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Abstract
In voting theory and social choice theory, decision systems can be represented as simple
games, i.e., cooperative games defined through their players or voters and their set of win-
ning coalitions. The weighted voting games form a well-known strict subclass of simple
games, where each player has a voting weight so that a coalition wins if the sum of weights
of their members exceeds a given quota. Since the number of winning coalitions can be expo-
nential in the number of players, simple games can be represented much more compactly
as intersections or unions of weighted voting games. A simple game’s dimension (codimen-
sion) is the minimum number of weighted voting games such that their intersection (union)
is the given game. It is known there are voting systems with a high (co)dimension. This
work introduces the multidimension as the minimum size of an expression with intersections
and unions on weighted voting games necessary to obtain the considered simple game. We
generalize this notion to subclasses of weighted voting games and analyze the generative
properties of these subclasses. We also characterize the simple games with finite generalized
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multidimension over the set of weighted voting games without dummy players. We provide
a comprehensive classification for simple games up to a certain number of players. These
results complement similar classification results for generalized (co)dimensions. Our results
show how generalized multidimension allows representing more simple games and more
compactly, even for a small number of players and for subclasses.

Keywords Game theory · Weighted voting games · Dimensionality · Codimensionality ·
Canonical minimum representation

Mathematics Subject Classification 91 · 90

1 Introduction

Simple games play a significant role across various disciplines, including mathematics,
computer science, and social sciences. They have applications in solving and representing
problems related to politics, voting theory, decision theory, social choice theory, thresh-
old logic, circuit complexity, network reliability, linear programming, artificial intelligence,
Sperner theory, and order theory, among others (Brams 1975; Taylor and Zwicker 1999;
Eiter et al. 2008; Engel 1997; Judson et al. 2005). Additionally, they exhibit close connec-
tions with various mathematical and computational structures, such as dual hypergraphs,
Sperner families, antichains, monotone Boolean functions, free distributive lattices, mono-
tone collective decision-making systems, and multi-agent systems, to name a few (Taylor
and Zwicker 1999; Eiter et al. 2008; Engel 1997). This article is particularly interested in
voting system applications.

Voting systems or electoral systems are the set of rules that different governments, social
organizations, and other sociopolitical groups adopt for collective decision-making. There
are numerous and diverse voting systems worldwide, and new voting systems are continually
being created, looking for more fair, representative, or adequate systems for each context.

A usual way to study voting systems is through simple games, i.e., a type of monotonous
cooperative games with either 0 or 1 payoffs (von Neumann and Morgenstern 1944). A
simple game is defined by a set of players or voters and a set of winning coalitions. A
winning coalition is a subset of players that manages to win a motion (election, referendum,
etc.), i.e., a coalition with payoff 1. The set of losing coalitions, i.e., those with payoff 0, is
formed by all coalitions that are not winners. Simple games are monotonous in the sense that
the superset of any winning coalition is also a winner, while the subset of any losing coalition
is also a loser (Taylor and Zwicker 1999).

A problemwith simple games is that the set of winning (or losing) coalitions of a game can
be exponential in the number of players (Molinero et al. 2015). Therefore, explicitly storing
all the information needed to describe the game can be costly. Fortunately, it is known
that any simple game can be represented as an intersection (Taylor and Zwicker 1993) or
union (Freixas and Marciniak 2010) of weighted voting games. Weighted voting games are
a subclass of simple games in which each player has a voting weight so that a coalition
wins if the sum of its members’ weights manages to exceed a given quota for the game.
The representation form for weighted voting games is a vector containing the quota and the
player’s weights, so its size is linear in the number of players. Weighted voting games have
garnered attention and investigation in multiple contexts, sometimes referred to by different
names, including linearly separated truth functions in contact and rectifier nets (McNaughton
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1961), linearly separable switching functions or threshold Boolean functions, for separating
circuits in switching circuit theory, and analyzing the threshold synthesis problem (Hu 1965;
Freixas and Molinero 2008), trade robustness in voting theory and trade exchanges (Taylor
andZwicker 1992), or threshold hypergraphs, for synchronizing parallel processes (Golumbic
1980; Reiterman et al. 1985). Besides, its more succinct vectorial representation constitutes
an advantage for computational treatment.

The votes of the legislative power in countries with proportional representation party-list,
mainly fromLatinAmerica, Europe, andAfrica, canbe represented asweightedvotinggames,
where each player represents a political party, and the weights their number of parliamen-
tary seats. The quota depends on the country and type of voting (e.g., common law, organic
constitutional law, constitutional reform, etc.) (Riquelme and Gonzalez-Cantergiani 2017;
Riquelme et al. 2019). However, it is important to remark that there are voting systems that
cannot be represented as weighted voting games. For instance, the European Union Council
under the Lisbon rules can be represented as the intersection of between 8 (Kober andWeltge
2021) and 25 weighted voting games (Chen et al. 2019) and as the union of at least 2000
weighted voting games (Kurz and Napel 2015). The above leads us to two key concepts:
dimension and codimension. The dimension is the minimum number of weighted voting
games whose intersections generate the considered simple game. Simple games formed by
the intersection of severalweighted voting games are called vectorweighted voting games and
were initially defined to represent voting systems in multicameralism (Taylor and Zwicker
1993). Similarly, the codimension is the minimum number of weighted voting games whose
unions generate the considered simple game. Hence, the EU Council under the Lisbon rules
has a dimension between 8 (Kober andWeltge 2021) and 25 (Chen et al. 2019) and a codimen-
sion of at least 2000 (Kurz and Napel 2015). Note that simple games with small dimensions
can be describedwith a reasonable amount of bits, and thus analyzing some of their properties
might became computationally tractable.

Several studies about dimension and codimension of simple games have appeared during
the last two decades (Freixas andMolinero 2010; Taylor andZwicker 1999; Taylor and Pacelli
2008). Some authors have focused on computing the dimension of simple games theoretically
(Olsen et al. 2016; Freixas and Puente 2001, 2008), others on finding high dimensions for
voting systems in real life (Kurz and Napel 2015), and others on computational complexity
results (Molinero et al. 2016; Freixas et al. 2011). It is known that finding exact values for
dimension and codimension are NP-hard computational problems (Deı̆neko and Woeginger
2006). Moreover, dimensions in simple games can be exponential in the number of players
(Olsen et al. 2016; Taylor and Zwicker 1999). The same occurs for codimensions since
dimension and codimension are dual concepts (Kurz et al. 2016).

Recently, in Molinero et al. (2023) it was introduced a generalization of dimension and
codimension to subclasses of simple games. The main objective of this generalization is
to analyze the ability to express simple games as intersections or unions of games from
subclasses of weighted voting games, in particular for subclasses of pure games, i.e., games
without dummy players. Besides the definitions, Molinero et al. (2023) characterizes the
simple games that can be expressed as either intersection or union of pure weighted voting
games. The same work also provides a systematic classification of generalized dimension
and codimension for all simple games up to six players and all simple games obtained by
weighted voting games with linear restrictions until seven players.

In this article, we focus on another generalization of dimension that we call multidimen-
sion. Our idea is to use a well-formed expression (on unions and intersections) of weighted
voting games to describe a simple game. The multidimension of a simple game � measures
the minimum number of operations in an expression on intersections and unions describing�
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(see definitions in Sect. 3). Besides analyzing other properties, themultidimension of a simple
game remains smaller or equal than the minimum of its dimension and codimension. In this
way, we expect to provide a form of representation amenable to computational treatment for
a bigger number of games. Our definition of multidimension is related to the minimum size
of Boolean weighted voting games introduced in Faliszewski et al. (2009). In fact, as we will
see later, the multidimension of a given simple game � is the minimum size of a Boolean
weighted voting game equivalent to �. On the other hand, there are other similar concepts of
Boolean dimension related to our multidimension (O’Dwyer and Slinko 2017; Kurz 2021).
We will comment on them in Sect. 3 were we introduce their definitions.

As for dimension and codimension, we also consider generalized notions of multidimen-
sion by restricting the subclasses of weighted voting games allowed in an expression. As we
will see, some subclasses of weighted voting games are not enough to represent some simple
games through expressions over the union and intersection operations. In those cases, when a
game cannot be obtained in such a way, following the notation used inMolinero et al. (2023),
we say that its generalized multidimension is ∞.

Given a simple game with (generalized) dimension d and (generalized) codimension c, it
is clear that its (generalized) multidimension is at most min{c, d}. However, for some simple
games, the multidimension could be much smaller. For example, the EU Council under the
Lisbon rules can be represented as the union of one weighted voting game with the inter-
section of two weighted voting games (Kurz and Napel 2015), so it has multidimension (or
Boolean dimension O’Dwyer and Slinko 2017) 3. As expected, we show that, for subclasses
of weighted voting games closed under duality, the generalized multidimension of a game
and that of its dual coincide.

Another result is a characterization of the simple games with finite multidimension with
respect to the class of pure weighted voting games. We show that all simple games except
singleton games, i.e., games having only a singleton as a minimal winning coalition, have
finite generalized multidimension on pure weighted voting games. In this way, we show that
the expressiveness of expressions on intersections and unions is higher than when using only
unions or only intersections. Interestingly enough, we show that expressions over a subclass
of weighted voting games can generate all simple games if and only if they can generate
all singleton games. In particular, this result allows us to show that the Boolean dimension
of a game with n players, over the set of all singleton games, according to the definition in
O’Dwyer and Slinko (2017), is upper bounded by n.

Finally, we provide a systematic classification of generalized multidimension for several
subclasses of weighted voting games with up to six players. Our results are compared to those
provided for generalized dimension and codimension in Molinero et al. (2023). Our study
shows that the generalized multidimension can be smaller than the generalized dimension
and codimension, even for simple gameswith very few players. Surprisingly, the experiments
also show that the generalizedmultidimension presents a discontinuity for some classes. This
latter result differs from the generalized dimension and codimension continuity established
in Molinero et al. (2023).

The paper continues as follows. Section2 presents the theoretical framework of this work.
Section3 introduces the (generalized) multidimension of simple games and gives some prop-
erties and examples. The main theoretical results are shown in Sect. 4, and the experimental
ones are in Sect. 5. Section6 is devoted to conclusions and future work.
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2 Preliminaries

We start introducing basic notions and terminology for simple games. We also present the
concepts of generalized dimension and codimension and recall some basic properties. We
follow notation from Taylor and Zwicker (1999) and Molinero et al. (2023).

2.1 Simple games

Let N be a finite set, we denote P(N ) the power set of N . A simple game � is a pair (N ,W),
where N = [n] = {1, . . . , n} is a finite set of players or voters andW ⊆ P(N ) is amonotonic
family of subsets of N , so that if S ⊆ T ⊆ N and S ∈ W , then T ∈ W . As usual, we assume
that ∅ /∈ W and N ∈ W . SG denotes the family of all simple games.

A subset S ⊆ N is called a coalition. N is called the grand coalition. W is the set of
winning coalitions. The set of losing coalitions, denoted by L, is formed by those coalitions
that are not winning, i.e., L = P(N )\W . The set of minimal winning coalitions, denoted by
Wm , is formed by those winning coalitions whose strict subsets are losing coalitions, i.e.,
Wm = {S ∈ W | ∀T ∈ W, T �⊂ S}. Analogously, the set of maximal losing coalitions,
denoted by LM , is formed by those losing coalitions whose strict supersets are winning
coalitions, i.e., LM = {S ∈ L | ∀T ∈ L, S �⊂ T }. Each one of these set families, W , L, Wm

and LM , determine uniquely the game � and constitute different forms of representations of
simple games (Taylor and Zwicker 1999). Note that the size of these representations may not
be polynomial in the number of players (Molinero et al. 2015).

The operations of intersection and union are defined in a natural way over simple games.
Let �1 = (N ,W1) and �2 = (N ,W2) be simple games. The intersection of �1 and �2 is
the game with set of players N and winning coalitions W1 ∩ W2, i.e., the game �1 ∩ �2 =
(N ,W1 ∩ W2). The union of �1 and �2 is the game with set of players N and winning
coalitions W1 ∪ W2, i.e., the game �1 ∪ �2 = (N ,W1 ∪ W2). As the set of winning
coalitions is monotone, the intersection and the union of simple games are simple games.

We represent a permutation σ : [n] → [n], by a vector with n components indicating the
image of the n values. Given a game � = (N ,W) and a permutation σ on N , the game σ(�)

is the simple game obtained from � by replacing, in each winning coalition, each player i
for σ(i). We say that two simple games �1 = (N ,W1) and �2 = (N ,W2) are isomorphic if
there is a permutation σ on N such that �2 = σ(�1).

Example 1 Let be �1 = (N = [4],Wm
1 = {{1, 2}, {3, 4}}) and �2 = (N = [4],Wm

2 =
{{1, 3}, {2, 4}}. Both games are isomorphic, i.e., �1 � �2, because �1 = σ(�2) where
σ = (1 3 2 4).

Further, every simple game has an associated dual game. Let � = (N ,W) be a simple
game, its dual is the game �∗ = (N ,W∗) such that W∗ = {S ⊆ N | N\S /∈ W}. � is said
to be self-dual or decisive if � = �∗. We say that a class of games G ⊆ SG is closed under
duality, if, for each � ∈ SG, �∗ ∈ G.

We recall now some player properties in a simple game, a player i is:

• Dummy if i ∈ S implies S /∈ Wm , i.e., i /∈ S, for all S ∈ Wm ;
• Passer if i ∈ S implies S ∈ W , i.e., {i} ∈ Wm ;
• Vetoer if i /∈ S implies S /∈ W , i.e., N\{i} ∈ L;
• Dictator if i ∈ S ⇔ S ∈ W , i.e., if it is passer and vetoer, i.e., if Wm = {{i}}.
A pure simple game is a simple game without dummy players. p-SG denotes the family

of all pure simple games.
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As we mentioned in Sect. 1, many voting systems can be represented as weighted voting
games, one of the most relevant subclasses of simple games. A simple game � = (N ,W) is
a weighted voting game if there exists a weighted function on the real numbers, w : N → R,
and a real quota q ∈ R, such that for any coalition S ⊆ N , S ∈ W ⇔ w(S) = ∑

i∈S w(i) ≥
q . WVG and p-WVG denote the families of all weighted voting games and pure weighted
voting games, respectively.

In simple game theory, the weights of the players i ∈ N are usually denoted as wi instead
ofw(i). Furthermore, every weighted voting game with a weighted functionw, a quota q and
a set of players N = {1, . . . , n} can be represented by a vector [q;w1, . . . , wn]. Moreover,
it is well known that both quota and weights can be restricted to be non-negative integer
numbers, without losing expressiveness (Taylor and Zwicker 1999). In the following, we
will only consider such integer representations. In particular, it is worth mentioning that
� = [q;w1, . . . , wn] if and only if �∗ = [w(N ) − q + 1;w1, . . . , wn]. Thus, � is self-dual
if and only if 2q = w(N ) + 1.

Although there exist simple games that are not weighted simple games, i.e.,WVG ⊂ SG,
it is known that any simple game can be represented as either intersection (Taylor and Zwicker
1993) or union (Freixas and Marciniak 2010) of a finite number of weighted voting games.
This property leads to the introduction of the dimension and the codimension concepts. Given
a simple game�, the dimension of� (dim(�), in short) is the least number of weighted voting
games whose intersection is equal to �, and the codimension of � (codim(�)) is the least
number of weighted voting games whose union is equal to �.

It is well known that dim(�) ≤ |LM | and codim(�) ≤ |Wm |. Furthermore, dim(�) =
codim(�∗) because (�1 ∩ �2)

∗ = �∗
1 ∪ �∗

2 . See Kurz et al. (2016) for further details.
We finish this section by defining a subclass of simple games containing weighted voting

games. It is defined from a desirability relation that orders the players according to their
influence (Isbell 1958). Let � = (N ,W) be a simple game, a, b ∈ N , and S ⊆ N\{a, b}.
We say that a player a is at least as desirable as another player b in � if S∪{a} ∈ W implies
S ∪ {b} ∈ W . A complete game is a simple game in which the desirability relation over
their players is a complete preorder (Taylor and Pacelli 2008), i.e., a reflexive and transitive
binary relation on their players in which any two elements are comparable. CSG and p-CSG
denote the families of all complete games and all pure complete games, respectively. Note
that WVG ⊂ CSG ⊂ SG and p-WVG ⊂ p-CSG ⊂ p-SG.

2.2 Representations

Now,we recall some known definitions described byMolinero et al. (2023). Those definitions
will be applied later to develop our experiments.

Definition 1 Let � ∈ WVG. A representation [q;w1, w2, . . . , wn] of � is:

• A minimum representation if, for any representation [q ′;w′
1, w

′
2, . . . , w

′
n] of �, we have

that wi ≤ w′
i , for all i ∈ [n];

• Aminimum sum representation (min-sum, for short) if, for any representation [q ′;w′
1, w

′
2,

. . . , w′
n] of �, we have

∑n
i=1 wi ≤ ∑n

i=1 w′
i ;• A canonical representation if and only if wi ≥ w j whenever i < j ;

• An anti-canonical representation if and only if wi ≤ w j whenever i < j . Note that it is
a canonical representation but with the weights in reversed order;

• The canonical minimum representation (down, for short) of � if it is canonical, min-
sum, and the vector (w1, w2, . . . , wn) is lexicographically minimum among all player’s
weight vectors of canonical and min-sum representations of �. The last condition is
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equivalent to, for any other canonical min-sum representation [q ′;w′
1, . . . , w

′
n] of �, if

i = min{ j ∈ [n] | w j �= w′
j } then wi < w′

i ;• The anti-canonical minimum representation (up, for short) of � if it is the canonical
minimum representation but with the weights in reversed order;

• A down-up representation if it is the down or the up representation.

Note that the canonical representation identifies exactly one game for a set of isomorphic
games as the definition forces a particular isomorphism. Nevertheless, as a weighted voting
game can have more that one min-sum representation, canonical representations might keep
more than one game from each class of isomorphic games. According to (Molinero et al.
2023, Prop. 3), a min-sum representation [q;w1, w2, . . . , wn] verifies that, for i ∈ [n],
wi = 0 if and only if player i is dummy. Note that a simple game (N ,W) with a dummy
player i ∈ N could be reduced to a simple game with a smaller grand coalition, (N\{i},W),
keeping the same winning (and, therefore, losing) coalitions. Hence, we can generate infinite
simple games with dummy players from a simple game without dummies only by increasing
the set of players N . We add the suffix -p to a representation name to denote the type of
representation with the additional condition that all values (quota and weights) must be
positive. Observe that such subclasses hold only representations of pure games.

We also associate with a type of representation R the corresponding subclass of WVG,
denoted as R-WVG. Observe that, in general, a game can have infinite representations and
more than one representation of a particular type. However, a representation defines only
one game. In this way, min-sum-WVG = WVG, but down-WVG (or up-WVG ) contains
only one game from each class of isomorphic WVG. In the same way, down-p-WVG (or
up-p-WVG ) contains only one game from each class of isomorphic p-WVG.

We now recall the definitions of the closure under intersection and union, and the gener-
alization of dimension and codimension to subfamilies of WVG introduced and studied in
Molinero et al. (2023).

Definition 2 Let G be a subclass of weighted voting games. The closure under intersection
of G, denoted by SG∩(G), is the set of simple games that can be obtained as the intersection
of a finite set of games in G. That is,

SG∩(G) = {� ∈ SG | ∃�1, . . . , �k ∈ G, k ∈ N, and � = �1 ∩ . . . ∩ �k}.
In a similar way, the closure under union of G, denoted by SG∪(G), is defined using union
instead of intersection, i.e.,

SG∪(G) = {� ∈ SG | ∃�1, . . . , �k ∈ G, k ∈ N, and � = �1 ∪ . . . ∪ �k}.
Definition 3 Let � ∈ SG and G ⊆ WVG. The generic dimension of � over G (g-dim (�,G),
in short) is

g-dim (�,G) =
{
min{t | ∃�1, . . . , �t ∈ G and � = �1 ∩ . . . ∩ �t }, if � ∈ SG∩(G)

+∞, otherwise.

The generic codimension of � over G (denoted by g-codim (�,G)) is

g-codim (�,G) =
{
min{t | ∃�1, . . . , �t ∈ G and � = �1 ∪ . . . ∪ �t }, if � ∈ SG∪(G)

+∞, otherwise.

In Molinero et al. (2023), among other results comparing the generalized dimension
and codimension over different subclasses of weighted voting games, the authors provide
a characterization of the closure under intersection and union of the class p-WVG. Before
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stating it, we need to introduce some notation. For, 1 ≤ i ≤ k ≤ n, define �n,[k]:i to be
the simple game with set of players N = [n] such that all minimal winning coalitions are
the subsets of [k] with i elements. Let Sn be the set of all permutations from [n] to [n].
We also consider the games obtained from �n,[k]:i after permuting the players according to
σ ∈ Sn , denoted as �n,σ ([k]):i . Note that �n,[k]:i and �n,σ ([k]):i are isomorphic and, moreover,
�∗
n,σ ([k]):i = �n,σ ([k]):k−i+1.

Theorem 1 (Molinero et al. 2023) Let � ∈ SG with n > 1 players. Then,

g-dim (�, p-WVG)

{= ∞, if � = �n,σ ([k]):1, for1 ≤ k < n and σ ∈ Sn .
< ∞, otherwise.

Furthermore, by duality,

g-codim (�, p-WVG)

{= ∞, if � = �n,σ ([k]):k, for 1 ≤ k < nand σ ∈ Sn .
< ∞, otherwise.

3 Generalizedmultidimension

Now, we introduce an extension of the concepts of generalized dimension and codimension
that we call generalized multidimension. To do so, we first generalize the type of expressions
that can be used to generate a simple game.

Definition 4 Let G be a subclass of weighted voting games with a set of players N . An
N -G-expression is recursively defined by the following rules:

• � ∈ G is an N -G-expression.
• If E ′ and E ′′ are N -G-expressions, then so are (E ′ ∩ E ′′) and (E ′ ∪ E ′′).
• Nothing else is an N -G-expression.
Note that we formally combine expressions with the intersection or the union operator

using parentheses. However, when there is no risk of ambiguity, we can say E ′ ∩ E ′′ instead
of (E ′ ∩ E ′′), and E ′ ∪ E ′′ instead of (E ′ ∪ E ′′). The size of an N -G-expression E , denoted
by size(E), is the number of operators appearing in E plus one.

To each N -G-expression E , we associate a simple game with set of players N , denoted
by �(N , E), recursively as follows:

• If E = � ∈ G, then �(N , E) = �.
• If E = (E ′ ∩ E ′′), then �(N , E) = �(N , E ′) ∩ �(N , E ′′).
• If E = (E ′ ∪ E ′′), then �(N , E) = �(N , E ′) ∪ �(N , E ′′).
Observe that an N -G-expression can be represented by a binary tree whose internal nodes

are labeled by either∩ or∪ and whose leaves are labeled by representations of games in G, all
of them defined over the same set of players N . Furthermore, the size of an G-expression E
coincides with the number of leaves in the binary tree. Now, we present a particular example
where G is WVG.
Example 2 Let �1 = [3; 1, 1, 2], �2 = [2; 1, 1, 2], �3 = [1; 0, 1, 0] and �4 = [3; 1, 2, 1] be
four different weighted voting games, and E1 = (�1∪�2)∩�3, E2 = (�1∩�3)∪ (�2 ∩�3)

and E3 = �4 be three N -WVG-expressions. Let N = {a, b, c} be the set of players of the
games. Note that �(N , E1) = �(N , E2) = �(N , E3) since in the three cases we obtain the
simple game (N ,W) withWm = {{a, b}, {b, c}}. Furthermore, the three expressions can be
represented by the binary trees illustrated in Fig. 1. Although the three expressions generate
�4, note that size(E1) = 3, size(E2) = 4 and size(E3) = 1.
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Fig. 1 Binary trees of three N -WVG-expressions generating �4

Note that a simple game with dimension d has an associated N -WVG-expression formed
by the intersection of d different weighted voting games, �1 ∩ · · · ∩ �d . The same occurs
for a simple game with codimension d , replacing ∩ by ∪ in the N -WVG-expression. The
size of both expressions is d , which is the number of operators ∩ plus one, and also the
number of weighted voting games in the expressions. Thus, our definition of the size of an
N -WVG-expression is consistent with the concepts of dimension and codimension.

It is useful to consider the set of all N -G-expressions.
Definition 5 A G-expression is a N -G-expression, for some set of players N .

To analyze the expressiveness of G-expressions for subclasses WVG, we introduce the
closure concept.

Definition 6 Let G ⊆ WVG be a subclass of weighted voting games. The closure under G-
expression of G, denoted by SGE (G), is the set of simple games associated to G-expressions,
i.e., SGE (G) = ∪n∈N,|N |=n{�(N , E) | E is a N -G-expression}.

Using this association, we define the generalized multidimension of a simple game over
a subclass of weighted voting games G ⊆ WVG as follows.

Definition 7 Let � = (N ,W) ∈ SG. The generalized multidimension over a subclass of
weighted voting games G of � ∈ SGE (G) is the minimum size of an N -G-expression E with
� = �(N , E). We denote such generalized multidimension over G of � by g-mdim (�,G).
When � /∈ SGE (G), we say that its multidimension is infinite, i.e., g-mdim (�,G) = ∞.

Observe that the game defined on Example 2 has generic dimension, generic codimension
and generic multidimension over WVG equal to 1. It is clear that the generalized multidi-
mension depends on the considered subclass.

Example 3 Let �1 = [1; 1, 1, 0, 0, 0] and �2 = [1; 0, 0, 1, 1, 1] be two weighted voting
games. Note that [1; 1, 1, 0, 0, 0] is the down representation of �1, and [1; 0, 0, 1, 1, 1] is the
up representation of�2. Furthermore,�2 does not admit any down representation as player 1 is
a dummy player. Therefore, we have the following result: 1 = g-mdim (�1, down-WVG) <

g-mdim (�2, down-WVG). In a similar way, g-mdim (�1, up-WVG) >

g-mdim (�2, up-WVG) = 1. Moreover, it is clear that g-mdim (�1, down-up-WVG) =
g-mdim (�2, down-up-WVG) = 1.

As every simple game can be defined as intersection or union of a finite number ofweighted
voting games, we always have a finite N -WVG-expression describing it. In particular, as
every simple game has a finite dimension and codimension (Taylor and Zwicker 1999),
every simple game � also has a finite g-mdim (�,WVG). Moreover, given a simple game
�, g-mdim (�,WVG) ≤ min{dim(�), codim(�)}.

As we have mentioned before, Boolean weighted voting games were introduced by Fal-
iszewski et al. (2009). These games are defined by means of monotone Boolean formulas
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(those using only conjunction and disjunction). Let us review this definition and relate it with
the definition of multidimension.

Definition 8 (Faliszewski et al. 2009, Sec.3) A simple Boolean weighted voting game is a
tuple � = (N ,G,�, ϕ), where:

1. N = {1, . . . , n} is a set of players;
2. G = {�1, . . . , �m} is a set of m weighted voting games over N ;
3. � = {p1, . . . , pm} is a set of m propositional variables with each variable p j corre-

sponding to the game � j ; and
4. ϕ is a monotone propositional formula over �.

A coalition S wins in � if and only if the assignment σ(p j ) = (S ∈ W(� j )), for 1 ≤ j ≤ m,
satisfies ϕ.

In Faliszewski et al. (2009), the size of a Boolean formula ϕ is defined as the number
of variable occurrences in ϕ. Observe that, there is a one-to-one correspondence among
monotone Boolean formulas and expressions over union and intersection. Thus, the multi-
dimension is the minimum size of a Boolean weighted voting game that generates a given
simple game. Faliszewski et al. (2009) does not define explicitly the multidimension of a
simple game, but it provides results on the number of Boolean weighted voting games that
can be described by monotone formulas of a given size. In particular (Faliszewski et al. 2009,
Corollary 2) states that, for large enough n, there are simple games that cannot be described
by Boolean formulas with size smaller than 2n/n5.

Other related definitions were introduced in O’Dwyer and Slinko (2017) and Kurz (2021)
as Boolean dimension. On the one hand, O’Dwyer and Slinko (2017, Def.7) defines the
Boolean dimension of a simple game� as the smallest number d such that aBooleanweighted
voting game on d weighted voting games generates �. In this way, the Boolean dimensions
of � and �′ in Example 9 are at most 3 and 6, respectively, but their multidimensions
are 5 and 18, respectively. On the other hand, Kurz (2021, Def.2.12) defines the Boolean
dimension of a simple game � as the smallest integer d such that � is a Boolean combination
of d weighted voting games using the operators ∧ and ∨, where a Boolean combination of
d weighted voting games v1, . . . , vd is given by v1 ∧ v′ or v1 ∨ v′, where v′ is a Boolean
combination of v2, . . . , vd .

Several properties can be obtained directly from the definitions. It is clear that � ∈ WVG
implies dim(�) = codim(�) = g-mdim (�,WVG) = 1. Moreover, for any � ∈ SG,
dim(�) = 2 or codim(�) = 2 implies that g-mdim (�,WVG) = 2, and vice versa.
When � ∈ SG has g-mdim (�,WVG) = m, if it admits an N -WVG-expression with size
m that considers only intersections (or unions), then dim(�) = g-mdim (�,WVG) (or
codim(�) = g-mdim (�,WVG)).

Interestingly enough, our next result shows that the generalized multidimension is main-
tained by duality provided the considered class is closed under duality. The invariance under
duality was stated for Boolean dimension by O’Dwyer and Slinko (2017, Proposition 5).
Using similar arguments, our next results extends the property to generalized multidimen-
sion.

Proposition 2 Let G be a class closed under duality. Let � be a simple game, then � ∈
SGE (G) if and only if �∗ ∈ SGE (G). Furthermore, for � ∈ SGE (G), g-mdim (�∗,G) =
g-mdim (�,G).

Proof If G is closed under duality, the dual of � ∈ G belongs also to G. As we have
mentioned before, the dual of a weighted voting game is a weighted voting game. In fact,

123



Multidimension: a dimensionality extension of simple games Page 11 of 30 339

[q;w1, . . . , wn]∗ = [w(N )−q + 1;w1, . . . , wn]. Furthermore, we know that (�1 ∩�2)
∗ =

�∗
1 ∪ �∗

2 and (�1 ∪ �2)
∗ = �∗

1 ∩ �∗
2 (Taylor and Zwicker 1999). Combining these state-

ments, we can transform any N -G-expression defining � into an N -G-expression defining
�∗ and vice versa, without changing the number of leaves in the tree expression. So, the
result follows. ��

In Definition 4, we have considered only the two binary operators ∪ and ∩. In the tra-
ditional algebra of simple games, it is usual to consider the dual as a unary operator. From
Proposition 2, it is clear that even though Definition 4 allowed the dual operator, the dual
of an N -G-expression is another N -G-expression. In this way, we could remove the dual
operator obtaining a smaller expression without duality. The thus-obtained generalized mul-
tidimension over WVG of any simple game would be the same that when the dual operator
is not allowed.

Below, we mention examples where the generalized multidimension over WVG and
codimension coincide, while the dimension is higher. By duality, in their dual games, the
generalized multidimension over WVG and dimension coincide while the codimension is
higher.

Example 4 Let � = (N ,Wm) where N = [2k] and Wm = {i ∈ N | i is odd} ∪ { j ∈ N |
j is even}. It is clear that � = [k; 1, 0, . . . , 1, 0

︸ ︷︷ ︸
2k

] ∪ [k; 0, 1, . . . , 0, 1
︸ ︷︷ ︸

2k

]. So, codim(�) = 2.

On the other hand, according to (Faliszewski et al. 2009, Th. 3), dim(�) = n2/4 (see also
Taylor and Zwicker 1999). Thus, for n > 2, g-mdim (�,WVG) = codim(�) = 2 and
dim(�) = n2/4.

In the following example, the multidimension and the codimension coincide, but both are
exponentially smaller than the dimension.

Example 5 Let � = (N ,Wm) where N = [2k] andWm = ⋃
i∈[k]{2i − 1, 2i}. According to

Freixas and Puente (2001), for k > 0, g-mdim (�,WVG) = codim(�) = k and dim(�) =
2k−1.

In Olsen et al. (2016) they provide more examples with exponential dimension and
constant codimension. Example 8 will show some simple games with multidimension strictly
smaller than the dimension and the codimension.

Taking into account the equivalence among expressions and monotone Boolean formula,
the results in Proposition 1 and Corollary 2 of Faliszewski et al. (2009) can be rewritten as
follows.

Proposition 3 (Faliszewski et al. 2009) The total number of games in SGE (WVG) with n
players andmultidimension d is at most 2O(dn2 log(dn)). There are simple gameswith n players
with mdim ≥ 2n/n5.

4 Expressiveness: theoretical results

In this section, we study the multidimension of simple games over specific subclasses of
weighted voting games. It is well known that intersections (or unions) of games in WVG
generate all SG. Thus, it is obvious that WVG-expressions also generate all SG. However,
as we see in Example 3, G-expression for G being down-WVG or up-WVG are not enough
to generate all SG, as well as down-WVG -expressions (or up-WVG -expressions). Next, we
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shall define sufficient conditions that a subclass G ⊆ SG has to accomplish to verify that for
all � ∈ SG, g-mdim (�,G) < ∞. Before doing that, we provide an upper bound for the
generalized multidimension of unions or intersections of games.

Proposition 4 Let G ⊆ SG and let �,�1, �2 ∈ SGE (G) with the same set of players N, such
that� = �1∪�2 or� = �1∩�2, then g-mdim (�,G) ≤ g-mdim (�1,G)+g-mdim (�2,G).

Proof Let E1 be an N -G-expression of minimum size describing �1 and let E2 be an N -
G-expression of minimum size describing �2. It is clear that E1 ∪ E2 and E1 ∩ E2 are
N -G-expressions describing � and, by definition, their size is the sum of the sizes of E1 and
E2. As the initial expressions have minimum size, the claim follows. ��

To analyze additional properties about the closure under G-expression of subclasses of
WVG, we start introducing some notation.

Definition 9 For j ∈ N , the j-th singleton game over N players is the simple game where
the j-th player is the only minimal winner. We denote those games by �

( j)
N . Formally, for

j ∈ N , we have that �
( j)
N = �(N ,Wm) such that Wm = {{ j}}. The class of all singleton

games with players N is denoted by SN -SG, and all singleton games by S-SG.
Note that �

( j)
N is the simple game such that the j-th player is a dictator and the other

players are dummies. Next, we prove that using G-expressions, one class can generate all
S-SG if and only if it can generate SG.
Theorem 5 Let G ⊆ SG, SGE (G) = SG if and only if S-SG ⊆ SGE (G). Moreover, for such
a subclass G with S-SG ⊆ SGE (G), we have

(a) given � = (N ,Wm) ∈ SG, then

g-mdim (�,G) ≤
∑

S∈Wm

∑

j∈S
g-mdim

(
�

( j)
N ,G

)
,

(b) given � = (N ,LM ) ∈ SG, then

g-mdim (�,G) ≤
∑

T∈LM

∑

j∈N\T
g-mdim

(
�

( j)
N ,G

)
,

up to isomorphism.

Proof Of course, if there is � ∈ S-SG with � /∈ SGE (G), then SGE (G) � SG. For the other
implication, i.e., if S-SG ⊆ SGE (G) then SGE (G) = SG, we prove the two inequalities in
two separated statements.

(a) Let be � = (N ,Wm) ∈ SG, whereWm = {S1, . . . , Sk}. It is clear that � = ⋃
1≤i≤k �i ,

where �i = (N ,Wm
i ) being Wm

i = {Si }, for 1 ≤ i ≤ k. Note that �i = ⋂
j∈Si �

( j)
N .

It is also clear that � satisfies

� =
⋃

1≤i≤k

⎛

⎝
⋂

j∈Si
�

( j)
N

⎞

⎠ .

Thus, given � = (N ,Wm) ∈ SG, from Proposition 4, the result follows

g-mdim (�,G) ≤
∑

S∈Wm

∑

j∈S
g-mdim

(
�

( j)
N ,G

)
.
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(b) Let be � = (N ,LM ) ∈ SG, where LM = {T1, . . . , T�}. It results that � = ⋂
1≤i≤� �i ,

where �i = (N ,LM
i ) being LM

i = {Ti }, for 1 ≤ i ≤ �. Observe that �i =⋃
j∈N\Ti �( j).

In this case, we have that

� =
⋂

1≤i≤�

⎛

⎝
⋃

j∈N\Ti
�( j)

⎞

⎠ .

So, given � = (N ,LM ) ∈ SG, then the inequality results

g-mdim (�,G) ≤
∑

T∈LM

∑

j∈N\T
g-mdim

(
�

( j)
N ,G

)
.

��
Example 6 Let be � = (N ,Wm), where N = {1, 2, 3} andWm = {{1, 2}, {3}}). Then, �1 =
(N ,Wm

1 = {{1, 2}}) = �
(1)
N ∩ �

(2)
N and �2 = (N ,Wm

2 = {{3}}) = �
(3)
N verify � = �1 ∪ �2.

On the other hand, let be � = (N ,LM ), where N = {1, 2, 3} and LM = {{1, 2}, {3}}. Then,
�1 = (N ,LM

1 = {{1, 2}}) = �
(1)
N and �2 = (N ,LM

2 = {{3}}) = �
(1)
N ∪ �

(2)
N satisfy

� = �1 ∩ �2. Hence, g-mdim (�,WVG) ≤ 3.

From the previous theorem, we can establish the following corollary.

Corollary 1 Given � = (N ,Wm) = (N ,LM ) ∈ SG, and a subclass G ⊆ SG.
(a) If S-SG ⊆ SGE (G), then

g-mdim (�,G) ≤ min

⎧
⎨

⎩

∑

S∈Wm

∑

j∈S
g-mdim

(
�

( j)
N ,G

)
,

∑

T∈LM

∑

j∈N\T
g-mdim

(
�

( j)
N ,G

)
⎫
⎬

⎭
.

(b) If S-SG ⊆ G, then

g-mdim (�,G) ≤ min

⎧
⎨

⎩

∑

S∈Wm

|S|,
∑

T∈LM

(|N | − |T |)
⎫
⎬

⎭
≤ |N |min

{
|Wm |, |LM |

}
.

Aclass that does not contain the classS-SG is p-WVG, as singleton games, for n > 1, have
dummy players. Our next result shows that p-WVG-expressions cannot generate the family
S-SG. Furthermore, we show that singleton games are the unique simple gameswithout finite
multidimension over the family of p-WVG.
Theorem 6 SGE (p-WVG) = SG\S-SG.
Proof The proof consists in two steps.

From Theorem 1 we establish that � /∈ S-SG with n > 1 implies g-dim (�, p-WVG) <

∞ or g-codim (�, p-WVG) < ∞. Thus, in such a case � ∈ SGE (p-WVG). Therefore,
SG\S-SG ⊆ SGE (p-WVG).

We prove that singleton games cannot be generated by reductio ad absurdum. Without
loss of generality, we assume that � = �

(1)
N ∈ SN -SG and that g-mdim (�, p-WVG) < ∞.

Then, we could remove the last n − 2 players to obtain that g-mdim
(
�

(1)
[2] , p-WVG

)
< ∞.

Now, by brute force, we check that neither intersection nor union of the two pure weighted
voting games with 2 players, �1 = ([2],Wm = {{1}, {2}}) and �2 = ([2],Wm = {{1, 2}}),
generate �

(1)
[2] = ([2],Wm = {{1}}). ��
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As a consequence of the previous theorem, we have the following result.

Corollary 2 Let � ∈ SG with n > 1 players.

g-mdim (�, p-WVG)

{
= ∞ if � ∈ S-SG,

< ∞ otherwise.

Observe that the difference among the characterization of simple games with finite dimen-
sion/codimension over p-WVG given in Molinero et al. (2023) (see Theorem 1) is obtained
by duality. The previous theorem shows that the additional expressiveness provided by mul-
tidimension with respect to p-WVG is obtained by duality. Only those self-dual games that
have infinite dimension remain with infinite multidimension.

Theorem 5 shows that G-expressions over singleton games generate all simple games.
However, as we will see in Sect. 5, the class S-SG can not be generated with G-expressions
for G being down-WVG , up-WVG , or down-up-WVG . These classes contain some, but
not all singleton games, it remains open to find a characterization of the closure under G-
expression for these classes.

Based on Molinero et al. (2023), when there is no game with dimension (codimension)
k, it implies that there is no game with dimension (codimension) bigger than k. That is, the
dimension values over a set of N players form a contiguous subset of integers. Now, we
analyze this property for multidimension.

First, as we have shown in Proposition 4, the multidimension of the union (or intersection)
of two simple games is upper bounded by the sum of the multidimension of those considered
games. However, our following result shows that a minimum size expression provides a
decomposition in which the upper bound is attained with equality.

Proposition 7 Let E, E1 and E2 be N-G-expressions such that E = E1 ∪ E2 or
E = E1 ∩ E2. Let be � = �(N , E), �1 = �(N , E1) and �2 = �(N , E2). If
size(E) = g-mdim (�,G), then g-mdim (�,G) = g-mdim (�1,G)+g-mdim (�2,G). More-
over, size(E1) = g-mdim (�1,G), and size(E2) = g-mdim (�2,G).

Proof Otherwise, we could decrease g-mdim (�,G) because E = E1 ∪ E2 or E = E1 ∩ E2,
which is a contradiction. ��

Note that, assuming the same game constructions of Proposition 7, there may be two
simple games �1 and �2 isomorphic to �1 and �2, respectively (i.e., �1 � �1 and �2 � �2),
such that g-mdim

(
�1,G

)
< g-mdim (�1,G) or g-mdim

(
�2,G

)
< g-mdim (�2,G). The

following example verifies such property.

Example 7 Let be �1 = (N = [5],Wm
1 = {{1, 2}, {1, 3}, {2, 3, 4}, {3, 5}, {4, 5}}) and �2 =

(N = [5],Wm
2 = {{2, 3}, {1, 4}, {1, 2, 5}, {3, 5}, {4, 5}}). Using the permutation

σ = (3 2 5 1 4),

we see that �1 � �2 because σ(Wm
1 ) = Wm

2 . However, we have checked by brute force that

g-mdim (down-up-p-WVG, �1) = 2 < 3 = g-mdim (down-up-p-WVG, �2) .

In particular

�1 = [5; 3, 2, 2, 1, 1] ∪ [5; 1, 1, 2, 2, 3]
and

�2 = [5; 1, 1, 2, 2, 3] ∪ ([6; 4, 3, 3, 2, 1] ∩ [4; 1, 2, 2, 3, 3]) .
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The previous results show that, if the multidimension of a game is bigger than one,
there exists a decomposition (as either the union or the intersection of two games) whose
multidimension coincides with the sum of the multidimension of the two components. This
property allows us to establish the following stopping criteria for our experiments.

Theorem 8 Let G ⊆ WVG and let k > 1. If no simple game � has multidimension
g-mdim (�,G) = a, for integers 0 < �k/2� ≤ a < k, then no simple game � has
g-mdim (�,G) ≥ k.

Proof We prove, by induction on �, that there is no simple game � with g-mdim (�,G) =
k + �.

For the base case, � = 0. Suppose that no simple game � has g-mdim (�,G) = a,
for 0 < �k/2� ≤ a < k, and that it exists � ∈ SG such that g-mdim (�,G) =
k > 1. Proposition 7 implies that there exist �1, �2 ∈ SG such that g-mdim (�,G) =
g-mdim (�1,G)+g-mdim (�2,G). Therefore, a = max{g-mdim (�1,G) ,g-mdim (�2,G)}
verifies �k/2� ≤ a < k, and we get a contradiction.

As induction hypothesis, assume that, for some � ≥ 1, no simple game � verifies
g-mdim (�,G) = a, for integers 0 < �k/2� ≤ a < k + �. Now, we can use the previ-
ous argument, assuming that it exists � ∈ SG such that g-mdim (�,G) = k + �, there
exists �1, �2 ∈ SG such that g-mdim (�,G) = g-mdim (�1,G) + g-mdim (�2,G), so
there is a game with multidimension over G equal to b with � k+�

2 � ≤ b < k + �. As
�k/2� ≤ � k+�

2 � < k + �, this is not possible. ��

Note that Theorem 8 gives a stopping criteria when we compute experimentally the mul-
tidimension of simple games. For instance, if there are no games with multidimension 5, 6,
7, and 8, it is not possible to generate games with multidimension bigger or equal than 9
because 5 = �9/2� ≤ 8 < 9.

Observe that the previous results leave open the possibility that multidimension is not
continuous. Our experiments confirm that this is the case. Table 7 gives some examples.
When considering the subclass S-SG, for 3 players, no game has multidimension 4, but there
is one game with multidimension 5. Analogously, for 5 players, no game has multidimension
13, but there is one game with multidimension 14.

5 Experimental results

This section collects different experimental results of generalized multidimension over sub-
classes of weighted voting games. We enumerate simple games and pure simple games from
G-expressions over specific subclasses of weighted voting games, for up to 6 or 7 players.
Our counting results are done up to isomorphism, i.e., we count one game provided that at
least one isomorphic game has been generated. We do so in order to make the values com-
parable with usual counting series in which all isomorphic games are counted only once.
Nevertheless, it is worth to mention, that for several classes, G-expressions generate only
some of the games in an isomorphism class.

All the experiments have been implemented in the C++ programming language. First,
we generate all down-p-WVG according to Molinero et al. (2023). Although our results
are up to 6 or 7 players (see Tables 2, 3, 4, 5, 6 and 7), we have been able to compute all
down-p-WVG up to 8 players and up to isomorphism. It was unfeasible for more than 8
players.
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From the enumeration of down-p-WVG , we are able to enumerate other subclasses of
simple games. The games of up-p-WVG are obtained by considering themirror of each game
[q;w1, . . . , wn] ∈ down-p-WVG, i.e., [q;wn, . . . , w1]. For instance, given [5; 3, 2, 2, 1] ∈
down-p-WVG, we consider [5; 1, 2, 2, 3] ∈ up-p-WVG. On the other hand, the games of
down-up-p-WVG are generated doubling each game [q;w1, . . . , wn] ∈ down-p-WVG as a
mirror [q;wn, . . . , w1], e.g., given [5; 3, 2, 2, 1], we consider [5; 3, 2, 2, 1] and [5; 1, 2, 2, 3].

For each number of players, we use the list of the games in the considered class (e.g.,
down-WVG , down-p-WVG or any class) together with an enumerator of the well-formed
expressions over the intersection and union operators to obtain in increasing order of multi-
dimension the new generated games.

The first experiment (see Table 2b) computes the generalized multidimension over
p-WVG. First, we generate new simple gameswith intersection or union of two pureweighted
voting games, up to 6 players. Second, we compute new simple games combining intersec-
tions and unions of three pure weighted voting games, and, so on. As we said before, all
multidimensionality results has been obtained with the stopping criteria described in Theo-
rem 8. Finally, we count the number of generated simple games up to isomorphism.

We follow the same procedure described before for all our experiments, but assuming the
corresponding subclass of weighted voting games.

Now, Table 1 presents some known counting results for p-SG, p-CSG, and p-WVG, up to
isomorphism. All these results appear in (or can be deduced from) the so-called The On-Line
Encyclopedia of Integer Sequences (http://oeis.org/).

Table 2 presents the results for the generalized dimension and multidimension over
p-WVG of p-SG having up to 6 players. From Theorems 1 and 6, we know that not all
SG have finite generalized dimension or multidimension with respect to the class p-WVG.
The results over the generalized dimension come from (Molinero et al. 2023). The results
over generalized multidimension come from our experiments and thus there are completely
new. This table shows us that, with respect to p-WVG, as expected the multidimension of
a game can be strictly smaller than its dimension. It is interesting to note that the highest
value of the multidimension is smaller than the highest value of the dimension. Even more,
the three simple games with 6 players having maximum dimension of 5 have also maximum
multidimension of 4. In the next Example, we analyze these three games in more detail.

Example 8 Table 2 shows that there are only three simple games of 6 players with dimension
and codimension equal to 5.Reproducing the experiments according toMolinero et al. (2023),
these three simple games are

�1 = ([6],Wm
1 = {{1, 2, 3}, {1, 3, 6}, {1, 4, 5}, {1, 5, 6}, {2, 3, 5}, {2, 4, 6},

{2, 5, 6}, {3, 4, 5}, {3, 4, 6}}),
�2 = �∗

1 ,

and the self-dual

�3 = ([6],Wm
1 = {{1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {2, 3, 5}, {1, 4, 5}, {1, 2, 6},

{1, 3, 6}, {2, 4, 6}, {3, 5, 6}, {4, 5, 6}}).
We checked that no other intersection/union with less than 5 p-WVG gives �i , for i ∈ [3],
i.e., g-dim (p-WVG, �i ) = g-codim (p-WVG, �i ) = 5. In particular, we get the following
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Table 2 Counting pure simple games with g-dim (�, p-WVG) = d and g-mdim (�, p-WVG) = m

(a) Number of games � ∈ p-SG with g-dim (�, p-WVG) = d, for the different values of d, up to
isomorphism

d Number of players (n)

1 2 3 4 5 6

1 1 2 5 17 92 994

2 0 0 0 3 86 11,168

3 0 0 0 0 2 3595

4 0 0 0 0 0 383

5 0 0 0 0 0 3

Total 1 2 5 20 180 16,143

p-SG 1 2 5 20 180 16,143

(b) Number of games � ∈ p-SG with g-mdim (�, p-WVG) = m, for the different values of m, up to
isomorphism

m Number of players (n)

1 2 3 4 5 6

1 1 2 5 17 92 994

2 0 0 0 3 86 12,755

3 0 0 0 0 2 2388

4 0 0 0 0 0 6

5 0 0 0 0 0 0

Total 1 2 5 20 180 16,143

p-SG 1 2 5 20 180 16,143

expressions:

�1 = [4; 2, 2, 2, 1, 1, 1] ∩ [4; 2, 1, 1, 2, 2, 1] ∩ [5; 2, 3, 1, 3, 1, 2] ∩ [8; 1, 2, 5, 3, 4, 3] ∩ [8; 3, 2, 3, 1, 4, 5]
= σ1([6; 2, 2, 2, 1, 1, 1] ∪ [8; 3, 2, 1, 3, 2, 1] ∪ [8; 3, 1, 2, 1, 2, 3] ∪ [8; 1, 3, 2, 1, 3, 2] ∪ [8; 1, 1, 3, 3, 2, 2]),

�2 = σ1([4; 2, 2, 2, 1, 1, 1] ∩ [5; 3, 2, 1, 3, 2, 1] ∩ [5; 3, 1, 2, 1, 2, 3] ∩ [5; 1, 3, 2, 1, 3, 2] ∩ [5; 1, 1, 3, 3, 2, 2]
= [6; 2, 2, 2, 1, 1, 1] ∪ [6; 2, 1, 1, 2, 2, 1] ∪ [8; 2, 3, 1, 3, 1, 2] ∪ [11; 1, 2, 5, 3, 4, 3] ∪ [11; 3, 2, 3, 1, 4, 5],

�3 = [5; 3, 3, 2, 2, 1, 1] ∩ [5; 3, 1, 2, 1, 3, 2] ∩ [5; 1, 3, 2, 1, 2, 3] ∩ [5; 1, 2, 2, 3, 3, 1] ∩ [5; 2, 1, 2, 3, 1, 3]
= [8; 3, 3, 2, 2, 1, 1] ∪ [8; 3, 1, 2, 1, 3, 2] ∪ [8; 1, 3, 2, 1, 2, 3] ∪ [8; 1, 2, 2, 3, 3, 1] ∪ [8; 2, 1, 2, 3, 1, 3],

where σ1 = (6 4 3 2 5 1) is the corresponding permutation among players.
However, our experiments show that g-mdim (p-WVG, �1) = 4. Particular cases with

minimum size for �i , being i ∈ [3], are
�1 = σ2([4; 2, 2, 2, 1, 1, 1] ∩ ([5; 3, 3, 2, 2, 1, 1] ∩ ([8; 4, 3, 3, 2, 2, 1] ∪ [11; 5, 4, 3, 3, 2, 1]))),
�2 = σ2([6; 2, 2, 2, 1, 1, 1] ∪ ([8; 3, 3, 2, 2, 1, 1] ∪ ([5; 3, 3, 2, 2, 1, 1] ∩ [8; 4, 3, 3, 2, 2, 1]))),
�3 = σ3([8; 3, 3, 2, 2, 1, 1] ∪ ([10; 6, 5, 4, 3, 2, 1] ∩ ([8; 4, 3, 2, 2, 1, 1] ∪ [8; 4, 3, 3, 2, 2, 1]))),
where σ2 = (2 6 4 3 1 5) and σ3 = (3 4 1 2 6 5).
It is worth mentioning that only 3 out of 383 games with 6 players and generalized

dimension with respect to p-WVG equal to 4 keep their generalized multidimension equal
to 4. For up to 6 players the maximum value of the generalized dimension is strictly smaller
that the maximum value of the generalized multidimension. It remains open to see if this
property carries on for any number of players.
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Table 3 Countingpure simple gameswithg-dim (�, down-p-WVG) = d and g-mdim (�, down-p-WVG)=
m

(a) Number of games � ∈ p-SG with g-dim (�, down-p-WVG) = d, for the different values of d, up to
isomorphism

d Number of players

1 2 3 4 5 6 7

1 1 2 5 17 92 994 28,262

2 0 0 0 0 0 55 13,808

3 0 0 0 0 0 2 539

4 0 0 0 0 0 0 38

Total 1 2 5 17 92 1051 42,647

p-CSG 1 2 5 17 92 1054 43,142

p-SG 1 2 5 20 180 16,143 489,996,795

(b) Number of games � ∈ p-SG with g-mdim (�, down-p-WVG) = m, for the different values of m, up
to isomorphism

m Number of players

1 2 3 4 5 6 7

1 1 2 5 17 92 994 28,262

2 0 0 0 0 0 60 14,880

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

Total 1 2 5 17 92 1054 43,142

p-CSG 1 2 5 17 92 1054 43,142

p-SG 1 2 5 20 180 16,143 489,996,795

Experimental results about the generalized dimension and multidimension of p-SG with
respect to games in down-p-WVG are presented in Table 3. As it was mentioned inMolinero
et al. (2023), intersections (or unions) of games in down-p-WVG belong to p-CSG. We
combined our multidimension enumeration algorithm with a checker for completeness. Our
experiments show that, for up to 7 players, all simple games generated by G-expressions over
down-p-WVG belong to CSG. It will be worth to see whether this property holds for any
number of players. In the light of our experiments, we think that it is true, but we have not
formally proved it yet.

Another property is that G-expressions over down-p-WVG allow us to obtainmore games
that when using only intersections/unions. This phenomenon appears for 6 and 7 players in
our experiments. We want to note that, for 6 and 7 players, down-p-WVG generate all
games in CSG. Another unexpected property that we can extract from the table is that the
maximum value of the multidimension is 2, while the maximum value of the dimension is
4.

The experimental results about generalized multidimension of simple games with respect
to the subclasses down-p-WVG and down-WVG appear in Table 4. In this experiment,
we removed the filter checking pureness and kept the filter for completeness. All generated
games belong to CSG. In particular, from Table 4a, we can see that it is not possible to
generate all complete games with n players using down-p-WVG -expressions while, up to 7
players, it is possible with down-WVG -expressions. As we have mentioned before, for up
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Table 4 Counting simple games with g-mdim (�, down-p-WVG) = m and g-mdim (�, down-WVG) = m

(a) Number of games � ∈ SG with g-mdim (�, down-p-WVG) = m, for the different values of m, up to
isomorphism

m Number of players

1 2 3 4 5 6 7

1 1 2 5 17 92 994 28,262

2 0 0 0 2 15 162 16,030

p-CSG 1 2 5 17 92 1054 43,142

CSG\p-CSG 0 0 0 2 15 2 1150

Total 1 2 5 19 107 1156 44,292

p-CSG 1 2 5 17 92 1054 43,142

CSG 1 3 8 25 117 1171 44,313

p-SG 1 2 5 20 180 16,143 489,996,795

(b) Number of games � ∈ SG with g-mdim (�, down-WVG) = m, for the different values of m, up to
isomorphism

m Number of players

1 2 3 4 5 6 7

1 1 3 8 25 117 1111 29,373

2 0 0 0 0 0 60 14,940

p-CSG 1 2 5 17 92 1054 43,142

CSG\p-CSG 0 1 3 8 25 117 1171

Total 1 3 8 25 117 1171 44,313

p-CSG 1 2 5 17 92 1054 43,142

CSG 1 3 8 25 117 1171 44,313

p-SG 1 2 5 20 180 16,143 489,996,795

to 7 players, we can generate all p-CSG. Now we can see that some, but not all, games in
CSG\p-CSG can be generated with down-p-WVG -expressions. For example, for n = 6, we
obtained only 2 of the 25 complete games that are not pure.

Our results about generalizeddimension andmultidimensionof games indown-up-p-WVG
are presented in Table 5. Molinero et al. (2023) shows that � = (N ,Wm) with Wm =
{{1, 2}, {1, 3, 4}, {2, 3, 4}, {1, 3, 5, 6}, {2, 3, 5, 6}, {1, 4, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}} ver-
ifies that g-dim (�, p-WVG) = ∞. However, � = �1 ∪ �2, where �1 = (N ,Wm

1 ) with
Wm

1 = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 6}, {1, 2, 4, 6},
{1, 3, 4, 6}, {2, 3, 4, 6}, {1, 2, 5, 6}, {1, 3, 5, 6}, {2, 3, 5, 6}, {1, 4, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}
has a representation [4; 1, 1, 1, 1, 1, 1] and �2 = (N ,Wm

2 ) with Wm
2 = {{1, 2},

{1, 3, 4}, {2, 3, 4}, {1, 3, 5, 6}, {2, 3, 5, 6}, {1, 4, 5, 6}, {2, 4, 5, 6}} has a representation
[8; 4, 4, 2, 2, 1, 1]. Thus, g-mdim (�, p-WVG) = 2. That is why Table 5a shows that only
1053 pure complete games for 5 players can be obtained with intersections, but Table 5b
shows that all 1054 p-CSG can be obtained with down-up-p-WVG -expressions.

Table 6 shows the experimental results about multidimension of SG with respect to the
subclasses down-up-p-WVG and down-up-WVG . As expected, we can see that neither
down-up-p-WVG -expressions nor down-up-WVG -expressions can generate all simple
games. Comparing Tables 6a and 4a, it is clear that even down-up-p-WVG -expression
generate a much bigger quantity of games than down-p-WVG -expression.
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Table 5 Countingpure simplegameswithg-dim (�, down-up-p-WVG) =d and g-mdim (�, down-p-WVG)=
m

(a) Number of games � ∈ p-SG with g-dim (�, down-up-p-WVG) = d, for the different values of d, up
to isomorphism

d Number of players

1 2 3 4 5 6

1 1 2 5 17 92 994

2 0 0 0 3 66 3403

3 0 0 0 0 2 118

4 0 0 0 0 0 0

p-CSG 1 2 5 17 92 1053

p-SG\p-CSG 0 0 0 3 68 3462

Total 1 2 5 20 160 4515

p-CSG 1 2 5 17 92 1054

p-SG 1 2 5 20 180 16,143

(b) Number of games � ∈ p-SG with g-mdim (�, down-up-p-WVG) = m, for the different values of m,
up to isomorphism

m Number of players

1 2 3 4 5 6

1 1 2 5 17 92 994

2 0 0 0 3 76 5342

3 0 0 0 0 10 6237

4 0 0 0 0 2 3273

5 0 0 0 0 0 163

6 0 0 0 0 0 69

7. . .12 0 0 0 0 0 0

p-CSG 1 2 5 17 92 1054

p-SG\p-CSG 0 0 0 3 88 15,024

Total 1 2 5 20 180 16,078

p-CSG 1 2 5 17 92 1054

p-SG 1 2 5 20 180 16,143

Note that the two games with 5 players and mutidimension 4 that appear in Table 5b also
appear inTable 6b, up to isomorphism.Moreover, theyboth are dual one eachother.On the one
hand, our experiments of Table 5b give us �1 = ([5],Wm

1 = {{1, 3, 4}, {2, 3, 4}, {1, 2, 5},
{1, 3, 5}, {2, 4, 5}}) and �2 = ([5],Wm

2 = {{1, 2}, {2, 3}, {1, 4},
{3, 5}, {4, 5}}), where

�1 = [4; 2, 2, 1, 1, 1] ∩ ([5; 1, 1, 2, 2, 3] ∩ ([8; 4, 3, 3, 2, 1] ∪ [8; 1, 2, 2, 3, 3]))
and
�2 = [4; 2, 2, 1, 1, 1] ∪ ([5; 1, 1, 2, 2, 3] ∪ ([6; 4, 3, 3, 2, 1] ∩ [4; 1, 2, 2, 3, 3])).

On the other hand, our experiments of Table 6b generate �1 = ([5],Wm
1 = {{1, 2, 4},

{2, 3, 4}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}}) and �2 = ([5],Wm
2 = {{1, 2}, {1, 3}, {3, 4}, {2, 5},
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Table 6 Counting simple gameswith g-mdim (�, down-up-p-WVG) =m and g-mdim (�, down-up-WVG)

=m

(a) Number of games � ∈ SG with g-mdim (�, down-up-p-WVG) = m, for the different values of m,
up to isomorphism

m Number of players

1 2 3 4 5 6

1 1 2 5 17 92 994

2 0 0 2 9 99 5462

3 0 0 0 1 13 6266

4 0 0 0 0 3 3306

5 0 0 0 0 0 173

6 0 0 0 0 0 75

7. . .12 0 0 0 0 0 0

Total 1 2 7 27 207 16,276

CSG 1 3 8 25 117 1171

p-CSG 1 2 5 17 92 1054

SG 1 3 8 28 208 16,351

p-SG 1 2 5 20 180 16,143

(b) Number of games � ∈ SG with g-mdim (�, down-up-WVG) = m, for the different values of m, up
to isomorphism

m Number of players

1 2 3 4 5 6

1 1 3 8 25 117 1111

2 0 0 0 3 82 5566

3 0 0 0 0 6 6053

4 0 0 0 0 3 3299

5 0 0 0 0 0 173

6 0 0 0 0 0 75

7. . .12 0 0 0 0 0 0

Total 1 3 8 28 208 16,277

CSG 1 3 8 25 117 1171

p-CSG 1 2 5 17 92 1054

SG 1 3 8 28 208 16,351

p-SG 1 2 5 20 180 16,143

{4, 5}}), where
�1 = [1; 0, 0, 0, 1, 1] ∩ ([5; 3, 2, 2, 1, 1] ∩ ([3; 0, 0, 1, 1, 2] ∪ [5; 0, 3, 2, 2, 1)]))
and
�2 = [2; 0, 0, 0, 1, 1] ∪ ([5; 3, 2, 2, 1, 1] ∪ ([2; 0, 0, 1, 1, 2] ∩ [4; 0, 3, 2, 2, 1)])).

Observe that �1 = σ(�1) and �2 = σ(�2), where σ = (1 4 2 3 5).
Our last experiment analyzes the generalized multidimension over S-SG. Remind that

Theorem 5 shows us SGE (S-SG) is the set of all simple games. Now, Table 7 enumerates
the generalized multidimension of all simple games from unions and intersections of S-SG,
up to 6 players.
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Table 7 Number of games� ∈ p-SG withg-mdim
(
�,

⋃
j∈N �( j)

)
= m, for values ofm, up to isomorphism

m Number of players

1 2 3 4 5 6

1 1 1 1 1 1 1

2 0 2 2 2 2 2

3 0 0 4 4 4 4

4 0 0 0 10 10 10

5 0 0 1 2 26 26

6 0 0 0 6 16 82

7 0 0 0 1 42 107

8 0 0 0 2 35 326

9 0 0 0 0 44 613

10 0 0 0 0 18 1258

11 0 0 0 0 3 2078

12 0 0 0 0 6 2902

13 0 0 0 0 0 3285

14 0 0 0 0 1 2878

15 0 0 0 0 0 1780

16 0 0 0 0 0 786

17 0 0 0 0 0 172

18 0 0 0 0 0 38

19 0 0 0 0 0 3

Total 1 3 8 28 208 16,351

CSG 1 3 8 25 117 1171

p-CSG 1 2 5 17 92 1054

SG 1 3 8 28 208 16,351

p-SG 1 2 5 20 180 16,143

Our new experiments for generalized multidimension, and the reproduced experiments
according to Molinero et al. (2023) for generalized dimension and generalized codimension
show us that, even for 3 players, there exists � ∈ SG such that

g-mdim

⎛

⎝�,
⋃

j∈N
�

( j)
N

⎞

⎠ < min

⎧
⎨

⎩
g-dim

⎛

⎝�,
⋃

j∈N
�

( j)
N

⎞

⎠ ,g-codim

⎛

⎝�,
⋃

j∈N
�

( j)
N

⎞

⎠

⎫
⎬

⎭
.

Example 9 For 3 players, � = ([1; 1, 0, 0] ∩ [1; 0, 1, 0]) ∪ ([1; 0, 0, 1] ∩ ([1; 1, 0, 0] ∪
[1; 0, 1, 0])) really verifies g-mdim

(
�,

⋃
j∈N �

( j)
N

)
= 5, but g-dim

(
�,

⋃
j∈N �

( j)
N

)
=

g-codim
(
�,

⋃
j∈N �

( j)
N

)
= 6.

123



339 Page 24 of 30 X. Molinero et al.

On the other hand, for N = [6] players,

�′ = ((
�

(1)
N ∪ �

(3)
N

) ∩ (
�

(2)
N ∪ �

(6)
N

) ∩ (
�

(4)
N ∪ �

(5)
N

)) ∪
((

�
(1)
N ∪ �

(5)
N

) ∩ (
�

(2)
N ∪ �

(3)
N

) ∩ (
�

(4)
N ∪ �

(6)
N

)) ∪
((

�
(1)
N ∪ �

(6)
N

) ∩ (
�

(2)
N ∪ �

(5)
N

) ∩ (
�

(3)
N ∪ �

(4)
N

))

verifies g-mdim
(
�′,

⋃
j∈N �

( j)
N

)
= 18. To give a brief idea how our experiments work, we

show the output of our program with all specific information for �′ using a structure that
indents the level of the expression:

(1; 1 0 0 0 0 0) 1
(UNION) 1 3

(1; 0 0 1 0 0 0) 3
(INTERSECTION) 124 234 125 235 146 346 156 356

(1; 0 0 0 0 1 0) 5
(UNION) 4 5

(1; 0 0 0 1 0 0) 4
(INTERSECTION) 24 25 46 56

(1; 0 0 0 0 0 1) 6
(UNION) 2 6

(1; 0 1 0 0 0 0) 2
(UNION) 123 124 134 234 125 135 235 14 5 245 345 126 136 236 146 246 346 156 256 356 456

(1; 1 0 0 0 0 0) 1
(UNION) 1 5

(1; 0 0 0 0 1 0) 5
(INTERSECTION) 124 134 245 345 126 136 256 356

(1; 0 0 0 0 0 1) 6
(UNION) 4 6

(1; 0 0 0 1 0 0) 4
(INTERSECTION) 24 34 26 36

(1; 0 1 0 0 0 0) 2
(UNION) 2 3

(1; 0 0 1 0 0 0) 3
(UNION) 123 124 134 135 145 245 345 126 136 236 246 256 356 456

(1; 1 0 0 0 0 0) 1
(UNION) 1 6

(1; 0 0 0 0 0 1) 6
(INTERSECTION) 123 124 135 145 236 246 356 456

(1; 0 0 0 0 1 0) 5
(UNION) 2 5

(1; 0 1 0 0 0 0) 2
(INTERSECTION) 23 24 35 45

(1; 0 0 0 1 0 0) 4
(UNION) 3 4

(1; 0 0 1 0 0 0) 3

Note that the elements to the right of each row give the minimal wining coalitions of the
game. For instance, 24 25 46 56 at the 8th row indicates that the set of minimal winning
coalitions of [1; 0, 0, 0, 0, 1, 0] ∩ [1; 0, 0, 0, 0, 0, 1] is Wm = {{2, 4}, {2, 5}, {4, 6}, {5, 6}}.

Reproducing the experiments of Molinero et al. (2023), we obtain that, even though

g-mdim
(
�′,

⋃
j∈N �

( j)
N

)
= 18, g-dim

(
�′,

⋃
j∈N �

( j)
N

)
= g-codim

(
�′,

⋃
j∈N �

( j)
N

)
=

60.
In Appendix A, we show the output of some of our experiments. There we give the games

with maximum generalized multidimension over S-SG and the corresponding G-expression
certifying this fact, from three to six players.
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6 Conclusions and future work

In thiswork, we consider subclasses of simple games generated fromG-expressions, using the
operators intersection and union, over restricted subclasses of weighted voting games. Using
those expressions, we have introduced the multidimension as an extension of the notions of
dimension and codimension of simple games. We have generalized this notion with respect
to a subfamily of WVG, namely, the generalized multidimension. Most of the considered
subclasses of WVG are formed by games without dummy players (pure weighted voting
games) and are obtained by selecting particular types of representations ofWVG. Thus, our
work extends the theoretical and experimental results of Molinero et al. (2023).

A theoretically relevant type of game is the singleton game, made up of exactly one min-
imal winning coalition formed by a single player. Singleton games are the unique games
having one dictator while all the other players are dummies. According to Theorem 5, a class
able to generate all the singleton games, through union and intersection operations, generates
all the simple games. Furthermore, if we only have pureweighted voting games, that is, games
without dummies, the only gameswe cannot generate (throughunion and/or intersection oper-
ations) are the singleton games (see Theorem 6). Therefore, any other game than a singleton
gamewill have finite generalizedmultidimensionwith respect to pureweighted voting games.
From the point of view of voting systems, the above means that dictators can only emerge to
the extent that we assume the existence of dummies. Comparing our characterization of the
simple games that can be generated with expressions on p-WVG with respect to the ones hav-
ing finite generalized dimension or codimension provided in Molinero et al. (2023), we can
observe that the games that cannot be expressed in this way are the self-dual games that do not
have finite generalized dimension/codimension. Thus, singleton games are the only self-dual
games that do not have finite generalized dimension/codimension with respect to p-WVG.

Besides the above, we have proved that the multidimension has properties quite different
from the dimension or the codimension. We have shown that the generalized dimension,
with respect to a class closed under duality, is the same for dual games. Surprisingly, we have
demonstrated the existence of gaps in the attained multidimension values. The latter has to
be seen in contraposition with the continuity of the dimension/codimension values proved in
Molinero et al. (2023).

Although the multidimension values are not contiguous, we have proved that having a
big enough interval without games of these multidimension ensures that no game has higher
multidimension. This result is the key ingredient in our enumeration algorithm. According
to Theorem 8, we need a gap of half the size of the value. The gap size is relevant to pro-
gramming the correct termination criterion in the enumeration algorithm. It remains an open
question, both theoretically and practically, to see if this gap size can be reduced.

Thus, experimentally, we were able to calculate the multidimensions for all simple games
with respect to some subclasses of p-WVG up to 6 players and, in some cases, up to 7 players.
Our results show how generalized multidimension allows representing more simple games
than considering only intersections or only unions. Moreover, the representations tend to be
more compact, even for a small number of players and for subclasses with a relatively small
number of games.

We can state several problems of interest. It remains open finding (if there exist) exam-
ples where the multidimension is linear on the number of players, but the dimension and the
codimension are exponential on the number of players. In all our enumerations, the maxi-
mum generalized multidimension attained has been smaller than the maximum generalized
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dimension/codimension, except, as expected, when the base set of games is S-SG. It remains
open to see if this property is maintained for any number of players.

Another line of future research is to explore other subclasses of simple games as, for
example, proper, strong, or decisive (self-dual) weighted voting games. Simple games where
weights are Fibonacci numbers (i.e., weighted voting games such that wi+2 = wi+1 + wi

for 3 ≤ i ≤ n being w1 = a and w2 = b) are also an interesting class to consider.
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Appendix A The games withmaximum generalizedmultidimension

This appendix presents the output of our experiments related to all simple games with maxi-
mum generalized multidimension over S-SG, from three to six players. Note that this output
gives us the corresponding G-expression.
3 players
--------------------

(1; 1 0 0) 1
(INTERSECCIO) 12

(1; 0 1 0) 2
(UNIO) 12 13 23

(1; 0 0 1) 3
(INTERSECCIO) 13 23

(1; 1 0 0) 1
(UNIO) 1 2

(1; 0 1 0) 2
1 with m = 5
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4 players
--------------------

(1; 1 0 0 0) 1
(INTERSECCIO) 12

(1; 0 1 0 0) 2
(UNIO) 12 13 23 14 24 34

(1; 0 0 1 0) 3
(INTERSECCIO) 34

(1; 0 0 0 1) 4
(UNIO) 13 23 14 24 34

(1; 0 0 1 0) 3
(UNIO) 3 4

(1; 0 0 0 1) 4
(INTERSECCIO) 13 23 14 24

(1; 1 0 0 0) 1
(UNIO) 1 2

(1; 0 1 0 0) 2
****

(1; 1 0 0 0) 1
(UNIO) 1 2

(1; 0 1 0 0) 2
(INTERSECCIO) 123 124 134 234

(1; 0 0 1 0) 3
(INTERSECCIO) 34

(1; 0 0 0 1) 4
(UNIO) 123 124 34

(1; 1 0 0 0) 1
(INTERSECCIO) 123 124

(1; 0 1 0 0) 2
(INTERSECCIO) 23 24

(1; 0 0 1 0) 3
(UNIO) 3 4

(1; 0 0 0 1) 4
2 with m = 8

5 players
--------------------

(1; 1 0 0 0 0) 1
(INTERSECCIO) 123 145

(1; 0 1 0 0 0) 2
(INTERSECCIO) 23

(1; 0 0 1 0 0) 3
(UNIO) 23 45

(1; 0 0 0 1 0) 4
(INTERSECCIO) 45

(1; 0 0 0 0 1) 5
(UNIO) 123 124 134 234 125 135 235 145 245 345

(1; 0 1 0 0 0) 2
(UNIO) 2 3

(1; 0 0 1 0 0) 3
(INTERSECCIO) 124 134 234 125 135 235 245 345

(1; 0 0 0 1 0) 4
(INTERSECCIO) 45

(1; 0 0 0 0 1) 5
(UNIO) 14 234 15 235 45

(1; 0 0 0 1 0) 4
(UNIO) 4 5

(1; 0 0 0 0 1) 5
(INTERSECCIO) 14 234 15 235

(1; 1 0 0 0 0) 1
(UNIO) 1 23

(1; 0 1 0 0 0) 2
(INTERSECCIO) 23

(1; 0 0 1 0 0) 3
1 with m = 14

6 players
--------------------
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(1; 1 0 0 0 0 0) 1
(INTERSECCIO) 123

(1; 0 1 0 0 0 0) 2
(INTERSECCIO) 23

(1; 0 0 1 0 0 0) 3
(UNIO) 123 1245 1345 2345 1246 1346 2346 1256 1356 2356 1456 2456 3456

(1; 0 0 0 1 0 0) 4
(UNIO) 4 5

(1; 0 0 0 0 1 0) 5
(INTERSECCIO) 1245 1345 2345 1246 1346 2346 1256 1356 2356 1456 2456 3456

(1; 0 0 0 0 0 1) 6
(UNIO) 45 6

(1; 0 0 0 1 0 0) 4
(INTERSECCIO) 45

(1; 0 0 0 0 1 0) 5
(INTERSECCIO) 1245 1345 2345 126 136 236 1456 2456 3456

(1; 1 0 0 0 0 0) 1
(INTERSECCIO) 12

(1; 0 1 0 0 0 0) 2
(UNIO) 12 13 23 1456 2456 3456

(1; 0 0 1 0 0 0) 3
(INTERSECCIO) 13 23

(1; 1 0 0 0 0 0) 1
(UNIO) 1 2

(1; 0 1 0 0 0 0) 2
(UNIO) 13 23 1456 2456 3456

(1; 0 0 0 0 0 1) 6
(INTERSECCIO) 1456 2456 3456

(1; 0 0 0 1 0 0) 4
(INTERSECCIO) 145 245 345

(1; 0 0 0 0 1 0) 5
(INTERSECCIO) 15 25 35

(1; 0 0 1 0 0 0) 3
(UNIO) 1 2 3

(1; 1 0 0 0 0 0) 1
(UNIO) 1 2

(1; 0 1 0 0 0 0) 2

****
(1; 1 0 0 0 0 0) 1

(INTERSECCIO) 123
(1; 0 1 0 0 0 0) 2

(INTERSECCIO) 23
(1; 0 0 1 0 0 0) 3

(UNIO) 123 124 134 234 125 135 235 145 245 345 126 136 236 146 246 346 156 256 356
(1; 1 0 0 0 0 0) 1

(UNIO) 1 2 3
(1; 0 1 0 0 0 0) 2

(UNIO) 2 3
(1; 0 0 1 0 0 0) 3

(INTERSECCIO) 124 134 234 125 135 235 145 245 345 126 136 236 146 246 346 156 256 356
(1; 0 0 0 1 0 0) 4

(INTERSECCIO) 45
(1; 0 0 0 0 1 0) 5

(UNIO) 124 134 234 125 135 235 45 126 136 236 46 56
(1; 0 0 0 0 0 1) 6

(INTERSECCIO) 46 56
(1; 0 0 0 1 0 0) 4

(UNIO) 4 5
(1; 0 0 0 0 1 0) 5

(UNIO) 124 134 234 125 135 235 126 136 236 46 56
(1; 1 0 0 0 0 0) 1

(UNIO) 1 2
(1; 0 1 0 0 0 0) 2

(INTERSECCIO) 124 134 234 125 135 235 126 136 236
(1; 0 0 1 0 0 0) 3

(UNIO) 12 3
(1; 1 0 0 0 0 0) 1
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(INTERSECCIO) 12
(1; 0 1 0 0 0 0) 2

(INTERSECCIO) 124 34 125 35 126 36
(1; 0 0 0 0 0 1) 6

(UNIO) 4 5 6
(1; 0 0 0 1 0 0) 4

(UNIO) 4 5
(1; 0 0 0 0 1 0) 5

****
(1; 1 0 0 0 0 0) 1

(UNIO) 1 2 3 45
(1; 0 1 0 0 0 0) 2

(UNIO) 2 3 45
(1; 0 0 1 0 0 0) 3

(UNIO) 3 45
(1; 0 0 0 1 0 0) 4

(INTERSECCIO) 45
(1; 0 0 0 0 1 0) 5

(INTERSECCIO) 1234 1235 1245 1345 2345 126 136 236 146 246 346 156 256 356 456
(1; 0 0 0 1 0 0) 4

(UNIO) 4 5
(1; 0 0 0 0 1 0) 5

(INTERSECCIO) 1234 1235 46 56
(1; 0 0 0 0 0 1) 6

(UNIO) 123 6
(1; 1 0 0 0 0 0) 1

(INTERSECCIO) 123
(1; 0 1 0 0 0 0) 2

(INTERSECCIO) 23
(1; 0 0 1 0 0 0) 3

(UNIO) 1234 1235 1245 1345 2345 126 136 236 46 56
(1; 1 0 0 0 0 0) 1

(UNIO) 1 2
(1; 0 1 0 0 0 0) 2

(INTERSECCIO) 1245 1345 2345 126 136 236
(1; 0 0 1 0 0 0) 3

(UNIO) 12 3
(1; 1 0 0 0 0 0) 1

(INTERSECCIO) 12
(1; 0 1 0 0 0 0) 2

(INTERSECCIO) 1245 345 126 36
(1; 0 0 0 0 0 1) 6

(UNIO) 45 6
(1; 0 0 0 1 0 0) 4

(INTERSECCIO) 45
(1; 0 0 0 0 1 0) 5

3 with m = 19
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