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Background:With the recent advance of sequencing technology, the collection of RNA expression (RNA-seq) data has
been growing rapidly. RNA-seq data are statistically count-type measurements. Poisson distribution is a basic
probability distribution for modeling count-type data. With Poisson regression models, various experimental factors,
GC content as well as alternative splicing isoforms can be flexibly considered in RNA-seq data analysis. Due to the
biochemical and technical limitations of sequencing technology, the biases among RNA-seq data have been
recognized.
Methods: In this study, an artificial censoring approach has been proposed to an isoform-specific Poisson regression
model for analyzing RNA-seq data. Low expression values can be grouped (censored) into one probability category,
and high expression values can also be grouped (censored) into another probability category. We have implemented
the related Newton-Raphson numeric computing procedure to achieve the maximum likelihood estimation for our
censored-Poisson regression model. The related mathematical simplifications have been derived for the consideration
of stable and convenient numerical computing.
Results: The advantages of our artificial censoring approach have been demonstrated in both simulation studies and
application analysis of experimental data.
Conclusions: Our proposed artificial censoring approach allows us to focus on the majority of data. As the extreme
values (tails) of data are artificially censored, more efficient analysis results can be obtained, even from relatively
simple Poisson regression models. Our proposed artificial censoring approach can certainly be considered for other
well-developed models or methods for RNA-seq data analysis.
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Author summary: RNA sequencing (RNA-seq) expression data have been increasingly collected for various biomedical
studies. Due to the biochemical and technical limitations of sequencing technology, the biases among RNA-seq data have
been recognized. We have developed an artificial censoring approach to the analysis of isoform-specific RNA-seq expression
data. Low and high expression values can be grouped (censored) into the related probability categories. This approach allows
us to focus on the majority of data and to obtain more efficient analysis results. Our proposed artificial censoring approach
can also be considered in other RNA-seq data analysis scenarios.

INTRODUCTION

RNA sequencing (RNA-seq) data are essential for us to
gain further insights into the molecular functions and
regulations related to biomedical studies. High-through-
put RNA-seq data have being increasingly collected in
biomedical studies. Statistically, RNA-seq data are count-

type measurements. Due to the complicated RNA-seq
experimental procedure, many factors must be considered
in the related data analysis. This is usually achieved by a
statistical regression approach. To build an appropriate
regression model, it is important to understand the
experimental sequencing process for obtaining RNA-seq
data.
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In this study, we focus on mRNA sequencing data
analysis. Before the analysis for a RNA-seq data set, the
data preprocessing must be conducted. The following is a
brief summary. There are currently two types of short
reads from a RNA-seq experiment: single-end and paired-
end. After recording short reads from a RNA-seq
experiment, it is necessary to perform a preprocessing
procedure so that numerical data can be available for a
follow-up analysis. The protocol proposed by Trapnell
et al. [1] is a widely used data preprocessing method.
Then, RNA-seq data are made available as count-type
measurements for mRNA exons. Other RNA-seq data
preprocessingmethods have also beenmade public available
[2,3]. Additionally, RNA-seq data normalization/quantifica-
tion is also important in a genome-wide mRNA expression
study, and the reads per kilo-base exons per million reads
(RPKM) [4] and RSEM [5,6] are two representative
normalization/quantification methods. This is because it is
still difficult to obtain direct mRNA expression measure-
ments due to the current technology limitations.
For RNA-seq data analysis, Jiang and Wong [7] were

among the earliest to propose a Poisson distribution based
statistical method for this purpose. Further Poisson
distribution based statistical methods were also developed
for analyzing RNA-seq data [8,9]. Poisson distribution is
one of the most widely used probability distribution for
modeling count-type measurements. Many related math-
ematical theories and computing implementations have
been developed. Alternative splicing is a fundamental
molecular process, which makes different versions of
transcripts (isoforms) available from a single gene. With
exon usage information, it is feasible to perform RNA-seq
data analysis with the consideration of mRNA isoforms.
GC content is the percentage of nucleobases G and C
from a fragment of RNA/DNA sequence (e.g., an exon).
Its impact on RNA-seq data has been widely studied [10–
13]. Poisson distribution based regression models have
been widely developed to incorporate different molecular
information (e.g., isoform-specific exon usage, GC
content) into a RNA-seq data analysis. Other related
methods, such as Poisson mixture models and negative
binomial distribution based regression models, have also
been widely used in practice [1,14–20].
Censoring is statistically a situation that the exact value

of an observation is not available but a related interval can
be specified. Due to the biochemical and technical
limitations of sequencing technology, the biases among
RNA-seq data have been recognized [11,12,21]. Addi-
tionally, we have the following motivation. In a common
situation of RNA-seq data analysis, the majority of data in
general could be well modeled by a probability distribu-
tion, but it was usually difficult to model the extreme
values (tails) of data. Notice that, in many analysis
situations, the impact on model performance from

extreme values could be significant. Sometimes, just
like outlier effects, such an impact would result in a
clearly reduced model performance. For this important
concern, we can consider these observations as censored
data, which is an artificial censoring approach. We group
low expression values (e.g., count lower than a given
value as censored) into one probability category, and high
expression values (e.g., count higher than a given value as
censored) into another probability category. After artifi-
cial censoring, the undesirable impact from extreme
values could be significantly reduced. The advantage of
artificial censoring is that it allows us to focus on the
majority of data. (It is true that, when an interval of
continuous values is considered as a category, a
considerable amount of data information is lost.) As the
extreme values (tails) of data are artificially censored,
more efficient analysis results can be obtained, even
from relatively simple Poisson regression models.
(Our proposed artificial censoring approach can certainly
be considered for other well-developed models, such
as Poisson mixture models and negative binomial
models.)
In this study, we first introduce our artificial censoring

approach to a Poisson regression model designed for
RNA-seq data analysis (with isoform-specific expression
considered). The Newton-Raphson method is used in our
numerical computing to achieve the maximum likelihood
estimation. We have also derived the related mathematical
simplifications for the consideration of stable and
convenient numerical computing. We have conducted
application analysis of experimental data as well as
simulation studies to illustrate the advantages of our
method. Compared to the traditional non-censoring
approach, our artificial censoring approach can achieve
more efficient results in RNA-seq data analysis.

RESULTS

An application to TCGA RNA-seq data: Gene
SPDYE6

This gene is a speedy/RINGO cell cycle regulator family
member (E6). It locates on chromosome seven and it has
only one transcript/isoform with seven exons. GC content
is an important genomic feature. Figure 1 shows the
relationship between exon raw counts and GC content of
gene SPDYE6 for normal subjects and tumor subjects. A
consideration of quadratic term for GC content would
allow us to accommodate possible nonlinear effect to a
certain extent. Therefore, we included a quadratic term in
our censored-Poisson regression model. The GC content
values (percentages) were [0.6286, 0.5482, 0.5233,
0.4746, 0.6147, 0.5799, 0.5232] for the seven exons,
and the related exon length values were [105, 394, 86, 59,
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322, 219, 581]. For this example, we performed our
analysis separately for normal subjects vs. tumor subjects.
The data were also considered as reference for a
simulation study presented later for illustrating the impact
of artificial censoring bounds.
Table 1 shows exon count quantiles for normal, tumor

and pooled subjects. The range for pooled subjects was (0,
9014). At each quantile, the exon counts from tumor
subjects were clearly larger than these from normal
subjects. As we performed our analysis separately for
normal vs. tumor subjects, we could consider different
artificial censoring bounds. For the lower censoring
bound, we set 3 for both normal and tumor subjects.
For the upper censoring bounds, we set 2,000 for normal
subjects and 3,000 for tumor subjects. Figure 2 provides
an illustration for the data. In our censored-Poisson
regression model, the coefficient b0 was intercept. b1 and

b2 were the linear and quadratic effects of GC content,
respectively. Table 2 gives the estimation results. In a
simulation study presented later, we used the same data as
reference.

An application to TCGA RNA-seq data: Gene TP53

This gene encodes tumor suppressor protein [22]. It
locates on chromosome seventeen and it has many
transcripts/isoforms by different exon usages. Further-
more, new transcripts/isoforms can still be possibly
discovered. Due to the limited data and computing
resources at the time of analysis, we considered the
following four alternative splicing isoforms (represented
by their exon length matrix, or ELM) for illustrating our
method. The rows and columns in an ELM represent
isoforms and exons, respectively, and each entry is an

Table 1 Quantiles of exon counts for gene SPDYE6 from normal, tumor and pooled subjects
Sample 15% 20% 25% 30% 80% 85% 90% 95%

Normal 0 1.0 31.0 48.0 881.6 1089.0 1384.0 2022.1

Tumor 0 18.2 50.0 53.3 1600.0 2200.0 2800.9 4099.35

Pooled 0 3.0 41.5 50.0 1101.2 1501.5 2054.6 3114.1

Table 2 Estimation results for gene SPDYE6
Sample β̂0 β̂1 β̂2 �̂ ¼ expðβ̂0Þ
Normal – 83.84 225.57 – 203.92 3.89e–37

Tumor – 83.62 222.58 – 199.00 4.83e–37

Normal and tumor subjects were analyzed separately.

Figure 1. The relationship between exon count and GC content percentage for gene SPDYE6. (A) Normal subjects.
(B) Tumor subjects.

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 157

Censored-Poisson model for RNA-seq data



exon length value. (Also, notice that some transcripts/
isoforms have only a few exons. They are not included in
this analysis because they are usually lowly or even rarely

expressed. It is numerically difficult to consider them in
the current analysis. Therefore, the following four
isoforms were included in this analysis.)

ELM=

236 0 0 0 0 0 0 110 429 441 279 241 103 0

0 142 0 0 0 74 137 110 429 441 279 241 103 0

0 0 1289 107 133 74 137 110 429 441 279 241 103 169

0 0 1289 107 0 74 137 110 429 441 279 241 103 169

2
664

3
775:

For this example, we performed our analysis for normal
and tumor subjects together to illustrate a comprehensive
analysis of our method, particularly for differential
isoform-specific expression analysis. Figure 3 provides
an illustration for the data. To choose the artificial
censoring bounds, we pooled normal and tumor subjects
and found 250 and 30,000 approximately as the 15th and
85th percentiles (set as lower and upper censoring
bounds), respectively. (Notice that the counts from
exons 3 and 13 were either mostly or all artificially
censored.) The range of exon counts from tumor subjects
was clearly wider than that from normal subjects.
Before conducting a differential isoform-specific

expression analysis, we obtained the isoform-specific
estimates by analyzing normal subjects and tumor

subjects separately. Table 3 gives the isoform-specific
estimation results and their ratios between normal vs.
tumor subjects. The estimation results for isoforms 1 and
2 were similar but the estimation results for isoforms 3
and 4 were clearly different. Then, we pooled normal and
tumor subjects together for a differential isoform-specific
expression analysis. We performed the related likelihood
ratio test (LRT) to confirm this differential expression at
the (unobserved) isoform level. The LRT was calculated
as the ratio between the maximum likelihood under the
non-null hypothesis (differential expression) vs. the
maximum likelihood under the null hypothesis (non-
differential expression). Equation (2) was used for the
calculation of maximum likelihood (under non-null or
null hypothesis). The results in Table 3 were based on the

Figure 2. Boxplots of counts from different exons of gene SPDYE6. (A) and (B) Normal subjects; (C) and (D) Tumor subjects.

Panels (A) and (C) are based on counts, and panels (B) and (D) are based on log(counts + 1). Within each graph, two grey
horizontal lines represent upper and lower censoring bounds.
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non-null hypothesis. To obtain the results for null
hypothesis, we pooled the data from normal and tumor
subjects and removed the group-specific coefficient in the
regression model. The permutation procedure was used to
evaluate the significance of LRT. For each round of
permutation, we randomly reassigned subjects to normal
and tumor groups, and then recalculated the LRT. After
500 rounds of permutations, we obtained an empirical
distribution of permuted LRT values, which was used to
compare the observed LRT value (based on original data).
Figure 4A shows the histogram of 500 permuted LRT
values and the vertical grey line for observed LRT value
(p-value< 0.05). It clearly demonstrates the statistical
significance of differential expression (at the unobserved
isoform level). Additionally, we repeated this analysis but
without artificial censoring (e.g., 0 and 1 for lower and
upper censoring bounds, respectively). Figure 4B shows

the histogram of 500 permuted LRT values and the
vertical grey line for observed LRT value (p-value>
0.05). It clearly suggests no differential expression (at the
unobserved isoform level). This comparison illustrates the
advantage of artificial censoring approach.

A simulation study

Reference data for simulations

As described in Section “An application to TCGA RNA-
seq data: Gene SPDYE6”, the experimental RNA-seq data
were used as reference for our simulation study (including
GC content percentages and exon length values). We
conducted simulations based on the situation of only one
isoform to understand the model parameter estimation
performance. We also conducted simulations based on the

Figure 3. Boxplots of counts from different exons of gene TP53. (A) and (B) Normal subjects; (C) and (D) Tumor subjects.

Panels (A) and (C) are based on counts, and panels (B) and (D) are based on log(counts + 1). Within each graph, two grey horizontal
lines represent upper and lower censoring bounds.

Table 3 Isoform-specific estimation results for gene TP53 and their ratios between normal vs. tumor subjects
Sample type Isoform 1 Isoform 2 Isoform 3 Isoform 4

Normal 1.04e–10 1.10e–09 5.37e–10 1.01e–08

Tumor 1.07e–10 9.33e–10 3.31e–10 7.85e–09

Ratio 0.97 1.18 1.62 1.29
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situation of multiple isoforms to understand the isoform-
specific estimation performance. Both simulation studies
were based on the model specified by Eq. (1).
We compared the estimation results from the general-

ized linear regression (R package glm) to the estimation
results from our censored-Poisson regression model but
without artificial censoring (e.g., 0 and 1 for lower and
upper censoring bounds, respectively). They were con-
sistent with the same estimates: β̂0 = – 74 for the
intercept, β̂GC = 199.29 and β̂GC2 = – 183.30 for the linear
and quadratic effects of GC content. These were
considered in our simulations as below.

One isoform

In addition to the above coefficient values, we included βG
as the group effect (0.1 for weak differential expression
between normal and tumor subjects). Then, our coeffi-
cient parameters were {β0,β1,β2,β3} = {β0,βG ,βGC ,βGC2}=
( – 74, 0.1, 199.29, – 183.30).
Based on the whole data as described in Section

“TCGA RNA-seq data”, Fig. 5 shows the histogram of
total volume (all gene/exon counts from each subject) and
the fitted normal curve. For the convenience of simula-
tions, we set a normal distribution for the total volume nm
(for each subject) with mean 4.5�109 and standard
deviation SD = 1.0 � 109 . For the purpose of a
comprehensive simulation study, our simulated data
should have low, moderate, and high expressed counts
all included so that both upper and lower artificial

censoring could be applied. There was a lack of low
expressed counts if the simulation setting based on gene
SPDYE6 was not changed. Therefore, we modified two
length values for exons 1 and 4 to be 5 and 3, respectively
(length vector then modified as [5, 394, 86, 3, 322, 219,
581]). The modification of these length values in our
simulations was actually to make our simulated data more
comprehensive (or more complicated) so that both low
expression counts and high expression counts were
available for our simulation analysis. Moreover, we
considered a Poisson distribution for each exon length
value (length vector as the Poisson distribution means).

Figure 4. Likelihood ratio test (LRT) results for differential isoform-specific expression analysis. (A) Histogram of
500 permuted LRT values based on the censored-Poisson model (with vertical grey line representing observed LRT value).

(B) Histogram of 500 permuted LRT values based on non-censored Poisson model (with vertical grey line representing observed
LRT value).

Figure 5. Histogram of total volume (all gene/exon
counts from each subject) and fitted normal curve.
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The GC content percentage for each exon was also
randomly simulated following a uniform distribution U
[0.4746, 0.6286].
After the above simulations, we included some

contaminations. We added a random Poisson number
with mean 250 to high expressed counts (> 5000) and
subtracted a random Poisson number with mean 4 to low
expressed counts (< 15). (Negative simulated counts
were adjusted to zero.) We repeated simulations and
analysis for 1,000 times. For each round, we simulated
data for 100 normal subjects and 100 tumor subjects. We
considered different censoring strategies: censor exactly
at (15, 5000), censor more at (18, 4400), censor few at (8,
5670), as well as no censor. To compare different results,
we used the absolute deviation of estimators: jβ̂ – βj.
Figure 6 shows the results. The absolute deviations based

on “no censor”were clearly overall larger among different
censoring strategies. It was not surprising that “censor
exactly” was the best choice, but “censor more” was also
a comparable choice. The absolute deviations based on
“censor few” were overall between these based on “no
censor” and “censor more” (consistently observed for
different parameter estimates).

Multiple isoforms

For this scenario, we need to set values for different q’s
instead of one b0 value. Based on the modified exon
length vector (5, 394, 86, 3, 322, 219, 581) from gene
SPDYE6, we assume three artificial isoforms (just for the
purpose of simulations) with the ELM as below. (Again,
the modification of two exon length values in our

Figure 6. Boxplots of absolute deviations for estimates (β̂0,β̂1,β̂2,β̂3). Each graph shows the results based on the censored-
Poisson model with three different lower/upper bound settings as well as the non-censored Poisson model.
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simulations was to make our simulated data more
comprehensive/complicated so that both low expression
counts and high expression counts were available for our
simulation analysis.)

ELM=
5 0 86 3 322 219 581

5 394 0 3 0 219 581

0 394 86 3 322 219 0

" #
:

Then, we set q1 = 4.0�10–33, θ2 = 3.2�10–33, θ3 =
2.2�10–33. We still set {β1, β2, β3} = {βG,βGC,βGC2} =
(0.1, 199.29, –183.30). After the data simulations, we still
added some contaminations as described above. We still
repeated simulating data for 100 normal subjects and 100
tumor subjects for 1,000 times. Again, the above four
different censoring strategies were considered and the
absolute deviation of estimates was used to compare
different results. Figures 7 and 8 shows the results. The
absolute deviations based on “no censor” were clearly

overall larger among different censoring strategies. It was
not surprising that “censor exactly” was the best choice,
but “censor more” was also a comparable choice. The
absolute deviations based on “censor few” were overall
between these based on “no censor” and “censor more”
(consistently observed for different parameter estimates).

DISCUSSION AND CONCLUSIONS

In this study, we proposed an artificial censoring approach
to the analysis of RNA-seq data. Due to the complicated
experimental procedure for data collection, it was difficult
to consider simple statistical models/distributions in the
related data analysis. Particularly, it was difficult to fit the
data of low expression and high expression. With an
artificial censoring approach, we achieved desirable
robust analysis results. Furthermore, similar as traditional
semiparametric statistical methods, our approach could be
more powerful when it was difficult to specify an

Figure 7. Boxplots of absolute deviations of estimates (θ̂1,θ̂2,θ̂3). Each graph shows the results based on the censored-
Poisson model with three different lower/upper bound settings as well as the non-censored Poisson model.
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appropriate distribution for the overall range of data. The
simulation analysis results and application results pre-
sented in this study confirmed our artificial censoring
approach.
We demonstrated the improved analysis results after

applying an artificial censoring to a traditional Poisson
regression model for RNA-seq data analysis. Our
proposed artificial censoring approach can certainly be
considered for other well-developed models or methods
for RNA-seq data analysis, such as Poisson mixture
models and negative binomial models. When the artificial
censoring is considered, a selected model/method can be
more generally useful and efficient, especially in the
situation that a large number of features (e.g., genes) are
analyzed simultaneously with the same form of models.
Notice that, for a selected model/method for analyzing
RNA-seq data, our approach is actually a modification

that introduces more flexibility in fitting the data. Without
any artificial censoring, it is still the originally selected
model/method. With artificial censoring, it can be
considered as a degenerated form of the originally
selected model/method. We have demonstrated such a
modification (artificial censoring) to the traditional
Poisson regression model. For the modification of
artificial censoring to other models/methods, it is
necessary to devote research efforts for the related
methodological developments and analysis evaluations,
which will be pursued as our future research topics.
It was difficult for us to identify an optimization

approach for setting the lower and upper bounds for
artificial censoring. Therefore, in this study, we would
simply suggest setting these two values as approximately
15-percentile and 85-percentile of data, respectively.
Other percentile-based values could certainly be con-

Figure 8. Boxplots of absolute deviations of estimates (β̂1,β̂2,β̂3). Each graph shows the results based on the censored-
Poisson model with three different lower/upper bound settings as well as the non-censored Poisson model.
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sidered. Our simulation study results were also useful for
this purpose in practice. We would leave this flexibility to
users who are interested in considering artificial censoring
in their RNA-seq data analysis.
Numerical computing is essential to our approach, and

there are some related common practical difficulties.
These have been well addressed in the literature of
numerical computing. To avoid the decrease of likelihood
during iterative computing, we would suggest the well-
established backtracking procedure. To avoid numerical
singularities in the calculations of inverse of Hessian
matrices, we would suggest the well-established block-
computing approach. To set appropriate initial values, we
would suggest these from a non-censored model (e.g., a
traditional Poisson regression model).
In RNA-seq data analysis, the non-uniformity of short

reads has been a challenging concern. Li et al. [5]
introduced two models for fitting the non-uniformity in
short read rates based on local sequences. Our approach is
based on the traditional Poisson regression models, and
similar considerations can also be flexibly incorporated
into our models for the concern of non-uniformity of short
reads. The artificial censoring approach can also be
considered in the mixture Poisson-model based statistical
methods for analyzing RNA-seq data (to achieve more
robust analysis results). Furthermore, this approach can be
considered in the recently developed statistical methods
for single-cell RNA-seq data analysis. Additionally, it is
interesting to extend our artificial censoring approach to
the negative binomial distribution based methods for
RNA-seq data analysis.

MATERIALS AND METHODS

Censored-Poisson regression model

Our methodological development was motivated by the
models proposed by Jiang and Wong [7], Salzman, Jiang
and Wong [8] and Shi and Jiang [9]. Before the
description of our model, we list the related mathematical
notations in Table 4.
Our model is still based on the traditional Poisson

distribution/regression. For a gene g∈G, a subjectm∈M,
we assume that the expected value of the number of read
counts Ymj from exon j is given by the following equation.

lmj=EðYmjÞ=nm �
XI
i=1

lij�i � expðX TβÞ, (1)

where X is the covariates matrix (e.g., group assignment,
GC content, etc.) for the coefficient vector β. The list of
covariates could be different for different RNA-seq data
sets and/or analysis purpose. (In a practical RNA-seq data
analysis, the patient’s demographic/clinical features can
certainly be considered when available. Feature/variable

selection is also an important concern related to this.
These topics are out of the scope of this study.)
In the above equation, each qi can be included into the

exponential function as an isoform-specific intercept β0i =
log(qi). It is essentially a Poisson regression model with a
specified mean structure. This model may be flexibly used
in practice for evaluating differential expression (group
effect), GC content effect, etc. However, in practice, a
simple Poisson regression model usually lacks of
robustness (e.g., due to a simple distribution assumption).
In this study, we consider that it is difficult to model low
count values (less than a given value a as lower bound)
and high count values (greater than a given value b as
upper bound) with a simple distribution, but the count
values between a and b can be efficiently described by a
Poisson distribution (0< a< b<1). [This is based on
our data analysis experience. Rigorously speaking, we
would like to consider this as an assumption, especially
when a large number of features (e.g., genes) were
analyzed with the same form of models.] Therefore, we
propose to artificially censor count values less than a as
one interval category, and to artificially censor count
values greater than b as another interval category. (Notice
that no data were discarded in our analysis.)
For each Ymj, let δmj be a related indicator: δmj = 1 when

Ymj< a or zero otherwise; let δ
0
mj also be a related

indicator: δ
0
mj = 1 when Ymj> b or zero otherwise.

We propose the following likelihood function.

L= ∏
M

m=1
∏
J

j=1
½PrðYmj < aÞ�δmj ½PrðYmj > bÞ�δ#mj

½PrðYmj=ymjÞ�1 – δmj – δ#mj , (2)

Table 4 Mathematical notations for our censored-
Poisson regression model
Symbol Meaning

G Set of genes

g A gene in the set of genes

M Number of subjects

m Subject index

I Number of isoforms of a gene

i Isoform index

J Number of exons of an isoform

j Exon index

Y Poisson random variable

λ Mean of Poisson random variable

nm Number of read counts from subject m

X Covariates matrix

β Coefficient vector

θ Isoform-specific coefficient vector

lij Length of j-th exon from i-th isoform
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which can be calculated as:

L= ∏
M

m=1
∏
J

j=1

X
k<a

e – lmjðlmjÞk
k!

" #δmj X
k>b

e – lmjðlmjÞk
k!

" #δ#mj

e – lmjðlmjÞymj
ymj!

" #1 – δmj – δ#mj
: (3)

We use the well-established Newton-Raphson method to
obtain the maximum likelihood estimates for θ and β. The
related mathematical details are provided in an Appendix,
which includes several non-trivial formula simplifica-
tions. These simplifications are essential to improve the
necessary numerical computing (by utilizing their exist-
ing R-functions).

TCGA RNA-seq data

The Cancer Genome Atlas (TCGA) is a comprehensive
cancer research project [23]. Pre-processed RNA-seq data
sets for different types of cancer have been made
publically available. We downloaded the TCGA RNA-
seq data for breast cancer study. During the progress of

our research development, the database had been
constantly updated. At the time of our application
analysis, we downloaded the data for 101 normal subjects
and 96 tumor subjects, and these data were still
appropriate as illustrative examples for our method.

UCSC Genome Browser

TCGA data used the UCSC Genome Browser hg19
(2009) as the reference genome. To obtain isoform
information for a given gene, we searched the corre-
sponding exon locations and isoform structure from the
UCSC genome browser [24]. In summary, we obtained
the exon information (e.g., location, length) based on the
data from TCGA and UCSC Genome Browser. In this
study, we focused on the exon based RNA-seq data
analysis. Therefore, we have adequate isoform informa-
tion and RNA-seq data for our analysis.
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APPENDIX

Mathematical derivations

Multiple isoforms are mixed and the isoform-specific parameters are qi, i = 1,...,I. We choose to estimate each qi and bw
separately. For applying Newton-Raphson method, we need the first derivatives and the second derivatives with respect
to (w.r.t.) all the parameters. In the following, we first provide the first derivatives and the second derivative w.r.t b’s.
Then, we provide these w.r.t. θ’s, etc.
Based on the model (Eq. (1)) and the likelihood function (Eq. (2)), the first derivative w.r.t bw is

∂
∂βw

logL=
XM
m=1

XJ
j=1

δmj
∂

∂βw
logPrðYmj < aÞ

�
þδ#mj

∂
∂βw

logPrðYmj > bÞþð1 – δmj – δ#mjÞ
∂

∂βw
logPrðYmj=ymjÞ

�
: (A1)

The first part of lower censoring is
∂

∂βw
logPrðYmj < aÞ

=
1

PrðYmj < aÞ
∂

∂βw

Xa – 1
k=0

e – nm

PI

i=1
lij�iexpðX TβÞðnm

PI
i=1 lij�iexpðX TβÞÞk

k!

2
4

3
5

=
1

PrðYmj < aÞ
∂

∂βw
e – nm

PI

i=1
lij�iexpðX TβÞ þ

Xa – 1
k=1

e – nm

PI

i=1
lij�iexpðX TβÞðnm

PI
i=1 lij�iexpðX TβÞÞk

k!

2
4

3
5

=
e – lmj

PrðYmj < aÞ – lmj –
Xa – 1
k=1

lkþ1
mj

k!
þ
Xa – 1
k=1

lkmj

ðk – 1Þ!

" #
xmjw

=–
aPrðYmj=aÞ
PrðYmj < aÞ xmjw:
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Similarly, the second part of upper censoring is

∂
∂βw

logPrðYmj > bÞ=
∂

∂βw
PrðYmj > bÞ

PrðYmj > bÞ =

∂
∂βw

½1 –PrðYmj£bÞ�
PrðYmj > bÞ =

ðbþ 1ÞPrðYmj=bþ 1Þ
PrðYmj > bÞ xmjw:

Lastly, the third part of no-censoring is

∂
∂βw

logPrðYmj ¼ bÞ= ∂
∂βw

– nm
XI
i=1

lij�iexpðX TβÞ þ ymjlognm
XI
i=1

lij�iexpðX TβÞ
" #

=ðymj – lmjÞxmjw:

Finally, combining the above three terms, we get the first derivative of the log-likelihood function w.r.t βw.

∂
∂βw

logL ¼
XM
m=1

XJ
j=1

δmj
– aPrðYmj ¼ aÞ
PrðYmj < aÞ xmjw þ δ#mj

ðbþ 1ÞPrðYmj ¼ bþ 1Þ
PrðYmj > bÞ xmjw þ ð1 – δmj – δ#mjÞðymj – lmjÞxmjw

� �
:

(A2)

Furthermore, we continue to work on the second derivative w.r.t βw1
, βw2

∂2

∂βw2
∂βw1

logL=
XM
m=1

XJ
j=1

δmj
∂2

∂βw2
∂βw1

logPrðYmj < aÞ
�

þδ#mj
∂2

∂βw2
∂βw1

logPrðYmj > bÞ

þð1 – δmj – δ#mjÞ
∂2

∂βw2
∂βw1

logPrðYmj=ymjÞ
�
: (A3)

Then, we work on three parts separately.

∂2

∂βw2
∂βw1

logPrðYmj < aÞ

¼ ∂
∂βw2

∂
∂βw1

PrðYmj < aÞ
PrðYmj < aÞ

2
664

3
775

¼
∂2

∂βw2
∂βw1

PrðYmj < aÞPrðYmj < aÞ – ∂
∂βw1

PrðYmj < aÞ ∂
∂βw2

PrðYmj < aÞ

½PrðYmj < aÞ�2

=
axmjw1

xmjw2
½ðaþ 1ÞPrðYmj=aþ 1Þ – aPrðYmj=aÞ�

PrðYmj < aÞ –
axmjw1

xmjw2
PrðYmj=aÞPrðYmj=aÞ

½PrðYmj < aÞ�2

=
axmjw1

xmjw2

PrðYmj < aÞ ðaþ 1ÞPrðYmj=aþ 1Þ – aPrðYmj=aÞ – a½PrðYmj < aÞ�2
PrðYmj < aÞ

( )
:

For the second part, it has the similar derivation procedure.

∂2

∂βw2
∂βw1

logPrðYmj > bÞ

¼
∂2

∂βw2
∂βw1

PrðYmj < bÞPrðYmj < bÞ – ∂
∂βw1

PrðYmj > bÞ ∂
∂βw2

PrðYmj > bÞ

½PrðYmj > bÞ�2

=
ðbþ 1Þxmjw1

xmjw2

PrðYmj > bÞ – ðbþ 2ÞPrðYmj=bþ 2Þ þ ðbþ 1ÞPrðYmj=bþ 1Þ – ðbþ 1Þ½PrðYmj=bþ 1Þ�2
PrðYmj > bÞ

( )
:
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Finally, the third part looks like

∂2

∂βw2
∂βw1

logPrðYmj ¼ ymjÞ ¼
∂

∂βw2

∂
∂βw1

logPrðYmj ¼ ymjÞ
� �

=
∂

∂βw2

½ymj – lmjxmjw1
�

=
∂

∂βw2

ð – expðX TβÞÞxmjw1

=– xmjw1
xmjw2

lmj:

In summary, combining all three terms to get the full second derivative function.

∂2

∂βw2
∂βw1

logL

=
XM
m=1

XJ
j=1

δmj
axmjw1

xmjw2

PrðYmj < aÞ ðaþ 1ÞPrðYmj ¼ aþ 1Þ – aPrðYmj¼aÞ – a½PrðYmj < aÞ�2
PrðYmj < aÞ

( )(

þδ#mj
ðbþ 1Þxmjw1

xmjw2

PrðYmj > bÞ – ðbþ 2ÞPrðYmj ¼ bþ 2Þ þ ðbþ 1ÞPrðYmj ¼ bþ 1Þ – ðbþ 1Þ½PrðYmj ¼ bþ 1Þ�2
PrðYmj > bÞ

( )

½ðYmjÞ�2
ðYmjÞ

– ð1 – δmj – δ#mjÞ – xmjw1
xmjw2

lmj

)
: (A4)

Based on the model (Eq. (1)) and the likelihood function (Eq. (2)), the first derivative w.r.t qi is

∂
∂�i

logL ¼
XM
m=1

XJ
j=1

δmj
∂
∂�i

logPrðYmj < aÞ
�

þδ#mj
∂
∂�i

logPrðYmj > bÞþð1 – δmj – δ#mjÞ
∂
∂�i

logPrðYmj=ymjÞ
�
: (A5)

The first part of lower censoring is

∂
∂�i

logPrðYmj < aÞ ¼ 1

PrðYmj < aÞ
∂
∂�i

e – nm

PI

i=1
lij�iexpðX TβÞ

n
þ
Xa – 1
k=1

e – nm

PI

i=1
lij�iexpðX TβÞðnm

PI
i=1 lij�iexpðX TβÞÞk

k!

9=
;

=
nmlijexpðX TβÞ
PrðYmj < aÞ – e – lmj þ

Xa – 1
k=1

–
e – lmjlkmj

k!
þ e – lmjlk – 1mj

ðk – 1Þ!

" #( )

=–
nmlijexpðX TβÞ
PrðYmj < aÞ

e – lmjla – 1mj

ða – 1Þ!

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 167

Censored-Poisson model for RNA-seq data



=–
nmlijexpðX TβÞPrðYmj=a – 1Þ

PrðYmj < aÞ :

Similarly, the second part for upper censoring is

∂
∂�i

logPrðYmj > bÞ=
∂
∂�i

PrðYmj > bÞ
PrðYmj > bÞ ¼

∂
∂�i

½1 –PrðYmj£bÞ�
PrðYmj > bÞ =

nmlijexpðX TβÞPrðYmj=bÞ
PrðYmj > bÞ :

Finally, the third part of no-censoring is

∂
∂�i

logPrðYmj=ymjÞ ¼
∂
∂�i

– nm
XI
i=1

lij�iexpðX TβÞþymjlog nm
XI
i=1

lij�iexpðX TβÞ
 !" #

¼ – nmlijexpðX TβÞ þ ymjnmlij�iexpðX TβÞ
lmj

¼ nmlijexpðX TβÞ ymj
lmj

– 1

� �
:

In summary, the final function of first derivative w.r.t θi is

∂
∂�i

logL¼
XM
m=1

XJ
j=1

δmj
– nmlijexpðX TβÞPrðYmj=a – 1Þ

PrðYmj < aÞ þδ#mj
nmlij�iexpðX TβÞPrðYmj=bÞ

PrðYmj > bÞ þð1 – δmj – δ#mjÞnmlijexpðX TβÞ ymj
lmj

– 1

� ��
:

�

(A6)

Furthermore, we continue to work on the second derivative w.r.t �i1 �i2 .

∂2

∂�i2∂�i1
logL=

XM
m=1

XJ
j=1

δmj
∂2

∂�i2∂�i1
logPrðYmj < aÞ

�
þδ#mj

∂2

∂�i2∂�i1
logPrðYmj > bÞþð1 – δmj – δ#mjÞ

∂2

∂�i2∂�i1
logPrðYmj=ymjÞ

�
:

(A7)

By following the above Eq. (A7), we derive the three parts separately as before.
The first part for lower censoring is

∂2

∂�i2∂�i1
logPrðYmj < aÞ

=
∂

∂�i2

∂
∂�i1

PrðYmj < aÞ
PrðYmj < aÞ

2
664

3
775

¼
∂2

∂�i2∂�i1
PrðYmj < aÞPrðYmj < aÞ – ∂

∂�i1
PrðYmj < aÞ ∂

∂�i2
PrðYmj < aÞ

½PrðYmj < aÞ�2

¼ �n2mli1jli2jexpð2X TβÞ½ –PrðYmj=a – 1Þ þ PrðYmj=a – 2Þ�
PrðYmj < aÞ � n2mli1jli2jexpð2X TβÞ½PrðYmj=a – 1Þ�2

½PrðYmj < aÞ�2

=
n2mli1jli2jexpð2X TβÞ

PrðYmj < aÞ PrðYmj=a – 1Þ –PrðYmj=a – 2Þ – ½PrðYmj=a – 1Þ�2
PrðYmj < aÞ

( )
:
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Then the second part for upper censoring is

∂2

∂�i2∂�i1
logPrðYmj > bÞ= ∂

∂�i2

∂
∂�i1

PrðYmj > bÞ
PrðYmj > bÞ

2
664

3
775

¼
∂2

∂�i2∂�i1
PrðYmj > bÞPrðYmj > bÞ – ∂

∂�i1
PrðYmj > bÞ ∂

∂�i2
PrðYmj > bÞ

½PrðYmj > bÞ�2

¼ n2mli1jli2jexpð2X TβÞ½ –PrðYmj=bÞ þ PrðYmj=b – 1Þ�
PrðYmj > bÞ � n2mli1jli2jexpð2X TβÞ½PrðYmj=bÞ�2

½PrðYmj > bÞ�2

=
n2mli1jli2jexpð2X TβÞ

PrðYmj > bÞ –PrðYmj=bÞ þ PrðYmj=b – 1Þ – ½PrðYmj=bÞ�2
PrðYmj > bÞ

( )
:

For the third part of no-censoring, we have

∂2

∂�i2∂�i1
logPrðYmj=ymjÞ ¼

∂
∂�i2

– li1jexpðX TβÞþ ymjli1jXI

i=1
lij�i

2
4

3
5 ¼ –

ymjli1jli2j

ð
XI

i=1
lij�iÞ2

:

Combining all three parts, we get the general function of second derivative w.r.t �i1 , �i2 .

∂2

∂�i2∂�i1
logL=

XM
m=1

XJ
j=1

δmj
n2mli1jli2jexpð2X TβÞ

PrðYmj < aÞ
�

PrðYmj=a – 1Þ –PrðYmj=a – 2Þ – ½PrðYmj=a – 1Þ�2
PrðYmj < aÞ

( )

þδ#mj
n2mli1jli2jexpð2X TβÞ

PrðYmj > bÞ –PrðYmj=bÞ þ PrðYmj=b – 1Þ – ½PrðYmj=bÞ�2
PrðYmj > bÞ

( )

þð1 – δmj – δ#mjÞ –
ymjli1jli2j

ð
XI

i=1
lij�iÞ2

2
4

3
5
9=
;: (A8)

Next, we need to derive the second derivative w.r.t qi, βw for the Hessian matrix. The general function looks like

∂2

∂�i2∂�i1
logL¼

XM
m=1

XJ
j=1

δmj
∂2

∂βw∂�i
logPrðYmj < aÞþδ#mj

∂2

∂βw∂�i
logPrðYmj > bÞþð1 – δmj – δ#mjÞ

∂2

∂βw∂�i
logPrðYmj=ymjÞ

�
:

�

(A9)

Deriving the first part of Eq. (A9) for lower censoring.

∂2

∂βw∂�i
logPrðYmj < aÞ

¼ ∂
∂βw

∂
∂�i

PrðYmj < aÞ
PrðYmj < aÞ

2
664

3
775

=

∂2

∂βw∂�i
PrðYmj < aÞPrðYmj < aÞ – ∂

∂�i
PrðYmj < aÞ ∂

∂βw
PrðYmj < aÞ

½PrðYmj < aÞ�2
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=
anmlijexpðX TβÞxmjw½PrðYmj=aÞ –PrðYmj=a – 1Þ�

PrðYmj < aÞ –
nmlijexpðX TβÞPrðYmj=a – 1ÞaxmjwPrðYmj=aÞ

½PrðYmj < aÞ�2

=
anmlijexpðX TβÞxmjw

PrðYmj < aÞ PrðYmj=aÞ –PrðYmj=a – 1Þ – PrðYmj=aÞPrðYmj=a – 1Þ
PrðYmj < aÞ

� �
:

Then, the second part for upper censoring is

∂2

∂βw∂�i
logPrðYmj > bÞ

=

∂2

∂βw∂�i
PrðYmj > bÞPrðYmj > bÞ – ∂

∂�i
PrðYmj > bÞ ∂

∂βw
PrðYmj > bÞ

½PrðYmj > bÞ�2

=
ðbþ 1ÞnmlijexpðX TβÞxmjw½ –PrðYmj=bþ 1Þ þ PrðYmj=bÞ�

PrðYmj > bÞ –
nmlijexpðX TβÞPrðYmj=bÞðbþ 1ÞxmjwPrðYmj=bþ 1Þ

½PrðYmj > bÞ�2

=
ðbþ 1ÞnmlijexpðX TβÞxmjw

PrðYmj > bÞ –PrðYmj=bþ 1Þ þ PrðYmj=bÞ – PrðYmj=bÞPrðYmj=bþ 1Þ
PrðYmj > bÞ

� �
:

For the third part of non-censor term, it should be

∂2

∂βw∂�i
logPrðYmj ¼ ymjÞ ¼

∂
∂βw

∂
∂�i

logPrðYmj ¼ ymjÞ
� �

=
∂

∂βw
nmlijexpðX TβÞ ymj

lmj
– 1

� �� �
=– nmlijexpðX TβÞxmjw:

Thus, we can combine all three terms to obtain the second derivative w.r.t θi, βw,

∂2

∂βw∂�i
logL=

XM
m=1

XJ
j=1

δmj
anmlijexpðX TβÞxmjw

PrðYmj < aÞ
�

PrðYmj=aÞ –PrðYmj=a – 1Þ – PrðYmj=aÞPrðYmj=a – 1Þ
PrðYmj < aÞ

� �

þδ#mj
ðbþ 1ÞnmlijexpðX TβÞxmjw

PrðYmj > bÞ –PrðYmj=bþ 1Þ þ PrðYmj=bÞ – PrðYmj=bÞPrðYmj=bþ 1Þ
PrðYmj > bÞ

� �

∂2

∂βw∂�i
– ð1 – δmj – δ#mjÞnmlijexpðX TβÞxmjw

�
:

After we derived all first derivatives and second derivatives, we can build the vector of first derivative and Hessian matrix

to apply Newton-Raphson method. The first derivative vector is DT=
∂
∂θ

logL,
∂
∂β

logL

� �
and the Hessian matrix is

H=

∂2

∂θ2
logL

∂2

∂β∂θ
logL

∂2

∂θ∂β
logL

∂2

∂β2
logL

2
6664

3
7775,

Then, we can implement Newton-Raphson method to obtain the maximum likelihood estimate (MLE) for each qi and βw
by the iterative numerical computing: ðθ, βÞTnew=ðθ, βÞTold –H – 1D .

170 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Xing Chen and Yinglei Lai



REFERENCES

1. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.

R., Pimentel, H., Salzberg, S. L., Rinn, J. L., and Pachter, L. (2012)

Differential gene and transcript expression analysis of RNA-seq

experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578

2. Alkhateeb, A., and Rueda, L. (2017) Zseq: An approach for

preprocessing next-generation sequencing data. J. Comput. Biol.,

24, 746–755

3. Pérez-Rubio, P., Lottaz, C., and Engelmann, J. C. (2019) FastqPuri:

high-performance preprocessing of RNA-seq data. BMC Bioinfor-

matics, 20, 226

4. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and

Wold, B. (2008) Mapping and quantifying mammalian transcrip-

tomes by RNA-seq. Nat. Methods, 5, 621–628

5. Li, J., Jiang, H., and Wong, W., H. (2010) Modeling non-

uniformity in short-read rates in RNA-seq data. Genome Biol., 11,

R50

6. Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript

quantification from RNA-seq data with or without a reference

genome. BMC Bioinformatics, 12, 323

7. Jiang, H. and Wong, W. H. (2009) Statistical inferences for isoform

expression in RNA-seq. Bioinformatics, 25, 1026–1032

8. Salzman, J., Jiang, H. and Wong, W. H. (2011) Statistical modeling

of RNA-seq data. Stat. Sci., 26, 62–83

9. Shi, Y. and Jiang, H. (2013) rSeqDiff: detecting differential

isoform expression from RNA-seq data using hierarchical like-

lihood ratio test. PLoS One, 8, e79448

10. Dohm, J. C., Lottaz, C., Borodina, T. and Himmelbauer, H. (2008)

Substantial biases in ultra-short read data sets from high-

throughput DNA sequencing. Nucleic Acids Res., 36, e105

11. Aird, D., Ross, M. G., Chen, W. S., Danielsson, M., Fennell, T.,

Russ, C., Jaffe, D. B., Nusbaum, C. and Gnirke, A. (2011)

Analyzing and minimizing PCR amplification bias in Illumina

sequencing libraries. Genome Biol., 12, R18

12. Benjamini, Y. and Speed, T. P. (2012) Summarizing and correcting

the GC content bias in high-throughput sequencing. Nucleic Acids

Res., 40, e72

13. Hansen, K. D., Irizarry, R. A. and Wu, Z. (2012) Removing

technical variability in RNA-seq data using conditional quantile

normalization. Biostatistics, 13, 204–216

14. Robinson, M. D. and Smyth, G. K. (2007) Moderated statistical

tests for assessing differences in tag abundance. Bioinformatics,

23, 2881–2887

15. Robinson, M. D. and Smyth, G. K. (2008) Small-sample

estimation of negative binomial dispersion, with applications to

SAGE data. Biostatistics, 9, 321–332

16. Anders, S. and Huber, W. (2010) Differential expression analysis

for sequence count data. Genome Biol., 11, R106

17. Anders, S., McCarthy, D. J., Chen, Y., Okoniewski, M., SmythG.

K., Huber, W. and Robinson, M. D. (2013) Count-based

differential expression analysis of RNA sequencing data using R

and Bioconductor. Nat. Protoc., 8, 1765–1786

18. Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L. and

CeleuxG. (2015) Co-expression analysis of high-throughput

transcriptome sequencing data with Poisson mixture models.

Bioinformatics, 31, 1420–1427

19. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. and Salzberg, S. L.

(2016) Transcript-level expression analysis of rna-seq experiments

with hisat, stringtie and ballgown. Nat. Protoc., 11, 1650–1667

20. Kazakiewicz, D., Claesen, J., Górczak, K., Plewczynski, D. and

Burzykowski, T. (2019) A multivariate negative-binomial model

with random effects for differential gene-expression analysis

of correlated mrna sequencing data. J. Comput. Biol., 26, 1339–

1348

21. Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. and Dewey, C. N.

(2010) RNA-seq gene expression estimation with read mapping

uncertainty. Bioinformatics, 26, 493–500

22. Khoury, M. P. and Bourdon, J.-C. (2011) p53 isoforms: An

intracellular microprocessor? Genes Cancer, 2, 453–465

23. Cancer Genome Atlas Network. (2012) Comprehensive molecular

portraits of human breast tumours. Nature, 490, 61–70

24. Rosenbloom, K. R.Armstrong, J., Barber, G.P., Casper, J.,

Clawson, H., Diekhans, M., Dreszer, T.R., Fujita, P.A., Guruva-

doo, L., Haeussler, M., et al. (2015) The UCSC Genome Browser

database: 2015 update. Nucleic Acids Res., 43, D670–D681

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 171

Censored-Poisson model for RNA-seq data


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24


