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Abstract
A graph is well-covered if all its maximal independent sets have the same cardinality. This
concept was introduced by Plummer in 1970 and naturally generalizes to the weighted case.
Given a graphG, a real-valued vertexweight functionw is said to be awell-coveredweighting
of G if all its maximal independent sets are of the same weight with respect to w. The set
of all well-covered weightings of a graph G forms a vector space over the field of real
numbers, called the well-covered vector space of G. Since the problem of recognizing well-
covered graphs is co-NP-complete, the problem of computing the well-covered vector space
of a given graph is co-NP-hard. Levit and Tankus showed in 2015 that the problem admits
a polynomial-time algorithm in the class of claw-free graphs. In this paper, we give two
general reductions for the problem, one based on anti-neighborhoods and one based on
modular decomposition, combined with Gaussian elimination. Building on these results,
we develop a polynomial-time algorithm for computing the well-covered vector space of a
given fork-free graph, generalizing the result of Levit and Tankus. Our approach implies a
polynomial-time recognition algorithm for the class of well-covered fork-free graphs and
also generalizes some known results on cographs.
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1 Introduction

An independent set in a graph G is a set of pairwise nonadjacent vertices. An independent
set in a graph G is said to be maximum if it has maximum cardinality and maximal if it is
not contained in any larger independent set. The problem of finding a maximum independent
set in a given graph, known as Maximum Independent Set, is one of the classical NP-
hard problems (Karp 1972). While every maximum independent set in a graph is also a
maximal one, the opposite implication does not hold in general. If everymaximal independent
set in a graph G is also a maximum one, the graph G is said to be well-covered. Well-covered
graphswere introduced by Plummer (1970) and have been extensively studied in the literature
(seeHartnell 1999 for an introduction andPlummer 1993 for a survey).One of themotivations
for the study of well-covered graphs stems from the fact thatMaximum Independent Set
is solvable in linear time in the class of well-covered graphs by a simple greedy algorithm
that computes a maximal independent set.

Two central research directions on well-covered graphs are the study of their recog-
nition and their characterizations in special graph classes. As proved independently by
Sankaranarayana and Stewart (1992) and by Chvátal and Slater (1993), the recognition of
well-covered graphs is co-NP-complete. In Plummer’s survey from1993 (see Plummer 1993),
one can find results on various restrictions of the well-coveredness property defining special
subclasses of well-covered graphs, as well as an overview of the study of well-coveredness
versus the girth and the maximum degree. After Plummer’s survey, the study of well-covered
graphs focused mostly on the recognition problem in special cases. In particular, Caro et al.
(1996) showed that the recognition of well-covered graphs remains co-NP-complete even
for K1,4-free graphs, Brown and Hoshino (2011) established co-NP-completeness for the
class of circulant graphs, and a careful examination of the reduction due to Sankaranarayana
and Stewart (1992) shows that the problem remains co-NP-complete in the class of weakly
chordal graphs, that is, graphs such that neither the graph nor its complement contain an
induced cycle of length at least five. On the positive side, Tankus and Tarsi (1996, 1997)
showed that the problem is polynomial-time solvable in the class of claw-free graphs. The
well-coveredness property can also be tested efficiently in the classes of bipartite graphs
(Ravindra 1977; Favaron 1982), graphs with girth at least 5 (Finbow et al. 1993), graphs
without cycles of lengths 4 and 5 (Finbow et al. 1994), chordal graphs (Prisner et al. 1996),
graphs of bounded degree (Caro et al. 1998), perfect graphs with bounded clique number
(Dean and Zito 1994), various generalizations of the class of cographs (Klein et al. 2013;
Araújo et al. 2019), and graphs of bounded cliquewidth (Alves et al. 2018). The problem has
also been studied from the parameterized complexity point of view, by Alves et al. (2018)
and Araújo et al. (2019).

In this paper, we focus on a weighted generalization of well-coveredness. If every vertex
of a graph G is assigned a real number, that is, the weight of a vertex, we speak about a
weighted graph. Maximum Weight Independent Set is the problem of computing an
independent set of maximum weight in a given weighted graph, where the weight of a set of
vertices is defined as the sum of the weights of its members. Given a graph G and a weight
function w : V (G) → R, a graph G is said to be w-well-covered if all maximal independent
sets in G are of the same weight with respect to the weight function w. The concept of
w-well-covered graphs was introduced by Caro et al. (1998), in the more general context of
weight functions mapping the vertices of a graph to the elements of an abelian group (see
also Brown and Nowakowski 2006). Graphs that are w-well-covered with respect to some
nonnegative weight function w : V (G) → R+ that is not identically equal to 0 are exactly
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the complements of the so-called stochastic graphs studied already in 1983 by Berge (1983),
and generalize the equistable graphs introduced in 1980 by Payan (1980) and defined as the
graphs that admit a weight functionw : V (G) → R+, such that a set S ⊆ V (G) is a maximal
independent set if and only if the total weight of S equals 1.

Given a graph G, a well-covered weighting of G is any real-valued weight function w on
the vertices of G, such that G is w-well-covered. For every graph G, the set WCW(G) of all
well-covered weightings of G forms a vector space over the field of real numbers (see Caro
and Yuster 1999; Brown and Nowakowski 2006); we refer to it as the well-covered vector
space of G. Similar vector spaces can be defined for more general situations, for example
for hypergraphs and for vertex weight functions that assign to each vertex of G a value from
some fixed field F (see Caro and Yuster 1999; Brown and Nowakowski 2006). In this paper,
we restrict our attention to the case of graphs and the field of real numbers. Any system
of equations representing the vector space WCW(G) will be referred to as a well-covering
system ofG. (Precise definitions will be given in Sect. 2.)We consider the following problem.

Well-covering system
Instance: A graph G = (V , E).
Question: Compute a well-covering system of G.

A graph is well-covered if and only if the vertex weight function that is constantly equal
to 1 belongs to the well-covered vector space of the graph. Therefore, since the problem
of recognizing well-covered graphs is co-NP-complete, the more general well-covering
system problem is co-NP-hard.

The well-covered dimension of G is denoted by wcdim(G) and defined as the dimension
of the well-covered vector space of G. Clearly, a graph G has well-covered dimension equal
to zero if and only if the only well-covered weighting of G is the identically zero function.
Such graphs are known to exist; for instance, the Petersen graph and any cycle with at least 8
vertices are among them (see Caro et al. 1998; Caro and Yuster 1999). However, to the best of
our knowledge, the complexity of computing the well-covered dimension of a graph is open,
even in the special case of recognizing graphs with positive well-covered dimension. Caro
and Yuster (1999) proved that the well-covered dimension of a tree is equal to the number of
leaves. Brown and Nowakowski (2006) generalized this result to the class of chordal graphs
by showing that, in this case, the well-covered dimension equals the number of simplicial
cliques. They also showed that the well-covered dimension can be computed in polynomial
time for cographs, for graphs with independence number at most two, and for chordal graphs.
The well-covered dimension of certain product graphs was studied by Birnbaum et al. (2014)
and for Levi graphs of point-line configurations by Hauschild et al. (2015).

Well-covered vector spaces of graphs containing no cycles of length 4 were studied by
Brown et al. (2007).Well- Covering System can be solved in polynomial time in classes
of graphs of bounded vertex degree, as shown by Caro et al. (1998), in the class of graphs
with girth at least 7, as shown by Caro and Yuster (1999), and, as shown by Levit and Tankus,
in the class of claw-free graphs (2015a) and in the class of graphs without cycles of lengths
4, 5, and 6 (2015b).

Our results and relation with existing works

In this paper, we give two general reductions for theWell- Covering System problem, one
based on modular decomposition and one based on anti-neighborhoods. Building on these
results, we develop a polynomial-time algorithm for solving the problem in the class of fork-
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free graphs, thereby generalizing the analogous result of Levit andTankus on claw-free graphs
(2015a). The algorithm decomposes a given fork-free graph G into a polynomial number of
induced subgraphs of G and recursively computes a well-covering system for every graph
H constructed at some step of the decomposition of G. To keep the well-covering systems
polynomially bounded in size, Gaussian elimination is applied at each step. In the base case,
when the subgraph H cannot be decomposed further, we use a structural result on fork-free
graphs due to Lozin and Milanič (2006, 2008) (see also Dyer et al. 2021) to infer that H is
claw-free; hence, in this case, the algorithm of Levit and Tankus applies.

The class of fork-free graphs generalizes the class of cographs; hence, our results general-
ize the result of Brown and Nowakowski (2006) that the well-covered dimension of cographs
can be computed in polynomial time. Furthermore, our reduction involving modular decom-
position generalizes the analogous reduction for the (unweighted) well-covered graphs due
to Klein et al. (2013), who used modular and primeval decompositions to develop efficient
algorithms for the problem of recognizing well-covered graphs in several extensions of the
class of cographs.

Our main result, a polynomial-time algorithm for computing a well-covering system of a
given fork-free graph, is another example of an application of the structural result from Lozin
and Milanič (2006, 2008) relating fork-free graphs to claw-free graphs (the exact statement
of the result is given in Theorem 6.3). This result was first used for developing a polynomial-
time algorithm for Maximum Weight Independent Set in the class of fork-free graphs
(Lozin and Milanič 2006, 2008). More recently, it has been used by Dyer et al. (2021) for
developing a fully polynomial randomized approximation scheme (FPRAS) for the problem
of counting all weighted independent sets in a (fork, odd hole)-free graph (Dyer et al. 2021)
and by Dębski et al. (2022) for developing a polynomial-time algorithm for W5-Coloring
(a certain homomorphism problem) in the class of fork-free graphs.

Structure of the paper

In Sect. 2, we collect the necessary definitions and preliminaries, including preliminaries on
modular decomposition and precise definitions about well-covering systems. In Sect. 3, we
show how to use modular decomposition, combined with Gaussian elimination, to reduce
the problem of computing a well-covering system of a graph to the same problem on certain
prime induced subgraphs of the graph. In Sect. 4, we develop an algorithm for computing
a well-covering system of a given cograph that is faster than the algorithm following from
the main result of Sect. 3. In Sect. 5, we show how to reduce the problem of computing
a well-covering system of a graph to the same problem on the subgraphs of a given graph
obtained by deleting the closed neighborhood of some vertex. In Sect. 6, we apply the results
from Sects. 3 and 5 to develop a polynomial-time algorithm for computing a well-covering
system of a given fork-free graph. We conclude the paper with a summary and some open
problems in Sect. 7.

2 Preliminaries

Given a positive integer n, we denote by [n] the set {1, . . . , n} (and [0] := ∅). All graphs in
this paper are finite, simple, and undirected. Given a graph G, we denote by V (G) the vertex
set ofG and by E(G) the edge set ofG. Two vertices u and v are adjacent inG if uv ∈ E(G).
The neighborhood of a vertex v in G is the set of all vertices adjacent to v in G and it is
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denoted by NG(v). The closed neighborhood of v is defined as NG [v] = NG(v)∪{v}. Given
a subset S of vertices in G, we denote by G[S] the graph induced by S, that is, the subgraph
of G with vertex set S and edge set {uv : u, v ∈ S, uv ∈ E(G)}. A connected component
of G is a maximal connected subgraph of G. The complement of a graph G = (V , E) is
a graph G with vertex set V in which two distinct vertices are adjacent if and only if they
are nonadjacent in G. A co-connected component, or simply co-component, of G is the
subgraph of G induced by the vertex set of a connected component of the complement of G.
A graph is co-connected if its complement is connected. Given two disjoint subsets A and
B of V (G), we say that A and B are complete (resp., anticomplete) to each other in G if
{ab : a ∈ A, b ∈ B} ⊆ E(G) (resp., {ab : a ∈ A, b ∈ B} ∩ E(G) = ∅).

For integers m, n ≥ 0 we denote by Km,n the complete bipartite graph with parts of sizes
m and n, that is, the graph whose vertices can be partitioned into two independent sets A and
B, such that |A| = m, |B| = n, and A and B are complete to each other. A claw is the graph
K1,3. A fork is the graph obtained from a claw by a single subdivision of one of its edges, that
is, the graph with vertex set {v1, v2, v3, v3, v5} and edge set {v1v2, v2v3, v3v4, v3v5}. By Pn ,
we denote the n-vertex path graph, that is, a graph whose vertices can be linearly ordered, so
that two vertices are adjacent if and only if they appear consecutively in the ordering. Given
two graphs G and H , the graph G is said to be H -free if it contains no induced subgraph
isomorphic to H .

A rooted tree is a pair (T , r) where T is a tree and r ∈ V (T ) is the root of T . Given two
nodes u and v in a rooted tree T , we say that v is a child (or successor) of u if uv ∈ E(T )

and u belongs to the unique v, r -path in T . A leaf of a rooted tree T is a node without
any successors, while an internal node of T is a node that is not a leaf. Note that if T is a
one-vertex rooted tree, then the unique vertex in T is both the root and a leaf of T , but it is
not an internal node. Given a rooted tree T , we denote by �(T ) the number of leaves of T
and by i(T ) = |V (T )|−�(T ) the number of internal nodes of T . We will need the following
well-known property of rooted trees. To keep the paper self-contained, we include a proof.

Lemma 2.1 Let T be a tree in which each internal node has at least two successors. Then,
�(T ) ≥ i(T ) + 1.

Proof By induction on i(T ). If i(T ) = 0, then the unique vertex in T is a leaf and the
inequality holds. Let now T be a tree with i(T ) ≥ 1, such that each internal node of T has at
least two successors, and assume that every tree T ′ with i(T ′) < i(T ) in which each internal
node has at least two successors satisfies that �(T ′) ≥ i(T ′)+1. Let r be the root of T and let
d be the number of successors of r . Since i(T ) ≥ 1, the root of T is an internal node. Hence,
d ≥ 2. Let T1, . . . , Td be the rooted trees obtained by the deletion of r from T , where for
each j ∈ [r ], the root of Tj is the unique successor of r in Tj . Then, for all j ∈ [r ], we have
that i(Tj ) < i(T ), and by the induction hypothesis, every Tj satisfies that �(Tj ) ≥ i(Tj )+1.
Observe that every internal node of Tj , j ∈ [d], is also internal in T , and node r is internal
in T as well, so we have i(T ) = 1 + ∑d

j=1 i(Tj ). Since �(T ) = ∑d
j=1 �(Tj ), we conclude

that �(T ) ≥ ∑d
j=1

(
i(Tj ) + 1

) = ∑d
j=1 i(Tj ) + d ≥ (i(T ) − 1) + 2 = i(T ) + 1, which

completes the proof. 
�
Corollary 2.2 Let T be a tree in which each internal node has at least two successors. Then,
|E(T )| ≤ 2�(T ) − 2.

Proof By Lemma 2.1, we have �(T ) ≥ i(T ) + 1. Therefore, |V (T )| = i(T ) + �(T ) ≤
2�(T ) − 1 and, consequently, |E(T )| = |V (T )| − 1 ≤ 2�(T ) − 2. 
�
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2.1 Modular decomposition

Given a graph G and a nonempty set M ⊆ V (G), we say that M is a module in G if every
vertex not in M is either adjacent to all vertices in M or to none of them. If M1 and M2 are
two disjoint modules in a graph G, then either G contains all possible edges between M1 and
M2 in G, or none of them. A module M is maximal if M ⊂ V (G) and there is no module
M ′ in G with M ⊂ M ′ ⊂ V (G). If G and its complement are both connected, then any two
maximal modules in G are disjoint; in particular, the set of maximal modules of G forms a
partition of V (G). A module M of a graph G is said to be strong if, for every other module
M ′ in G, it holds that either M ∩ M ′ = ∅, M ⊆ M ′, or M ′ ⊆ M . A graph G is prime if each
of its maximal strong modules is a singleton.

Every graph with at least two vertices has a unique partition of its vertex set into maximal
strong modules (see, e.g., Habib and Paul 2010). If G is disconnected, then the partition is
given by the vertex sets of its components; if the complement of G is disconnected, then the
partition is given by the vertex sets of its co-components. The representative graph R(G)

of G is any induced subgraph of G obtained by taking an arbitrary but fixed vertex from
each maximal strong module of G. Note that the representative graph of G depends on how
the vertices from the maximal strong modules are chosen; however, any two such graphs
are isomorphic to each other, which explains the notation R(G). The representative graph
of G is a special case of the following more general construction. Given a graph G and an
arbitrary partition P = {M1, . . . , Mk} of V (G) into modules of G, we denote by G/P the
corresponding quotient graph, which is the induced subgraph of G obtained by taking one
vertex from each module Mj ∈ P .

Partitioning the vertex set of a graph G recursively into maximal strong modules leads to
the so-called modular decomposition of G, represented with the so-called modular decom-
position tree. This is a rooted tree TG , such that every node of TG is labeled with an induced
subgraph Ht of G, and every internal node of TG is of one of the types parallel, series, or
prime. The tree TG is defined recursively as follows:

• If G is the one-vertex graph, then TG has one node t , labeled with Ht = G, and t is the
root of TG .

• Otherwise, TG is the rooted tree obtained by creating a root node r , labeling the root by
the representative graph of G (that is, setting Hr = R(G)), and joining the root r with
edges to the roots of the modular decomposition trees T1, . . . , Tk of the subgraphs of G
induced by the maximal strong modules M1, . . . , Mk of G. The root node of G is of type
parallel ifG is disconnected, series if the complement ofG is disconnected, and prime if
both G and its complement are connected. Each internal node t of TG with t �= r belongs
to a unique tree Ti and its type in TG is the same as in Ti .

Given a graph G, the modular decomposition tree TG of G can be computed in linear time
(see McConnell and Spinrad 1999; Tedder et al. 2008). By construction, for every node
t ∈ V (TG), the subtree of TG rooted at t is the modular decomposition tree of the subgraph
Gt of G induced by the vertices appearing in the one-vertex subgraphs labeling the leaves of
this subtree. Furthermore, if the node t is of type prime, then the graph Ht labeling the node
is a prime graph.

2.2 Well-covering systems

Aweighted graph is a pair (G, w)whereG is a graph andw ∈ R
V (G), that is,w : V (G) → R

is a real-valued vertex weight function. Given a weighted graph (G, w) and a set S ⊆ V (G),
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the weight of S (with respect tow) is defined asw(S) = ∑
v∈S w(v). Given a set S ⊆ V (G),

we denote bywS the restriction ofw to S, that is, the functionwS : S → R defined by setting
wS(v) = w(v) for all v ∈ S.

Given a weighted graph (G, w), we say that w is a well-covered weighting of G and that
G is w-well-covered if all maximal independent sets in G have the same weight with respect
to w, that is, for every two maximal independent sets I and I ′ in G, we have w(I ) = w(I ′).
Recall that for every graph G, the set WCW(G) of all well-covered weightings of G forms a
vector space over the field of real numbers, called the well-covered vector space of G. Since
we only work with finite graphs, the well-covered vector space WCW(G) is always finite-
dimensional and thus has a finite basis (an inclusion-wise maximal linearly independent set
of vectors); furthermore, all bases ofWCW(G) have the same cardinality, which is referred to
as the well-covered dimension of G. Clearly, for every graph G, its well-covered dimension
is an integer between 0 and |V (G)|.

Well-covered vector spaces of graphs can also be represented using systems of linear
equations. Let G be a graph with n vertices. Fix an arbitrary ordering v1, . . . , vn of the
vertices of G and an arbitrary ordering I1, . . . , Ik of all maximal independent sets in G. By
definition, a weight function w : V (G) → R is a well-covered weighting of G if and only if
w satisfies the following system of

(k
2

)
equations:

w(Ii ) − w(I j ) = 0 for any two distinct i, j ∈ [k] with i < j . (1)

To distinguish between vectors of abstract variables of a system and vectors of their concrete
real values, we use the following convention throughout the paper. To each vertex v ∈ V (G)

we associate a variable xv , and write the systems of equations using such variable names. For
example, following this convention, the system (1) corresponds to the followinghomogeneous
linear system over the set of variables {xv : v ∈ V (G)}:

∑

v∈Ii
xv −

∑

v∈I j
xv = 0 for any two distinct i, j ∈ [k] with i < j . (2)

This system can be compactly represented with a single matrix equation

Ax = 0r ,

where r = (k
2

)
, A ∈ R

r×n is the coefficient matrix, and the right-hand side 0r is the all-
zero vector in R

r . Thus, a column vector w = (w(v1), . . . , w(vn))
� ∈ R

n belongs to the
well-covered vector space WCW(G) if and only if Aw = 0r .

There are many ways to represent the well-covered vector space of a given graph G with
a linear system. For example, a system equivalent to (2) with k−1 equations can be obtained
by requiring that all maximal independents sets have the same weight as an arbitrary but
fixed maximal independent set, say Ik

∑

v∈Ii
xv −

∑

v∈Ik
xv = 0 for all i ∈ [k − 1] . (3)

Another equivalent system, also with k − 1 equations, is the following:
∑

v∈Ii
xv −

∑

v∈Ii+1

xv = 0 for all i ∈ [k − 1] . (4)

A well-covering system of G is any system S of linear homogeneous equations over a set
{xv : v ∈ V (G)} of variables indexed by the vertices of G, such that a column vector
w = (w(v1), . . . , w(vn))

� ∈ R
n belongs to the well-covered vector space WCW(G) if and

123



360 Page 8 of 23 M. Milanič, N. Pivač

only if it satisfies all the equations of the system. Given a well-covering system S of G, we
denote by |S| the size of S, that is, the number of equations in S. As shown by systems (2)
and (3), the same graph can admit well-covering systems of different sizes.

We will soon illustrate these concepts with a concrete example, but first let us discuss two
important remarks about properties of well-covering systems.

A remark on the size of well-covering systems The number of maximal independent sets in
an n-vertex graph can be exponential in n.1 However, using Gaussian elimination, it can be
shown that any well-covering system of an n-vertex graph admits a well-covering subsystem
of size at most n (see Lemma 2.4).

Consider an arbitrary well-covering system S of an n-vertex graph G and let r be the size
of S. Fix an arbitrary ordering of the vertices of G and an arbitrary ordering of the equations
in S. Let A ∈ R

r×n be the coefficient matrix of S. We say that a well-covering system S
is linearly independent if the rows of the corresponding matrix A are linearly independent
over the field of real numbers. In this case, the r rows of A form a basis of the orthogonal
complement of the vector space WCW(G), and hence, by standard linear algebra, we have
r +wcdim(G) = n. In particular, in this case, we have r ≤ n, and equality holds if and only
if wcdim(G) = 0, that is, the all-zero weighting is the only well-covered weighting of G.

A remark on the coefficients of well-covering systems Since we consider the well-covered
vector space WCW(G) of a graph G as a vector space over the field of real numbers, any
well-covering system ofG consists of linear equations involving real numbers as coefficients.
However, it often suffices to work with well-covering systems whose coefficients belong to
a particular subset of the set of real numbers. We say that a well-covering system is unit if
the matrix of the system has all the coefficients in the set {−1, 0, 1}, integer if the system
consists of linear equations involving only integer coefficients, and rational if it consists
of linear equations involving only rational coefficients. Note that systems (2), (3), and (4)
are all unit. Furthermore, the well-covering systems of fork-free graphs constructed by the
algorithm given by our main result (Theorem 6.5) are also unit.

Example 2.3 Let G be the bull graph, that is, the graph obtained from the 5-vertex path with
vertices v1, . . . , v5 in order along the path by adding to it the edge v2v4. Then, G has exactly
three maximal independent sets: I1 = {v1, v4}, I2 = {v2, v5}, and I3 = {v1, v3, v5}. Any
well-covered weighting w of G must satisfy that w(I1) = w(I2) = w(I3), or equivalently,
w(I1) − w(I3) = 0 and w(I2) − w(I3) = 0. This yields the following linearly independent
unit well-covering system S of G with size r = 2:

− xv3 + xv4 − xv5 = 0

− xv1 + xv2 − xv3 = 0 .

Using this system of equations, we can easily determine for any weighting w of G whether
it is well-covered weighting or not. For example, letting

B = {(1, 1, 0, 0, 0)�, (0, 1, 1, 1, 0)�, (0, 0, 0, 1, 1)�},
it can be easily verified that each w = (w(v1), . . . , w(v5))

� ∈ B satisfies both equations in
S and thus belongs to the spaceWCW(G). Furthermore, since the two rows of the coefficient
matrix of the system S, that is, (0, 0,−1, 1,−1) and (−1, 1,−1, 0, 0), form a basis of the
orthogonal complement of the well-covered vector space, it follows that the well-covered
dimension of the space WCW(G) equals |V (G)| − r = 3. Thus, since the vectors in the

1 For example, the 2n-vertex graph consisting of n isolated edges has 2n maximal independent sets.
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set B are linearly independent, we infer that B is a basis of the well-covered vector space
WCW(G). �

In some of our results, including the reduction based onmodular decomposition (Theorem
3.6), the following lemma based on Gaussian elimination will be useful. We denote by
ω < 2.373 the matrix multiplication exponent (see, e.g., Alman and Vassilevska Williams
2021).

Lemma 2.4 Given an n-vertex graph G and a rational well-covering system Ŝ of G, one can
compute in time O(nω−1|Ŝ|) a linearly independent well-covering system S ⊆ Ŝ of G, such
that |S| ≤ min{n, |Ŝ|}.
Proof Let r = |Ŝ|. If r ≤ n, we are done, so assume r > n. Fix an arbitrary ordering of
the vertices of G and an arbitrary ordering of the equations in Ŝ. Let A ∈ Q

r×n be the
corresponding matrix and let A� be its transpose. Using Gaussian elimination, we compute
a basis B of A� that is a maximal linearly independent subset of columns of A�. This can
be done in time O(rnω−1) (see Cheung et al. 2013). Note that the vectors in B correspond
to certain equations in Ŝ. Let S ⊆ Ŝ consist of equations corresponding to the vectors in B.
Then, S is a linearly independent well-covering system of G, and clearly, |S| ≤ min{n, r}.
Sinceω ≥ 2 and the matrix A and its transpose can be computed in timeO(rn), the algorithm
runs in time O(rnω−1). 
�

3 Reduction to prime induced subgraphs

In this section, we explain how to efficiently compute a well-covering system of a graph from
well-covering systems of its maximal strong modules and of the representative graph. Then,
we combine this result with modular decomposition and Gaussian elimination to reduce the
problem of computing a well-covering system of a graph to the same problem on certain
prime induced subgraphs of the graph.

We start with a basic lemma characterizing the family of maximal independent sets in a
graph G whose vertex set is equipped with an arbitrary partition into modules.

Lemma 3.1 Let G be a graph, let P = {M1, . . . , Mk} be an arbitrary partition of V (G) into
modules, and let G ′ = G/P be the corresponding quotient graph, with V (G ′) = {v1, . . . , vk}
where v j ∈ Mj for all j ∈ [k]. Then, a set X ⊆ V (G) is a maximal independent set in G if
and only if the following conditions hold:

i) For all j ∈ [k], the set X ∩ Mj is either empty or a maximal independent set in G[Mj ].
ii) The set X ′ = {v j ∈ V (G ′) : X ∩ Mj �= ∅} is a maximal independent set in G ′.

Proof First, we show that the stated conditions are necessary. Let X ⊆ V (G) be a maximal
independent set in G. Consider an arbitrary j ∈ [k], such that X ∩ Mj �= ∅. We want to
prove that X ∩ Mj is a maximal independent set in G[Mj ]. Since this set is a subset of X , it
is an independent set in G and hence also in G[Mj ]. We have to prove that it is a maximal
one. Suppose for a contradiction that this is not the case, and let x ∈ Mj\X satisfy that
(X ∩ Mj ) ∪ {x} is an independent set in G[Mj ]. Then, x has no neighbors in X ∩ Mj . Since
X ∩ Mj �= ∅, there exists a vertex y ∈ S ∩ Mj . Note that x and y are in the same module
Mj , so they have the same neighborhood outside Mj in G. In particular, this implies that
NG(x) ∩ (X\Mj ) = NG(y) ∩ (X\Mj ) ⊆ NG(y) ∩ X = ∅, where the second equality
follows from the fact that y ∈ X and X is independent in G. We already know that x has no
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neighbors in X ∩ Mj , so it follows that x has no neighbors in the set X at all. This implies
that X ∪ {x} is the independent set in G, a contradiction with the maximality of X in G.
Hence, condition i) holds.

Next, we show condition i i ), that is, that the set X ′ = {v j ∈ V (G ′) : X ∩ Mj �= ∅} is a
maximal independent set in G ′. Let J = { j ∈ [k] : X ∩ Mj �= ∅}. Vertices in X are pairwise
nonadjacent, so the modules Mj , j ∈ J , that contain vertices from X are anticomplete to
each other in G. By construction of the graph G ′, it follows that the corresponding vertices
v j , j ∈ J , are pairwise nonadjacent inG ′, and hence, X ′ is an independent set inG ′. It remains
to prove maximality. Suppose for a contradiction that there is a vertex v� ∈ V (G ′)\X ′, such
that X ′ ∪ {v�} is an independent set in G ′. Since v� /∈ S′, it follows that � /∈ J , and thus,
X ∩ M� = ∅. However, since X ′ ∪ {v�} is an independent set in G ′, for all j ∈ J , we have
that v� /∈ NG ′(v j ), and it follows that modules M� and Mj are anticomplete to each other
in G. Thus, we can enlarge the independent set X in G by adding to it any vertex from Mj .
This contradicts the fact that X is a maximal independent set in G.

The two conditions are also sufficient. Let X ⊆ V (G) and assume that conditions i)
and ii) from the lemma hold. We will prove that X is a maximal independent set in G. Let
J = { j ∈ [k] : X ∩ Mj �= ∅}. Note that X = ⋃

j∈J (X ∩ Mj ). By condition i ), we have that,
for all j ∈ J , the set X ∩ Mj ⊆ Mj is independent in G j and hence in G. By condition ii),
we have that the set X ′ = {v j ∈ V (G ′) : j ∈ J } is an independent set in G ′. It follows that
all the modules Mj , j ∈ J , are pairwise anticomplete. Hence, the set X = ⋃

j∈J (X ∩ Mj )

is independent in G. It remains to show maximality. Suppose for a contradiction that there
exists a vertex v ∈ V (G)\X , such that the set X ∪ {v} is independent in G. Let � ∈ [k], such
that v ∈ M�. Then, (X ∪ {v}) ∩ M� is an independent set in G�, which implies that the set
X ∩ M� is not a maximal independent set in G�. By condition i), it follows that X ∩ M� = ∅,
and thus, � /∈ J . Since the set X ∪ {v} is independent in G, the vertex v has no neighbors in
the set X = ⋃

j∈J (X ∩ Mj ). As all the sets Mj are modules in G, this implies that v has
no neighbors in the set

⋃
j∈J M j . Consequently, the vertex v� corresponding to the module

M� in G ′ has no neighbors in the set X ′ = {v j : j ∈ J }, in G ′. Hence, the set X ′ ∪ {v�} is
independent in G ′. Since v� /∈ X ′, this is a contradiction with the maximality of X ′, which
is given by condition ii). This shows that the set X is a maximal independent set in G. 
�

We now use Lemma 3.1 to show how to efficiently compute a well-covering system of a
graph from well-covering systems of its maximal strong modules and of the representative
graph. We state the result more generally, for any graph equipped with a partition of the
vertex set into modules, since we will later apply this result to various scenarios depending
on whether the graph is disconnected (in which case the modules are the vertex sets of its
connected components), the complement of the graph is disconnected (in which case the
modules are the vertex sets of its co-components), or the graph and its complement are both
connected.

Lemma 3.2 Let G be a graph, let P = {M1, . . . , Mk} be an arbitrary partition of V (G) into
modules, and let G ′ = G/P be the corresponding quotient graph, with V (G ′) = {v1, . . . , vk}
where v j ∈ Mj for all j ∈ [k]. Let S j be a well-covering system for G[Mj ] for all j ∈ [k]
and let S ′ be a well-covering system of G ′. Let I = {I j : j ∈ [k]} be an arbitrary but fixed
collection of maximal independent sets I j in G[Mj ] for all j ∈ [k]. For each equation s ∈ S ′,
let us denote by ρI(s) the equation indexed by the vertices of G obtained from s by iterating
over all vertices v j of G ′ and substituting the variable xv j corresponding to the vertex v j

with the sum
∑

v∈I j xv (in particular, the variables corresponding to vertices v of G that do

not belong to the union
⋃

j∈[k] I j appear with zero coefficient). Then
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S =
⎛

⎝
k⋃

j=1

S j

⎞

⎠ ∪
{
ρI(s) : s ∈ S ′} (5)

is a well-covering system of G. Furthermore, if the systems S1, . . . ,Sk and S ′ are all rational
(resp. integer or unit), then so is S.

Proof Let G j denote the graph G[Mj ] for all j ∈ [k]. The proof of the lemma will be based
on the following observation.

Claim Let w be a vertex weight function on G, and let w′ : V (G ′) → R be defined as
w′(v j ) = w(I j ) for all j ∈ [k]. Let also w j denote the restriction of w to V (G j ) for all
j ∈ [k]. Then, G is w-well-covered if and only if G ′ is w′-well-covered and for all j ∈ [k],
the graph G j is w j -well-covered.

Let us first show that the claim implies the lemma. We show that the proposed system
of equations S given by (5) is a well-covering system of G by showing that, for any vertex
weight function w on G, it holds that w is a well-covered weighting of G if and only if
w satisfies all the equations of the system. Assume first that w is a well-covered weighting
of G. Then, by the claim G ′ is w′-well-covered and for all j ∈ [k], the graph G j is w j -
well-covered. Since G ′ is w′-well-covered, w′ is a solution of the system of equations S ′.
Consider an arbitrary equation s ∈ S ′. Then, there exist real numbers av j , j ∈ [k], such
that s equals the equation

∑k
j=1 av j xv j = 0. Hence, the equation ρI(s) is equivalent to

the equation
∑k

j=1 av j

∑
v∈I j xv = 0. Since setting xv j = ∑

v∈I j w(v) for all v j ∈ V (G ′)
results in a solution of the equation s, we infer that setting xv = w(v) for all v ∈ V (G) results
in a solution of the equation ρI(s). Similarly, for each j ∈ [k], setting xv = w j (v) = w(v)

for all v ∈ V (G j ) yields a solution of the system of equations S j . It follows that setting
xv = w(v) for all v ∈ V (G) results in a solution of the system of equations

⋃k
j=1 S j and

thus of the entire system of equations (5). Similar arguments show that if w is a solution of
the system of equations (5), then w is a well-covered weighting of G. The last statement of
the lemma, that the system S is rational (resp. integer or unit) whenever this is the case for
the systems S1, . . . ,Sk and S ′, is straightforward.

Now, we show the claim. Assume that G is w-well-covered. First, we show that G ′ is w′-
well-covered. Let I and I ′ be twomaximal independent sets inG ′. Let J = { j ∈ [k] : v j ∈ I }
and J ′ = { j ∈ [k] : v j ∈ I ′}be the corresponding index sets.ByLemma3.1, the sets

⋃
j∈J I j

and
⋃

i∈J ′ I j are maximal independent sets in G. Since G is w-well-covered, it follows that
w

( ⋃
j∈J I j

) = w
(⋃

i∈J ′ I j
)
. Furthermore, we have

w′(I ) =
∑

j∈J

w′(v j ) =
∑

j∈J

w(I j ) = w

( ⋃

j∈J

I j

)

and

w′(I ′) =
∑

j∈J ′
w′(v j ) =

∑

j∈J ′
w(I j ) = w

( ⋃

j∈J ′
I j

)

.

Altogether, the above equations imply thatw′(I ) = w′(I ′), and since I and I ′ were arbitrary
maximal independent sets in G ′, it follows that G ′ is w′-well-covered.

Next, we show that for all j ∈ [k], the graph G j is w j -well-covered. Let I and I ′ be
arbitrary maximal independent sets in G j , and let S be a maximal independent set in G ′,

123



360 Page 12 of 23 M. Milanič, N. Pivač

such that v j ∈ S. Let also X = ⋃{I� : v� ∈ S\{v j }}. By Lemma 3.1, the sets I ∪ X
and I ′ ∪ X are maximal independent sets in G. Since G is w-well-covered, we have that
w(I ∪ X) = w(I ′ ∪ X), and consequently

w j (I ) = w(I ) = w(I ∪ X) − w(X) = w(I ′ ∪ X) − w(X) = w(I ′) = w j (I
′).

Since I and I ′ were arbitrary maximal independent sets in G j , we infer that G j is w j -well-
covered.

For the proof of the other direction, assume that G ′ is w′-well-covered and that G j is
w j -well-covered for all j ∈ [k]. We want to show that G is w-well-covered. Let I and I ′ be
maximal independent sets inG, and let J , J ′ ⊆ [k] be defined as J = { j ∈ [k] : I ∩Mj �= ∅}
and J ′ = { j ∈ [k] : I ′ ∩ Mj �= ∅}. By Lemma 3.1, the sets S = {v j ∈ V (G ′) : j ∈ J }
and S′ = {v j ∈ V (G ′) : j ∈ J ′} are maximal independent sets in G ′, and for all j ∈ J
(resp. j ∈ J ′), the set I ∩ Mj (resp. I ′ ∩ Mj ) is a maximal independent set in G j . Since, for
all j ∈ [k], we have that G j is w j -well-covered, it follows that:

w(I ∩ Mj ) = w j (I ∩ Mj ) = w j (I j ) = w(I j ) = w′(v j ) for all j ∈ J ,

and similarly

w(I ′ ∩ Mj ) = w j (I
′ ∩ Mj ) = w j (I j ) = w(I j ) = w′(v j ) for all j ∈ J ′.

Thus, we have that w(I ) = ∑
j∈J w(I ∩ Mj ) = ∑

j∈J w′(v j ) = w′(S) and w(I ′) =∑
j∈J ′ w(I ′ ∩ Mj ) = ∑

j∈J ′ w′(v j ) = w′(S′). Since G ′ is w′-well-covered, it follows that
w′(S) = w′(S′) and consequently w(I ) = w(I ′), as we wanted to show. The sets I and I ′
were arbitrarymaximal independent sets inG, and hence, it follows thatG isw-well-covered.


�
We now apply Lemma 3.2 to three different cases: when G is disconnected, when the

complement of G is disconnected, and when both G and its complement are connected.

Corollary 3.3 Let G be a disconnected graph, with connected components G1, . . . ,Gk for
some k ≥ 2, and let S j be a well-covering system of G j for all j ∈ [k]. Then, S = ⋃k

j=1 S j

is a well-covering system of G that can be computed in time O( ∑k
j=1 |S j |

)
. Furthermore,

if the systems S1, . . . ,Sk are all rational (resp. integer or unit), then so is S.

Proof Let G be a graph with connected components G1, . . . ,Gk . Then, P = {V (G1), . . . ,

V (Gk)} is a partition of V (G) intomodules, and the corresponding quotient graphG ′ = G/P
is the edgeless graphwith k vertices. This implies that V (G ′) is the onlymaximal independent
set in G ′, and hence, S ′ = ∅ is a well-covering system of G ′. By Lemma 3.2, it follows that
the set

⋃k
j=1 S j is a well-covering system of G. This system can be computed in time

O( ∑k
j=1 |S j |

)
. 
�

Corollary 3.3 implies the fact that the well-covered dimension of a graph is the sum of the
well-covered dimensions of its connected components (see Brown and Nowakowski 2006).

Corollary 3.4 Let G be a graph with disconnected complement, with co-components
G1, . . . ,Gk, for some k ≥ 2, and let S j be a well-covering system of G j for all j ∈ [k]. Let
I j be a maximal independent set in G j for j ∈ [k]. Then

S =
⎛

⎝
k⋃

j=1

S j

⎞

⎠ ∪
⎧
⎨

⎩

∑

v∈I j
xv −

∑

v∈I j+1

xv = 0 : j ∈ [k − 1]
⎫
⎬

⎭
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is a well-covering system of G. In particular, given G, G1, . . . ,Gk, and S1, . . . ,Sk as
above, a well-covering system of G with size

∑k
j=1 |S j | + k − 1 can be computed in time

O(|V (G)| + |E(G)| + ∑k
j=1 |S j |). Furthermore, if the systems S1, . . . ,Sk are all rational

(resp. integer or unit), then so is S.
Proof Let G be a graph with co-components G1, . . . ,Gk . Then, P = {V (G1), . . . , V (Gk)}
is a partition of V (G) into modules, and the corresponding quotient graph G ′ = G/P is the
complete graph on k vertices. Let V (G ′) = {v1, . . . , vk}. Since G ′ is complete graph, the
maximal independent sets in G ′ are exactly the singletons {v j } for j ∈ [k]. Consequently, w′
is a well-covered weighting ofG ′ if and only ifw′(v1) = . . . = w′(vk), or equivalently, if for
all j ∈ [k − 1] we have that w′(v j ) = w′(v j+1). It follows that the set S ′ = {xv j − xv j+1 =
0 : j ∈ [k − 1]} is a well-covering system of G ′. Let I = {I j : j ∈ [k]}. We follow the
notation from Lemma 3.2 and for each s ∈ S ′ denote by ρI(s) the equation indexed by
the vertices of G obtained from s by replacing each variable xv j corresponding to a vertex

v j of G ′ with the sum
∑

v∈I j xv . By Lemma 3.2, it follows that
(⋃k

j=1 S j

)
∪

{
ρI(s) :

s ∈ S ′
}
is a well-covering system of G. Thus, the set

{
ρI(s) : s ∈ S ′

}
is equivalent

to the set
{∑

v∈I j xv − ∑
v∈I j+1

xv = 0 : j ∈ [k − 1]
}
. It follows that S =

(⋃k
j=1 S j

)
∪

{∑
v∈I j xv − ∑

v∈I j+1
xv = 0 : j ∈ [k − 1]

}
is a well-covering system of G, as claimed.

Furthermore, this system is integer, resp. unit, if the systemsS1, . . . ,Sk are integer, resp. unit.
It remains to justify the time complexity. First, we compute for all j ∈ [k] a max-

imal independent set I j in the graph G j . This can be done using a straightforward
greedy algorithm in time O(

∑k
j=1(|V (G j )| + |E(G j )|)) = O(|V (G)| + |E(G)|). We

compute the system of equations
⋃k

j=1 S j in time O(
∑k

j=1 |S j |) and the system of equa-

tions
{∑

v∈I j xv − ∑
v∈I j+1

xv = 0 : j ∈ [k − 1]
}

in time O
( ∑k−1

j=1(|I j+1| + |I j |)
)

=
O

( ∑k
j=1 |I j |

)
= O(|V (G)|). The total time complexity is O(|V (G)| + |E(G)| +

∑k
j=1 |S j |), as claimed. 
�
In the case when the graph and its complement are both connected, the corresponding

algorithmic consequence of Lemma 3.2 is as follows.

Corollary 3.5 Let G = (V , E) be a connected and co-connected graph, let {M1, . . . , Mk} be
the partition of V (G) into maximal strong modules, and let G ′ be the representative graph of
G. Let I j be a maximal independent set in the graph G[Mj ], let S j be a well-covering system
for G[Mj ] for all j ∈ [k], and let S ′ be a well-covering system of G ′. Then, a well-covering
system S of G with size

∑k
j=1 |S j |+|S ′| can be computed in timeO(|V | · |S ′|+∑k

j=1 |S j |
)
.

Furthermore, if the systems S1, . . . ,Sk and S ′ are all rational (resp. integer or unit), then so
is S.
Proof Let I = {I j : j ∈ [k]}. Using the notation of Lemma 3.2, the lemma implies that it
suffices to compute the system of equations S = ( ⋃k

j=1 S j
) ∪ {

ρI(s) : s ∈ S ′} . This can
be done in time

O
⎛

⎝
k∑

j=1

|S j | + |S ′|
⎛

⎝
k∑

j=1

|I j |
⎞

⎠

⎞

⎠ = O
⎛

⎝
k∑

j=1

|S j | + |V | · |S ′|
⎞

⎠ ,

as claimed. 
�
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We now prove the main result of this section, a reduction of the problem of computing a
well-covering system of a graph to the same problem on certain prime induced subgraphs of
the graph. We say that a function f : R+ ×R

+ → R
+ is nondecreasing if 0 ≤ x1 ≤ x2 and

0 ≤ y1 ≤ y2 implies f (x1, y1) ≤ f (x2, y2), and superadditive if the inequality

f (x1, y1) + f (x2, y2) ≤ f (x1 + x2, y1 + y2)

holds for all x1, y1, x2, y2 ∈ R
+. Note that every superadditive function is nondecreasing.

Theorem 3.6 Let G be a class of graphs and G∗ be the class of all prime induced subgraphs
of graphs in G. Assume that for each graph G in G∗ with n vertices and m ≥ 1 edges, one
can compute in time f (n,m) a rational (resp. integer or unit) well-covering system of G
with size at most n, where f is a superadditive function. Then, for any graph G in G with n
vertices and m edges, one can compute in timeO(

f (2n,m)+nω+1
)
a rational (resp. integer

or unit) well-covering system of G with size at most n.

Proof LetG be a graph inGwithn vertices andm edges. Let TG be themodular decomposition
tree ofG. This tree can be computed in timeO(n+m) (McConnell and Spinrad 1999; Tedder
et al. 2008). Recall that for a node t of TG , we denote by Gt the subgraph of G induced by
the vertices appearing in the one-vertex subgraphs labeling the leaves of the subtree of TG
rooted at t . Let nt = |V (Gt )| and mt = |E(Gt )|.

We traverse the tree TG bottom–up, and for each node t ∈ V (TG), we recursively compute
a maximal independent set It in Gt and a well-covering system St of Gt with size at most
nt . It is important to note that we do not store a complete representation of the graph Gt

via adjacency lists, as that would additionally increase the time and space complexity of the
procedure. The ordering in which the nodes of tree TG are traversed can be computed in time
O(|V (TG)|) = O(n + m), for example, by reversing the ordering in which the nodes of TG
are visited by a breadth-first search from the root node. For each node t of TG , we denote by
Ct the set of all children of t in TG .

Assume first that t is a leaf node (that is, Ct = ∅). Then, V (Gt ) = {vt } where vt is
the vertex of G labeling t ; in particular, nt = 1. Hence, It = V (Gt ) is the only maximal
independent set in Gt and St = ∅ is a well-covering system of Gt that trivially satisfies the
inequality |St | ≤ nt . Both It and St can be computed in constant time.

Assume now that t is an internal node in TG . Then, t is one of the types parallel, series,
or prime. Since the subtrees of TG rooted at the children of t are the modular decomposition
trees of the subgraphs of Gt induced by its maximal strong modules, which form a partition
of V (Gt ), it follows that nt = ∑

u∈Ct
nu . For each child u of t we have already computed

a maximal independent set Iu in Gu and a well-covering system Su of Gu with size at most
nu . We explain how to efficiently combine these into a maximal independent set It in Gt and
a well-covering system St of Gt with size at most nt for each of the three cases separately.

• If t is of type parallel, then Gt is a disconnected graph, with connected components Gu ,
u ∈ Ct . We can thus take It = ⋃

u∈Ct
Iu , and by Corollary 3.3, St = ⋃

u∈Ct
Su . We

have

|St | =
∑

u∈Ct

|Su | ≤
∑

u∈Ct

nu = nt .

Furthermore, byCorollary 3.3, thewell-covering systemSt ofGt can be computed in time
O( ∑

u∈Ct
|Su |

) = O(|St |
) = O(nt ). Since It can be computed in time O(|V (Gt )| +

|E(Gt )|) = O(nt + mt ), the total time complexity at the parallel node t is O(nt + mt ).
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• If t is of type series, then the complement ofGt is disconnected, with co-componentsGu ,
u ∈ Ct . We select an arbitrary u ∈ Ct and set It = Iu . Furthermore, we fix an arbitrary
ordering u1, . . . , u p of the set Ct and set

Ŝt =
⎛

⎝
⋃

u∈Ct

Su

⎞

⎠ ∪

⎧
⎪⎨

⎪⎩

∑

v∈Iu j
xv −

∑

v∈Iu j+1

xv = 0 : j ∈ [p − 1]

⎫
⎪⎬

⎪⎭
.

By Corollary 3.4, Ŝt is a well-covering system of Gt that can be computed in time
O(|V (Gt )| + |E(Gt )| + ∑

u∈Ct
|Su |) = O(nt + mt ). The size of Ŝt is bounded as

follows:

|Ŝt | =
∑

u∈Ct

|Su | + |Ct | − 1 ≤
∑

u∈Ct

nu + nt − 1 = nt + nt − 1 = 2nt − 1.

Furthermore, Lemma 2.4 implies that a well-covering system St ⊆ Ŝt of Gt , such that
|St | ≤ nt can be computed in timeO(nω−1

t · |Ŝt |) = O(nω
t ). Altogether, this implies that

the independent set It and a well-covering system St of Gt with size at most nt at the
series node t can be computed in time O(nt + mt + nω

t ) = O(nω
t ) (since ω ≥ 2).

• Consider now the case when the node t is of type prime. In this case, the graph Ht

labeling the node t is a prime induced subgraph of Gt and hence of G. Each child u of
t in TG corresponds to a unique maximal strong module Mu of G. The graph Ht is the
representative graph of Gt , and hence, it contains a unique vertex vu from each maximal
strong module Mu of Gt .
Since Ht is a prime induced subgraph of G, it belongs to G∗, and hence, a well-covering
system S ′ of Ht with size at most |V (Ht )| can be computed in time f (|V (Ht )|, |E(Ht )|).
Next, we compute in timeO(|V (Ht )|+|E(Ht )|) a maximal independent set I ′

t in Ht . Let
C ′
t = {u ∈ Ct : vu ∈ I ′

t }. By Lemma 3.1, the set It = ⋃
u∈C ′

t
Iu is amaximal independent

set in Gt . By Corollary 3.5, a well-covering system Ŝt of Gt with size
∑

u∈Ct
|Su |+ |S ′|

can be computed in time O(|V (Gt )| · |S ′| + ∑
u∈Ct

|Su |
)
. Since |S ′| ≤ |V (Ht )| ≤ nt , it

follows that |Ŝt | ≤ ∑
u∈Ct

nu + nt = nt + nt = 2nt .
Using Lemma 2.4, a well-covering system St ⊆ Ŝt of Gt , such that |St | ≤ nt can be
computed in time O(

nω−1
t |Ŝt |

) = O(nω
t ). The total time complexity of computing St at

the node t is

O
⎛

⎝ f (|V (Ht )|, |E(Ht )|) + |V (Gt )| · |S ′| +
∑

u∈Ct

|Su | + nω
t

⎞

⎠

= O( f (|V (Ht )|, |E(Ht )|) + n2t + nt + nω
t )

= O( f (|V (Ht )|, |E(Ht )|) + nω
t ),

while the independent set It can be computed in time O(|V (Ht )| + |E(Ht )| + |V (Gt )|)
= O(nt + mt ).

Thus, the total time complexity at the prime node t is O( f (|V (Ht )|, |E(Ht )|) + nω
t ).

It remains to sum up the time complexities over all nodes of TG . We compute separately
the sum over all leaves of TG and over all internal nodes of TG . Let us denote by L the set of all
leaves of TG . Recall that by the definition of a modular decomposition tree, the leaves of TG
are in a bijective correspondence with the vertices of G, and thus, |L| = n. By Lemma 2.1, it
follows that the number of internal nodes of TG is atmost n−1.Note also that for each internal
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node t , the number of vertices of Ht equals the number of children of t in TG , which implies
that the total number of vertices of the graphs Ht , summed up over all internal nodes t , equals
the number of edges of TG , which is at most |L|+|V (TG)\L|−1 ≤ n+(n−1)−1 = 2n−2.
Furthermore, for each internal node t , the edges of Ht correspond to distinct edges of G
(joining two vertices of Gt from distinct maximal strong modules), and no two edges from
representative graphs of two different internal nodes correspond to the same edge of G. This
implies that the total number of edges of the graphs Ht , summed up over all internal nodes
t , is at most m.

We already saw that in each leaf t of TG , the algorithm computes the independent set It
and the well-covering system St in constant time. Hence, summing over all leaves of TG we
obtain the time complexity of O(n). If t is an internal node, then the algorithm computes It
and St in time O(nt + mt ) if t is of type parallel, in time O(nω

t ) if t is of type series, and in
time O( f (|V (Ht )|, |E(Ht )|) + nω

t ) if t is of type prime. Furthermore, |E(Ht )| ≤ m.
The sum of time complexities over all the internal nodes of TG can thus be bounded as

follows:

O
( ∑

t∈V (TG )\L

(

f (|V (Ht )|, |E(Ht )|) + nω
t

))

= O
(

f

( ∑

t∈V (TG )\L
|V (Ht )|,

∑

t∈V (TG )\L
|E(Ht )|

)

+
∑

t∈V (TG )\L
nω
t

)

= O
(

f (2n,m) + nω+1
)

,

where the first equality holds, since f is a superadditive function and the last one, since∑
t∈V (TG )\L |V (Ht )| ≤ 2n − 2,

∑
t∈V (TG )\L |E(Ht )| ≤ m, and f is nondecreasing. Since

the time complexity over all leaves of TG isO(n), the total time complexity over all nodes in
TG is equal to O(

f (2n,m) + nω+1
)
. Finally, recall that the algorithm first needs O(n + m)

time to compute the modular decomposition tree TG and an ordering in which the nodes of
TG are visited. Thus, altogether, the algorithm runs in timeO(

n+m + f (2n,m)+ nω+1
) =

O(
f (2n,m) + nω+1

)
. 
�

Remark 3.7 One of the assumptions in Theorem 3.6 is that for each graph G in G∗ with n
vertices and m edges, one can compute in time f (n,m) a well-covering system of G with
size at most n. If instead, only an algorithm is available for computing an arbitrary rational
(resp. integer or unit) well-covering system of G ∈ G∗ in time f (n,m) (that is, without a
bound of n on the size of the system), then one can first combine such an algorithm with
Lemma 2.4. This would result in an algorithm that, given a graph G from G with n vertices
and m edges, in time O(

f (2n,m) · nω−1 + nω+1
)
computes a rational (resp. integer or unit)

well-covering system of G with size at most n.

4 Cographs

The proof of Theorem 3.6 relies on Gaussian elimination. If the input graph possesses some
additional combinatorial structure, the use of Gaussian elimination may be avoided, and this
can lead to faster algorithms. As we show in this section, this is the case for the class of
cographs. Cographs are defined as graphs that can be constructed starting from copies of
the one-vertex graph using the operations of disjoint union and complementation (see, e.g.,
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Brandstädt et al. 1999). Thus, the only prime cograph is the one-vertex graph, and themodular
decomposition tree of a cograph contains only parallel and series nodes.

Cographs are known to be exactly the P4-free graphs, that is, graphs that contain no 4-
vertex path as an induced subgraph (see, e.g., Corneil et al. 1981). In particular, every cograph
is fork-free. Therefore, it follows from Theorem 3.6 that a well-covering system of a given
cograph G with n vertices and m edges can be computed in time O(nω+1). We improve this
time complexity as follows.

Theorem 4.1 Given a cograph G with n vertices and m edges, an integer well-covering
system of G with size at most n − 1 can be computed in time O(n(n + m)).

Proof LetG be a cograph with n vertices andm edges. Let TG be the modular decomposition
tree of G. As before, given a node t ∈ V (TG), we denote by Gt the subgraph of G induced
by the vertices appearing in the one-vertex subgraphs labeling the leaves of the subtree of
TG rooted at t . Let nt = |V (Gt )| and mt = |E(Gt )|. Since G is a cograph, every internal
node of TG is of type either parallel or series. We traverse the tree TG bottom–up, and for
each node t ∈ V (TG), we recursively compute a maximal independent set It in Gt and a
well-covering system St of Gt with size at most nt − 1. For each node t of TG , we denote
by Ct the set of all children of t in TG .

If t is a leaf node (that is, Ct = ∅), then It = V (Gt ) is a maximal independent set of Gt

and St = ∅ is a well-covering system of Gt , with size 0 = nt − 1. Both It and St can be
computed in constant time. If t is an internal node in TG , then t is of type either parallel or
series. For each child u of t , we have already computed a maximal independent set Iu in Gu

and a well-covering system Su of Gu with size at most nu − 1. We explain how to efficiently
combine these into a maximal independent set It in Gt and a well-covering system St of Gt

with size at most nt −1 for both cases. If t is of type parallel, thenGt is a disconnected graph,
with connected components Gu , u ∈ Ct . We can thus take It = ⋃

u∈Ct
Iu and by Corollary

3.3, St = ⋃
u∈Ct

Su . We have

|St | =
∑

u∈Ct

|Su | ≤
∑

u∈Ct

(nu − 1) = nt − |Ct | ≤ nt − 1.

Furthermore, by Corollary 3.3, the well-covering system St of Gt can be computed in time
O( ∑

u∈Ct
|Su |

) = O(|St |
) = O(nt ). Since It can be computed in time O(|V (Gt )| +

|E(Gt )|) = O(nt +mt ), the total time complexity at the parallel node t isO(nt +mt ). If t is
of type series, then the complement of Gt is disconnected, with co-components Gu , u ∈ Ct .
We fix an arbitrary ordering u1, . . . , u p of the set Ct of children of t and obtain the new
maximal independent set It and a well-covering system St by setting It = Iu1 and

St =
⎛

⎝
⋃

u∈Ct

Su

⎞

⎠ ∪

⎧
⎪⎨

⎪⎩

∑

v∈Iu j
xv −

∑

v∈Iu j+1

xv = 0 : j ∈ [p − 1]

⎫
⎪⎬

⎪⎭
.

By Corollary 3.4, the system St is indeed a well-covering system of Gt and can be computed
in time O(|V (Gt )| + |E(Gt )| + ∑

u∈Ct
|Su |) = O(nt + mt ). The size of St is bounded as

follows:

|St | =
∑

u∈Ct

|Su | + |Ct | − 1 ≤
∑

u∈Ct

(nu − 1) + |Ct | − 1 = nt − 1.

Altogether, this implies that the independent set It and a well-covering system St of Gt with
size at most nt − 1 at the series node t can be computed in time O(nt + mt ).
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Note that all the well-covering systems computed by the algorithm are integer. It remains
to estimate the time complexity of the algorithm. The tree TG can be computed in time
O(n + m) (McConnell and Spinrad 1999; Tedder et al. 2008), and in the same time, we can
compute an ordering in which the nodes of tree TG are traversed. Recall that the number of
leaves of TG is equal to n, while from Lemma 2.1, it follows that the number of internal nodes
of TG is at most n − 1. We already saw that in each leaf t of TG , the algorithm spends only
constant time, while in each internal node t of TG , the independent set It and a well-covering
system St of Gt can be computed in time O(nt + mt ). Summing over all nodes of TG , we
get the time complexity O(n + (n − 1) · (n + m)) = O(n(n + m)). We infer that the total
time complexity of the algorithm is O(n(n + m)). 
�

Let us mention two consequences of Theorem 4.1.
First, applying the theorem to a given n-vertex cograph G, we obtain in polynomial time

an integer well-covering system Ŝ with size at most n − 1. Using Gaussian elimination
(cf. Lemma 2.4), we can then compute in time O(nω) a linearly independent well-covering
subsystem S ⊆ Ŝ of G. Consequently, we can compute the well-covered dimension of G
as the difference n − |S|. This implies a result of Brown and Nowakowski (2006) that the
well-covered dimension of cographs can be computed in polynomial time.

Second, a graph G has well-covered dimension equal to zero if and only if the only well-
covered weighting of G is the identically zero function, or, equivalently, if G admits no
well-covering system with size less than n. Therefore, Theorem 4.1 implies the following.

Corollary 4.2 Every cograph has a strictly positive well-covered dimension

An alternative proof of this result could be obtained using the fact that every cograph is
equistable (see Mahadev et al. 1994).

5 Reduction to anti-neighborhoods

In this section, we focus on the subgraphs of a given graph obtained by deletion of the closed
neighborhood of some vertex in the graph. Given a graph G with vertex set {v1, . . . , vn}, we
denote by G j the graph G − N [v j ], for all j ∈ [n]. We first show that, given a well-covering
system of the graph G j , for all j ∈ [n], we can efficiently compute a well-covering system
of G.

Lemma 5.1 Let G be a graph with vertex set {v1, . . . , vn}. For each j ∈ [n], let S j be
a rational (resp. integer or unit) well-covering system of G − N [v j ] and I j a maximal
independent set of G − N [v j ]. Then

⎛

⎝
n⋃

j=1

S j

⎞

⎠ ∪
⎧
⎨

⎩

∑

v∈I j∪{v j }
xv −

∑

v∈I j+1∪{v j+1}
xv = 0 : j ∈ [n − 1]

⎫
⎬

⎭

is a rational (resp. integer or unit) well-covering system of G.

Proof Let G be a graph and let w be a vertex weight function on G. For each j ∈ [n], let G j

denote the graph G − N [v j ] and w j the restriction of w to V (G j ). We show the following
claim: G is w-well-covered if and only if, for all j ∈ [n], it holds that G j is w j -well-covered
and, for all j ∈ [n − 1], it holds that w(I j ∪ {v j }) = w(I j+1 ∪ {v j+1}). From the claim, we
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get that the equations from the well-covering systems S j of G j , over all j ∈ [n], along with
the equations of the form

∑

v∈I j∪{v j }
xv −

∑

v∈I j+1∪{v j+1}
xv = 0

for j ∈ [n − 1], form a well-covering system of G.
Let us prove the claim. Assume first that G is w-well-covered. Let j ∈ [n] and let I and

I ′ be maximal independent sets in G j . Then, the sets I ∪ {v j } and I ′ ∪ {v j } are maximal
independent sets in G. Since G is w-well-covered, it holds that w(I ∪ {v j }) = w(I ′ ∪ {v j }).
Consequently, we have that

w j (I ) = w(I ) = w(I ∪ {v j }) − w(v j ) = w(I ′ ∪ {v j }) − w(v j ) = w(I ′) = w j (I
′),

and G j is w j -well-covered. Consider now an arbitrary j ∈ [n − 1]. Since I j and I j+1 are
maximal independent sets in G j and G j+1, respectively, the sets I j ∪{v j } and I j+1 ∪{v j+1}
are maximal independent sets in G. Since G is w-well-covered, it follows that w(I j ∪ {v j })
= w(I j+1 ∪ {v j+1}), which is what we wanted to show.

For a proof of the other direction, assume that for all j ∈ [n] it holds that G j is
w j -well-covered and for all j ∈ [n − 1] it holds that w(I j ∪ {v j }) = w(I j+1 ∪ {v j+1}). In
particular, this implies that w(I j ∪ {v j }) = w(Ik ∪ {vk}) for all j, k ∈ [n]. We want to prove
that G is w-well-covered. Let I and I ′ be maximal independent sets in G and let v j ∈ I
and vk ∈ I ′. Note that I\{v j } and I ′\{vk} are maximal independent sets in G j and Gk ,
respectively. By assumption G j isw j -well-covered andGk iswk-well-covered, and thus, we
have that w(I\{v j }) = w j (I\{v j }) = w j (I j ) = w(I j ) and, similarly, w(I ′\{vk}) = w(Ik).
Consequently

w(I ) = w(I\{v j }) + w(v j ) = w(I j ) + w(v j ) = w(I j ∪ {v j })
and

w(I ′) = w(I ′\{vk}) + w(vk) = w(Ik) + w(vk) = w(Ik ∪ {vk}).
The above two expressions are equal by assumption, so we get w(I ) = w(I ′), and thus, G
is w-well-covered. 
�
Corollary 5.2 Let G be a graph with vertex set {v1, . . . , vn}. For each j ∈ [n], let S j be a
rational (resp. integer or unit) well-covering system of G−N [v j ]. Then, a rational (resp. inte-
ger or unit) well-covering system of G with size

∑n
j=1 |S j | + n − 1 can be computed in time

O(n(n + m) + ∑n
j=1 |S j |), where m = |E(G)|.

Proof In time O(n(n + m)), we compute the graphs G − N [v j ] for all j ∈ [n] and a
maximal independent set I j in each such graph. Then, using Lemma 5.1, we compute a well-
covering system of G in time O(

∑n
j=1 |S j | + n2). The total complexity of this approach is

O(n(n + m) + ∑n
j=1 |S j |), as claimed. 
�

Using the above result, we give a more general statement, which will be an ingredient of
the main algorithm in this paper.

Theorem 5.3 Let G and G∗ be two graph classes, such that for every graph G in G and
every vertex v of G, the graph G − N [v] is in G∗. Assume that for each graph G in G∗
with n vertices and m edges, one can compute in time f (n,m) a rational (resp. integer or
unit) well-covering system of G with size at most g(n,m), where f and g are nondecreasing
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functions. Then, for any graph G in G with n vertices and m edges, one can compute in time
O(n · (n + m + f (n,m))) a rational (resp. integer or unit) well-covering system of G with
size at most n · g(n,m) + n − 1.

Proof Let G be a graph in G with vertex set V (G) = {v1, . . . , vn} and let m = |E(G)|.
For all j ∈ [n], let G j = G − N [v j ]. The graphs G j , j ∈ [n], can be computed in time
O(n(n + m)). By assumption, for each j ∈ [n], the graph G j is in G∗, and hence, a rational
(resp. integer or unit) well-covering system S j of G j with at most g(|V (G j )|, |E(G j )|) ≤
g(n,m) equations can be computed in time f (|V (G j )|, |E(G j )|) ≤ f (n,m). Note also that
|S j | ≤ f (|V (G j )|, |E(G j )|) ≤ f (n,m). By Corollary 5.2, a well-covering system of G
with size

∑n
j=1 |S j | + n − 1 ≤ n · g(n,m) + n − 1 can be computed in time O(n(n +m) +

∑n
j=1 |S j |) = O(n · (n + m + f (n,m)). 
�

6 Fork-free graphs

By Theorem 4.1, a well-covering system of a given cograph can be computed in polynomial
time. In this section, we generalize the result of Theorem 4.1 to prove the main result of this
paper, a polynomial-time algorithm for computing a well-covering system of a given fork-
free graph. This is a significant generalization of Theorem 4.1, since the class of fork-free
graphs also generalizes the class of claw-free graphs. Our approach combines the results
from Sects. 3 and 5 with a known structural result on fork-free graphs, which allows us to
reduce the problem to the class of claw-free graphs, for which the following theorem applies.

Theorem 6.1 (Levit and Tankus 2015a) There exists anO(n3m3/2) algorithm, which receives
as input a claw-free graph G with n vertices and m ≥ 1 edges and computes a unit well-
covering system of G.

Following Remark 3.7 and the fact that the function f defined by the rule f (n,m) =
nω+2m3/2 for all m, n ≥ 0, is superadditive, Theorem 6.1 has the following consequence.

Corollary 6.2 Let C be the class of all graphs G, such that every prime induced subgraph
of G is claw-free. Then, for any graph G in C with n vertices and m ≥ 1 edges, one can
compute in time O(

nω+2m3/2
)
a unit well-covering system of G with size at most n.

To apply Corollary 6.2, we use the following structural result on fork-free graphs due to
Lozin and Milanič 2006, 2008.2

Theorem 6.3 Let G be a prime fork-free graph, let x be a vertex of G, and let G ′ be a prime
induced subgraph of the graph G − N [x]. Then, G ′ is claw-free.

Using Theorems 5.3 and 6.3, Corollary 6.2, we can now derive the following.

Lemma 6.4 Given a prime fork-free graph G with n vertices and m ≥ 1 edges, a unit well-
covering system of G with size at most n can be computed in time O(nω+3m3/2).

Proof LetF be the class of prime fork-free graphs and letF∗ be the class of all graphsG, such
that every prime induced subgraph ofG is claw-free. By Theorem 6.3, for every graphG ∈ F

2 The result is stated incorrectly in the paper (Lozin and Milanič 2008). It is stated correctly in the conference
version of that work (Lozin and Milanič 2006), as well as in the Ph.D. thesis (Milanič 2007, Theorem 3.1.2),
and it is reproved by Dyer et al. (2021).

123



Computing well-covered vector spaces of graphs using modular... Page 21 of 23 360

and every vertex x ∈ V (G), the graphG−N [x]belongs toF∗. ByCorollary 6.2, given a graph
G ∈ F∗ with n vertices andm edges one can compute in timeO(

n+ nω+2m3/2
)
a unit well-

covering systemofG with size atmost n, where the additiveO(n) term has only been added in
order to allow forG to be edgeless. Thus, byTheorem5.3, given a graphG ∈ F withn vertices
andm ≥ 1 edges, one can compute in timeO(

n ·(n+m+nω+2m3/2
)) = O(

nω+3m3/2
)
a unit

well-covering system Ŝ ofG with size at most n2+n−1. By Lemma 2.4, a unit well-covering
subsystemS ⊆ Ŝ ofG, with size atmost n, can be computed in timeO(nω−1|Ŝ|) = O(nω+1).
The total time complexity of this approach is O(

nω+3m3/2
) + O(

nω+1
) = O(

nω+3m3/2
)
,

as claimed. 
�
We now have everything ready to prove the main result of the paper.

Theorem 6.5 Given a fork-free graphG with n vertices andm ≥ 1 edges, a unitwell-covering
system of G with size at most n can be computed in time O(nω+3m3/2).

Proof Let G be the class of fork-free graphs and G∗ be the class of prime fork-free graphs.
Lemma 6.4 implies that given a graph G in G∗ with n vertices and m ≥ 1 edges, a unit
well-covering system of G with size at most n can be computed in time O(nω+3m3/2). Let
f (n,m) = nω+3m3/2. By Theorem 3.6, given a fork-free graph G with n vertices andm ≥ 1
edges, a unit well-covering system S of G with size at most n can be computed in time
O( f (2n,m) + nω+1) = O((2n)ω+3m3/2 + nω+1), which simplifies to O(nω+3m3/2). 
�

We can determine if a graph G is well-covered by computing a well-covering system of G
and checking if the weight function assigning 1 to each vertex of G satisfies all the equations
in the system. This leads to the following consequence of Theorem 6.5.

Corollary 6.6 There is a polynomial-time algorithm to determine if a given fork-free graph
is well-covered.

7 Concluding remarks

In this paper, we developed two general reductions for the problem of computing a well-
covering system of a given graph, that is, a system of linear homogeneous equations
representing the well-covered vector space of the graph. Using these reductions, we showed
that the problem can be solved in polynomial time in the class of fork-free graphs. For the
special case of cographs, a faster algorithm was developed.

As a promising avenue for future research, it would be interesting to study the problem
in further generalizations of the class of cographs, for example, in the classes considered
in Alves et al. (2018); Araújo et al. (2019), including classes of bounded cliquewidth, in
which the well-coveredness property can be recognized in FPT time (with cliquewidth as the
parameter, see Alves et al. 2018). The complexity of computing the well-covered dimension
of a graph, as well as the special case of recognizing graphs with positive well-covered
dimension also seem to be questions worthy of further consideration.
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