Dual r-Rank Decomposition and Its Applications

Hongxing Wang, Chong Cui, Xiaoji Liu*
School of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, China

Abstract

In this paper, we introduce the dual r-rank decomposition of dual matrix, get its existence conditions and equivalent forms of the decomposition. Then we derive some characterizations of dual Moore-Penrose generalized inverse(DMPGI). Based on DMPGI, we introduce one special dual matrix(dual EP matrix). By applying the dual r-rank decomposition, we derive several characterizations of dual EP matrix, dual idempotent matrix, dual generalized inverses, and relationships among dual Penrose equations.

Keywords: Dual matrix; dual EP matrix; dual r-rank decomposition; dual
Moore-Penrose generalized inverse; dual Penrose equations
2020 MSC: 15A10 15B33

1. Introduction

Clifford firstly proposed the dual number [4] in 1873, then Study [12] gave its specific form. Subsequently, the dual algebra has developed rapidly and been widely applied to dynamic analysis of spatial mechanisms, sensor calibration, robotics and other fields (see [6, 9, 13, 17]). In recent years, some researches of dual matrix, dual generalized inverse, dual equation and their applications have further promoted the development of dual algebra theory and its applications (see 1, 3, [5, 6, 6, 10]).

In this paper, we adopt the following notations: $\mathbb{R}_{m \times n}$ stands for the set of all $m \times n$ real matrices; $\operatorname{rk}(A)$ for the rank of $A ; Q_{A, B}^{S}$ for $A^{T} B+B^{T} A$. Let the dual number be \widehat{a} and have the following form:

$$
\widehat{a}=a+\epsilon a^{\circ}
$$

[^0]in which a and a° are real numbers, and ϵ is the dual unit subjected to the rules
$$
\epsilon \neq 0,0 \epsilon=\epsilon 0=0,1 \epsilon=\epsilon 1=\epsilon \text { and } \epsilon^{2}=0 .
$$

If a matrix has the form of $A_{0}+\epsilon A_{1}$ and $A_{i} \in \mathbb{R}_{m \times n}(i=0,1)$, it can be called the dual matrix and denoted as \widehat{A}. Furthermore, denote the set of all $m \times n$ dual matrices as $\mathbb{D}_{m \times n}$.

The dual Moore-Penrose generalized inverse(DMPGI for short) of \widehat{A} is the unique dual matrix \widehat{X}, which satisfies the following four dual Penrose equations [10]:

$$
\begin{equation*}
(\widehat{1}) \widehat{A} \widehat{X} \widehat{A}=\widehat{A},(\widehat{2}) \widehat{X} \widehat{A} \widehat{X}=\widehat{A},(\widehat{3})(\widehat{A} \widehat{X})^{T}=\widehat{A} \widehat{X},(\widehat{4})(\widehat{X} \widehat{A})^{T}=\widehat{X} \widehat{A} \tag{1.1}
\end{equation*}
$$

and the unique dual matrix \widehat{X} is denoted by $\widehat{X}=\widehat{A}^{\dagger}$. Especially, the DMPGI has expanded the application range of the generalized inverse theory. It is worth noting that, unlike real matrix, dual matrix may not have DMPGI. When $A_{1}=0, \widehat{A}=A_{0}$ is a real matrix, then the Moore-Penrose generalized inverse of A_{0} is the unique matrix X satisfying the following four Penrose equations:
(1) $A_{0} X A_{0}=A_{0}$, (2) $X A_{0} X=X$, (3) $\left(A_{0} X\right)^{T}=A_{0} X$, (4) $\left(X A_{0}\right)^{T}=X A_{0}$
and the unique matrix X is denoted by $X=A_{0}^{\dagger}$. Let $A_{0}\{i, \ldots, k\}$ denote the set of solutions which satisfy equations $(i), \ldots,(k)$ from the above four Penrose equations (1)(4). Therefore X can be called $\{i, \ldots, k\}$-inverse of A_{0}, and denoted by $A_{0}^{(i, \ldots, k)}$ (see [2]). It is well known that a variety of generalized inverses, such as Drazin inverse, group inverse, core inverse and core-EP inverse, have been established successively. The achievements of generalized inverse theory have been greatly enriched, and the scope of their applications has been expanded to physics, statistics, etc. For more information about generalized inverse theory and its applications, please refer to [2, 11, 16].

Full-rank decomposition is one of the basic decompositions in matrix theory. It has the following definitions [2, 18]: Let $A \in \mathbb{R}_{m \times n}$ and $\operatorname{rk}(A)=r$, then there exist full column rank matrix $F \in \mathbb{R}_{m \times r}$ and full row rank matrix $G \in \mathbb{R}_{r \times n}$ such that $A=F G$. Not only does full rank decomposition play an important role in solving generalized inverse matrix, but also has a wide range of applications in many fields such as mathematical statistics, systems theory, optimization and cybernetics. For example, the full rank decomposition can be used to represent the $\{i, \ldots, k\}$-inverse of matrix $A[2]$: Let $A \in \mathbb{R}_{m \times n}, \operatorname{rk}(A)=r$, and its full rank decomposition is $A=F G$, in which $\operatorname{rk}(F)=\operatorname{rk}(G)=r$, then

$$
\begin{align*}
A^{\dagger} & =G^{\dagger} F^{\dagger}, G^{\dagger}=G^{T}\left(G G^{T}\right)^{-1}, F^{\dagger}=\left(F^{T} F\right)^{-1} F^{T}, \tag{1.2}\\
G^{(i)} F^{(1)} & \in A\{i\}, i=1,2,4 \text { and } G^{(1)} F^{(j)} \in A\{j\}, j=1,2,3 . \tag{1.3}
\end{align*}
$$

For more details, please refer to literatures [2, 11].
In this paper, we extend the full rank decomposition from real matrix to dual matrix, introduce the dual r-rank decomposition, get some equivalent characterizations of the existence of dual r-rank decomposition, and give a method of calculating dual r-rank decomposition. By applying the decomposition, we get characterizations of DMPGI and relationships among dual Penrose equations. Furthermore, we give a method of calculating DMPGI and some examples. In addition, we consider two special dual matrices: dual EP matrix and dual idempotent matrix. We give the definition of dual EP matrix, and get characterizations and dual r-rank decompositions of both dual EP matrix and dual idempotent matrix. At last, by applying the dual r-rank decomposition and definitions of these special dual matrix, we get characterizations of both DMPGIs of dual EP matrix and dual idempotent matrix.

2. Preliminaries

This section provides several results that will be used in the following sections.
Lemma 2.1 ([15]). Let $\widehat{A} \in \mathbb{D}_{m \times n}$ and $\widehat{A}=A_{0}+\epsilon A_{1}$. Then the DMPGI of \widehat{A} exists if and only if

$$
\begin{equation*}
\left(I_{m}-A_{0} A_{0}^{\dagger}\right) A_{1}\left(I_{n}-A_{0}^{\dagger} A_{0}\right)=0 \tag{2.1}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
\widehat{A}^{\dagger}=A_{0}^{\dagger}-\varepsilon\left(A_{0}^{\dagger} A_{1} A_{0}^{\dagger}\right. & -\left(A_{0}^{T} A_{0}\right)^{\dagger} A_{1}^{T}\left(I_{m}-A_{0} A_{0}^{\dagger}\right) \\
& \left.-\left(I_{n}-A_{0}^{\dagger} A_{0}\right) A_{1}^{T}\left(A_{0} A_{0}^{T}\right)^{\dagger}\right) \tag{2.2}
\end{align*}
$$

Lemma $2.2(\underline{14]})$. Let $\widehat{A_{1}} \in \mathbb{D}_{m \times r}, \widehat{A_{2}} \in \mathbb{D}_{r \times n}, \widehat{A_{1}}=A_{2}+\epsilon A_{3}, \widehat{A_{2}}=A_{4}+\epsilon A_{5}$, $\operatorname{rk}\left(A_{2}\right)=r$ and $\operatorname{rk}\left(A_{4}\right)=r$. Then

$$
\begin{align*}
{\widehat{A_{1}}}^{\dagger} & =\left({\widehat{A_{1}}}^{T} \widehat{A_{1}}\right)^{-1}{\widehat{A_{1}}}^{T} \tag{2.3}\\
& =\left(A_{2}^{T} A_{2}\right)^{-1} A_{2}^{T}+\epsilon\left(\left(A_{2}^{T} A_{2}\right)^{-1} A_{3}^{T}-\left(A_{2}^{T} A_{2}\right)^{-1} Q_{A_{2}, A_{3}}^{S}\left(A_{2}^{T} A_{2}\right)^{-1} A_{2}^{T}\right) \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
{\widehat{A_{2}}}^{\dagger} & ={\widehat{A_{2}}}^{T}\left(\widehat{A_{2}}{\widehat{A_{2}}}^{T}\right)^{-1} \tag{2.5}\\
& =A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1}+\epsilon\left(A_{5}^{T}\left(A_{4} A_{4}^{T}\right)^{-1}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} Q_{A_{4}^{T}, A_{5}^{T}}^{S}\left(A_{4} A_{4}^{T}\right)^{-1}\right) \tag{2.6}
\end{align*}
$$

where $Q_{A_{2}, A_{3}}^{S}=A_{2}^{T} A_{3}+A_{3}^{T} A_{2}$ and $Q_{A_{4}^{T}, A_{5}^{T}}^{S}=A_{4} A_{5}^{T}+A_{5} A_{4}^{T}$.

Lemma 2.3 ([8]). Let $A \in \mathbb{R}_{m \times p}, B \in \mathbb{R}_{q \times n}$ and $C \in \mathbb{R}_{m \times n}$. Then the matrix equation

$$
\begin{equation*}
A X+Y B=C \tag{2.7}
\end{equation*}
$$

is consistent if and only if

$$
\begin{equation*}
\left(I_{m}-A A^{\dagger}\right) C\left(I_{n}-B^{\dagger} B\right)=0 \tag{2.8}
\end{equation*}
$$

then the solution of this equation is

$$
\left\{\begin{array}{l}
X=A^{\dagger} C+U B+\left(I_{p}-A^{\dagger} A\right) V \tag{2.9a}\\
Y=\left(I_{m}-A A^{\dagger}\right) C B^{\dagger}-A U+W\left(I_{q}-B B^{\dagger}\right)
\end{array}\right.
$$

where $U \in \mathbb{R}_{p \times q}$, $V \in \mathbb{R}_{p \times n}$ and $W \in \mathbb{R}_{m \times q}$ are arbitrary.

3. Dual r-rank Decomposition

In this section we extend the full rank decomposition of real matrix to dual matrix. We also give the definitions of r-row full rank dual matrix, r-column full rank dual matrix, and dual r-rank decomposition. Furthermore, we give characterizations of the existence of the dual r-rank decomposition, a method of calculating the decomposition, and two examples.
${ }_{40}$ Definition 3.1. Let $\widehat{A_{1}} \in \mathbb{D}_{m \times r}, \widehat{A_{2}} \in \mathbb{D}_{r \times n}, \widehat{A_{1}}=A_{2}+\epsilon A_{3}$ and $\widehat{A_{2}}=A_{4}+\epsilon A_{5}$. If the real part matrix A_{2} of $\widehat{A_{1}}$ is a column full rank matrix, then we call $\widehat{A_{1}} r$-column full rank dual matrix; if the real part matrix A_{4} of $\widehat{A_{2}}$ is a row full rank matrix, then we call $\widehat{A_{2}}$ r-row full rank dual matrix.

Definition 3.2. (Dual r-rank Decomposition) Let $\widehat{A} \in \mathbb{D}_{m \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$, $\operatorname{rk}\left(A_{0}\right)=r$, and $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}. If there exist an r-column full rank dual matrix $\widehat{A_{1}}=A_{2}+\epsilon A_{3}$ and an r-row full rank dual matrix $\widehat{A_{2}}=A_{4}+\epsilon A_{5}$, such that

$$
\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}
$$

which we call a dual r-rank decomposition of \widehat{A}.
From Definition 3.2, the following results can be inferred.

Theorem 3.1. Let $\widehat{A} \in \mathbb{D}_{m \times n}, \widehat{A}=A_{0}+\epsilon A_{1}, \operatorname{rk}\left(A_{0}\right)=r$, and $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}. Then the dual r-rank decomposition of \widehat{A} exists if and only if

$$
\begin{equation*}
\left(I_{m}-A_{2} A_{2}^{\dagger}\right) A_{1}\left(I_{n}-A_{4}^{\dagger} A_{4}\right)=0 . \tag{3.1}
\end{equation*}
$$

Furthermore, if \widehat{A} has a dual r-rank decomposition $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$, in which $\widehat{A_{1}}=A_{2}+\epsilon A_{3}$ and $\widehat{A_{2}}=A_{4}+\epsilon A_{5}$, then

$$
\left\{\begin{array}{l}
A_{3}=\left(I_{m}-A_{2} A_{2}^{\dagger}\right) A_{1} A_{4}^{\dagger}-A_{2} P, \tag{3.2}\\
A_{5}=A_{2}^{\dagger} A_{1}+P A_{4},
\end{array}\right.
$$

for arbitrary $P \in \mathbb{R}_{r \times r}$.
Proof. " $\Rightarrow "$: Suppose the dual r-rank decomposition of the dual matrix \widehat{A} exists. Let $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ be a dual r-rank decomposition of \widehat{A}, where

$$
\widehat{A_{1}}=A_{2}+\epsilon Y \text { and } \widehat{A_{2}}=A_{4}+\epsilon X .
$$

Then $A_{0}+\epsilon A_{1}=\left(A_{2}+\epsilon Y\right)\left(A_{4}+\epsilon X\right)$. By expanding this equation, we have

$$
\begin{equation*}
A_{2} X+Y A_{4}=A_{1} . \tag{3.3}
\end{equation*}
$$

By applying Lemma 2.3 to the equation (3.3), we get (3.1).
$" \Leftarrow "$: Let $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}. Because (3.1) holds, by applying Lemma 2.3 we get that the equation $A_{2} X+Y A_{4}=A_{1}$ is consistent, and the solution to this equation is

$$
\left\{\begin{array}{l}
X=A_{2}^{\dagger} A_{1}+P A_{4}, \tag{3.4}\\
Y=\left(I_{m}-A_{2} A_{2}^{\dagger}\right) A_{1} A_{4}^{\dagger}-A_{2} P,
\end{array}\right.
$$

for arbitrary $P \in \mathbb{R}_{r \times r}$. Let $\widehat{A_{1}}=A_{2}+\epsilon Y$ and $\widehat{A_{2}}=A_{4}+\epsilon X$. Then $\widehat{A_{1}}=A_{2}+\epsilon Y$ is an r-column full rank dual matrix; $\widehat{A_{2}}=A_{4}+\epsilon X$ is an r-row full rank dual matrix;

$$
\widehat{A_{1} \widehat{A_{2}}}=\left(A_{2}+\epsilon Y\right)\left(A_{4}+\epsilon X\right)=A_{2} A_{4}+\epsilon\left(A_{2} X+Y A_{4}\right)=A_{0}+\epsilon A_{1}=\widehat{A} .
$$

Therefore, the dual r-rank decomposition of \widehat{A} exists.
In summary, the dual r-rank decomposition of \widehat{A} exists if and only if the equation (3.1) ${ }_{50}$ is consistent. Furthermore, by applying (3.4), we get (3.2).

Based on Theorem 3.1, the detailed calculation process of dual r-rank decomposition is given as follows, and corresponding examples are also given to verify this process.
(1). Input matrix A_{0} and A_{1}, and the form of dual matrix \widehat{A} is $\widehat{A}=A_{0}+\epsilon A_{1}, A_{i} \in$ $\mathbb{R}_{m \times n}, \operatorname{rk}\left(A_{0}\right)=r ;$
(2). Perform full rank decomposition on $A_{0}: A_{0}=A_{2} A_{4}$, in which A_{2} is a column full rank matrix and A_{4} is a row full rank matrix;
(3). Calculate the Moore-Penrose inverses of A_{2} and $A_{4}: A_{2}^{\dagger}$ and A_{4}^{\dagger};
(4). Check whether the matrix equation $A_{2} X+Y A_{4}=A_{1}$ is consistent:

$$
\left(I_{m}-A_{2} A_{2}^{\dagger}\right) A_{1}\left(I_{n}-A_{4}^{\dagger} A_{4}\right)=0
$$

If the matrix equation holds, then proceed to step (5);
(5). Calculate the solution to matrix equation $A_{2} X+Y A_{4}=A_{1}$:

$$
\left\{\begin{array}{l}
X=A_{2}^{\dagger} A_{1}+P A_{4} \\
Y=\left(I_{m}-A_{2} A_{2}^{\dagger}\right) A_{1} A_{4}^{\dagger}-A_{2} P
\end{array}\right.
$$

where P is arbitrary;
(6). Get one dual r-rank decomposition of the dual matrix $\widehat{A}: \widehat{A}=\widehat{A_{1}} \widehat{A_{2}}=\left(A_{2}+\right.$ $\left.\epsilon A_{3}\right)\left(A_{4}+\epsilon A_{5}\right)$.

Example 3.1. Let

$$
\widehat{A}=A_{0}+\epsilon A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\epsilon\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

By performing full rank decomposition of $A_{0}=A_{2} A_{4}$ where

$$
A_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad A_{4}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

we have

$$
A_{2}^{\dagger}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad \text { and } \quad A_{4}^{\dagger}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

and by calculating $\left(I_{2}-A_{2} A_{2}^{\dagger}\right) A_{1}\left(I_{2}-A_{4}^{\dagger} A_{4}\right)$, we can get

$$
\begin{aligned}
\left(I_{2}-A_{2} A_{2}^{\dagger}\right) A_{1}\left(I_{2}-A_{4}^{\dagger} A_{4}\right) & =\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right)\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \neq 0
\end{aligned}
$$

By applying Theorem 3.1, we know that \widehat{A} does not have the dual r-rank decomposition.
Example 3.2. Calculate the dual r-rank decomposition of

$$
\widehat{A}=A_{0}+\epsilon A_{1}=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
3 & 3 & 2
\end{array}\right]+\epsilon\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 14
\end{array}\right]
$$

The rank of matrix A_{0} is $\operatorname{rk}\left(A_{0}\right)=2$. By performing full rank decomposition of $A_{0}=A_{2} A_{4}$ where

$$
A_{2}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right] \quad \text { and } A_{4}=\left[\begin{array}{ccc}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]
$$

we have

$$
A_{2}^{\dagger}=\left[\begin{array}{ccc}
-\frac{4}{9} & \frac{5}{9} & \frac{1}{9} \\
\frac{5}{9} & -\frac{4}{9} & \frac{1}{9}
\end{array}\right] \text { and } A_{4}^{\dagger}=\left[\begin{array}{cc}
\frac{10}{11} & -\frac{1}{11} \\
-\frac{1}{11} & \frac{10}{11} \\
\frac{3}{11} & \frac{3}{11}
\end{array}\right]
$$

It is easy to check that $\left(I_{3}-A_{2} A_{2}^{\dagger}\right) A_{1}\left(I_{3}-A_{4}^{\dagger} A_{4}\right)=0$. Therefore, the matrix equation (3.3) is consistent. Let

$$
P=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-1 & \frac{1}{2}
\end{array}\right]
$$

Then the solution to (3.3) is

$$
\left\{\begin{array}{l}
X=A_{2}^{\dagger} A_{1}+P A_{4}=\left[\begin{array}{ccc}
\frac{3}{2} & \frac{13}{6} & \frac{29}{9} \\
-1 & \frac{7}{6} & \frac{31}{18}
\end{array}\right] \\
Y=\left(I_{3}-A_{2} A_{2}^{\dagger}\right) A_{1} A_{4}^{\dagger}-A_{2} P=\left[\begin{array}{lr}
\frac{1}{2} & -\frac{1}{2} \\
0 & -\frac{1}{2} \\
\frac{3}{2} & -4
\end{array}\right],
\end{array}\right.
$$

Let $X=A_{5}$ and $Y=A_{3}$, then we can get

$$
\left\{\begin{array}{l}
\widehat{A_{1}}=A_{2}+\epsilon A_{3}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]+\epsilon\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
0 & -\frac{1}{2} \\
\frac{3}{2} & -4
\end{array}\right] \\
\widehat{A_{2}}=A_{4}+\epsilon A_{5}=\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]+\epsilon\left[\begin{array}{ccc}
\frac{3}{2} & \frac{13}{6} & \frac{29}{9} \\
-1 & \frac{7}{6} & \frac{31}{18}
\end{array}\right]
\end{array}\right.
$$

Next we verify that $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ is a dual r-rank decomposition of \widehat{A}. Multiplying $\widehat{A_{1}}$ by $\widehat{A_{2}}$ gives

$$
\begin{aligned}
\widehat{A_{1}} \widehat{A_{2}} & =\left(A_{2}+\epsilon A_{3}\right)\left(A_{4}+\epsilon A_{5}\right)=A_{2} A_{4}+\epsilon A_{2} A_{5}+\epsilon A_{3} A_{4}=A_{0}+\epsilon A_{1} \\
& =\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
3 & 3 & 2
\end{array}\right]+\epsilon\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 14
\end{array}\right] .
\end{aligned}
$$

Hence, $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ is a dual r-rank decomposition of \widehat{A}.
Remark 3.1. Since the full rank decomposition of the real part matrix A_{0} of \widehat{A} is not unique, the solutions X and Y to the matrix equation (3.3) are not unique. Let P is a zero matrix. By applying Theorem [3.1, it is obvious that $A_{2}+\epsilon\left(I_{m}-A_{2} A_{2}^{\dagger}\right) A_{1} A_{4}^{\dagger}$ is an r-column full rank dual matrix; $A_{4}+\epsilon A_{2}^{\dagger} A_{1}$ is an r-row full rank dual matrix;

$$
\begin{equation*}
\widehat{A}=\left(A_{2}+\epsilon\left(I_{m}-A_{2} A_{2}^{\dagger}\right) A_{1} A_{4}^{\dagger}\right)\left(A_{4}+\epsilon A_{2}^{\dagger} A_{1}\right) . \tag{3.5}
\end{equation*}
$$

Therefore, (3.5) is one dual r-rank decomposition of \widehat{A}.

4. Applications of Dual r-rank Decomposition

In this section, we apply dual r-rank decomposition to studying several related problems, including characterization and calculation of DMPGI, special dual matrices and their properties, and dual Penrose equations.

4.1. Dual Moore-Penrose Generalized Inverse

Let $A_{0} \in \mathbb{R}_{m \times n}, \operatorname{rk}\left(A_{0}\right)=r$, and $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}. It is well known that

$$
\begin{equation*}
A_{0} A_{0}^{\dagger}=A_{2} A_{2}^{\dagger} \text { and } A_{0}^{\dagger} A_{0}=A_{4}^{\dagger} A_{4} . \tag{4.1}
\end{equation*}
$$

70 By using (4.1), we can get the following Theorems.
Theorem 4.1. Let $\widehat{A} \in \mathbb{D}_{m \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. Then the following conditions are equivalent:
(a). the dual r-rank decomposition of \widehat{A} exists;
(b). $\left(I_{m}-A_{0} A_{0}^{\dagger}\right) A_{1}\left(I_{n}-A_{0}^{\dagger} A_{0}\right)=0$;
(c). the DMPGI of \widehat{A} exists.

Proof. (a) \Rightarrow (b): If the dual r-rank decomposition of \widehat{A} exists, according to Theorem 3.1 we can get (3.1). It follows from (4.1) that $\left(I_{m}-A_{0} A_{0}^{\dagger}\right) A_{1}\left(I_{n}-A_{0}^{\dagger} A_{0}\right)=0$ holds.
$(\mathrm{b}) \Leftarrow(\mathrm{a})$: When $\left(I_{m}-A_{0} A_{0}^{\dagger}\right) A_{1}\left(I_{n}-A_{0}^{\dagger} A_{0}\right)=0$ holds, by applying (4.1) we get $\left(I_{m}-A_{2} A_{2}^{\dagger}\right) A_{1}\left(I_{n}-A_{4}^{\dagger} A_{4}\right)=0$. It follows from Theorem 3.1, that the dual r-rank ${ }^{80}$ decomposition of \widehat{A} exists.

Since DMPGI of \widehat{A} exists if and only if $\left(I_{m}-A_{0} A_{0}^{\dagger}\right) A_{1}\left(I_{n}-A_{0}^{\dagger} A_{0}\right)=0$, then (b) $\Leftrightarrow(\mathrm{c})$.

Theorem 4.2. Let $\widehat{A} \in \mathbb{D}_{m \times n}, \widehat{A}=A_{0}+\epsilon A_{1}, \operatorname{rk}\left(A_{0}\right)=r$, the dual r-rank decomposition of \widehat{A} exist, and the dual r-rank decomposition of \widehat{A} be $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$. Then

$$
\begin{align*}
\widehat{A}^{\dagger} & ={\widehat{A_{2}}}^{\dagger}{\widehat{A_{1}}}^{\dagger} \tag{4.2}\\
& ={\widehat{A_{2}}}^{T}\left({\left.\widehat{A_{2}}{\widehat{A_{2}}}^{T}\right)^{-1}\left({\widehat{A_{1}}}^{T}{\widehat{A_{1}}}^{-1}{\widehat{A_{1}}}^{T} .\right.}^{\text {. }} .\right. \tag{4.3}
\end{align*}
$$

Proof. Since the dual r-rank decomposition of \widehat{A} exists, from Theorem 4.1 we see that the DMPGI of \widehat{A} exists. Let $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ be a dual r-rank decomposition of \widehat{A}, and denote

$$
\widehat{X}={\widehat{A_{2}}}^{T}\left(\widehat{A_{2}}{\widehat{A_{2}}}^{T}\right)^{-1}\left({\widehat{A_{1}}}^{T}{\widehat{A_{1}}}^{-1}\right)^{-1}{\widehat{A_{1}}}^{T}
$$

We verify that \widehat{X} satisfies the four dual Penrose equations(1.1):
(1) $\widehat{A} \widehat{X} \widehat{A}=\widehat{A_{1}}{\widehat{A_{2}}}_{2}^{T}\left({\widehat{A_{2}}}_{2}^{T}{\widehat{A_{2}}}^{-1}\left({\widehat{A_{1}}}^{T}{\widehat{A A_{1}}}^{-1} \widehat{A}^{T} \widehat{A_{1}} \widehat{A_{2}}=\widehat{A}\right.\right.$;
(2) $\widehat{X} \widehat{A} \widehat{X}={\widehat{A_{2}}}^{T}\left({\widehat{A_{2}}}_{2}^{T}\right)^{-1}\left({\widehat{A_{1}}}^{T}{\widehat{A_{1}}}^{-1}\right)^{-1}{\widehat{A_{1}}}^{T}{\widehat{A_{1}}}_{A_{2}}^{A_{2}}{\widehat{A_{2}}}^{T}\left({\widehat{A_{2}}}_{A_{2}}{ }^{T}\right)^{-1}\left({\widehat{A_{1}}}^{T}{\widehat{A_{1}}}^{-1}\right)^{T}{\widehat{A_{1}}}^{T}=\widehat{X}$;
(3) $(\widehat{A} \widehat{X})^{T}=\left(\widehat{A_{1}}{\widehat{A_{2}}}_{A_{2}}^{T}\left(\widehat{A_{2}}{\widehat{A_{2}}}^{T}\right)^{-1}\left({\widehat{A_{1}}}^{T} \widehat{A_{1}}\right)^{-1}{\widehat{A_{1}}}^{T}\right)^{T}=\widehat{A_{1}}\left({\widehat{A_{1}}}^{T}{\widehat{A_{1}}}^{-1} \widehat{A}_{1}^{T}=\widehat{A} \hat{X}\right.$;
(4) $(\widehat{X} \widehat{A})^{T}=\left({\widehat{A_{2}}}^{T}\left(\widehat{A_{2}}{\widehat{A_{2}}}^{T}\right)^{-1}\left({\widehat{A_{1}}}^{T} \widehat{A_{1}}\right)^{-1}{\widehat{A_{1}}}^{T} \widehat{A_{1}}{\widehat{A_{2}}}^{T}\right)^{T}={\widehat{A_{2}}}^{T}\left(\widehat{A_{2}}{\widehat{A_{2}}}^{T}\right)^{-1} \widehat{A_{2}}=\widehat{X} \widehat{A}$.

Since \widehat{A}^{\dagger} satisfying the four equations is unique, then $\widehat{X}=\widehat{A}^{\dagger}$.
Furthermore, according to Lemma [2.2, we see ${\widehat{A_{1}}}^{\dagger}=\left({\widehat{A_{1}}}^{T}{\widehat{A_{1}}}^{-1}{\widehat{A_{1}}}^{T}\right.$ and ${\widehat{A_{2}}}^{\dagger}=$ ${ }_{85}{\widehat{A_{2}}}^{T}\left({\widehat{A_{2}}}_{\widehat{A}_{2}}\right)^{-1}$. So, \widehat{A}^{\dagger} can be further expressed as $\widehat{A}^{\dagger}={\widehat{A_{2}}}^{\dagger}{\widehat{A_{1}}}^{\dagger}$, that is, (4.2).

Theorem 4.3. Let $\widehat{A} \in \mathbb{D}_{m \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. Let $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}. Let $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ be a dual r-rank decomposition of \widehat{A} where
$\widehat{A_{1}}=A_{2}+\epsilon A_{3}$ and $\widehat{A_{2}}=A_{4}+\epsilon A_{5}$. Then the DMPGI of \widehat{A} exists, and

$$
\begin{align*}
\widehat{A}^{\dagger}=A_{4}^{\dagger} A_{2}^{\dagger}+\epsilon\left(A_{4}^{\dagger}\left(A_{2}^{T} A_{2}\right)^{-1}\right. & \left(A_{3}^{T}-Q_{A_{2}, A_{3}}^{S} A_{2}^{\dagger}\right) \\
& \left.+\left(A_{5}^{T}-A_{4}^{\dagger} Q_{A_{4}^{T}, A_{5}^{T}}^{S}\right)\left(A_{4} A_{4}^{T}\right)^{-1} A_{2}^{\dagger}\right), \tag{4.4}
\end{align*}
$$

where $Q_{A_{4}^{T}, A_{5}^{T}}^{S}=A_{4} A_{5}^{T}+A_{5} A_{4}^{T}$ and $Q_{A_{2}, A_{3}}^{S}=A_{2}^{T} A_{3}+A_{3}^{T} A_{2}$.
Proof. According to Lemma 2.2. by substituting (2.4) and (2.6) into (4.2), we can get

$$
\begin{aligned}
\widehat{A}^{\dagger}= & \left(A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1}+\epsilon\left(A_{5}^{T}\left(A_{4} A_{4}^{T}\right)^{-1}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} Q_{A_{4}^{T}, A_{5}^{T}}^{S}\left(A_{4} A_{4}^{T}\right)^{-1}\right)\right) \\
& \left(\left(A_{2}^{T} A_{2}\right)^{-1} A_{2}^{T}+\epsilon\left(\left(A_{2}^{T} A_{2}\right)^{-1} A_{3}^{T}-\left(A_{2}^{T} A_{2}\right)^{-1} Q_{A_{2}, A_{3}}^{S}\left(A_{2}^{T} A_{2}\right)^{-1} A_{2}^{T}\right)\right) .
\end{aligned}
$$

Furthermore, from $A_{4}^{\dagger}=A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1}$ and $A_{2}^{\dagger}=\left(A_{2}^{T} A_{2}\right)^{-1} A_{2}^{T}$, we can get the formula for DMPGI \widehat{A}^{\dagger} as shown in (4.4).

Based on Theorem4.3 the detailed calculation process of DMPGI is given below, and one corresponding example is also given to verify.
(1). Input matrix A_{0}, A_{1}, and the form of the dual matrix \widehat{A} is $\widehat{A}=A_{0}+\epsilon A_{1}, A_{i} \in$ $\mathbb{R}_{m \times n}, \operatorname{rk}\left(A_{0}\right)=r ;$
(2). According to the method of calculating dual r-rank decomposition, we get $\widehat{A}=$ $\widehat{A_{1}} \widehat{A_{2}}$ where $\widehat{A_{1}}=A_{2}+\epsilon A_{3}$ is an r-column full rank dual matrix and $\widehat{A_{2}}=A_{4}+\epsilon A_{5}$ is an r-row full rank dual matrix;
(3). Calculate $A_{4}^{\dagger}, A_{2}^{\dagger}$ and $A_{4}^{\dagger} A_{2}^{\dagger}$;
(4). Calculate $A_{4}^{\dagger}\left(A_{2}^{T} A_{2}\right)^{-1}\left(A_{3}^{T}-Q_{A_{2}, A_{3}}^{S} A_{2}^{\dagger}\right)+\left(A_{5}^{T}-A_{4}^{\dagger} Q_{A_{4}^{T}, A_{5}^{T}}^{S}\right)\left(A_{4} A_{4}^{T}\right)^{-1} A_{2}^{\dagger}$;
(5). Get the DMPGI \widehat{A}^{\dagger} of \widehat{A}.

Example 4.1. Let $\widehat{A}, A_{2}, A_{3}, A_{4}$ and A_{5} be as given in Example 3.2, By applying 4.4,
we can get the following result:

$$
\begin{aligned}
& \widehat{X}=A_{4}^{\dagger} A_{2}^{\dagger}+\epsilon\left(A_{4}^{\dagger}\left(A_{2}^{T} A_{2}\right)^{-1}\left(A_{3}^{T}-Q_{A_{2}, A_{3}}^{S} A_{2}^{\dagger}\right)+\left(A_{5}^{T}-A_{4}^{\dagger} Q_{A_{4}^{T}, A_{5}^{T}}^{S}\right)\left(A_{4} A_{4}^{T}\right)^{-1} A_{2}^{\dagger}\right) \\
& =\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\left(\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{-1}\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\right)^{-1}\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T} \\
& +\epsilon\left\{\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\left(\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\right)^{-1}\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]\right)^{-1}\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
0 & -\frac{1}{2} \\
\frac{3}{2} & -4
\end{array}\right]^{T}\right. \\
& -\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\left(\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\right)^{-1}\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}\left[\begin{array}{ll}
\frac{1}{2} & -\frac{1}{2} \\
0 & -\frac{1}{2} \\
\frac{3}{2} & -4
\end{array}\right]+\left[\begin{array}{ll}
\frac{1}{2} & -\frac{1}{2} \\
0 & -\frac{1}{2} \\
\frac{3}{2} & -4
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
105 & \times\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}+\left[\begin{array}{ccc}
\frac{3}{2} & \frac{13}{6} & \frac{29}{9} \\
-1 & \frac{7}{6} & \frac{31}{18}
\end{array}\right]^{T}\left(\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\right)^{-1} \\
& \times\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}+\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\left(\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]^{T}\right)^{-1} \\
& \times\left(\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{lll}
\frac{3}{2} & \frac{13}{6} & \frac{29}{9} \\
-1 & \frac{7}{6} & \frac{31}{18}
\end{array}\right]^{T}+\left[\begin{array}{ccc}
\frac{3}{2} & \frac{13}{6} & \frac{29}{9} \\
-1 & \frac{7}{6} & \frac{31}{18}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right)^{T}\right. \\
& \times\left(\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & \frac{1}{3} \\
0 & 1 & \frac{1}{3}
\end{array}\right)^{T}\left(\left[\begin{array}{cc}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 3
\end{array}\right]^{T}\right\} \\
& =\left[\begin{array}{ccc}
-\frac{5}{11} & \frac{6}{11} & \frac{1}{11} \\
\frac{6}{11} & -\frac{5}{11} & \frac{1}{11} \\
\frac{1}{33} & \frac{1}{33} & \frac{2}{33}
\end{array}\right]+\epsilon\left[\begin{array}{ccc}
-\frac{31}{33} & -\frac{16}{33} & \frac{1}{33} \\
\frac{2}{11} & \frac{7}{11} & -\frac{8}{11} \\
-\frac{25}{99} & \frac{38}{99} & \frac{10}{99}
\end{array}\right] .
\end{aligned}
$$

Furthermore, we prove that \widehat{X} satisfies the following four Penrose equations::
(1). $\widehat{A} \widehat{X} \widehat{A}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 1 & 1 \\ 3 & 3 & 2\end{array}\right]+\epsilon\left[\begin{array}{ccc}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 14\end{array}\right]=\widehat{A}$;
(2). $\widehat{X} \widehat{A} \widehat{X}=\left[\begin{array}{ccc}-\frac{5}{11} & \frac{6}{11} & \frac{1}{11} \\ \frac{6}{11} & -\frac{5}{11} & \frac{1}{11} \\ \frac{1}{33} & \frac{1}{33} & \frac{2}{33}\end{array}\right]+\epsilon\left[\begin{array}{ccc}-\frac{31}{33} & -\frac{16}{33} & \frac{1}{33} \\ \frac{2}{11} & \frac{7}{11} & -\frac{8}{11} \\ -\frac{25}{99} & \frac{38}{99} & \frac{10}{99}\end{array}\right]=\widehat{X}$;
(3). $(\widehat{A} \widehat{X})^{T}=\left(\left[\begin{array}{ccc}\frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{2}{3}\end{array}\right]+\epsilon\left[\begin{array}{ccc}\frac{10}{9} & \frac{1}{9} & -\frac{4}{9} \\ \frac{1}{9} & -\frac{8}{9} & \frac{5}{9} \\ -\frac{4}{9} & \frac{5}{9} & -\frac{2}{9}\end{array}\right]\right)^{T}=\widehat{A} \widehat{X}$;
(4). $(\widehat{X} \widehat{A})^{T}=\left(\left[\begin{array}{ccc}\frac{10}{11} & -\frac{1}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{10}{11} & \frac{3}{11} \\ \frac{3}{11} & \frac{3}{11} & \frac{2}{11}\end{array}\right]+\epsilon\left[\begin{array}{ccc}-\frac{10}{11} & -\frac{9}{11} & \frac{12}{11} \\ -\frac{9}{11} & -\frac{8}{11} & \frac{9}{11} \\ \frac{12}{11} & \frac{9}{11} & \frac{18}{11}\end{array}\right]\right)^{T}=\widehat{X} \widehat{A}$.

115 Therefore, $\widehat{A}^{\dagger}=\widehat{X}=\left[\begin{array}{ccc}-\frac{5}{11} & \frac{6}{11} & \frac{1}{11} \\ \frac{6}{11} & -\frac{5}{11} & \frac{1}{11} \\ \frac{1}{33} & \frac{1}{33} & \frac{2}{33}\end{array}\right]+\epsilon\left[\begin{array}{ccc}-\frac{31}{33} & -\frac{16}{33} & \frac{1}{33} \\ \frac{2}{11} & \frac{7}{11} & -\frac{8}{11} \\ -\frac{25}{99} & \frac{38}{99} & \frac{10}{99}\end{array}\right]$.

4.2. Dual Idempotent Matrix

In 14], Udwadia discussed several types of special dual idempotent matrices, such as $\widehat{A} \widehat{A}^{\dagger}, \widehat{A}^{\dagger} \widehat{A}, I_{m}-\widehat{A} \widehat{A}^{\dagger}$ and $I_{n}-\widehat{A}^{\dagger} \widehat{A}$. In this subsection, we give some characterizations of dual idempotent matrix and its DMPGI by applying the dual r-rank decomposition.

Definition 4.1 (14]). Let $\widehat{A} \in \mathbb{D}_{n \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. If \widehat{A} satisfies $\widehat{A}^{2}=\widehat{A}$, then \widehat{A} is called dual idempotent matrix.

Theorem 4.4. Let $\widehat{A} \in \mathbb{D}_{n \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. Then \widehat{A} is a dual idempotent matrix if and only if

$$
\begin{equation*}
A_{0}=A_{0}^{2} \quad \text { and } \quad A_{1}=A_{0} A_{1}+A_{1} A_{0} . \tag{4.5}
\end{equation*}
$$

Proof. " \Rightarrow ": If $\widehat{A}=A_{0}+\epsilon A_{1}$ is a dual idempotent matrix, then we have $\widehat{A}^{2}=\widehat{A}$ and $A_{0}^{2}+\epsilon\left(A_{0} A_{1}+A_{1} A_{0}\right)=A_{0}+\epsilon A_{1}$. Therefore (4.5) is established.
$" \Leftarrow "$: Since $\widehat{A}=A_{0}+\epsilon A_{1}$, it is obvious that $\widehat{A}^{2}=A_{0}^{2}+\epsilon\left(A_{0} A_{1}+A_{1} A_{0}\right)$. It follows from (4.5) that $\widehat{A}^{2}=A_{0}+\epsilon A_{1}=\widehat{A}$. Therefore, according to Definition 4.1 we see that \widehat{A} is a dual idempotent matrix.

Corollary 4.5. Let $\widehat{A} \in \mathbb{D}_{n \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. If \widehat{A} is a dual idempotent matrix, and the real part matrix A_{0} is invertible, then $\widehat{A}=I_{n}$.

Proof. According to the Theorem 4.4 if \widehat{A} is a dual idempotent matrix, then the equation
(4.5) holds. If the real matrix A_{0} is invertible, we can get $A_{0}=I_{n}$. Since $A_{0}=I_{n}$ and $A_{1}=A_{0} A_{1}+A_{1} A_{0}$, it is easy to check that $A_{1}=0$. Hence, $\widehat{A}=I_{n}$.

Theorem 4.6. Let $\widehat{A} \in \mathbb{D}_{n \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. Let $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}. Then the dual r-rank decomposition of \widehat{A} exists, and

$$
\begin{equation*}
\widehat{A}=\left(A_{2}+\epsilon A_{1} A_{2}\right)\left(A_{4}+\epsilon A_{4} A_{1}\right) \tag{4.6}
\end{equation*}
$$

which is a dual r-rank decomposition of \widehat{A}.
Proof. Let \widehat{A} be a dual idempotent matrix, then the equation (4.5) holds. Let $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}, where A_{2} is a column full rank matrix, and A_{4} is a row full rank matrix. Write $\widehat{X}=A_{2}+\epsilon A_{1} A_{2}$ and $\widehat{Y}=A_{4}+\epsilon A_{4} A_{1}$. It is obvious that \widehat{X} is an r-column full rank dual matrix and \widehat{Y} is an r-row full rank dual matrix. It follows from (4.5) that

$$
\begin{aligned}
\widehat{X} \widehat{Y} & =\left(A_{2}+\epsilon A_{1} A_{2}\right)\left(A_{4}+\epsilon A_{4} A_{1}\right)=A_{2} A_{4}+\epsilon\left(A_{2} A_{4} A_{1}+\epsilon A_{1} A_{2} A_{4}\right) \\
& =A_{0}+\epsilon\left(A_{0} A_{1}+A_{1} A_{0}\right)=A_{0}+\epsilon A_{1} .
\end{aligned}
$$

Therefore, the dual r-rank decomposition of \widehat{A} exists and $\widehat{A}=\left(A_{2}+\epsilon A_{1} A_{2}\right)\left(A_{4}+\epsilon A_{4} A_{1}\right)$ is a dual r-rank decomposition of \widehat{A}.

Theorem 4.7. Let $\widehat{A}=A_{0}+\epsilon A_{1} \in \mathbb{D}_{n \times n}$ be a dual idempotent matrix. Then

$$
\begin{equation*}
\widehat{A}^{\dagger}=A_{0}^{\dagger}+\epsilon\left(A_{0}^{\dagger} A_{1}^{T}+A_{1}^{T} A_{0}^{\dagger}-A_{0}^{\dagger}\left(A_{1}+A_{1}^{T}\right) A_{0} A_{0}^{\dagger}-A_{0}^{\dagger} A_{0}\left(A_{1}^{T}+A_{1}\right) A_{0}^{\dagger}\right) . \tag{4.7}
\end{equation*}
$$

Proof. If \widehat{A} is a dual idempotent matrix, according to Theorem 4.6, the dual r-rank decomposition of \widehat{A} exists. Let $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0} and $\widehat{A}=$ $\widehat{A_{1}} \widehat{A_{2}}$ be a dual r-rank decomposition of \widehat{A} where $\widehat{A_{1}}=A_{2}+\epsilon A_{1} A_{2}$ and $\widehat{A_{2}}=A_{4}+\epsilon A_{4} A_{1}$. Because $\widehat{A_{1}}$ is an r-column full rank dual matrix and $\widehat{A_{2}}$ is an r-row full rank dual matrix, then

$$
\left\{\begin{array}{l}
\left({\widehat{A_{1}}}^{T} \widehat{A_{1}}\right)^{-1}=\left(A_{2}^{T} A_{2}\right)^{-1}-\epsilon\left(A_{2}^{\dagger}\left(A_{1}^{T}+A_{1}\right)\left(A_{2}^{\dagger}\right)^{T}\right) \\
\left({\widehat{A_{2}} \widehat{A}_{2}^{T}}^{T}\right)^{-1}=\left(A_{4} A_{4}^{T}\right)^{-1}-\epsilon\left(\left(A_{4}^{\dagger}\right)^{T}\left(A_{1}^{T}+A_{1}\right) A_{4}^{\dagger}\right)
\end{array} .\right.
$$

By applying (2.3), (2.5), (4.1) and the above equations to (4.3)

$$
\begin{aligned}
\hat{A}^{\dagger} & =A_{0}^{\dagger}+\epsilon\left(A_{0}^{\dagger} A_{1}^{T}-A_{0}^{\dagger}\left(A_{1} A_{2}+A_{1}^{T} A_{2}\right) A_{2}^{\dagger}+A_{1}^{T} A_{0}^{\dagger}-A_{4}^{\dagger}\left(A_{4} A_{1}^{T}+A_{4} A_{1}\right) A_{0}^{\dagger}\right) \\
& =A_{0}^{\dagger}+\epsilon\left(A_{0}^{\dagger} A_{1}^{T}-A_{0}^{\dagger}\left(A_{1}+A_{1}^{T}\right) A_{2} A_{2}^{\dagger}+A_{1}^{T} A_{0}^{\dagger}-A_{4}^{\dagger} A_{4}\left(A_{1}^{T}+A_{1}\right) A_{0}^{\dagger}\right) \\
& =A_{0}^{\dagger}+\epsilon\left(A_{0}^{\dagger} A_{1}^{T}+A_{1}^{T} A_{0}^{\dagger}-A_{0}^{\dagger}\left(A_{1}+A_{1}^{T}\right) A_{0} A_{0}^{\dagger}-A_{0}^{\dagger} A_{0}\left(A_{1}^{T}+A_{1}\right) A_{0}^{\dagger}\right) .
\end{aligned}
$$

Therefore, we get (4.7).
Theorem 4.8. Let $\widehat{A} \in \mathbb{D}_{n \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. Let $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ be a dual r-rank decomposition of \widehat{A}. Then \widehat{A} is a dual idempotent matrix if and only if $\widehat{A_{2}} \widehat{A_{1}}=I_{r}$. Proof. " $\Rightarrow "$: Let \widehat{A} be a dual idempotent matrix, then the dual r-rank decomposition of \widehat{A} exists. Let $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}, and $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}=$ $\left(A_{2}+\epsilon Y\right)\left(A_{4}+\epsilon X\right)$ be a dual r-rank decomposition of \widehat{A}. Since \widehat{A} is a dual idempotent matrix, by the first equation in (4.5), we see that A_{0} is an idempotent matrix, and $A_{4} A_{2}=I_{r}$. Therefore,

$$
\begin{equation*}
\widehat{A_{2}} \widehat{A_{1}}=I_{r}+\epsilon Z . \tag{4.8}
\end{equation*}
$$

Because \widehat{A} is a dual idempotent matrix, we have $\widehat{A_{1}} \widehat{A_{2}} \widehat{A_{1}} \widehat{A_{2}}=\widehat{A_{1}} \widehat{A_{2}}$,

$$
\widehat{A_{1} \widehat{A_{2}}}=\left(A_{2}+\epsilon Y\right)\left(A_{4}+\epsilon X\right)=A_{2} A_{4}+\epsilon\left(A_{2} X+Y A_{4}\right)
$$

and

$$
\widehat{A_{1} \widehat{A_{2}} \widehat{A_{1}} \widehat{A_{2}}=\left(A_{2}+\epsilon Y\right)\left(I_{r}+\epsilon Z\right)\left(A_{4}+\epsilon X\right)=A_{2} A_{4}+\epsilon\left(A_{2} X+A_{2} Z A_{4}+Y A_{4}\right) . . ~ . ~}
$$

Therefore, $A_{2} Z A_{4}=0$. Since A_{2} is a column full rank matrix and A_{4} is a row full rank matrix, $Z=0$. It follows from (4.8) that $\widehat{A_{2}} \widehat{A_{1}}=I_{r}$.
$" \Leftarrow ":$ Let $\widehat{A_{2}} \widehat{A_{1}}=I_{r}$. Then $\widehat{A}^{2}=\widehat{A_{1}} \widehat{A_{2}} \widehat{A_{1}} \widehat{A_{2}}=\widehat{A_{1}} I_{r} \widehat{A_{2}}=\widehat{A_{1}} \widehat{A_{2}}=\widehat{A}$, that is, \widehat{A} is a dual idempotent matrix.

4.3. Dual EP Matrix

This subsection introduces one special dual matrix: dual EP matrix, and considers characterizations, dual r-rank decomposition and DMPGI of the special matrix.

Definition 4.2. Let $\widehat{A} \in \mathbb{D}_{n \times n}$, and \widehat{A}^{\dagger} exist. If

$$
\begin{equation*}
\widehat{A} \widehat{A}^{\dagger}=\widehat{A}^{\dagger} \widehat{A}, \tag{4.9}
\end{equation*}
$$

then \widehat{A} is called a dual EP matrix.
Theorem 4.9. Let $\widehat{A} \in \mathbb{D}_{n \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. Let $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ be a dual r-rank decomposition of \widehat{A}. Then \widehat{A} is a dual EP matrix if and only if

$$
\begin{equation*}
{\widehat{A_{1}}}_{\widehat{A}_{1}}{ }^{\dagger}={\widehat{A_{2}}}^{\dagger} \widehat{A_{2}} \tag{4.10}
\end{equation*}
$$

Proof. " $\Rightarrow "$: Since the dual r-rank decomposition of \widehat{A} exists, the DMPGI of \widehat{A} exists. Let $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ be the dual r-rank decomposition of \widehat{A}, and \widehat{A} be a dual EP matrix. According to Definition 4.2 we can get the equation (4.9). Then by applying (4.3) to (4.9), we get
that is, $\widehat{A_{1}}\left({\widehat{A_{1}}}^{T} \widehat{A}_{1}\right)^{-1}{\widehat{A_{1}}}^{T}={\widehat{A_{2}}}^{T}\left(\widehat{A_{2}}{\widehat{A_{2}}}^{T}\right)^{-1} \widehat{A_{2}}$. It follows from (2.3) and (2.5) that we obtain (4.10).
$" \Leftarrow "$: Conversely, with the precondition that $\widehat{A_{1}}$ is an r-column full rank dual matrix and $\widehat{A_{2}}$ is an r-row full rank dual matrix, if the equation (4.10) holds, according to Lemma [2.2, we have ${\widehat{A_{1}}}^{\dagger}=\left({\widehat{A_{1}}}^{T}{\widehat{A_{1}}}^{-1}{\widehat{A_{1}}}^{T}\right.$ and ${\widehat{A_{2}}}^{\dagger}={\widehat{A_{2}}}^{T}\left({\widehat{A_{2}}}_{A_{2}}{ }^{T}\right)^{-1}$. Then applying these two equations to the equation (4.10), we get $\widehat{A_{1}}\left({\widehat{A_{1}}}^{T}{\widehat{A_{1}}}^{-1}{\widehat{A_{1}}}^{T}={\widehat{A_{2}}}^{T}\left({\widehat{A_{2}}}_{\widehat{A}_{2}}\right)^{-1} \widehat{A_{2}}\right.$. Therefore,

Hence, the equation (4.9) holds, that is, \widehat{A} is a dual EP matrix.
Theorem 4.10. Let $\widehat{A} \in \mathbb{D}_{n \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$, and the DMPGI of \widehat{A} exist. Then \widehat{A} is a dual EP matrix if and only if

$$
\left\{\begin{array}{l}
A_{0} A_{0}^{\dagger}=A_{0}^{\dagger} A_{0}, \tag{4.11a}\\
\left(I_{n}-A_{0}^{\dagger} A_{0}\right) A_{1} A_{0}^{\dagger}=\left(A_{0}^{\dagger} A_{1}\left(I_{n}-A_{0}^{\dagger} A_{0}\right)\right)^{T} .
\end{array}\right.
$$

Proof. By applying (2.2) and Definition 4.2, we can get that \widehat{A} is a dual EP matrix if and only if

$$
\begin{equation*}
\left(A_{0}+\epsilon A_{1}\right)\left(A_{0}^{\dagger}-\epsilon R\right)=\left(A_{0}^{\dagger}-\epsilon R\right)\left(A_{0}+\epsilon A_{1}\right) \tag{4.12}
\end{equation*}
$$

in which $R=A_{0}^{\dagger} A_{1} A_{0}^{\dagger}-\left(A_{0}^{T} A_{0}\right)^{\dagger} A_{1}^{T}\left(I_{n}-A_{0} A_{0}^{\dagger}\right)-\left(I_{n}-A_{0}^{\dagger} A_{0}\right) A_{1}^{T}\left(A_{0} A_{0}^{T}\right)^{\dagger}$.
$" \Rightarrow "$ Let \widehat{A} be a dual EP matrix. By applying (4.12), we see that

$$
\begin{equation*}
A_{0} A_{0}^{\dagger}+\epsilon\left(A_{1} A_{0}^{\dagger}-A_{0} R\right)=A_{0}^{\dagger} A_{0}+\epsilon\left(A_{0}^{\dagger} A_{1}-R A_{0}\right) \tag{4.13}
\end{equation*}
$$

Therefore, we get 4.11a) and

$$
\begin{equation*}
A_{1} A_{0}^{\dagger}-A_{0} R=A_{0}^{\dagger} A_{1}-R A_{0} \tag{4.14}
\end{equation*}
$$

Since $A_{0} A_{0}^{\dagger}=A_{0}^{\dagger} A_{0}, A_{0}$ is EP. Then there exists an orthogonal matrix U such that

$$
A_{0}=U\left[\begin{array}{ll}
T & 0 \tag{4.15}\\
0 & 0
\end{array}\right] U^{T}
$$

where $T \in \mathbb{R}_{r \times r}$ is a nonsingular matrix. It is easy to check that

$$
\begin{equation*}
\left(A_{0} A_{0}^{T}\right)^{\dagger} A_{0}=\left(A_{0}^{T}\right)^{\dagger} \tag{4.16}
\end{equation*}
$$

By applying (4.16) and $A_{0} A_{0}^{\dagger}=A_{0}^{\dagger} A_{0}$, we see that

$$
\begin{align*}
A_{1} A_{0}^{\dagger}-A_{0} R & =A_{1} A_{0}^{\dagger}-A_{0} A_{0}^{\dagger} A_{1} A_{0}^{\dagger}+A_{0}\left(A_{0}^{T} A_{0}\right)^{\dagger} A_{1}^{T}\left(I_{n}-A_{0} A_{0}^{\dagger}\right) \\
& =\left(I_{n}-A_{0} A_{0}^{\dagger}\right) A_{1} A_{0}^{\dagger}+\left(A_{0}^{T}\right)^{\dagger} A_{1}^{T}\left(I_{n}-A_{0} A_{0}^{\dagger}\right) \tag{4.17}
\end{align*}
$$

and

$$
\begin{align*}
A_{0}^{\dagger} A_{1}-R A_{0} & =A_{0}^{\dagger} A_{1}-A_{0}^{\dagger} A_{1} A_{0}^{\dagger} A_{0}+\left(I_{n}-A_{0}^{\dagger} A_{0}\right) A_{1}^{T}\left(A_{0} A_{0}^{T}\right)^{\dagger} A_{0} \\
& =A_{0}^{\dagger} A_{1}\left(I_{n}-A_{0} A_{0}^{\dagger}\right)+\left(I_{n}-A_{0} A_{0}^{\dagger}\right) A_{1}^{T}\left(A_{0}^{T}\right)^{\dagger} \tag{4.18}
\end{align*}
$$

By substituting (4.17) and (4.18) into (4.14) we get

$$
\begin{equation*}
\left(I_{n}-A_{0} A_{0}^{\dagger}\right)\left(A_{1} A_{0}^{\dagger}-A_{1}^{T}\left(A_{0}^{T}\right)^{\dagger}\right)=\left(A_{0}^{\dagger} A_{1}-\left(A_{0}^{T}\right)^{\dagger} A_{1}^{T}\right)\left(I_{n}-A_{0} A_{0}^{\dagger}\right) \tag{4.19}
\end{equation*}
$$

150
It is obvious that $\left(I_{n}-A_{0} A_{0}^{\dagger}\right)\left(A_{1} A_{0}^{\dagger}-A_{1}^{T}\left(A_{0}^{T}\right)^{\dagger}\right)$ is an antisymmetric matrix.
Furthermore, write

$$
A_{1}=U\left[\begin{array}{ll}
A_{11} & A_{12} \tag{4.20}\\
A_{21} & A_{22}
\end{array}\right] U^{T}
$$

where $A_{11} \in \mathbb{R}_{r \times r}$. By applying (4.15) and (4.20), we get

$$
\begin{aligned}
& \left(I_{n}-A_{0} A_{0}^{\dagger}\right)\left(A_{1} A_{0}^{\dagger}-A_{1}^{T}\left(A_{0}^{T}\right)^{\dagger}\right) \\
& =U\left[\begin{array}{cc}
0 & 0 \\
0 & I_{n-r}
\end{array}\right] U^{T}\left(A_{1} U\left[\begin{array}{cc}
T^{-1} & 0 \\
0 & 0
\end{array}\right] U^{T}-A_{1}^{T} U\left[\begin{array}{cc}
\left(T^{T}\right)^{-1} & 0 \\
0 & 0
\end{array}\right] U^{T}\right) \\
& =U\left[\begin{array}{c}
0 \\
A_{21} T^{-1}-A_{21}^{T}\left(T^{T}\right)^{-1} \\
0
\end{array}\right] U^{T} .
\end{aligned}
$$

Since it is an antisymmetric matrix and $A_{0} A_{0}^{\dagger}=A_{0}^{\dagger} A_{0}$, it is obvious that

$$
\begin{equation*}
\left(I_{n}-A_{0} A_{0}^{\dagger}\right)\left(A_{1} A_{0}^{\dagger}-A_{1}^{T}\left(A_{0}^{T}\right)^{\dagger}\right)=0 \tag{4.21}
\end{equation*}
$$

Therefore, we get 4.11b).
$" \Leftarrow ":$ Conversely, from (4.11a), we get that $\left(A_{0} A_{0}^{T}\right)^{\dagger} A_{0}=\left(A_{0}^{T}\right)^{\dagger}, A_{0}$ is EP and A_{0} has the decomposition (4.15). From (4.11b), we have (4.21). Therefore, we get (4.19).

By applying (4.11a), (4.19) and $\left(A_{0} A_{0}^{T}\right)^{\dagger} A_{0}=\left(A_{0}^{T}\right)^{\dagger}$, we have (4.13) and (4.14).

Theorem 4.11. Let $\widehat{A} \in \mathbb{D}_{n \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. Let $A_{0}=A_{2} A_{4}$ be a full rank decomposition of A_{0}. If the dual r-rank decomposition of \widehat{A} exists, let $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ be a dual r-rank decomposition of \widehat{A} where $\widehat{A_{1}}=A_{2}+\epsilon A_{3} \in \mathbb{D}_{n \times r}$ and $\widehat{A_{2}}=A_{4}+\epsilon A_{5} \in \mathbb{D}_{r \times n}$. then \widehat{A} is a dual EP matrix if and only if

$$
\left\{\begin{array}{l}
A_{2}\left(A_{2}^{T} A_{2}\right)^{-1} A_{2}^{T}=A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4} \tag{4.22a}\\
\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{3} A_{2}^{\dagger}=\left(A_{4}^{\dagger} A_{5}\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right)\right)^{T}
\end{array}\right.
$$

Proof. Let the dual r-rank decomposition of \widehat{A} exist, then the DMPGI of \widehat{A} exists. Let $\widehat{A}=\widehat{A_{1}} \widehat{A_{2}}$ be a dual r-rank decomposition of \widehat{A} where $\widehat{A_{1}}=A_{2}+\epsilon A_{3}, A_{i}(i=2,3) \in \mathbb{R}_{n \times r}$, $\widehat{A_{2}}=A_{4}+\epsilon A_{5}$ and $A_{i}(i=4,5) \in \mathbb{R}_{r \times n}$.
$" \Rightarrow$ ": By applying (1.2) and the full rank decomposition of A_{0} to (4.11a), we have 160 $4.22 \mathrm{a})$.

By applying (1.2) and $A_{1}=A_{2} A_{5}+A_{3} A_{4}$, we get

$$
\begin{align*}
\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{2} A_{5} A_{0}^{\dagger} & =\left(I_{n}-A_{2}\left(A_{2}^{T} A_{2}\right)^{-1} A_{2}^{T}\right) A_{2} A_{5} A_{0}^{\dagger}=0 \tag{4.23}\\
\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{3} A_{4} A_{0}^{\dagger} & =\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{3} A_{4} A_{4}^{\dagger} A_{2}^{\dagger} \\
& =\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{3} A_{2}^{\dagger} \tag{4.24}
\end{align*}
$$

and

$$
\begin{align*}
\left(I_{n}-A_{0}^{\dagger} A_{0}\right) A_{1} A_{0}^{\dagger} & =\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{1} A_{0}^{\dagger} \\
& =\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right)\left(A_{2} A_{5}+A_{3} A_{4}\right) A_{0}^{\dagger} \\
& =\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{3} A_{2}^{\dagger} . \tag{4.25}
\end{align*}
$$

In the same way, we have

$$
\begin{equation*}
A_{0}^{\dagger} A_{1}\left(I_{n}-A_{0}^{\dagger} A_{0}\right)=A_{4}^{\dagger} A_{5}\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) \tag{4.26}
\end{equation*}
$$

From (4.25), (4.26) and 4.11b), it follows that we get 4.22b).
$" \Leftarrow "$: Conversely, if the equation (4.22a) holds, by applying the full rank decomposition of A_{0}, it is easy to check that $A_{0} A_{0}^{\dagger}=A_{0}^{\dagger} A_{0}$, that is (4.11a). Furthermore, let (4.22a) and 4.22b) hold simultaneously. Because A_{0} is EP, $\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{2} A_{5} A_{0}^{\dagger}=0$ and $\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{3} A_{4} A_{0}^{\dagger}=\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{3} A_{2}^{\dagger}$. Therefore, we get that

$$
\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right) A_{3} A_{2}^{\dagger}=\left(I_{n}-A_{0}^{\dagger} A_{0}\right) A_{1} A_{0}^{\dagger} .
$$

In the same way, we have $A_{4}^{\dagger} A_{5}\left(I_{n}-A_{4}^{T}\left(A_{4} A_{4}^{T}\right)^{-1} A_{4}\right)=A_{0}^{\dagger} A_{1}\left(I_{n}-A_{0}^{\dagger} A_{0}\right)$. It follows from applying both 4.22b and Theorem 4.10 that \widehat{A} is a dual EP matrix.

4.4. Dual Penrose Equations

This subsection considers dual Penrose equations by applying dual r-rank decomposition.

Theorem 4.12. Let $\widehat{A} \in \mathbb{D}_{m \times n}, \widehat{A}=A_{0}+\epsilon A_{1}$ and $\operatorname{rk}\left(A_{0}\right)=r$. If the dual r-rank decomposition of \widehat{A} exists and $\widehat{A_{1}} \widehat{A_{2}}$ is a dual r-rank decomposition of \widehat{A}, then

$$
\text { (a) }{\widehat{A_{2}}}^{(i)}{\widehat{A_{1}}}^{(1)} \in \widehat{A}\{i\}(i=1,2,4) \text {, (b) }{\widehat{A_{2}}}^{\{1\}}{\widehat{A_{1}}}^{(j)} \in \widehat{A}\{j\}(i=1,2,3) \text {. }
$$

Proof. (a). When $i=1$, both ${\widehat{A_{1}}}_{\widehat{A}_{1}^{(1)}}$ and ${\widehat{A_{2}}}^{(1)} \widehat{A_{2}}$ are dual idempotent matrices, then ${\widehat{A_{1}}}^{(1)} \widehat{A_{1}}=I_{r}$, and $\widehat{A_{2}}{\widehat{A_{2}}}^{(1)}=I_{r}$, we get

$$
{\widehat{A_{1}}{\widehat{A_{2}}}_{2}{\widehat{A_{2}}}^{(1)}{\widehat{A_{1}}}^{(1)} \widehat{A_{1}} \widehat{A_{2}}=\widehat{A_{1}} \widehat{A_{2}}, \text {, }}^{2}
$$

that is, ${\widehat{A_{2}}}^{(1)}{\widehat{A_{1}}}^{(1)} \in \widehat{A}\{1\}$.

When $i=2,{\widehat{A_{1}}}_{\widehat{A}_{1}}{ }^{(1)}$ is a dual idempotent matrix, then ${\widehat{A_{1}}}^{(1)} \widehat{A_{1}}=I_{r}$. Since ${\widehat{A_{2}}}^{(2)}{\widehat{A_{2}}}_{\widehat{A}_{2}^{(2)}}{ }^{(2)}{\widehat{A_{2}}}^{(2)}$, we get

$$
{\widehat{A_{2}}}^{(2)}{\widehat{A_{1}}}^{(1)} \widehat{A_{1}}{\widehat{A_{2}}}_{\widehat{A}_{2}^{(2)}}{ }^{(1)}={\widehat{A_{1}}}^{(2)}{\widehat{A_{1}}}^{(1)},
$$

that is, ${\widehat{A_{2}}}^{(2)}{\widehat{A_{1}}}^{(1)} \in \widehat{A}\{2\}$.
When $i=4, \widehat{A_{1}}{\widehat{A_{1}}}^{(1)}$ is a dual idempotent matrix, then $\widehat{A_{1}}{ }^{(1)} \widehat{A_{1}}=I_{r}$, we get

$$
{\widehat{A_{2}}}^{(4)}{\widehat{A_{1}}}^{(1)} \widehat{A_{1}}{\widehat{A_{2}}}^{\prime}{\widehat{A_{2}}}^{(4)} \widehat{A_{2}}=\left({\widehat{A_{2}}}^{(4)} \widehat{A_{2}}\right)^{T}=\left({\widehat{A_{2}}}^{(4)}{\widehat{A_{1}}}^{(1)}{\widehat{A_{1}} \widehat{A}_{2}}_{)^{T}}\right.
$$

that is, ${\widehat{A_{2}}}^{(4)}{\widehat{A_{1}}}^{(1)} \in \widehat{A}\{4\}$.
(b) When $i=1$, both $\widehat{A_{1}}{\widehat{A_{1}}}^{(1)}$ and $\widehat{A_{2}}{ }^{(1)} \widehat{A_{2}}$ are dual idempotent matrices, then ${\widehat{A_{1}}}^{(1)} \widehat{A_{1}}=I_{r},{\widehat{A_{2}}}^{(1)}{ }^{(1)}=I_{r}$, we get

$$
{\widehat{A_{1}}{\widehat{A_{2}}}_{\widehat{A}_{2}}{ }^{(1)}{\widehat{A_{1}}}^{(1)} \widehat{A_{1}} \widehat{A_{2}}=\widehat{A_{1}} \widehat{A_{2}}, ~}_{\text {, }}
$$

that is, ${\widehat{A_{2}}}^{(1)}{\widehat{A_{1}}}^{(1)} \in \widehat{A}\{1\}$.
When $i=2,{\widehat{A_{2}}}^{(1)} \widehat{A_{2}}$ is a dual idempotent matrix, then $\widehat{A_{2}}{\widehat{A_{2}}}^{(1)}=I_{r}$, and since ${\widehat{A_{1}}}^{(2)} \widehat{A_{1}}{\widehat{A_{1}}}^{(2)}={\widehat{A_{1}}}^{(2)}$, we get

$$
{\widehat{A_{2}}}^{(1)}{\widehat{A_{1}}}^{(2)} \widehat{A_{1}}{\widehat{A_{2}}}_{\widehat{A}_{2}^{(1)}}^{{ }^{(2)}}{\widehat{A_{1}}}^{(2)}={\widehat{A_{2}}}^{(1)}{\widehat{A_{1}}}^{(2)}
$$

that is, ${\widehat{A_{2}}}^{\{1\}}{\widehat{A_{1}}}^{\{2\}} \in \widehat{A}\{2\}$.
When $i=3,{\widehat{A_{2}}}^{(1)} \widehat{A_{2}}$ is a dual idempotent matrix, then $\widehat{A_{2}}{\widehat{A_{2}}}^{(1)}=I_{r}$, we get
that is, ${\widehat{A_{2}}}^{\{1\}}{\widehat{A_{1}}}^{\{3\}} \in \widehat{A}\{3\}$.

References

[1] Angeles J., The dual generalized inverses and their applications in kinematic synthesis[M]. Springer, Dordrecht, 2012.
[2] Ben-Israel A., Greville T. N. E., Generalized Inverses: Theory and Applications[M]. Springer, New York, 2003.
[3] Belzile B, Angeles J., Reflections over the dual ring-applications to kinematic synthesis[J]. Journal of Mechanical Design, 2019, 141(7): 1-9.
[4] Clifford W. K., Preliminary Sketch of Biquaternions[J]. Proceedings of the London Mathematical Society, 1873, 4(1): 381-395.
[5] Condurache D, Burlacu A., Orthogonal dual tensor method for solving the $A X=X B$ sensor calibration problem[J]. Mechanism and Machine Theory, 2016, 104: 382-404.
[6] Falco D. De., Pennestrì E., Udwadia F. E., On generalized inverses of dual matrices[J]. Mechanism and Machine Theory, 2018, 123: 89-106.
[7] Gutin R., Generalizations of singular value decomposition to dual-numbered matrices[J]. Linear and Multilinear Algebra, 2021: DOI: 10.1080/03081087.2021.1903830.
[8] Liu Y. H., Ranks of solutions of the linear matrix equation $A X+Y B=C[\mathrm{~J}]$. Computers and Mathematics with Applications, 2006, 52(6-7): 861-872.
[9] Pennestrì E., Valentini P. P., Falco D De., The Moore-Penrose dual generalized inverse matrix with application to kinematic synthesis of spatial linkages[J]. Journal of Mechanical Design, 2018, 140(10): 102303.
[10] Pennestrì E., Valentini P. P., Linear dual algebra algorithms and their application to kinematics[M]. Springer, Dordrecht, 2009.
[11] Rao C. R., Linear Statistical Inference and its Applications[M]. Wiley Series in Probability and Statistics, New York, 1973.
[12] Study E., Von den Bewegungen and Umlegungen[J]. Mathematische Annalen, 1891, 39(4): 441-565.
[13] Udwadia F. E., Pennestrì E., Falco D. De., Do all dual matrices have dual Moore-Penrose generalized inverses?[J]. Mechanism and Machine Theory, 2020, 151: 103878.
[14] Udwadia F. E., Dual generalized inverses and their use in solving systems of linear dual equations[J]. Mechanism and Machine Theory, 2021, 156: 104158.
[15] Wang H. X., Characterizations and properties of the MPDGI and DMPGI[J]. Mechanism and Machine Theory. 2021, 158(7): 104212.
[16] Wang G. R., Wei Y. M., Qiao S. Z., Generalized Inverses: Theory and Computations[M]. Springer, Singapore, 2018.
[17] Yang J., Wang X. R., The application of the dual number methods to scara kinematics[C]. in: International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 2010, 3871-3874.
[18] Zhang F. Z., Matrix Theory Basic Results and Techniques[M]. Springer, New York, 1999.

[^0]: * Corresponding author

 Email addresses: winghongxing0902@163.com (Hongxing Wang), cuichong0307@126.com (Chong Cui), xiaojiliu72@126.com (Xiaoji Liu*)

