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Background: The type III secreted effectors (T3SEs) are one of the indispensable proteins in the growth and
reproduction of Gram-negative bacteria. In particular, the pathogenesis of Gram-negative bacteria depends on the
type III secreted effectors, and by injecting T3SEs into a host cell, the host cell’s immunity can be destroyed. The high
diversity of T3SE sequences and the lack of defined secretion signals make it difficult to identify and predict.
Moreover, the related study of the pathological system associated with T3SE remains a hot topic in bioinformatics.
Some computational tools have been developed to meet the growing demand for the recognition of T3SEs and the
studies of type III secretion systems (T3SS). Although these tools can help biological experiments in certain
procedures, there is still room for improvement, even for the current best model, as the existing methods adopt hand-
designed feature and traditional machine learning methods.
Methods: In this study, we propose a powerful predictor based on deep learning methods, called WEDeepT3. Our
work consists mainly of three key steps. First, we train word embedding vectors for protein sequences in a large-scale
amino acid sequence database. Second, we combine the word vectors with traditional features extracted from protein
sequences, like PSSM, to construct a more comprehensive feature representation. Finally, we construct a deep neural
network model in the prediction of type III secreted effectors.
Results: The feature representation of WEDeepT3 consists of both word embedding and position-specific features.
Working together with convolutional neural networks, the new model achieves superior performance to the state-of-
the-art methods, demonstrating the effectiveness of the new feature representation and the powerful learning ability
of deep models.
Conclusion: WEDeepT3 exploits both semantic information of k-mer fragments and evolutional information of
protein sequences to accurately differentiate between T3SEs and non-T3SEs. WEDeepT3 is available at bcmi.sjtu.
edu.cn/~yangyang/WEDeepT3.html.
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Author summary: The computational identification of type III secreted effectors (T3SEs) is a very challenging task in
bioinformatics. Due to the lack of conserved motifs and the great sequence diversity, it is difficult to extract informative
features from T3SEs for the prediction. To represent features of T3SEs, we exploit word embedding method to capture
semantic information of amino acid fragments and also combine commonly used position-specific features of sequence
patterns. Driven by the latest deep learning technology, the proposed WEDeepT3 achieves the state-of-the-art prediction
performance.
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INTRODUCTION

The type III secreted effectors (T3SEs) play crucial roles
in the interaction between bacteria and their hosts. They
are produced by Gram-negative pathogenic bacteria and
injected into the host cells through a needle-like apparatus
called type III secretion systems (T3SSs) [1], which
account for the vast majority of plant and animal
pathogens, such as Pseudomonas, Erwinia, Xanthomo-
nas, Ralstonia, Salmonella, Yersinia, Shigella and
Escherichia [2,3]. Previous studies have shown that
these toxic proteins can interfere with host immune
signaling networks [1] and help pathogenic bacteria resist
the attacks from host immune systems [4]. Moreover,
T3SEs can evolve distinct functional domains similar to
host cells to interfere with the normal metabolism of host
cells [5], and new T3SEs can be evolved through
adjustment of the existing T3SE sequences [6].
The T3SEs have important functions for the virulence

of pathogens, which makes T3SEs powerful weapons for
researchers to explore the immunity and functions of the
host cells. Therefore, efficient recognition and large-scale
analysis of T3SEs can contribute to the understanding of
the mechanism of T3SS. Protein sequencing technology,
like high-throughput sequencing technologies, has
developed rapidly in the past few decades, and protein
data has made great progress in quality and quantity.
However, the identification and analysis of T3SEs are
relatively slow due to the restriction of labor-intensive
experimental methods, and a large proportion of T3SEs
remain uncovered [7]. While computational methods
have been demonstrated to be useful for revealing
unknown T3SEs [6], a few machine learning-based
predictors have been developed for the past decade [7–
9]. Besides, as the known T3SE sequences accumulated
rapidly, several large-scale T3SE databases have
emerged, including T3SEdb [10], T3DB [11], etc.
Despite recent progress, the performance of these tools

is limited by effective feature representation of protein
sequences and learning capacity of the prediction model.
Due to the lack of defined signals/motifs from known
effectors, the recognition of T3SEs is subject to the
feature representation of their amino acid sequences. The
existing methods mainly adopted hand-designed features.
For instance, Yang et al. [7,8] proposed the SSE-ACC
method (amino acid composition in different secondary
structures and solvent accessibility states) and topic
models for T3SE recognition. Wang et al. [12] proposed
a method to extract position-specific feature. Wang made
use of the records of the position-specific occurrence time
of each amino acid, and analysed the profile to compose
features.
Most of these studies adopted shallow learning

methods to perform a binary classification (effector and

non-effector). For example, although Fu et al. utilized
continous distributed features for representing amino
acide sequences, they fed the features to support vector
machines [9]. Some researchers enhanced the prediction
performance by using a hierarchical classifier [13,14], i.e.,
the combination of homology search and machine
learning, while this strategy has little advantage for hard
targets, which have no homolog in the database of verified
effectors. As afore-mentioned, T3SEs evolve fast and
have high sequence diversity, thus most of the unknown
effectors could not be identified via homology search.
Therefore, how to extract informative features from
amino acid sequences is key to the prediction of T3SEs.
Moreover, for the past decade, deep learning methods
have been successfully applied to a lot of bioinformatics
tasks related to sequence feature representation and
classification. As far as we know, deep learning model
has not yet been employed in the recognition of type III
effectors.
In this study, we focus on both the feature representa-

tion and deep models to enhance the prediction accuracy.
In order to employ deep learning models, amino acid
sequences need to be first encoded into numeric values.
The one-hot encoding is the most widely used method.
For protein sequences, each residue is encoded as a 20-
dimensional binary vector. The one-hot does not encode
context or latent correlation of the residues, thus lose
much important information. Instead of using discrete
features, we generate continuous feature vectors to
represent latent information in the amino acid sequences.
Especially, by regarding protein sequences as a special
biological language and k-mers as words, we develop a
similar word embedding algorithm as used in natural
language processing [15] to train the distributed
representation for k-mers, based on an unsupervised
learning using deep models. Besides the word embedding
features, we also incorporate evolutionary information of
amino acid sequences, i.e., position-specific scoring
matrix (PSSM), into the feature representation. The
position specific features have been demonstrated as the
most useful feature in previous studies [12]. Then we
feed the combined feature vectors into a convolutional
neural network, which further learns high-level abstract
features for discriminating the effector from other
proteins.
We name the new method WEDeepT3 (Word Embed-

ding and Deep learning for predicting T3SEs). To assess
the model performance, we conduct experiments on a
cross-species dataset and compare WEDeepT3 with the
existing methods on a new independent test dataset. The
experimental results show that WEDeepT3 has a
competitive performance against existing predictors, and
both the word embedding features and deep learning
classifier contribute to the performance enhancement.
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RESULTS

Data sources
In order to compare the pros and cons of the model more
objectively, we use the same data set as the current best
model and collect a test set that has never been used
before. We collect 713 T3SEs from BEAN 2.0 [13],
which is the largest one among the existing T3SE
databases (e.g., T3SEdb [10], Effective [16] and Peffect
[14]), and use CD-hit [17] to remove sequence redun-
dancy with the sequence identity cutoff of 40%,
remaining 239 T3SEs. Meanwhile, we set the same
positive-to-negative ratio (1:2) as the training set of
BEAN 2.0. Therefore, 478 negative samples are selected
from the non-T3SE proteins released in BEAN 1.0 [18],
where sequence redundancy has been removed with
cutoff 40%.
The independent dataset is collected from the T3DB

database [11], which is never used in the training
procedure. CD-hit is used to remove sequence redun-
dancy the same as above. Finally, we obtain 46 effectors
and 92 non-effectors as the independent dataset. To better
demonstrate the performance of our proposed method, we
align the independent test set with the training set, where
the independent test set has only three blast hits and the
identity is below 40%, suggesting that there is no overlap
between the independent test set and the training set.

Experimental settings and evaluation criteria

In WEDeepT3, we implement a deep neural network
consisting of two one-dimensional convolutional layers
and two fully connected layers. Small convolution kernels
help reduce the number of parameters that need to be
trained and alleviate overfitting. The two convolution
kernel sizes are set to 5 and 3, respectively. The mini-
batch size is 64, the dropout layer probability is 0.5. As
for the focal loss, we use the recommended parameters, i.
e.,α is 0.25 and γ is 2. In the comparative experiment, we
conduct experiments using the traditional classifier SVM
and different feature vectors (the result is discussed in
Section of “Investigation on the feature representation and
classifier”). Our implementation of SVMs adopts the RBF
kernel function, where the parameters C and γ are
obtained via a grid search using a nested cross-validation.
In order to assess the model performance, we use four

metrics, including precision (Equation (1)), recall (Equa-
tion (2)), total accuracy (TA) (Equation (3)) and F1-score
(F1)( Equation (4)).

Pre=
TP

TP þ FP
, (1)

Rec=
TP

TP þ FN
, (2)

TA=
TP þ TN

TP þ FP þ TN þ FN
: (3)

F1-score=
2� TP

2� TP þ FP þ FN
: (4)

Investigation on the feature representation and
classifier

As aforementioned, WEDeepT3 consists of three basic
elements, i.e., word embedding features, position-specific
features and CNN classifier. In this section, we investigate
the contributions of these three parts, respectively.
In order to assess the impact of the length of words and

also the integration strategy for generating sequence
representation from word vectors, we experiment five
different lengths of words, i.e., from 1 to 5. As can be seen
in Figure 1, the best performance is obtained by the
vectors when k equals 3. And, 2-mers, 3-mers and 4-mers
have relatively close performance, while 1-mers and 5-
mers have much worse performance, indicating that the
appropriate length of k-mers is crucial to the accuracy. We
did not examine the performance with a larger k as it
would lead to much higher computation cost in training
the word embedding from the corpus.

As many previous studies adopted PSSM as the major
information for prediction T3SEs [13,14], and word
embedding (WE) is a new kind of feature representation,
we compare the performance of these two different types
of features. Meanwhile, we have added two commonly
used efficient feature extraction methods (PC-pseAAC
and SC-pseAAC [19]) as the baselines. Specifically, we
implement four predictors, corresponding to four different
combinations of the two feature extraction methods and
two classifiers, namely WE+ SVM, PSSM+ SVM, WE

Figure 1. Performance under different length settings for
the word embedding feature representation.
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+ PSSM+ SVM and WEDeepT3 (note that WEDeepT3
can also be denoted by WE+ PSSM+ CNN), where WE
+ PSSM represents a combination of the word embed-
ding and PSSM feature vectors. The results of four
predictors are shown in Figure 2.
As can be seen in Figure 2, the embedding method has

a very close performance compared with the PSSM
feature extraction method, and far exceeds the other two
traditional feature extraction methods, PC-pseAAC and
SC-pseAAC working with SVMs. Note that the word
embedding vectors and PSSM feature vectors have the
dimensionalities of 120 and 400, respectively. With much
lower dimensionality, the embedding method demon-
strates its powerful representation ability in protein
classification tasks.
Furthermore, we combine the embedding vector and

the PSSM vector and obtain 520-D feature vectors for
classification. The results show that the combination
strategy results in a significant enhancement on the
performance. Especially, compared with the 400-D PSSM
features, the combined feature vectors increase the recall
by 12.9%) and the F1-score by 6.8%. This result suggests
that the word embedding feature and PSSM features are
complementary to each other, as the former one captures

semantic correlation between words while the latter one
focuses on position-specific features.
Figure 2 also shows an obvious performance gap

between SVMs and CNNs. Considering the limited
training data and the risk of overfitting, we only use two
convolutional layers, but the CNNs still outperform
SVMs by a large margin. The results show that the
CNN component in the WEDeepT3 is competent for this
classification task, with the precision of 100% and a total
accuracy of nearly 100%. All the above experimental
results are obtained from ten times ten-fold cross-
validation on the same data, i.e., accuracies are averaged
over 100 tests.

Comparison with the state-of-the-art predictors

For a fair comparison, we collect an independent test set,
and compare WEDeepT3 with 6 other methods on this
set, including BPBAac [12], EffectiveT3 [20], T3 MM
[21], DeepT3 [22], Bastion3 [23], and BEAN 2.0 [13]. All
of these methods have publicly accessible tools and new
updates released in past three years. The prediction results
are obtained from their web servers or executable
programs. The results are shown in Table 1.

Figure 2. Performance of different feature representation methods and classifers.

Table 1 Result comparison of T3SE prediction methods
Method Precision Recall TA F1-score

BPBAaca 0.769 0.217 0.609 0.339

EffectiveT3b 0.550 0.478 0.696 0.512

T3_MMc 0.574 0.587 0.718 0.581

DeepT3d 0.643 0.391 0.594 0.486

Bastion3e 0.578 0.804 0.739 0.673

BEAN 2.0f 0.607 0.804 0.7608 0.692

WEDeepT3 0.750 0.664 0.812 0.705
a BPBAac website(biocomputer.bio.cuhk.edu.hk/softwares/BPBAac), b EffectiveT3 website(www.chlamydiaedb.org), c T3 MMwebsite( biocomputer.

bio.cuhk.edu.hk/softwares/T3_MM), d DeepT3 website(github.com/lje00006/DeepT3), e Bastion3 website(bastion3.erc.monash.edu/), f BEAN 2.0

website(sysbio.cau.edu.cn/bean/)
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As can be seen, WEDeepT3 achieves the best
performance with the total accuracy of 81.2% and F1-
score of 70.5%, and the total accuracy is over 5% higher
than the second-best method, BEAN 2.0. BEAN 2.0 has a
close performance with WEDeepT3, which has a higher
recall but a lower precision, indicating a higher false
positive rate than WEDeepT3. Since the two methods use
the same positive-to-negative ratio in the training set, a
potential reason for the higher false positive rate is that
some homologous proteins of the known effectors are not
necessarily true effectors and BEAN 2.0 uses homology
search as the initial classification step. By contrast,
although BPBAac obtains the highest precision, its recall
is much lower than other methods, resulting in poor total
accuracy and F1-score. DeepT3 and Bastion3 are the
latest prediction methods for T3SEs. DeepT3 uses a
simple one-hot encoding method and a deep learning
framework. Bastion3 uses a vector-assembled method
that combines multiple traditional vectors and finally uses
GDBT as the classifier. Our method is superior to these
two methods perhaps due to the feature representation of
amino acid sequences and the framework of classifiers.
Considering the low identity score of the independent test
set and the training set we use, the generalization
performance of WEDeepT3 can be guaranteed.

Visualization of the word embeddings

In order to get more insights on the features represented
by word embeddings. We map the high-dimensional
embedding vectors to a 2D space using t-SNE [24].
Especially, we focus on the first 50 amino acids in N-
terminals of T3SEs in the training set, i.e., all the 3-mers
in the first 50 amino acids are mapped into the 2D space as
shown in Figure 3. The bigger the word, the more
frequently it occurs.
Interestingly, the words (i.e., 3-mers) form distributed

clusters. The biggest cluster is located at the bottom of the
figure. Within this cluster, the most frequent word is SSS,
and nearly all the words are centered by S, e.g., SSA,
SSK, YSS, ASP, and ISN. This is consistent with an
observation in previous studies, i.e., the first 50 amino
acids of P. syringae effectors have a high proportion of
Ser [6]. Besides, in most of the clusters, the words have a
common letter in the center. The words within a cluster
have close embedding vectors, indicating that they may
be interchangeable in the context. By contrast, in previous
studies, the hand-designed features, like k-mer frequency,
are discrete, which can not capture the semantic
correlation between words/k-mers or calculate the dis-
tance between words. It can be observed in the 2D space
that the word vectors effectively represent the residue and
the context information, thus leading to the performance
improvement.

DISCUSSION

The word embedding technology has become the
indispensable basis of NLP technology. Once trained,
the bioprotein embeddings can be applied to all protein
sequence representation tasks. Universality and ease of
use make word embeddings stand out in all protein
representation methods. Although the current experi-
ments demonstrate the good performance of the word
vectors, we can explore this method further, as the
segmentation method is relatively simple, and may not be
able to distinguish between useful words and useless
words which brings noise to the training and prediction
system. Thus, one of our future research direction is to
develop automatic segmentation method and define more
flexible words with varying length. Besides, the deep
learning model used in WEDeepT3 is a simple CNN
model. As the number of validated effectors increases,
which enables the training of much deeper networks, we
will explore more complex network architectures to
further improve the accuracy.

CONCLUSIONS

In this paper, we propose a deep learning method to
predict type III secreted effectors. First, we use an
overlapping window to segment protein sequences into
words (k-mers). Then we convert the words into
numerical vectors using word embeddings well trained
before via a large corpus of protein sequences. We
integrate the word vectors in the sequence to obtain the
sequence vector. Further, we incorporate PSSM informa-
tion into the predictor, thus the predictor exploits both
semantic information of the k-mers and evolutional
information. By using a convolutional neural network,
we construct a system to effectively distinguish T3SEs
and non-T3SEs, which outperforms most existing pre-
diction methods. In addition, this computational method
has strong universality in biological sequence research
and can be applied to several sequence analysis tasks.

METHODS

The key components of WEDeepT3 include word
embedding features, PSSM features and a convolutional
neural network (CNN), and there are five major steps to
construct the predictor: (1) segmenting protein sequences
into words; (2) learning the word embedding vectors; (3)
obtaining the continuous word representation of protein
sequences; (4) extracting PSSM vectors from sequence
profile; (5) training the CNN classifier. Figure 4 shows the
flowchart of WEDeepT3. Details of the 5 steps are
described in the following subsections.
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Word definition for protein sequences

The first type of features in WEDeepT3 is a kind of
continuously distributed representation of protein
sequences, which is based on the assumption that a
biological sequence can be viewed as a sentence written
in a special language [25]. However, there are no well
defined words. We were inspired by Asgari et al. [26] to
use the residue segments (k-mers) as biological words,
and syntax and semantics may correspond to molecular
structure and biological function. Analogous to natural
language processing tasks, we convert k-mers into word
embeddings and apply them to the inference of molecular
structure, dynamics, and function. Before that, we have to
convert a complete sequence of gap-free residues into a
list of words according to certain rules.
The previous study [26] used the shifted non-over-

lapped method, which segments a sequence of length L
into multiple lists containing L/k words according to the
difference of the starting segmentation sites. However,
such a method is equivalent to splitting information of a

sequence into multiple copies. Each list of words can only
contain a portion of the information, and the obtained
word vectors may lose some important information, such
as the relationship between the residues within each word.
In this study, we have adopted n-gram modeling of
protein informatics to segment a sequence into a list of
fixed-length words with an overlapping window of length
k (Figure 4 shows an example where k is equal to 3). This
method could contain more sequence information com-
pared to the method which segments the sequences non-
overlappingly.

Generation of embedding vectors of words

With the rise of deep learning techniques in natural
language processing (NLP), various word embedding
methods have been developed to represent words,
sentences and text by continous vectors, such as
Word2Vec [15] and Glove [27]. All these algorithms
require a large corpus to train the word embeddings.
In order to adapt the word embedding methods to

Figure 3. 2D distribution of word vectors for the N-terminal 50 AA of type III secreted effectors.
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protein sequences, a very large protein database is
necessary. At the beginning, Asgari et al. [26] used the
Swiss-Prot database as the corpus of word embeddings,
which contains less than 560,000 sequences. With similar
vector spaces, the Swiss-Prot corpus is much smaller
compared ones used in NLP tasks. More and more
researches and our experimental results indicate that a
larger corpus will have a better effect. In this study, we
adopt UniRef50 as the corpus, which contains more than
25,000,000 sequences, which is more than the vast
majority of NLP corpora. Based on the practice of
Word2Vec tasks, this database is far superior to Swiss-
Prot one in terms of the number of sequences. In addition,
we do not adopt a larger data set, such as Uniref90.
Because Uniref50 reduces the redundancy of the database
compared to Uniref90, this can effectively alleviate the
issue caused by high identity of the sequences.
Given the corpus, we adopt the commonly used

Word2Vec algorithm to train the word embeddings for
protein sequences. Word2Vec captures the contextual
information and trains a fixed-length continuous feature
vector for each word. There are two ways to implement
Word2Vec algorithm. Here we adopt the Skip-gram
model. The objective of the Skip-gram model is to
maximize the sum of log-likelihood of each word and its
context, as defined in Equation (5),

L=
1

N

XN

i=1

X

i – c£j£iþc,i≠j

log  pðωjjωiÞ, (5)

where N is the number of word vectors in the sequence, c
is half of the window size, ωi is the center word, ωj is one
of the context words. The equation of probability is
defined as follows:

pðωjjωiÞ=
expðυíTωj

υωi
Þ

XW

ω=1
expðυíTω υωi

Þ
, (6)

where υω and υ#ω are the input and output vector of ω, and
W is the total number of words in the corpus.
In natural languages, the number of common words is

usually tens of thousands, while the number of k-mers in
protein sequences is much larger when k is greater than 4.
Therefore, in Equation (6), the softmax parameters may
be very difficult to fit. Here, we use the negative sampling
method to improve the computation efficiency. When we
calculate the probability in Equation (6), we do not
calculate all the W words. Instead, we select some
negative words using a certain method, so the calculation
of softmax function will not be very time-consuming or
resource-intensive. The probability that a word is selected
as a negative sample is not random, but related to the
frequency of its occurrence. And, this probability follows
the unigram distribution, as defined below in Equation
(7),

PðωiÞ=
f ðωiÞ

3
4

XW

j=1
f ðωjÞ

3
4

, (7)

where f (ω) is the frequency of ω.

Continuous representation of protein sequences

The recognition of T3SE is a protein-level classification
task. We need to integrate the k-mers’ vectors belonging
to a protein sequence into a sentence vector and then use it
for the downstream classification. Many previous studies
utilized N-terminal residues for prediction, while some

Figure 4. Flowchart of WEDeepT3. The raw sequences are processed by two feature extraction methods which produce
embedding vectors and PSSM vectors, respectively. Then the two kinds of vectors are combined and further fed into a 1-D CNN
model which yields the final output.
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other studies showed that non-signal peptides are also
helpful for the recognition of T3SEs [28]. And, although
T3SEs may have secretory signals at their N-terminals,
they have limited peptide sequence conservation. There-
fore, here we extract features from full-length sequences
for the prediction.
There are some simple ways to aggregate the word

embeddings into a combined representation for a protein
sequence. For instance, the word vectors can be con-
catenated as shown in Equation 8,

χ=Vω1
� Vω2

�þ � � �VωL – k
� VωL – kþ1

, (8)

where the � operator denotes vector concatenation. Since
the overlapping window of length k segments the
sequence of length L into (L – k+ 1) words, each
sequence can be represented by a vector of (L – k+ 1) ∗

d dimensions. The resulted sequence embeddings have
varying lengths, and the dimensionality is high.
To avoid the above issue, each sequence can be

represented by summing (Equation (9)) or averaging
(Equation (10)) all word vectors in the sequence. In our
last paper [9], we assess the performance of using both the
sum vectors and mean vectors for representing protein
sequences.

χ=
X

i

Vωi
,i∈f1,2,:::,L – k þ 1g, (9)

χ=

X
i
Vωi

L – 1
,  i∈f1,2,:::,L – k þ 1g, (10)

whereωi denotes a word, Vωi
denotes the vector ofωi, and

c is the feature vector for the whole sequence. In these
two cases, the dimentionality of all sequences is equal to
d, which is the same as the dimension of word vectors.

Extracting evolutionary features from sequence
profiles

The second type of features of WEDeepT3 is extracted
from the sequence profile of each protein sequence, i.e.,
position-specific scoring matrix (PSSM), one of the most
important features in biological analysis. A PSSM for a
query protein is a L � 20 matrix, where L is the length of
the protein sequence. It assigns a score {Pij|i = 1,...,L and j
= 1,...,20} for the jth amino acid in the ith position of the
query sequence with a large value indicating a highly
conserved position and a small value indicating a weakly
conserved position. Position Specific Iterated BLAST
(PSI- BLAST) [29] is the most commonly used program,
which detects remotely related homologous proteins for
generating PSSM profiles. In this paper, we use PSI-
BLAST program with three iterations and the e-value
threshold 0.0001 against the Uniref50 database to
generate each PSSM profile. A lot of methods, such as
PSSM-AAC and PSSM-DC, have been developed to

extract PSSM features efficiently [30,31]. Here we adopt
the method developed by Jeong et al. [32], which focuses
more on domains with similar conservation rates.
Specifically, for each particular column in the PSSM,
we average the PSSM scores of all 20 amino acids with a
PSSM value greater than 0 in the relevant column. We get
a 20-dimensional vector from each probe and a 400-
dimensional vector from all 20 probes.

The classifier

Here, we adopt a deep neural network as a classifier,
which consists of 2 convolutional blocks and 2 fully
connected layers. Each convolutional block consists of a
convolutional layer, a max pooling layer, a dropout layer
and an activation layer, where the activation layer
employs the ReLU function. In addition, as effectors are
much fewer than non-effectors in the real world, our data
set also has an imbalanced class distribution. Here we use
focal loss [33] to alleviate the data-imbalance issue.
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