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Abstract

A sequence S of vertices of a graph G is called a dominating sequence of G if (i) each
vertex v of S dominates a vertex of G that was not dominated by any of the vertices
preceding vertex v in S, and (ii) every vertex of G is dominated by at least one vertex
of S. The Grundy Domination problem is to find a longest dominating sequence for a
given graph G. It has been known that the decision version of the Grundy Domination

problem is NP-complete even when restricted to chordal graphs. In this paper, we prove
that the decision version of the Grundy Domination problem is NP-complete for
bipartite graphs and co-bipartite graphs. On the positive side, we present a linear-time
algorithm that solves the Grundy Domination problem for chain graphs, which form
a subclass of bipartite graphs.

Keywords: dominating sequence, bipartite graph, chain graphs, computational complexity,
linear-time algorithm

Mathematics Subject Classification: 05C69 , 05C65 , 05C85

1 Introduction

Graph domination is an established area of graph theory with an extremely rich literature
and a number of applications. Given a graph G = (V, E) a set S ⊆ V is dominating if every
vertex x ∈ V \S is adjacent to a vertex in S. A dominating set of G with minimum cardinality
is called a minimum dominating set of G. The cardinality of a minimum dominating set of G
is the domination number of G and is denoted by γ(G). The Minimum Domination problem
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is to find a dominating set of cardinality γ(G). The Minimum Domination problem and
its variations have numerous applications in real world problems including social networks,
facility location problems, routing problems. An extensive overview on graph domination
can be found in three recent monographs (Haynes et al, 2020, 2021, 2022).

The domination game was introduced in (Brešar et al, 2010) using the approach of
building a dominating set of a graph one vertex at a time. The game is played on a graph
G by two players, named Dominator and Staller, who are building a dominating set of G.
These two players have the opposite goals in the game: one wants the game to end in as
few moves as possible while the other one wants to extend the length of the game. They are
taking turns in which a player chooses a vertex that has to dominate a vertex that has not
been dominated by any of the previously chosen vertices. The game ends when there is no
more vertex to choose, that is, the set of vertices chosen during the game is a dominating
set. Thus, during the game a sequence of vertices is selected. In several papers, authors
considered a sequence obtained by the same basic rule, yet assuming that only the slow
player plays the game. This leads to the following definitions.

Let S = (v1, v2, . . . , vk) be a sequence of vertices of G, and let Ŝ = {v1, . . . , vk}. A

sequence S = (v1, v2, . . . , vk) is a closed neighborhood sequence if N [vi] \
⋃i−1

j=1 N [vj ] 6= ∅,

holds for every i ∈ {2, 3, . . . , k}. If, in addition, Ŝ is a dominating set of G, then S is a
dominating sequence of G. Clearly, the length k of S is bounded from below by γ(G). A
dominating sequence of maximum length in G is a Grundy dominating sequence (or, GD-
sequence for short) of G. The cardinality of such a sequence is called the Grundy domination
number of G and is denoted by γgr(G).

These concepts were introduced and studied in 2014 by Brešar, Gologranc, Milanič,
Rall and Rizzi (Brešar et al, 2014), where motivation came from the domination game
as described above. In addition, Grundy domination presents the worst-case scenario in
the process of the online update of a dominating set in the expanding network. In 2021,
domination games as well as Grundy domination were comprehensevely surveyed in the
book (Brešar et al, 2021).

The optimization version of the Grundy domination problem is to find a GD-sequence
(that is, a dominating sequence of maximum length) in a graph G. From the computational
complexity point of view the decision version of the problem is defined as follows:

Grundy Domination Decision (GDD)
Input: A graph G = (V, E) and k ∈ Z+.
Question: Is there a dominating sequence of G of length at least k?

In the seminal paper (Brešar et al, 2014), the authors proved that the GDD problem is NP-
complete for chordal graphs. They also proved that a GD-sequence in trees, cographs and
split graphs can be computed in polynomial time (Brešar et al, 2014). An additional study
of Grundy domination in forests was used to give a partial confirmation of a conjecture
concerning the Grundy domination number in strong products of graphs (Bell et al, 2021).
Several combinatorial results have also been established for the parameter and its relatives
in the literature (Brešar et al, 2017; Campêlo and Severín, 2021; Erey, 2020; Haynes and
Hedetniemi, 2021; Lin, 2019). Concerning the computational complexity, it was shown that
the GDD problem can be solved in polynomial time for interval graphs and Sierpiński
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graphs (Brešar et al, 2016a), as well as on some X-join products, lexicographic products
and related classes of graphs (Nasini and Torres, 2020). A hierarchy presenting relationships
between some classes of graphs that are relevant for this paper are shown in Fig. 1.

General

Cograph
Chordal

Co-bipartite

Bipartite

Chordal Bipartite

Convex Bipartite

Bipartite Permutation

Chain

Interval

Split

Trees

Fig. 1 Hierarchy of selected graph classes.

A close relation between dominating sequences in graphs and certain covering sequences
in hypergraphs was found in the seminal paper (Brešar et al, 2014). Given a hypergraph
H = (X , E) with no isolated vertices, an edge cover of H is a family of (hyper)edges from E
whose union is the vertex set X . The smallest cardinality of an edge cover of H is the edge
cover number of H and is denoted by ρ(H).

Now, consider a sequence of edges C = (C1, . . . , Cr) of a hypergraph H. If for each i,
i ∈ [r], Ci contains a vertex not contained in Cj , for all j < i, then C is a legal edge sequence

of H. If C = (C1, C2, . . . , Cr) is a legal edge sequence and the set Ĉ = {C1, C2, . . . , Cr} is an
edge cover of H, then C is an edge covering sequence. An edge covering sequence of maximum
length in H is a Grundy covering sequence of H. The length of such a sequence is the Grundy
cover number, ρgr(H), of H. Given a hypergraph H = (X , E), the Grundy Covering

problem is to find a Grundy covering sequence, and thus establishing the Grundy cover
number, and its decision version is the Grundy Covering Decision (GCD) problem. It
was shown in (Brešar et al, 2014) that the GDD problem is NP-complete by reduction from
the GCD problem, while for the NP-completeness of the GCD problem a reduction from
the classical Feedback Arc Set problem was used.

In Section 2, we establish basic notation and mention several preliminary results. In
Section 3, we prove that the GDD problem is NP-complete even when restricted to bipartite
or co-bipartite graphs. In contrast, we present a linear-time algorithm for determining the
Grundy domination number of chain graphs in Section 4. In the final section, we add a few
comments and open problems.
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2 Preliminaries

Let [n] = {1, . . . , n} for any n ∈ N. Given a graph G, the neighborhood of a vertex x is
NG(x) = {y ∈ V (G) : xy ∈ E(G)}, and the closed neighborhood of x is NG[x] = NG(x)∪{x}.
Vertices u and v in a graph G are closed twins (respectively, open twins) if NG[u] = NG[v]
(respectively, NG(u) = NG(v)). We may omit the indices in the above definitions if the
graph G is understood from the context. The following statement has a straightforward
proof using definitions.

Proposition 1. Let S be a (Grundy) dominating sequence in a graph G. If u, v ∈ V (G)
such that N [u] ⊆ N [v] and u, v ∈ Ŝ, then u appears before v in S.

If S is a closed neighborhood sequence, then we say that vi footprints the vertices from
N [vi] \ ∪i−1

j=1N [vj ], and that vi is the footprinter of every vertex u ∈ N [vi] \ ∪i−1
j=1N [vj ].

If S1 = (v1, v2, . . . , vn) and S2 = (u1, u2, . . . , um), n, m ≥ 1, are two sequences, then the
concatenation of S1 and S2 is the sequence S1 ⊕ S2 = (v1, v2, . . . , vn, u1, u2, . . . , um).

Given a hypergraph H = (X , E), a legal transversal sequence is a sequence S =
(v1, . . . , vk) of vertices from X such that for each i there exists an edge Ei ∈ E such that
vi ∈ Ei and vj /∈ Ei for all j, where j < i. The maximum length of a legal transversal
sequence in a hypergraph H is denoted by τgr(H). The following result was proved in (Brešar
et al, 2016b, Proposition 8.3).

Proposition 2. For any hypergraph H we have τgr(H) = ρgr(H).

A set of vertices A ⊆ V (G) is called an independent set of G if no two vertices of A are
adjacent in G. A maximum independent set is an independent set of maximum cardinality.
The size of a maximum independent set in G is the independence number of G and is denoted
by α(G).

A bipartite graph is a graph whose vertex set can be partitioned into two independent
sets. A co-bipartite graph is a graph, which is the complement of a bipartite graph. A
bipartite graph G = (X, Y, E) is a chain graph if the neighborhoods of the vertices of X
form a chain, that is, the vertices of X can be linearly ordered, say {x1, x2, . . . , xn1

} such
that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn1

), where n1 = |X |. If G = (X, Y, E) is a chain graph,
then one can easily see that the neighborhoods of the vertices of Y also form a chain.
If n2 = |Y |, an ordering α = (x1, x2, . . . , xn1

, y1, y2, . . . , yn2
) is called a chain ordering if

N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn1
) and N(y1) ⊇ N(y2) ⊇ · · · ⊇ N(yn2

).

If a vertex xi appears before xj in chain ordering, we write xi < xj . Given a chain
graph G, a chain ordering of G can be computed in linear time (Heggernes and Kratsch,
2007). Now, suppose A = {xi1

, xi2
, . . . , xir

}, B = {xj1
, xj2

, . . . , xj
r′

} be two disjoint subsets
of X such that xip

< xiq
and xjp

< xjq
for p < q. Then (A) ⊕ (B) denotes the sequence

(xi1
, . . . , xir

, xj1
, . . . , xj

r′
). Similar notation can be used for vertices in Y .

Recall that two vertices u, v are called open twins if N(u) = N(v). We define a relation
R on X such that vertices x, x′ ∈ X are related by R if and only if they are open twins.
Clearly, R is an equivalence relation, and let X1, X2, . . . , Xk be the parts in X that arise
from R. Without loss of generality, for a chain graph G = (X, Y, E), we may also assume
that N(X1) ⊆ N(X2) · · · ⊆N(Xk). We denote the set of vertices in N(X1) by Y1. For
i ∈ {2, 3, . . . , k}, let Yi = N(Xi) \ ∪i−1

j=1N(Xj). It is easy to see that every two vertices from
Yj are open twins for all j ∈ [k]. The following statement follows from the construction of
the sets Xi and Yj .

4



Observation 1. Let X1, X2, . . . , Xk and Y1, Y2, . . . , Yk be the subsets of vertices of G as
defined above. Then, N(Xi) =

⋃i

r=1 Yr and N(Yj) =
⋃k

r=j Xr for each i, j ∈ [k].

3 NP-completeness results

As mentioned in the introduction, the GDD problem is NP-complete for general graphs,
and also when restricted to chordal graphs. In the following subsections, we prove that the
problem remains NP-complete for bipartite and co-bipartite graphs.

3.1 Bipartite graphs

In this subsection, we prove the NP-completeness of the GDD problem for bipartite
graphs. We reduce the GCD problem for hypergraphs to the GDD problem for bipartite
graphs. Given a hypergraph H = (X , E) with |X | = n and |E| = m, (n, m ≥ 2), we construct
an instance GH of the GDD problem, where GH is a bipartite graph, as follows.

Let V (GH) = A ∪ X ′ ∪ E ′ ∪ B, where A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm}. The
sets X ′ and E ′ contain n and m vertices respectively, where each vertex of X ′ corresponds
to a vertex of X in the hypergraph H and each vertex of E ′ correspond to an edge of H.
For an edge Ei ∈ E , we denote the corresponding vertex in E ′ by ei. All sets A, X ′, E ′, and
B are indepedent sets in GH, and A ∪ X ′ induces the complete bipartite graph Kn,n, while
E ′ ∪ B induces the complete bipartite graph Km,m. Now, a vertex x of X ′ is adjacent to a
vertex of ei ∈ E ′ in GH if and only if x ∈ Ei in H.

Clearly, GH is a bipartite graph. See Fig. 2, which presents the construction of the graph
GH from a hypergraph H, which is given by (X = {x1, x2, x3, x4}, E = {E1, E2, E3, E4, E5}),
where E1 = {x1, x2, x4}, E2 = {x2, x3}, E3 = {x1, x2}, E4 = {x2, x3, x4} and E5 =
{x1, x3, x4}.

x1

x2

x3

x4

e1

e2

e3

e4

e5

A X ′ E ′ B

Fig. 2 Illustration of the construction of GH from H.
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Theorem 1. If H = (X , E) is a hypergraph with |X | = n and |E| = m, where n, m ≥ 2,
then ρgr(H) ≥ k if and only if γgr(GH) ≥ n + m + k.

Proof. In the proof, let G = GH. First, let (E1, E2, . . . , Ek′ ) be an edge covering sequence of
length at least k in H. Then the sequence (b1, b2, . . . , bm, e1, e2, . . . , ek′ , a1, a2, . . . , an) is a
dominating sequence of length at least n + m + k in G. Hence, γgr(G) ≥ n + m + k.

For the converse, let us assume that γgr(G) ≥ n + m + k for some positive integer k.

If X ′ ∩ Ŝ 6= ∅ for some dominating sequence S of G, then x0 denotes the first vertex in S
coming from X ′, and if E ′ ∩ Ŝ 6= ∅ for some dominating sequence S of G, then e0 denotes
the first vertex in S coming from E ′. First, we prove two auxiliary claims.

Claim 1. There exists a dominating sequence S of length at least n + m + k in G such that
all vertices of A appear in S and if X ′ ∩ Ŝ 6= ∅, then all vertices of A appear before x0.

Proof. Let S be a dominating sequence of length at least n + m + k in G (which exists,
since γgr(G) ≥ n + m + k). Suppose there exists a vertex ai ∈ A, which is not appearing
in S. Then, there exists a vertex from X ′ which is appearing in S to footprint ai. Hence,
X ′ ∩ Ŝ 6= ∅ and x0 footprints ai. Let P denotes the set of vertices appearing before x0 and
Q be the set of vertices appearing after x0 in S. Now, two cases are possible.

Case 1: Q ∩ A = ∅.
In this case, either P ∩ A = ∅ or P contains some vertices of A. So, first assume that P
contains no vertex of A. Then, we see that no vertex of A appears in the sequence S. If
x0 does not footprint any vertex in E ′, then we modify S by appending vertices of A in
the order (a1, a2, . . . , an) just before x0 and removing all vertices from Q that footprinted
a vertex of X ′ along with the vertex x0. Otherwise, if x0 footprints some vertices of E ′, we
perform the same modification without removing x0. Note that the number of vertices of Q
that footprint a vertex of X ′ are at most n−1. In either case, we removed at most n vertices
and we added n new vertices to S, by which the so modified sequence S is a dominating
sequence of length at least n + m + k in G, which satisfies the statement of the claim.

Now, if P contains some vertices of A, then no vertex of Q footprints any vertex of X ′.
Again, if x0 footprints only vertices of A, then we modify S by appending vertices of A \ P
in any order just before x0 and removing the vertex x0. Otherwise, if x0 footprints also some
vertices of E ′, we perform the same modification, but without removing x0. In either case,
we removed at most 1 vertex and we added at least 1 new vertex to the sequence S. With
this, the so modified sequence S is a dominating sequence of length at least n + m + k in
G, which satisfies the statement of the claim.

Case 2: |Q ∩ A| = 1.
In this case, P contains no vertex of A. Let aj be the vertex from Q ∩ A appearing in S.
Note that the vertices in S, which footprint only vertices from X ′, do not appear after aj

in S. Note that there are at most n − 2 vertices that appear in S between x0 and aj and
footprint a vertex of X ′, and denote the set of these vertices by Q′. If x0 does not footprint
any vertex in E ′, then we modify S by appending vertices of A in the order (a1, a2, . . . , an)
just before x0 and then removing all vertices of Q′ ∪ {x0, aj}. Otherwise, if x0 footprints
also some vertices of E ′, we perform the same modification without removing x0. In either
case, we removed at most n − 1 vertices and we added n − 1 new vertices to S. Hence, the
so modified sequence S is a dominating sequence of length at least n + m + k in G, which
satisfies the statement of the claim.
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By the above claim, there exists a dominating sequence S of length n + m + k such that
all vertices of A appear in S and they appear before x0 if X ′ ∩ Ŝ 6= ∅. The proof of Claim 2
follows similar lines as the proof of the Claim 1.

Claim 2. There exists a dominating sequence S of length at least n + m + k in G such that
all vertices of B appear in S and if E ′ ∩ Ŝ 6= ∅, then all vertices of B appear before e0.

Combining the above two claims we infer that there exists a dominating sequence S of
length at least n + m + k in G such that |(X ′ ∪ E ′) ∩ Ŝ| ≥ k.

Claim 3. Either X ′ ∩ Ŝ = ∅ or E ′ ∩ Ŝ = ∅.

Proof. If X ′ ∩ Ŝ = ∅, we are done. So, assume that X ′ ∩ Ŝ 6= ∅ and E ′ ∩ Ŝ 6= ∅. Now, either
e0 appears before x0 or e0 appears after x0. In the former case, we see that before the vertex
x0, all vertices of G are footprinted (and thus dominated) using Claims 1 and 2. So, x0 does
not footprint any vertex implying that this case is not possible. Similarly, the latter case is
also not possible, which proves the claim.

Now, if X ′ ∩ Ŝ = ∅, then we have that |E ′ ∩ Ŝ| ≥ k. In addition, by Claim 2, since all
vertices of B appear in S before any vertex of E ′ appears in S, the subsequence of S of
vertices in E ′ corresponds to an edge covering sequence in the hypergraph H, which is of
length at least k. Thus, ρgr(H) ≥ k, as desired.

Otherwise, if E ′ ∩ Ŝ = ∅, then we derive that |X ′ ∩ Ŝ| ≥ k, where the subsequence formed

by vertices of X ′ ∩ Ŝ corresponds to a legal transversal sequence of the hypergraph H of
length at least k. By Proposition 2, τgr(H) = ρgr(H), and so ρgr(H) ≥ k. The proof of the
theorem is complete.

Based on Theorem 1 and earlier discussions we immediately derive the main result of
this section.

Theorem 2. The GDD problem is NP-complete for bipartite graphs.

3.2 Co-bipartite graphs

In this subsection, we prove the NP-completeness of the GDD problem for co-bipartite
graphs. Here, we reduce the GDD problem for general graphs to the GDD problem for co-
bipartite graphs. Given a graph G = (V, E), where V = {v1, v2, . . . , vn}, we construct an
instance G′ = (V1 ∪V2, E′) of the GDD problem, where G′ is a co-bipartite graph, as follows.

The vertex set of G′ is V1 ∪ V2, where V1 = {v1
i : vi ∈ V } and V2 = {v2

i : vi ∈ V }. The
set of edges of G′ is given by {v1

i v1
j : 1 ≤ i < j ≤ n} ∪ {v2

i v2
j : 1 ≤ i < j ≤ n} ∪ {v1

i v2
j :

vj ∈ NG[vi], i, j ∈ [n]}. Note that G′ is a co-bipartite graph. Fig. 3 provides an illustration
of the construction of G′ from G.

Claim 4. For a positive integer k, γgr(G) ≥ k if and only if γgr(G′) ≥ k.

Proof. First, let S = (u1, u2, . . . , ut) be a dominating sequence of G of length t, where t ≥ k.
Then S′ = (u1

1, u1
2, . . . , u1

t ) is a dominating sequence of length at least k in G′. Indeed, if vi is
a vertex footprinted by ui with respect to S, then v2

i is footprinted by u1
i with respect to S′.

Conversely, let S = (w1, w2, . . . , wt) be a dominating sequence of length t in G′, where
t ≥ k and wi ∈ V1 ∪ V2 for all i ∈ [t]. Without loss of generality, we may assume that
w1 ∈ V1. Note that there can be at most one vertex from V2 in S. If there is no such vertex,
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a

b

c

a1

b1

c1

a2

b2

c2

G : G′ :

V1 V2

Fig. 3 Construction of a co-bipartite graph G′ from a graph G, where G = P3.

then the sequence S corresponds to a sequence of vertices in G of length at least k, which
is a dominating sequence of G. Now, suppose there exists a vertex from V2 in S. Clearly, it
has to be the last vertex of S, and let wt be vertex v2

i ∈ V2. Note that v2
i appears in S to

footprint a vertex v2
j ∈ V2 and v1

j /∈ Ŝ. We modify S by replacing the vertex v2
i with the

vertex v1
j and get a new sequence S′, which is again a dominating sequence of G′ of length

at least k. Since S′ contains only vertices from V1, it corresponds to a sequence of vertices
in G of length at least k, which is a dominating sequence of G. This completes the proof of
the converse direction of the statement.

Now, we are ready to state the announced result.

Theorem 3. The GDD problem is NP-complete for co-bipartite graphs.

4 Efficient algorithm for chain graphs

In this section, we give a linear-time algorithm to compute a GD-sequence of a chain
graph. Before discussing the main idea for chain graphs, we first give the Grundy domination
number of a complete bipartite graph which is a subclass of chain graphs. The proof of this
result is straightforward.

Proposition 3. If G = (X, Y, E) is a complete bipartite graph, then γgr(G) =
max{|X |, |Y |}.

Recall that a chain graph G = (X, Y, E) has a chain ordering α, and based on the equiv-
alence relation joining open twins, the sets X and Y partition into subsets X1, X2, . . . , Xk

and Y1, Y2, . . . , Yk, respectively. (Also recall that N(Xi) =
⋃i

r=1 Yr and N(Yj) =
⋃k

r=j Xr

for each i, j ∈ [k].) Since the case k = 1 yields a complete bipartite graph, in the rest of this
section we only consider the chain graphs with k ≥ 2. We also assume that a chain graph
G = (X, Y, E) is given along with the chain ordering α and the partitions of X and Y into
k subsets.

The proof of the following observation is again easy, and hence is omitted.

Observation 2. Let A ⊆ V (G) be a set of open twins in an arbitrary graph G. Then there
exists a GD-sequence S of G such that all vertices of A ∩ Ŝ appear together in S.

Observation 3. Let S be a GD-sequence of an arbitrary graph G and A ⊆ V (G) be a set
of open twins in G such that A ∩ Ŝ 6= ∅. If the first vertex of A in S footprints itself, then

8



there exists a GD-sequence of G in which all vertices of A appear and they appear together
in that sequence.

Proof. If A ∩ Ŝ = A, we have nothing to prove. So, suppose that A ∩ Ŝ 6= A. Then, there
exists a vertex a ∈ A, which is not in S. Thus there exists a vertex b ∈ Ŝ, which footprints
a. Note that b appears after all vertices of A ∩ Ŝ. Now, we modify S by replacing b with the
vertex a. By doing this repeatedly, we get a new GD-sequence S′ of G which contains all
vertices of A. We can rearrange all vertices of A so that all vertices of A appear together in
S′.

In the remainder of the section we assume that G is a chain graph with the partition of
its vertex set as described earlier.

Observation 4. There exists a GD-sequence S of G such that for every i ∈ [k], we have
Xi ∩ Ŝ 6= ∅ or Yi ∩ Ŝ 6= ∅.

Proof. Let S be a GD-sequence such that Xi ∩ Ŝ = ∅ and Yi ∩ Ŝ = ∅. This implies that
there exist vertices x ∈ ∪k

r=i+1Xr and y ∈ ∪i−1
r=1Yr in S to footprint the vertices of Yi and

Xi respectively. Note that i /∈ {1, k}. Now, if x appears before y in S, then modifying the
sequence S by replacing y by all vertices of Xi gives another GD-sequence of G, which
includes some vertices from Xi. (Note that if y ∈ Yj , then Xj ∩ Ŝ 6= ∅. To see this, assuming

that Xj ∩ Ŝ = ∅ implies that y footprints vertices of both Xj and Xi in S. In this case,
replacing the vertex y with all vertices of Xi and Xj results in a new dominating sequence
of G of length bigger than S, a contradiction.) Similarly, if y appears before x in S, then
modifying the sequence S by replacing x by all vertices of Yi gives another GD-sequence of
G, which includes some vertices from Yi. Hence, there exists a GD-sequence S of G such
that Xi ∩ Ŝ 6= ∅ or Yi ∩ Ŝ 6= ∅.

Let A be a set of open twins in G. If |A ∩ Ŝ| ≥ 2, then we see that the first vertex of
A in S footprints itself. Thus we can assume that, A ⊆ Ŝ, due to Observation 3. Hence, we
have, |A ∩ Ŝ| ≤ 1 or A ⊆ Ŝ for any set of open twins A in G. Note that the each of the sets
X1, X2, . . . , Xk, Y1, Y2, . . . , Yk is a set of open twins in G.

Now, based on the Observations 2, 3 and 4, whenever we consider a GD-sequence S of
G, we assume that S satisfies the following, for the rest of this section:
(1) For each i ∈ [k], |Xi ∩ Ŝ| ≤ 1 or Xi ⊆ Ŝ. If Xi ⊆ Ŝ, then all vertices of Xi appear
together in S.
(2) For each i ∈ [k], |Yi ∩ Ŝ| ≤ 1 or Yi ⊆ Ŝ. If Yi ⊆ Ŝ, then all vertices of Yi appear together
in S.
(3) For each i ∈ [k], Xi ∩ Ŝ 6= ∅ or Yi ∩ Ŝ 6= ∅.

Now, let S be a GD-sequence of G. Then S is one of the following type:
(a) X ∩ Ŝ = ∅, (b) Y ∩ Ŝ = ∅, (c) X ∩ Ŝ 6= ∅ and Y ∩ Ŝ 6= ∅.

We call the corresponding GD-sequences S to be of type (a), type (b), and type (c),
respectively.

Lemma 1. Let S∗ = (v1, v2, . . . , vp) be a GD-sequence of G of type (c). The following
statements hold:
(1) If v1 ∈ Y1, then there exists a type (a) GD-sequence of G.
(2) If v1 /∈ Y1, then there exists a GD-sequence S of G such that ∪i

r=1Xr ⊆ Ŝ for some
i ∈ [k].

9



Proof. First, we assume that v1 ∈ Y1. In this case, all vertices of X are footprinted by v1.
So, all the vertices v2, . . . , vp appear to footprint vertices of Y \ {v1} only. This implies that
γgr(G) ≤ |Y |. So, the sequence S = (yn2

, yn2−1, . . . , y1) is also a GD-sequence of G and it
is of type (a). Next, we assume that v1 /∈ Y1. Since S∗ contains vertices from both X and
Y , we have two cases to consider.

Case 1: v1 ∈ X.
Let v1 ∈ Xi (i ∈ [k]). So, we get that v1 footprints all vertices of N(Xi) ∪ {v1}. Now, let u
be a vertex of X such that N(u) ⊆ N(v1). If u is footprinted by some vertex from N(u), we
modify the sequence S∗ as follows. We remove the footprinter of u from S∗ and include u
just after v1 and get a new sequence. But, if u is footprinted by itself, then we relocate u in
S by putting it just after v1. We repeat the respective modifications for each vertex u such
that N(u) ⊆ N(v1) and get a new sequence S which remains a GD-sequence of G. We again
modify the ordering of vertices in S, so that it satisfies all the properties of Observations 2,
3 and 4, if required. Hence, we see that ∪i

r=1Xr ⊆ Ŝ for some i ∈ [k].

Case 2: v1 ∈ Y .
Let v1 ∈ Yi (i ∈ [k]). Note that i > 1. Here, we may assume that all vertices u from Y ,
where N(u) ⊇ N(v1), are in S∗ and all vertices of ∪k

r=iYr \ {v1} appear together just after
v1. This is ensured because we can do modifications similar to the case 1, if it is not true. We
rename vertices of S∗ again by (v1, v2, . . . , vp), if necessary. Now, let vt be the vertex with
the smallest index in the ordering (v2, v3, . . . , vp) such that vt ∈ X . Suppose that vt ∈ Xt′ .
Note that there exists an integer r′ ∈ {2, 3, . . . , k} such that all vertices of ∪k

r=r′(Xr ∪ Yr)
are footprinted before the vertex vt appears in S, and all remaining vertices of G are not

footprinted. If vt ∈ ∪r′
−1

r=1 Xr, we get that vt footprints all vertices of N(vt) ∪ {vt}. In this
case, we put all vertices u of X such that N(u) ⊆ N(vt) just after vt in any order, remove

vertices from N(u) ∩ Ŝ∗ which were appearing to footprint the vertex u and rearrange all
vertices so that the new sequence S satisfies all the properties of Observation 2. Thus, we

get that ∪t′

r=1Xr ⊆ Ŝ. But, if vt ∈ ∪k
r=r′Xr, then vt footprints all vertices of ∪r′

−1
r=1 Yr. So,

we may assume that vt ∈ Xr′ . Again, we put all vertices u ∈ ∪r′
−1

r=1 Xr just after vt in any

order, remove vertices from N(u) ∩ Ŝ∗ which were appearing to footprint the vertex u and
rearrange all vertices so that the new sequence S satisfies all the properties of Observation 2.

Thus, we get that ∪r′
−1

r=1 Xr ⊆ Ŝ.

Therefore, there exists a GD-sequence S of G such that ∪i
r=1Xr ⊆ Ŝ for some i ∈ [k].

Analogous to Lemma 1, we give a symmetric lemma for the set Y of G, whose proof
follows similar lines and is omitted.

Lemma 2. Let S∗ = (v1, v2, . . . , vp) be a GD-sequence of G of type (c). The following
statements hold:
(1) If v1 ∈ Xk, then there exists a type (b) GD-sequence of G.
(2) If v1 /∈ Xk, then there exists a GD-sequence S of G such that ∪k

r=jYr ⊆ Ŝ for some
j ∈ [k].

Lemma 3. Let S be a GD-sequence of G of type (c) and let i ∈ [k] be the largest index such
that ∪i

r=1Xr ⊆ Ŝ. If i < k, then the following is true:
(1) If i ≤ k−2, then there exists a GD-sequence S′ of G such that either (∪k

r=i+1Xr)∩Ŝ′ = ∅

or (∪k
r=i+2Xr) ∩ Ŝ′ = ∅ and |Xi+1 ∩ Ŝ′| = 1.

(2) If i = k − 1, then either Xk ∩ Ŝ = ∅ or |Xk ∩ Ŝ| = 1.

10



Proof. Let S be a GD-sequence of G in which we have a largest index i such that ∪i
r=1Xr ⊆

Ŝ. Now, assume that i < k and so, Xi+1 * Ŝ. If i = k − 1 and Xk ∩ Ŝ 6= ∅ then either

|Xk ∩ Ŝ| = 1 or |Xk ∩ Ŝ| ≥ 2. In the latter case, we get that first vertex of Xk in S footprints
itself. So, Observation 3 ensures that |Xk ∩ Ŝ| = 1.

Next, we show that if i ≤ k−2, then (∪k
r=i+2Xr)∩ Ŝ = ∅. So, let t ∈ {i+2, . . . , k} be the

minimum index such that Xt ∩ Ŝ 6= ∅. This means that there are some vertices of ∪t−1
r=i+1Xr

which are not appearing in the sequence S. Let A denotes the set of these vertices. Note
that A is not the empty set. As Xt ∩ Ŝ 6= ∅, vertices of Xt ∩ Ŝ appear to footprint some
vertices of N [Xt ∩ Ŝ] = (Xt ∩ Ŝ) ∪ (∪t

r=1Yr). Let x be the vertex of Xt which appears first
in S. We discuss two cases here.

Case 1: x footprints itself.
In this case, we have that no neighbor of Xt appears in S before x. So, all vertices in S,
which footprint vertices of A, appear after x. Now, we modify S by removing all such vertices
and including all vertices of A in the sequence just after all vertices of Xt ∩ Ŝ. We call the
modified sequence again by S as it remains a GD-sequence of G. Thus, we get a contradiction
on i being the largest index satisfying ∪i

r=1Xr ⊆ Ŝ. So, this case is not possible.

Case 2: x does not footprint itself.
In this case, we get that all vertices of Xt are footprinted by some vertex of Y , which appears
before x in S. So, x footprints some vertices from the set ∪t

r=1Yr. Thus, |Xt ∩ Ŝ| = 1 and
Xt ∩ Ŝ = {x}. Now, let y be the vertex which footprints vertices of A ∩ Xi+1 in S. Then,
there can be two subcases:

Subcase 2.1: y appears after x.
In this subcase, we modify S by removing y and including all vertices of A ∩ Xi+1 in the
sequence just after x. We call the modified sequence again by S as it remains a GD-sequence
of G. Thus, we get a contradiction on i being the largest index satisfying ∪i

r=1Xr ⊆ Ŝ. So,
this subcase is not possible.

Subcase 2.2: y appears before x.
Here, all vertices of A are footprinted before the appearance of x. Recall that x ∈
(∪k

r=i+2Xr)∩ Ŝ. We get that all vertices of ∪k
r=i+1Xr are footprinted before the appearance

of x. Note that the vertex x itself is footprinted before the appearance of x. So, we have, x
appears to footprint some vertices of ∪t

r=1Yr. This can be further divided in two cases: (i)
x does not footprint the vertices of Yt. (ii) x footprints the vertices of Yt.

In the first case, x footprints some vertices of the set ∪t−1
r=1Yr. Note that A ∩ Xt−1 6= ∅

and vertices of A ∩ Xt−1 do not appear in S. Now, we modify S by replacing the vertex x
by a vertex of A ∩ Xt−1 and a get a new GD-sequence in which no vertex of Xt appears and
one vertex of Xt−1 appears. If t = i + 2, then after applying the modification once, we get a
GD-sequence S′ such that Xi+2 ∩ Ŝ′ = ∅ and |Xi+1 ∩ Ŝ′| = 1. Otherwise, if t > i + 2, then
after applying the modification once, we get a GD-sequence S′ such that Xt ∩ Ŝ′ = ∅ and
|Xt−1∩Ŝ′| = 1. Thus, we have another index t′ = t−1 ∈ {i+2, . . . , k} such that Xt′ ∩Ŝ′ 6= ∅.

In the second case, x footprints vertices of Yt and we modify S by replacing x with
all vertices of Yt. Note that no vertex of Yt was appearing in the sequence prior to this
modification. If t = i + 2, then after applying the modification once, we get a GD-sequence
S′ such that Xi+2 ∩ Ŝ′ = ∅. Otherwise, if t > i + 2, then after applying the modification
once, we get a GD-sequence S′ such that Xt ∩ Ŝ′ = ∅ and Xt−1 ∩ Ŝ′ = ∅. Now, we have,
either there is no index t′ in the set {i + 2, . . . , k} such that Xt′ ∩ Ŝ′ 6= ∅ or there is some
t′ ∈ {i + 2, . . . , k} (t′ > t) such that Xt′ ∩ Ŝ′ 6= ∅.
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In both the cases, we end up with a new GD-sequence S′ of G. In the former case,
we get that Xt ∩ Ŝ′ = ∅ and |Xt−1 ∩ Ŝ′| = 1. The latter case ensures that Xt ∩ Ŝ′ = ∅
and Xt−1 ∩ Ŝ′ = ∅ (if t > i + 2). By repeating the above arguments we get that, there is
a GD-sequence S of G such that either (∪k

r=i+1Xr) ∩ Ŝ = ∅ or (∪k
r=i+2Xr) ∩ Ŝ = ∅ and

|Xi+1 ∩ Ŝ| = 1 for some i ∈ [k].

Analogous to Lemma 3, we give a symmetric lemma for the set Y of G, whose proof
follows similar lines, and is omitted.

Lemma 4. Let S be a GD-sequence of G of type (c) and let j ∈ [k] be the smallest index
such that ∪k

r=jYr ⊆ Ŝ. If j > 1, then the following is true:

(1) If j ≥ 3, then there exists a GD-sequence S′ of G such that either (∪j−1
r=1Yr) ∩ Ŝ′ = ∅ or

(∪j−2
r=1Yr) ∩ Ŝ′ = ∅ and |Yj−1 ∩ Ŝ′| = 1.

(2) If j = 2, then either Y1 ∩ Ŝ = ∅ or |Y1 ∩ Ŝ| = 1.

Lemma 5. Let S be a GD-sequence of G satisfying all properties of Lemmas 1, 2, 3 and 4,
let i ∈ [k] have the role as in Lemma 3, and let j ∈ [k] have the role as in Lemma 4. The
following statements are true:
(1) j ∈ {i, i + 1};
(2) if j = i then |Xi| = 1 or |Yi| = 1;
(3) if j = i + 1, then either |Xi+1 ∩ Ŝ| = 1 or |Yi ∩ Ŝ| = 1.

Proof. Since S satisfies all properties of Lemmas 1, 2, 3 and 4, there are integers i ∈
[k − 1], j ∈ {2, . . . , k} such that ∪i

r=1Xr ⊆ Ŝ and ∪k
r=jYr ⊆ Ŝ. It also holds that either

Xi+1 ∩ Ŝ = ∅ or |Xi+1 ∩ Ŝ| = 1. Similarly, either Yj−1 ∩ Ŝ = ∅ or |Yj−1 ∩ Ŝ| = 1. Using

Lemmas 3 and 4, we can also say that if i ≤ k − 2, then (∪k
r=i+2Xr) ∩ Ŝ = ∅ and, if j ≥ 3,

then (∪j−2
r=1Yr) ∩ Ŝ = ∅.

First, we show that j ≥ i. To the contrary, assume that j < i. This implies that Xi−1 ∪
Yi−1 ∪ Xi ∪ Yi ⊆ Ŝ. If Xi appears before Yi, then Yi−1 appears after Yi. In this case, we
see that Xi−1 can not appear anywhere in the sequence. So, this case is not possible. If
Yi appears before Xi, then Xi−1 appears after Xi. Here, Yi−1 can not appear anywhere in
the sequence. So, this case is also not possible. So, we get that j ≥ i. Now, either j = i or
j ≥ i + 1.

First, we assume j = i. If Xi appears before Yi, then an eventual second vertex from Yi

does not footprint any vertex, a contradiction. So, |Yi| = 1. In the similar way, we get that
|Xi| = 1, when Yi appears before Xi. Thus, property (2) holds.

Next, assume that j ≥ i + 1. We need to show that j = i + 1. First, we show that
j ≤ i + 3. If j ≥ i + 4, then Xi+2 ∩ Ŝ = ∅, Yi+2 ∩ Ŝ = ∅. This contradicts Observation 4.
So, j ∈ {i + 1, i + 2, i + 3}. If j = i + 3, then we see that γgr(G) ≤ α + β + 2, where

α =
∑i

r=1 |Xr| and β =
∑k

r=i+3 |Yr |. But, the sequence (X1)⊕ (X2)⊕ · · ·⊕ (Xi)⊕ (Xi+1)⊕
(Yk) ⊕ (Yk−1) ⊕ · · · ⊕ (Yi+3) ⊕ (x) ⊕ (Xi+2), where x ∈ Xi+3 is a dominating sequence of G
of length at least α + β + 3. So, j 6= i + 3. If j = i + 2, then we see that γgr(G) ≤ α + β′ + 2,

where β′ =
∑k

r=i+2 |Yr|. Now, consider the sequence S0 = (X1)⊕ (X2)⊕ · · · ⊕ (Xi)⊕ (Yk)⊕
(Yk−1)⊕ · · · ⊕ (Yi+2)⊕ (y)⊕ (Yi+1), where y ∈ Yi. If |Yi+1| > 1, S0 is a dominating sequence
of G having length at least α + β′ + 3. This implies that |Yi+1| = 1 and S0 is also a GD-
sequence of G. So, we consider S0 as a GD-sequence of G as it also satisfies Lemmas 1, 2,
3 and 4 and thus, j = i + 1. Thus, property (1) holds.
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For the property (3), we show that either |Xi+1 ∩ Ŝ| = 1 or |Yi ∩ Ŝ| = 1. So, first we
assume that neither is true, that is, |Xi+1 ∩ Ŝ| = 0 and |Yi ∩ Ŝ| = 0. Now, if Yi+1 appears
before Xi, then the length of S can be increased by including a vertex of Xi+1 just before
Xi, but S is a dominating sequence of G of maximum length. So, Yi+1 appears after Xi,
thus length of S can be increased by including a vertex of Yi just before Yi+1, but S is a
dominating sequence of G of maximum length. Hence, |Xi+1 ∩ Ŝ| = 1 or |Yi ∩ Ŝ| = 1. If
|Xi+1 ∩ Ŝ| = 1 and |Yi ∩ Ŝ| = 1, then suppose that Xi+1 ∩ Ŝ = {a} and Yi ∩ Ŝ = {b}. Clearly,
vertices of the four sets {a}, {b}, Xi and Yi+1 appear in S. Let K = {{a}, {b}, Xi, Yi+1}.
Recall that all vertices of Xi appear together in S. Similarly, all vertices of Yi+1 appear
together in S. Let A ∈ K be the set whose vertices appear after the other three sets of K in
the sequence S. Then, all vertices of N [A] are footprinted before the appearance of vertices
of A. Therefore, either |Xi+1 ∩ Ŝ| = 1 or |Yi ∩ Ŝ| = 1. Thus property (3) holds.

Lemma 6. Let S be a GD-sequence of G of type (c) and satisfies all properties of Lemmas 1,
2, 3, 4 and 5. Then the sequence S satisfies the following properties
(1) If j = i then, Xi+1 ∩ Ŝ = ∅ and Yi−1 ∩ Ŝ = ∅;
(2) If j = i + 1, then either |Xi+1 ∩ Ŝ| = 1 and Yi ∩ Ŝ = ∅ or |Yi ∩ Ŝ| = 1 and Xi+1 ∩ Ŝ = ∅.

Proof. First, let j = i and Xi+1 ∩ Ŝ 6= ∅. This implies that |Xi+1 ∩ Ŝ| = 1. There are two
cases.

Case 1: A vertex of Xi+1 footprints itself.
In this case, both Yi and Yi+1 appear after Xi+1. Note that Yi+1 appears before Yi. Here,
we see that Xi can not appear after Yi as all vertices in the closed neighborhood of Xi are
footprinted before its appearance. So, Xi appears before Yi, but, then all vertices in the
closed neighborhood of Yi are footprinted before its appearance.

Case 2: Vertices of Xi+1 are footprinted before their appearance in S.
Here, at least one of Yi and Yi+1 appear before Xi+1. So, first we assume that Yi appears
before Xi+1. Let A denotes the set of vertices which appear before Yi, B denotes the set
of vertices which appear before Xi+1 and after Yi and C denotes the set of vertices which
appear after Xi+1 in S. In this case, Xi * C, so Xi ⊆ A ∪ B. But, then one of Yi+1 and
Xi+1 does not footprint any vertex, a contradiction. Similar arguments can be given when
Yi+1 appears before Xi+1. Hence, Xi+1 ∩ Ŝ = ∅. In the similar manner, we can prove that
Yi−1 ∩ Ŝ = ∅.

Next, we assume that j = i+1 and |Xi+1 ∩ Ŝ| = 1. We need to show that Yi ∩ Ŝ = ∅. On
the contrary, suppose that Yi ∩ Ŝ 6= ∅. Here, we see that S contain vertices from all of the
sets Xi, Xi+1, Yi and Yi+1. Then there exists a vertex a ∈ Xi ∪Xi+1 ∪Yi ∪Yi+1 whose closed
neighborhood is footprinted before its appearance, a contradiction. In the similar way, we
can prove that if |Yi ∩ Ŝ| = 1, then Xi+1 ∩ Ŝ = ∅.

Lemma 7. Let S = (v1, v2, . . . , vp) be a GD-sequence of G, which satisfies X ⊆ Ŝ. Then
one of the following statements is true.
1. γgr(G) = |X |
2. γgr(G) = |Y |
3. γgr(G) = |X | + |Yk|

Proof. If S is not a type (c) GD-sequence of G, then Y ∩ Ŝ = ∅ and so, γgr(G) = |X |. So,
assume that S is a type (c) GD-sequence of G.
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Case 1: v1 ∈ Y1.
In this case, all vertices of X are footprinted by v1. So, all the vertices v2, . . . , vp appear to
footprint vertices of Y \ {v1} only. This implies that γgr(G) ≤ |Y | and so, γgr(G) = |Y |.

Case 2: v1 /∈ Y1.
Here, we see that S satisfies all conditons of part (2) of Lemma 1 with i = k. Using Lemma 4,
we get that there exists an integer j ∈ [k] such that ∪k

r=jYr ⊆ Ŝ and Lemma 5 ensures that

j = k. Hence, we have that Yk ⊆ Ŝ and (∪k−2
r=1Yr) ∩ Ŝ = ∅, if k ≥ 3. Thus, we have that

X ∪ Yk ⊆ Ŝ and so, γgr(G) ≥ |X | + |Yk|. Now, if there is no vertex of Y before the vertices
of Xk in S, then γgr(G) ≤ |X |. So, all vertices of Yk appear before vertices of Xk.

Next, we have that Yk−1 ∩ Ŝ = ∅ using Lemma 6. Therefore, Ŝ = X ∪ Yk which implies
that γgr(G) = |X | + |Yk|.

Analogous to Lemma 7, we give a symmetric lemma for the set Y of G, whose proof
follows similar lines, and is omitted.

Lemma 8. Let S = (v1, v2, . . . , vp) be a GD-sequence of G, which satisfies Y ⊆ Ŝ. Then
one of the following statements is true.
1. γgr(G) = |Y |
2. γgr(G) = |X |
3. γgr(G) = |Y | + |X1|

Lemma 9. If G = (X, Y, E) is a chain graph such that every GD-sequence of G is of type
(c), then for any GD-sequence S of G, the following statements are true:
(1) ∪i

r=1Xr ⊆ Ŝ and ∪k
r=jYr ⊆ Ŝ for some i, j ∈ [k].

(2) Integers i and j satisfy exactly one of the following:
(a) i < k, j > 1.
(b) i = 1, j = 1.
(c) i = k, j = k.

(3) If i < k, j > 1, then γgr(G) =

{∑i

r=1 |Xr| +
∑k

r=j |Yr| : j = i∑i

r=1 |Xr| +
∑k

r=j |Yr| + 1 : j = i + 1

(4) If i = 1, j = 1, then γgr(G) = |Y | + |X1|
(5) If i = k, j = k, then γgr(G) = |X | + |Yk|

Proof. Lemmas 1 and 2 ensure property (1). To prove property (2), we need to show that
i = k, j = 1 cannot be true. So, assume that this is true. Then, Lemma 5 yields k = 1,
a contradition proving that property (2) holds. Property (3) follows from Lemmas 3, 4, 5
and 6. Properties (4) and (5) can be proved using Lemmas 7 and 8.

We are ready to present an algorithm for computing a GD-sequence of a chain graph
based on the above lemmas; see Algorithm 1.

By following the above discussion, note that γgr(G) ∈ A, where

A = {n1, n2, n1 + |Yk|, n2 + |X1|,
i∑

r=1

|Xr | +
k∑

l=i

|Yl|,
i∑

r=1

|Xr | +
k∑

l=i+1

|Yl| + 1},

for some i ∈ [k − 1]. Thus, the sequence returned by Algorithm 1 is a GD-sequence of G.
It is easy to see that Algorithm 1 computes S in linear time, which is the time needed to
compute the parts X1, . . . , Xk, Y1, . . . , Yk. The following theorem readily follows.
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Algorithm 1: GD-sequence of a chain graph

Input: A chain graph G = (X, Y, E) without isolated vertices along with a chain
ordering (x1, . . . , xn1

, y1, . . . , yn2
) of V (G).

Output: A GD-sequence S of G.

1 Find the parts X1, X2, . . . , Xk and Y1, Y2, . . . , Yk;
2 i = 0, sum[ ] = 0;
3 if |Y1| = 1 then
4 sum[0] = n2 + |X1|;

5 else
6 sum[0] = n2;

7 for i = 1 : k − 1 do

8 sum[i] =
∑i

j=1
|Xj |+ n2 −

∑i

j=1
|Yj |+ 1;

9 if |Xk | = 1 then
10 sum[k] = n1 + |Yk|;

11 else
12 sum[k] = n1;

13 Find an index i∗ ∈ {0, 1, 2, . . . , k} for which sum[i] is maximum;
14 if i∗ == 0 and |Y1| > 1 then
15 S ← (Yk)⊕ (Yk−1)⊕ · · · ⊕ (Y1);

16 else if i∗ == 0 and |Y1| = 1 then
17 if k ≥ 3 then
18 S ← (X1)⊕ (Yk)⊕ · · · ⊕ (Y3)⊕ (Y1)⊕ (Y2);

19 else
20 S ← (X1)⊕ (Y1)⊕ (Y2);

21 else if i∗ == k and |Xk | > 1 then
22 S ← (X1)⊕ (X2)⊕ · · · ⊕ (Xk);

23 else if i∗ == k and |Xk | = 1 then
24 if k ≥ 3 then
25 S ← (X1)⊕ (X2)⊕ · · · ⊕ (Xk−2)⊕ (Yk)⊕ (Xk)⊕ (Xk−1);

26 else
27 S ← (Y2)⊕ (X2)⊕ (X1);

28 else
29 choose a vertex x ∈ Xi∗+1

30 if i∗ > 1 then
31 S ← (X1)⊕ (X2)⊕ · · · ⊕ (Xi∗−1)⊕ (Yk)⊕ (Yk−1)⊕ · · · ⊕ (Yi∗+1)⊕ x⊕ (Xi∗ );

32 else
33 S ← (Yk)⊕ (Yk−1)⊕ · · · ⊕ (Y2)⊕ x⊕ (X1);

34 return S.

Theorem 4. Algorithm 1 outputs a GD-sequence S of G in linear time.

There is a connection between Grundy domination number of a graph and its indepen-
dence number. Let A be an independent set of size α(G). By considering all vertices of A in
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any order, we get a closed neighborhood sequence of G, which yields the well known bound
γgr(G) ≥ α(G). In addition, for a chain graph G, we prove that Grundy domination number
is either α(G) or α(G) + 1.

Theorem 5. If G is a chain graph, then γgr(G) ∈ {α(G), α(G) + 1}.

Proof. Let G be a chain graph. By using the notation established in this section, we claim
that α(G) ∈ {n1, n2,

∑i

j=1 |Xj | +
∑k

j=i+1 |Yj | for some i ∈ [k − 1]}. To see this, let A be a
maximum independent set of G. Three cases are possible. If A ⊆ X , then A = X implying
that α(G) = n1; if A ⊆ Y , then A = Y implying that α(G) = n2. Now, if A ∩ X 6= ∅ and
A ∩ Y 6= ∅, then one can easily infer that A = (∪i

j=1Xj) ∪ (∪k
j=i+1Yj) for some i ∈ [k − 1]

implying that α(G) =
∑i

j=1 |Xj | +
∑k

j=i+1 |Yj |. Letting i0 ∈ [k − 1] be an index such that∑i0

j=1 |Xj | +
∑k

j=i0+1 |Yj | ≥
∑i

j=1 |Xj | +
∑k

j=i+1 |Yj | for each i ∈ [k − 1], we may write

α(G) ∈ {n1, n2,
∑i0

j=1 |Xj | +
∑k

j=i0+1 |Yj |}.

Algorithm 1 computes a GD-sequence of G and it turns out that γgr(G) ∈ {n1, n2, n1 +

|Yk|, n2 + |X1|,
∑i

j=1 |Xj | +
∑k

j=i |Yj |,
∑i

j=1 |Xj | +
∑k

j=i+1 |Yj | + 1} for some i ∈ [k − 1].

Note that γgr(G) = n1 + |Yk| when |Xk| = 1 implying that γgr(G) =
∑k−1

j=1 |Xj | + |Yk| + 1.

Similarly, γgr(G) = n2 + |X1| when |Y1| = 1 implying that γgr(G) = |X1| +
∑k

j=2 |Yk| + 1.

Now, if γgr(G) =
∑i

j=1 |Xj | +
∑k

j=i |Yj | for some i ∈ [k − 1] then Lemma 5 ensures that

γgr(G) is either
∑i

j=1 |Xj | +
∑k

j=i+1 |Yj | + 1 or
∑i−1

j=1 |Xj | +
∑k

j=i |Yj | + 1. Hence, γgr(G) ∈

{n1, n2,
∑i

j=1 |Xj | +
∑k

j=i+1 |Yj | + 1 for some i ∈ [k − 1]}. Since Algorithm 1 computes the

GD-sequence by finding the maximum of the set {n1, n2} ∪ {
∑i

j=1 |Xj | +
∑k

j=i+1 |Yj | + 1 :

i ∈ [k − 1]}, we have, γgr(G) ∈ {n1, n2,
∑i0

j=1 |Xj | +
∑k

j=i0+1 |Yj | + 1}. Now, suppose

t =
∑i0

j=1 |Xj | +
∑k

j=i0+1 |Yj |, then we can write that α(G) ∈ {n1, n2, t} and γgr(G) ∈
{n1, n2, t + 1}. Now, we consider three cases.

Case 1: γgr(G) = n1:
In this case, n1 ≥ n2 and n1 ≥ t + 1 > t. This implies that α(G) = n1.

Case 2: γgr(G) = n2:
In this case, n2 ≥ n1 and n2 ≥ t + 1 > t. This implies that α(G) = n2.

Case 3: γgr(G) = t + 1:
In this case, if α(G) = n1 then n1 ≥ t = γgr(G) − 1. So, γgr(G) ≤ α(G) + 1. Similarly, if
α(G) = n2 then n2 ≥ t = γgr(G) − 1. So, γgr(G) ≤ α(G) + 1. Otherwise, α(G) = t implying
that γgr(G) = α(G) + 1.

Therefore, γgr(G) ∈ {α(G), α(G) + 1}.

5 Conclusion

In this paper, we studied the GDD problem for bipartite graphs and co-bipartite graphs.
We proved that the problem is NP-complete for bipartite graphs and efficiently solvable for
chain graphs, which form a subclass of bipartite graphs. We also proved NP-completeness of
the problem in co-bipartite graphs. To obtain a complete dichotomy, it would be interesting
to find the status of the problem in some graph classes that lie between chain graphs and
bipartite graphs.
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Note that the GDD problem in the class of co-chain graphs (that is, the complements
of chain graphs) is easily solvable. Indeed, in a co-chain graph G = (X, Y, E), one can find
similar partitions of X and Y into k sets X1, . . . , Xk, and Y1, . . . , Yk, respectively, that arises
from the closed twin relation in G. Then, one can also immediately infer that γgr(G) = k.
It would be interesting to see if there are some other known classes of graphs G whose
complement class G = {G : G ∈ G} has similar status of the computational complexity of
the GDD problem as G. Two nice instances (with G given by bipartite graphs and chain
graphs) are presented in this paper.
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