/2) − sin (u/2)

)
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γ̄�(u) = −2 sinh (u/2) cos (u/2) + 2 sin (u/2) cosh (u/2)

u (cosh (u/2) − cos (u/2))
. (8)

The coefficients of the BHFMmay be subject to significant cancellations for small values
of u. The expansion of the coefficients via Taylor series is preferred in that case. The series
expansion of each coefficient to the twelfth order of approximation is as follows

α1
1(u) � 1

2
+ u4

1440
+ u8

725760
+ 2879 u12

1046139494400

γ 1
0 (u) � 7

96
+ 1003 u4

7741440
+ 42139 u8

163499212800
+ 105898279 u12

205679393714995200

γ 1
� (u) � 1

16
+ 101 u4

552960
+ 8023 u8

22295347200
+ 74038871 u12

102839696857497600

γ 1
1 (u) � − 1

96
− 149 u4

7741440
− 2713 u8

70071091200
− 15900377 u12

205679393714995200

α1(u) � 1 + u4

720
+ u8

362880
+ 2879 u12

523069747200

γ0(u) � 1

6
+ 31 u4

120960
+ 659 u8

1277337600
+ 103409 u12

100429391462400

γ�(u) � 1

3
+ 37 u4

120960
+ 11191 u8

15328051200
+ 2311013 u12

1606870263398400

γ1(u) � − u4

24192
− 59 u8

766402560
− 239 u12

1545067560960

γ̄0(u) = γ̄1(u) � 1

6
− u4

60480
+ u8

383201280
− u12

2391175987200

γ̄�(u) � 2

3
− 19 u4

60480
+ 13 u8

218972160
− 2593 u12

267811710566400
.

(9)

Remark 2 It is interesting to note that taking limit when u → 0 in the power series expansion
of the coefficients (or in the coefficients themselves), a traditional fourth-order block hybrid
Falkner method is recovered (Nguyen et al. 2006).

3 Basic properties of the BHFM

The basic properties of the proposed BHFM are investigated in this section.

3.1 Local truncation error, order and consistency of the BHFM

The local truncation error for each of the formulas in Eq. (7) can be calculated in the traditional
way by shifting all the terms to the left-hand side, substituting the approximate values for
the true ones, and then expanding the resulting formula by Taylor series in powers of h. As
a result, the local truncation errors listed below are obtained

L [
y
(
xn+�

) ; h] = h6
1440

(
y(6) (xn) + ω4y′′ (xn)

) + O
(
h7

)

L [
y (xn+1) ; h] = h6

720

(
y(6) (xn) + ω4y′′ (xn)

) + O
(
h7

)

L [
hy′ (xn+1) ; h] = − h6

2880

(
y(6) (xn) + ω4y′′ (xn)

) + O
(
h7

)
,

(10)
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which indicates that the proposed BHFM is at least a fourth-order convergent method. The
method is also consistent because the order of the BHFM is greater than one.

Proposition 2 When the solution to the problem in Eq. (1) subject to condition (2) is a
linear combination of the basis functions {1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)}, the
local truncation error of the primary formula in the BHFM vanishes.

Proof Solving the differential equation y(5) (x) + ω4y′ (x) = 0 yields the following funda-
mental set of solutions {1, sin(ωx), cos(ωx), sinh(ωx), cosh(ωx)}, which contains the basis
functions of the BHFM, and the statement follows immediately. ��

3.2 Analysis of convergence of the BHFM

The BHFM convergence analysis is carried out according to the following theorem (Abdul-
ganiy et al. 2021a).

Theorem 1 Let ϒ be a vector that approximates the true solution vector ϒ , where ϒ

is the solution of the system obtained from the BHFM given by the equations in (7) on the
consecutive block intervals [x0, x1], [x1, x2], . . . , [xN−1, xN ]. If we denote the error vector by

 = (ε1, . . . , εN , hε′

1, . . . , hε′
N )T , where ε j = y

(
x j

)− y j and hε′
j = hy′ (x j

)− hy′
j , j =

1, 2, . . . , N,assuming the solution in closed form is several times differentiable on the interval
[x0, xN ], then, for sufficiently small h the BHFM is a fourth-order convergent method, that
is,

‖
‖ = ∥∥ϒ − ϒ
∥∥ = O(h4).

Proof Assume the coefficients obtained from the BHFA are represented by the (N × N )-
matrices defined as follows:

�1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 · · · 0 0 0
0 1 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 0 · · · 0 0 0
0 −1 1 0 0 0 0 · · · 0 0 0
0 −1 1 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · −1 1 0
0 0 0 0 0 0 0 · · · −1 1 0
0 0 0 0 0 0 0 · · · 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

�2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 0 · · · 0 0 0
0 1 0 0 0 0 0 · · · 0 0 0
0 −α1

1 0 0 0 0 0 · · · 0 0 0
0 −α1 0 0 0 0 0 · · · 0 0 0
0 −1 0 1 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · 0 −α1
1 0

0 0 0 0 0 0 0 · · · 0 −α1 0
0 0 0 0 0 0 0 · · · 0 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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� = h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

γ 1
0 γ 1

� γ 1
1 0 0 0 0 · · · 0 0 0

γ0 γ� γ1 0 0 0 0 · · · 0 0 0
γ̄0 γ̄� γ̄1 0 0 0 0 · · · 0 0 0
0 0 γ 1

0 γ 1
� γ 1

1 0 0 · · · 0 0 0
0 0 γ0 γ� γ1 0 0 · · · 0 0 0
0 0 γ̄0 γ̄� 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · · γ 1
0 γ 1

� γ 1
1

0 0 0 0 0 0 0 · · · γ0 γ� γ1
0 0 0 0 0 0 0 · · · γ̄0 γ̄� γ̄1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

,

and the N -vector containing the known values given by

M = (−y0 − α1
1hy

′
0 − h2γ 1

0 f0,−y0 − α0hy
′
0 − h2γ0 f0,−hy′

0 − h2γ̄0 f0, 0, . . . ., 0)
T .

We consider the vectors of exact values

ϒ = (y(x1), . . . , y(xN ), hy′(x1), . . . , hy′(xN )),

� = ( f (x1, y(x1), y
′(x1)), . . . , f (xN , y(xN ), y′(xN ))),

the vectors of approximate values

ϒ̄ = (y1, . . . , yN , hy′
1, . . . , hy

′
N ),

�̄ = ( f1, . . . , fN ),

and the vector of local truncation errors L(h) = (L1, . . . , LN ).

Taking the (N × N )-matrix � = (�1|�2), the exact form of the system formed by the
formulas in (7) along the one-step block intervals on [x0, xN ] is

�ϒ − �� + M = L(h). (11)

On the other hand, the system that gives the approximate values may be written as

�ϒ − ��̄ + C = 0. (12)

Subtracting Eq. (12) from Eq. (11) to obtain

�(ϒ − ϒ) − �(� − �̄) = L(h), (13)

and having in mind that 
 = (ε1, . . . , εN , hε′
1, . . . , hε′

N )T , the above equation becomes

�
 − �
(
� − �̄

) = L(h). (14)

Applying the Mean-Value Theorem, we obtain that �− �̄ = J
, where J is the (N ×2N )-
matrix given as

J =

⎛

⎜⎜⎜⎜
⎝

∂ f
∂ y (ζ1) 0 · · · 0 0 1

h
∂ f
∂ y′ (ζ1) 0 · · · 0

0 ∂ f
∂ y (ζ2) · · · 0 0 0 1

h
∂ f
∂ y′ (ζ2) · · · 0

...
...

. . .
...

...
...

...
. . .

...

0 0 · · · ∂ f
∂ y (ζN ) 0 0 0 · · · 1

h
∂ f
∂ y′ (ζN )

⎞

⎟⎟⎟⎟
⎠

,
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and the partial derivatives are applied at intermediate points {ζi }Ni=1, which are on each
corresponding line joining

(
xi , y(xi ), y′(xi )

)
to

(
xi , yi , y′

i

)
. As a result, the equation in (14)

can be written as

(� − �J )
 = L(h).

Let ϕ denote the matrix ϕ = −�J . Then, we have that

(� + ϕ)
 = L(h). (15)

For sufficiently small h, the matrix � + ϕ is non-singular. Therefore, if we denote by

(� + ϕ)−1 = �, (16)

and consider the maximum norm, we can obtain after expanding in Taylor series the terms
in � that ‖�‖ = O(h−2). Finally, we have that

‖
‖ = ‖�L(h)‖ = ‖�‖‖L(h)‖
= |O(h−2)| |O(h6)| = O(h4).

Therefore, the BHFM is a fourth-order convergent method. ��

3.3 Stability of the BHFM

In numerical analysis, the concept of stability is crucial. In the context of ordinary differential
equations, it refers to the extent to which a numerical scheme is appropriate for solving an
initial value problem. A method is said to be stable if small changes in the data result in
subtle changes in the solution it provides (Ramos and Lorenzo 2010).
A common method for studying stability is to write the proposed method as a one-step
recurrence difference system, then apply the necessary definition on the resulting matrices
as in the case of zero stability and linear stability.
Consequently, the BHFM specified by the formulas in Eq. (7) may be written as follows

(A1 ⊗ I )ϒn+1 = (A0 ⊗ I )ϒn + h2(B0 ⊗ I )�n + h2(B1 ⊗ I )�n+1, (17)

whereϒn+1=(yn+�, yn+1, hy′
n+1)

T ,ϒn =(yn−�, yn, hy′
n)

T ,�n+1=( fn+�, fn+1, h f ′
n+1)

T

and �n =( fn−�, fn, h f ′
n)

T , I is the identity matrix of dimension three, ⊗ denotes the Kro-
necker product of matrices. A0, A1, B0 and B1 are 3× 3 matrices containing the coefficients
of the formulas and are given as follows

A0 =
⎛

⎝
0 1 α1

1
0 1 α1

0 0 1

⎞

⎠ , A1 =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , B0 =
⎛

⎝
0 γ 1

0 0
0 γ0 0
0 γ̄0 0

⎞

⎠ , B1 =
⎛

⎝
γ 1
� γ 1

1 0
γ� γ1 0
γ̄� γ̄1 0

⎞

⎠ .

(18)

Remark 3 We note that the difference system in (17) can be written in the form

ϒn+1 − ϒn = hφ�(ϒn, ϒn+1; u, h),

where the subscript indicates that the dependence of φ on ϒn, ϒn+1 is through the function
�. Thus, the numerical solution of the problem in Eq. (1) subject to Eq. (2) according to
Abdulganiy et al. (2021b) is the one given by

{
ϒn+1 − ϒn = hφ�(ϒn, ϒn+1; u, h),

ϒ0 = ϒ(x0), n = 1, 2, . . . , N − 1.
(19)
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3.3.1 Zero stability of BHFM

Zero stability is concerned with the stability of the difference system in Eq. (17) in the limit
as h → 0. Any numerical method for solving (1) subject to (2) will produce errors that can
be interpreted as if we were solving a perturbed problem of the form

{
�n+1 − �n = h (φ�(�n, �n+1; u, h) + δn) ,

�0 = ϒ(x0) + ε0, n = 0, 1, 2, . . . , N − 1.

The zero-stability may be defined according to Lambert (1991) as follows:

Definition 1 Let δ = {δi }N−1
i=0 , δ∗ = {

δ∗
i

}N−1
i=0 be any two perturbations of (19) and let

{�i }Ni=0 ,
{
�∗

i

}N
i=0 be the corresponding solutions, respectively. Then if there exist constants

K and h0 such that for all 0 < h < h0 it is

‖�i − �∗
i ‖ ≤ K ε, i = 0, 1, . . . , N ,

whenever

‖δi − δ∗
i ‖ ≤ ε, i = 0, 1, . . . , N ,

we say that the method (19) is zero-stable.

In practice, zero-stability is concerned with the roots of the difference system’s first char-
acteristic polynomial when h → 0 (see Lambert 1991). Thus as h → 0, the difference system
in Eq. (17) becomes

A1ϒn+1 − A0ϒn = 0, (20)

where A1 and A0 are the matrices of dimension four in Eq. (18). The following definition
given by Fatunla (1991) helps to establish the zero stability of the BHFM.

Definition 2 A block method is zero-stable if the roots of its first characteristic κ(ξ) =
det(ξ A1 − A0), have modulus less than or equal to one, and the multiplicity of those with
modulus one is less than or equal to the order of the differential equation (see Fatunla 1991).

Proposition 3 The BHFM is zero-stable.

Proof We can deduce from the normalized first characteristic polynomial of the BHFM that

ξ A1 − A0 =
⎛

⎝
ξ −1 −α1

1
0 ξ − 1 −α1

0 0 ξ − 1

⎞

⎠ ,

so that the characteristic equation is κ(ξ) = det(ξ A1− A0) = 0, in this case, ξ (ξ − 1)2 = 0,
and thus, the BHFM is zero-stable according to Definition 2. ��

3.3.2 Linear stability of the BHFA

It is necessary to have a notion of stability other than zero-stability to establish whether a
numerical approach will yield satisfactory results with a given value of h > 0. The Lambert–
Watson linear test equation given by

y′′ = −κ2y, (21)
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Fig. 1 Stability region for BHFM

is used to examine such stability property called linear stability.
The following recursion formula is obtained when the BHFM specified by the formulas

in Eq. (7) is applied to Eq. (21)

ϒn+1 = M(z)ϒn, (22)

where z = κh, and the matrix

M(z, u) = (A(1) − z2B(1))−1(A(0) + z2B(0)), (23)

is the stability matrix of the BHFM.
The stability region for the BHFM is plotted in Fig. 1, where the colored region (orange) is
the stability region corresponding to the test problem y′′ = −κ2y.

4 Implementation and numerical examples

The BHFM is simple to apply, the system in (7) must be solved sequencially until the end
point of the integration interval is reached. Note that for a system of m equations the total
number of equations in the algebraic system to be solved is 3m. Obtaining the starting values
is an easy task, since we may use the Taylor expansion to get

y0ρ = y0 + ρhy′
0 + (ρh)2

2
f (x0, y0),

y01 = y0 + hy′
0 + h2

2
f (x0, y0).

A suitable step size h can be selected based on the initial values, y0, y′
0, at the starting

point, while keeping the accuracy needed in mind. For the first time, the equations begin
with x0, and the solutions of y1/2, y1, and y′

1 for the points x1/2 and x1 are found by solving
a set of implicit equations specified in the method. Since the equations are non-linear, any
Newton-type technique can be used to solve them (in this instance, Maple 2016.1 has the
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command fsolve for solving non-linear equations). The procedure is then repeated until all
of the desired points have values with x1 taken as the new initial point while y1 and y′

1 are
the new starting values for the next block.

For a fair comparison, a written algorithm in Maple 2016 is developed for every method
chosen for comparison and the computations were carried out on the same work-station
Laptop with the following specifications.

Processor: Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz 2.70 GHz
Installed RAM: 16.0 GB
System type: 64-bit operating system, x64-based processor
Edition Windows: 10 Pro
Version: 21H1
OS build: 19043.1706

For the numerical simulations, plots of the logarithmof themaximumerrors
(
log10(Err)

)

of the numerical results of the BHFM versus the logarithm of the number of function eval-
uations

(
log10(NFE)

)
are used to measure the computational efficiency on the integration

interval, whereas plots of absolute errors in the integration interval obtained using BHFM
at a given point are used as measures of accuracy. The fitting frequencies considered in the
numerical simulations are taken from the literature-referenced questions. However, Ramos
andVigo-Aguiar (2010) andVigo-Aguiar andRamos (2014) presented some frequency selec-
tion techniques that can be examined. To solve problems of type (1) subject to condition (2)
and examine how the BHFM performs, a number of adapted block techniques whose perfor-
mances have been published in the literature and have comparable properties to BHFM are
used. For comparisons, the following adapted block methods are used

MBFM: the third-order block method developed in Ehigie and Okunuga (2018)
TBNM: the fourth-order block method developed in Jator et al. (2013)
BFFM: the fourth-order block method developed in Ramos et al. (2021)
FFBNM: the third-order block method developed in Abdulganiy et al. (2021a)
BHFM: the fourth-order block method developed in this paper

4.1 Kepler equations

4.1.1 Example 1

In the first example, we consider the following classical Kepler problem in Jator et al. (2013)

y
′′
1 (x) = − y1(x)

r3
, y1 (0) = 1 − ε, y

′
1 (0) = 0,

y
′′
2 (x) = − y2(x)

r3
, y2 (0) = 0, y

′
2 (0) =

√
1 + ε

1 − ε
, 0 ≤ x ≤ 50π,

(24)

where r =√
y1(x)2 + y2(x)2, and ε (0 ≤ ε ≤ 1) is the eccentricity of the orbit. The exact

solution of (24) is

y1 (x) = cos (μ) − ε,

y2 (x) =
√
1 − ε2 sin (μ) ,

(25)
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Fig. 2 The graphical representation of the solution to Example 1: accuracy (Left) and efficiency (Right)

where μ is the solution of the Kepler’s equation μ = x + ε sin(μ). We integrate the Kepler
problemwith the fitting parameter selected asω = 1, eccentricity ε = 0.05 and the step sizes
taken as h = π/2i , i = 1, 2, 3, 4, 5. The results presented in Fig. 2 show the competitive-
ness of the BHFM. Whereas Fig. 2 (Left) presents the accuracy at h = π/4, Fig. 2 (Right)
represents its efficiency.

4.1.2 Example 2

The following well-known mildly stiff Kepler problem in Ramos et al. (2021)

y
′′
1 (x) = − y1

r3
, y1 (0) = 1, y

′
1 (0) = 0,

y
′′
2 (x) = − y2

r3
, y2 (0) = 0, y

′
2 (0) = 0,

(26)

where r =
√
y21 + y22 , and whose analytic solution is given by y1 (x) = cos (x), y2 (x) =

sin (x) is considered in the integration interval 0 ≤ x ≤ 30. The fitting frequency ω is
chosen as ω = 1 and the step size h is chosen as h = 1/2i , where i = 1, 2, 3, 4, 5. Figure3
(Left) illustrates the numerical accuracy of BHFM, whereas Fig. 3 (Right) provides a visual
explanation of its effectiveness, demonstrating its superiority.

4.1.3 Example 3

We consider the following perturbed Kepler problem studied by Wang Wang et al. (2015)

y′′
1 = − y1

r3
− 2

(
ε + ε2

)
y1

r5
, y1 (0) = 1, y

′
1 (0) = 0,

y′′
2 = − y2

r3
− 2

(
ε + ε2

)
y2

r5
, y2 (0) = 0, y

′
2 (0) = 1 + ε,

(27)
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Fig. 3 The graphical representation of the solution to Example 2: accuracy (Left) and efficiency (Right)

Fig. 4 The graphical representation of the solution to Example 3: accuracy (Left) and efficiency (Right)

with r =
√
y21 + y22 , whose exact solution is given by y1 = cos (x + εx) , y2 = sin (x + εx).

The system in Eq. (27) is solved with parameter ε = 10−3 for different step-sizes h = 1/2i ,
where i = 2, 3, 4, 5, 6. The numerical results of the BHFM with fitting frequency chosen
as with ω = 1.01 are represented graphically in Fig. 4 showing that BHFM is an accurate
and efficiency method for the perturbed Kepler’s equation. While Fig. 4 (Left) depicts the
accuracy of BHFM at h = 1/8, the efficiency curves are represented in Fig. 4 (Right).
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Fig. 5 The graphical representation of the solution to Example 4: accuracy (Left) and efficiency (Right)

4.2 Related problems

The proposed Functionally-Fitted method in this study, in addition to the Kepler equations,
can be applied to solve different forms of oscillatory problems, as stated in Sect. 1. To establish
further the efficiency of the BHFM, we solve a number of such problems.

4.2.1 Example 4

We consider the following non-linear oscillatory problem in the interval 0 ≤ x ≤ 5

y
′′
1 (x) = −4 x2y1 (x) − 2

y2 (x)

r
, y1 (0) = 1, y

′
1 (0) = 0,

y
′′
2 (x) = −4 x2y2 (x) + 2

y1 (x)

r
, y2 (0) = 0, y

′
2 (0) = 0,

(28)

where r =
√
y21 + y22 , and whose exact solution is given by y1 (x) = cos

(
x2

)
, y2 (x) =

sin
(
x2

)
. The accuracy of the BHFM with fitting frequency ω = 1 for different points on

the interval of integration in comparison with the exact solution is shown in Fig. 5 (Left),
whereas the efficiency curves plotted in Fig. 5 (Right) for different step sizes clearly show
that the BHFM outperforms other adapted block methods appeared in the recent literature. It
is worth noting that the methods MBFM, TBNM, and FFBNM all behave similarly for this
problem, as shown by the efficiency curves in Fig. 5 (Right).

We observe also that for Eq. (28), the absolute errors between the BHFM results and the
exact solutions in the integration interval for the fitting frequency ω = 5 behave similarly to
that of the fitting frequency ω = 1 with errors less than 10−8. Figure6 shows an example
with h = 1/80.

4.2.2 Example 5

We consider the following oscillatory non-linear system
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Fig. 6 The accuracy of Example
4 for ω = 5

(
y

′′
1 (x)
y

′′
2 (x)

)
+

(
13 −12

−12 13

) (
y1 (x)
y2 (x)

)
=

(
∂V

∂ y

)
, y (0) =

(−1
1

)
, y

′
(0) =

(−5
5

)
,

(29)

with V (y) = y1 (x) y2 (x) (y1 (x) + y2 (x))3, whose solution in closed form is given as
(
y1 (x)
y2 (x)

)
=

(− sin (5x) − cos (5x)
sin (5x) + cos (5x)

)
. (30)

Figure 7 (Left) reports the comparison between the theoretical solution and the numerical
approximations provided by the proposed BHFA with step size h = 1/16. The efficiency of
the of the BHFM and other methods it compares is reported in Fig. 8 (Right) showing the
good performance of the BHFM.

4.2.3 Example 6

As our last experiment, the following non-linear perturbed system

y′′
1 (x) = εϕ1 (x) − 25y1 (x) − ε

(
(y1 (x))2 + (y2 (x))2

)
y1 (0) = 1, y

′
1 (0) = 0,

y′′
2 (x) = εϕ2 (x) − 25y2 (x) − ε

(
(y1 (x))2 + (y2 (x))2

)
y2 (0) = ε, y

′
2 (0) = 5,

(31)

where

ϕ1 (x) = 1 + ε2 + 2ε sin
(
5x + x2

) + 2 cos
(
x2

) + (
25 − 4x2

)
sin

(
x2

)
,

ϕ2 (x) = 1 + ε2 + 2ε sin
(
5x + x2

) − 2 sin
(
x2

) + (
25 − 4x2

)
cos

(
x2

)
,
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Fig. 7 The graphical representation of the solution to Example 5: accuracy (Left) and efficiency (Right)

Fig. 8 The graphical representation of the solution to Example 6: accuracy (Left) and efficiency (Right)

on the integration interval [0, 10] with parameter ε = 10−3 is considered. The analytical
solution of Eq. (31) which represents a periodic motion of constant frequency with a small
perturbation of variable frequency is given by y1 (x) = cos (5x) + ε sin

(
x2

)
, y2 (x) =

sin (5x) + ε cos
(
x2

)
. Figure8 (Left) compares the theoretical solution to the numerical

approximations provided by the proposed BHFM with step size h = 1/80. Figure8 (Right)
illustrates the efficiency of the BHFM and its advantageous performance.
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Table 1 Rate of convergence of BHFM

Example 1 Example 2 Example 3

Err ROC Err ROC Err ROC

2.6E−5 – 2.8E−27 – 1.6E−5 –

1.3E−6 4.32 1.6E−28 4.12 1.0E−6 4.00

8.6E−8 3.92 3.3E−29 2.27 6.3E−8 3.98

5.1E−9 4.07 1.1E−30 4.91 4.0E−9 3.97

3.6E−10 3.82 5.6E−32 4.29 2.5E−10 4.00

Example 4 Example 5 Example 6

Err ROC Err ROC Err ROC

5.7E−6 – 1.3E−24 – 7.3E−8 –

3.6E−7 3.98 1.1E−25 3.56 4.6E−9 3.99

2.2E−8 4.03 2.5E−26 2.14 2.9E−10 3.99

1.4E−9 3.97 1.0E−27 4.64 1.8E−11 4.00

8.7E−11 4.00 1.9E−28 2.40 1.1E−12 4.03

4.3 Rate of convergence of BHFM

The order of convergence determines the rate of convergence (ROC). The following formula
given in Jator and Oladejo (2017) is used to calculate the convergence rate for the proposed
method

ROC = log2

(
Eh1

Eh2

)
, (32)

where Eh is the error obtained using the step size h. The numerical approximations of the
BHFM convergence rate are included in Table 1 to showcase its theoretical results as well
as its performance. Table 1 shows that BHFM is consistent with its theoretical order of
convergence.

5 Conclusion

A fourth-order convergent functionally fitted block hybrid Falkner method is proposed for
the numerical integration of Kepler equations and some other related problems. In addition
to being zero-stable, the proposed method is consistent and converges rapidly to the analytic
solution. For fair comparison and superiority’s sake, six numerical experiments were con-
sidered to illustrate the performance of the proposed method. Whereas the simulations in
Figs. 2, 3, 4, 5, 6, 7 and 8 (Left) showcase the agreement between the exact and the approx-
imate solutions of the BHFM at some specified step sizes which confirms its accuracy with
less errors between 10−30 and 10−6, the simulations in Figs. 2, 3, 4, 5, 6, 7 and 8 (Right)
provide the superiority in terms of efficiency of the BHFM over some adapted block methods
in the recent literature.
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