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Abstract
We present a data-driven solution to manage visitors’ access at the Uffizi Gallery 
in Florence, Italy. The goal is to avoid the long lines outside the Museum, improv-
ing not only visitors’ experience, but also decency and security in the urban area. 
The solution implements a queue management system based on two data analytics 
models, one predictive and one prescriptive, which determine the entry time of each 
visitor. The system, which requires a minimal hardware and software infrastructure, 
was on the field from October 2018 to January 2020 during the most crowded vis-
iting days, namely the free access days. First we report on the whole design and 
implementation process, then we show the solutions effectiveness and discuss the 
lesson learned.
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1  Introduction

The Uffizi Gallery in Florence is one of the most visited museum in Italy (ISTAT 
2016) reaching over two millions visitors in 2018. Besides for its priceless mas-
terpieces by Botticelli, Michelangelo, Raffello Sanzio da Urbino, Leonardo and 
many more, Uffizi is also known for potentially long waiting queues. The main 
reasons are:

(i) the maximum number of people allowed to stay in the exhibition halls at 
any time of the day is fixed and limited;
(ii) tourist presence is concentrated in certain days of the week and certain 
times of the year;
(iii) the individual visiting time is not limited a-priori, and visitors are allowed 
to spend even the whole day in the Museum.

This paper reports on our experience in designing and implementing an access 
management solution that allows visitors to book on-site tickets for a visit at a 
preferred available time during the day, guaranteeing the chosen entry time with-
out queuing outside the Museum. Our system computes the number of visitors 
allowed to access the Museum every 15 min. This figure is highly variable, and 
depends on both the number of visitors in the Museum and their actual visiting 
time. The main challenge consists in maximizing the number of accesses, while 
avoiding queues.

The design process is summarized in Fig. 1. It is indeed highly iterative and 
incremental, with new questions arising from time to time, and new solutions 
being proposed incrementally.

Firstly, during the Problem Analysis phase, we had to understand why huge 
queues form. As described in Sect.  2, we gathered information from different 
stakeholders and designed a possible solution. Secondly, we had to understand 
which data had to be collected to properly model the problem and to design and 
realize the necessary hardware and software infrastructure to collect and store 
the data. This phase is described in Sect.  3, where we present the design of a 
simple but effective hw/sw infrastructure, an unprecedented facility for the Uffizi. 
Thirdly, we had to explore the data to create predictive models that could both 
forecast the number of visitors with sufficient accuracy and granularity, and 
to estimate the expected visit duration. These models are discussed in Sect.  4. 
Fourthly, we had to use a prescriptive model to distribute visitors over the day so 
as to maximize the number of visitors and reduce their waiting time. This is an 

Fig. 1   The process
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optimization model presented in Sect.  5. Section 6 presents details of the hard-
ware and software solution provided to both end-users and visitors. Finally, in 
Sects. 7 and 8 we discuss the lessons learned and outline future work.

2 � Problem description

Classical (conflicting) objectives of museums managers are: preserving the art-
works, increasing the visitors number and improving visitors experience (Falk 
2009). In this paper we focus on the initial phase of the visitor experience, that is, 
the time spent between accessing the Museum ticket office without a reservation 
and the actual entry time. Currently, visitors spend this time in a long line near the 
Uffizi entrance for various reasons. The most obvious is that the Museum has a lim-
ited capacity and cannot accommodate more than a certain number of people at the 
same time. Precisely, the safety policy requires that once the maximum capacity is 
reached, no one can enter the Museum until someone else leaves. The second reason 
is that neither is the duration of the visit limited, nor are visitors solicited to exit. 
Therefore, whenever the Museum is full up and the visitors in waiting line outnum-
ber the leaving visitors, the outside queue starts growing. Additional factors increase 
the length of the waiting line:

(i) a great number of tourists come to visit Florence and the Uffizi Gallery for one 
day only and with a peak in high season and/or on certain days of the week;
(ii) a number of free access days (usually Sundays) have been introduced by the 
Ministry of Culture since 2017, resulting in a peak of visits with queues lasting 
more than 4 h;
(iii) on weekdays, two separate queues exist: one priority line for visitors with a 
reservation, and a low priority line for those without a reservation. When the pri-
ority line grows, the low priority line may freeze.

Long lines surrounding the Museum area are a recurrent challenge of overtourism as 
they negatively affect local residents and urban decor (Pechlaner et al. 2019; Egresi 
2018). Therefore, reducing or even eliminating these lines would be another relevant 
goal of an effective visitor management policy.

Visitors flow management, in famous and large museums, involves various 
stakeholders. In our case, the parties involved are the Director of the Uffizi Gal-
lery, the Concessionaire responsible for ticketing and welcome services, the external 
Tour Operators and, last but not least, the visitors themselves. All those different 
views make a radical change in visitor management policies impossible: in fact, the 
Museum cannot easily increase its capacity and, at the same time, does not want 
to restrict access time or limit visit duration. Moreover, the current ticketing sys-
tem and, in particular, the possibility of accessing the Museum without booking in 
advance must be preserved.

In this context, we designed a system that virtualizes the line, thus allowing visi-
tors to enjoy other (not so well known) locations in Florence (Palazzo Pitti, Giardino 
di Boboli, Museo Archeologico, just to name a few) and/or the city’s surroundings, 
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without overcrowding the Museum area or missing their turn in the queue. In detail, 
we conceived the following route for visitors who want to enter the Museum without 
booking in advance: 

1.	 Visitors enter a free access area without queuing. Here, on a digital kiosk, they 
check the availability of tickets for the current day;

2.	 On the same kiosk, visitors select—among those available—the preferred visiting 
time;

3.	 Visitors leave the Museum area. At the chosen time, they come back and can enter 
the Galleria straightaway.

Our solution owes its success to the ability of accurately predicting the number of 
visitors present in the Museum at any time of day and, consequently, appropriately 
modulating ticket availability. To this aim, we need in practice to predict the daily 
number of visitors, their arrival time and the expected duration of their visit.

2.1 � Related works

Tourism forecasting and demand modeling have a long-standing tradition in tourism 
economics research and several surveys (Jiao and Chen 2018; Li et  al. 2005; Wu 
et  al. 2017; Song and Li 2008) have been written over the years, analyzing about 
1000 studies published from 1960 to 2018. From this rich literature one can iden-
tify three main modeling trends: econometric, time series, and artificial intelligence 
(AI) models. Although pure and hybrid AI models are nowadays very trendy, also 
thanks to the availability of data provided by tourists online experience, econometric 
and time series models remain a consolidated option. In particular, advanced time 
series models can easily handle trends and seasonality, and the most widely used 
methods for tourism forecasting are the Auto Regressive Integrated Moving Average 
(ARIMA) models (Shumway and Stoffer 2011). In Sect. 4.1 we describe an ARIMA 
model able to effectively predict the daily number of visitors at Uffizi.

Prediction of visit duration is strictly related to the visitors’ behavior in the 
Museum. Seminal studies on visitors’ behavior inside a museum date back to 1928 
(Robinson 1928). They have recently received greater attention thanks to new digi-
tal technologies and devices [like RFID (Wikipedia 2021; Lanir et al. 2017), Wi-Fi 
(Georgievska et  al. 2019; Hong et  al. 2018), Bluetooth (Oosterlinck et  al. 2017; 
Delafontaine et al. 2012; Yoshimura et al. 2014) and video cameras (Ruggiero et al. 
2018)] that allow detailed and continuous indoor visitors tracking (Gu et al. 2009). 
A visitor tracking solution measures the visitors trajectory, by which rush hours and 
visit duration can be estimated. Each tracking solution has its trade-offs between 
cost, practical implementation issues, different visitor engagement, and scale and 
accuracy of measurements. In Sect. 3 we discuss the simple hardware and software 
tracking solution that we have implemented at Uffizi.

Several (mathematical) models of visitors’ behavior have also been studied in lit-
erature. A general taxonomy (Kuflik et al. 2012; Véron and Levasseur 1989) classi-
fies individual behaviors into four categories: Ants (typically follow a specific path 
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and intensively enjoy the artworks); Butterflies (do not follow a specific path but 
are guided by the physical orientation of the exhibits and stop frequently to look for 
more details); Fish (move around in the center of a room and usually avoid look-
ing at artworks details); and Grasshoppers (seem to have a specific preference for 
some selected artworks and spend lot of time on them). Social behavior too has been 
widely investigated (Dim and Kuflik 2014; Lanir et al. 2017), and visitors are typi-
cally classified into the following categories: Penguins (walk through the museum 
but do not pay attention to the exhibits), Geese (advance together, with one clear 
leader), Meerkats (advance standing side by side and paying synchronously a lot 
of attention to the artworks), Parrots (share their attention between artworks and 
other group members, interacting while looking at the exhibits), Doves (stand face 
to face, involved in conversation, ignoring the artworks) and Lone Wolves (enter the 
museum together and then separate).

Clustering and AI techniques have been used to classify visitors into the above 
categories. Then, starting from this categorization, several predictive models have 
been devised and some of them guarantee an accurate prediction down to room-level 
(Delafontaine et al. 2012; Kuflik et al. 2012; Dim and Kuflik 2014; Martella et al. 
2017; Yoshimura et al. 2014, 2019; Centorrino et al. 2021). The ability of predicting 
visitors trajectories is required to create a (realistic) digital twin of a museum that 
can be used to design (by simulation/optimization techniques) new visitors manage-
ment policies (Centorrino et al. 2021).

The model we discuss in Sect. 4.3 does not require the room-level granularity of 
the models above. It also works without clustering the visitors. In fact, we show that 
visit duration at Uffizi follows a gamma distribution whose parameters can be accu-
rately estimated.

3 � The hardware/software infrastructure for data acquisition 
and recording

Collecting accurate data in a context like the Uffizi Museum is a demanding task as 
it requires tackling various practical problems: the absence of a reliable and flex-
ible network infrastructure, the difficulty of installing physical devices in the rooms 
(there is a high risk of damaging historical artifacts), and also legal issues like the 
responsibility of data management under the European Union Directive 95/46/EC 
[General Data Protection Regulation (European Parliament 2016)].

An anonymous and non-intrusive technological solution to monitor visitors flow 
is based on RFID technology (Wikipedia 2021). Ideally speaking, all the necessary 
information (arrival time, queuing time, entry time and exit time) can be systemati-
cally collected by providing each entering visitor with an RFID tag and by installing 
RFID readers in suitable positions (one near the main entrance, two on the second 
floor, one at the cafeteria, and two more on the first floor and near the main exit). 
RFID readers could be positioned on standing panels, thus overcoming the diffi-
culty of installing physical devices in the rooms. Those readers would also provide 
information on the partial visiting time of specific Museum sections. However this 
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solution would prove expensive, as the cost of an RFID tag being around 0.10 Euro, 
and the number of visitors up to 8000 per day.

This aspect motivated us to leverage alternative and accessible data sources, and 
our choice fell on the unique anonymous barcode ID carried by each ticket issued 
at the Uffizi. As the installation of new turnstiles with barcode readers is expensive 
and complex, we deployed programmable barcode readers (see Fig. 2) operated by 
human operators at the entry and exit points of the Gallery. The readers acquire the 
ID printed on each ticket and send the information in real time to a server which 
runs an application designed to store and clean up the collected data. Given human 
operators availability, this solution is easily scalable when new monitoring points 
are added (for instance, during the experimental period, the Museum successfully 
added a new exit point for short visits, namely the staircase by architect Natalini1). 
On the other hand, being human operated, this solution is error prone. For this rea-
son, we first cross-validated the data by means of RFID tags released to a (small) 
subset of visitors; we then complemented the data collected by barcode readers with 
those collected by newly installed people-counter devices (Fig. 2), and also by the 
images caught via (a subset of the) 500+ CCTV cameras already installed inside 
and outside the Gallery. We tested different people-counting sw applications to be 
run on data from the existing cameras and we eventually found a solution that, by 
the use of legacy cameras, gives precise results.

In compliance with the Uffizi practice, we divided the day into 15-min time slots 
(choice subsequently validated by statistical analysis) and arranged our final dataset 
into 37 slots corresponding to standard day opening hours.

Figure 3 shows the architecture of the software we developed for data acquisi-
tion. It was designed according to the Model-View-Controller (MVC) design pattern 
(Wikipedia 2021), and implemented using the Spring framework (Pivotal 2019). 
The application controllers are principally used to set up an interface that exposes 
a data acquisition service through RESTful API. This is the interface used to send 
data by the devices described above. Precisely, data acquired by human-operated 
readers, RFID tags and barcodes come from an ad-hoc developed application, while 
the data source producing visitors counts and people density in the Gallery rooms 

Fig. 2   The reader and people 
counter

1  https://​www.​uffizi.​it/​en/​notic​es/​apre-​lo-​scalo​ne-​natal​ini-​come-​secon​da-​uscita-​degli-​uffizi.

https://www.uffizi.it/en/notices/apre-lo-scalone-natalini-come-seconda-uscita-degli-uffizi


415

1 3

Visitors flow management at Uffizi Gallery in Florence, Italy﻿	

relies on device-embedded systems that send information every minute. In addition, 
another controller allows authorized users to monitor data acquisition, with interac-
tive dashboards offering information about visit time and visitors counts (examples 
of plots provided by such dashboards are reported in Fig. 13a and b). The data col-
lected are stored into a MySql Database Management System, which also provides 
procedures to calculate both summary and real-time statistics.

4 � Data analysis and predictive models

Using the above described infrastructure, we collected data over about two years, 
until June 2018. We also considered aggregated visitors data provided by the Uffizi 
starting from 2014. Then, we performed a detailed data exploratory analysis on the 
following data types: 

1.	 Time series of daily entrances to the Museum from 2014 to June 2018 and, rela-
tively to the last two years period, also the time series of entrances by reserved 
tickets;

Fig. 3   The data acquisition software architecture
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2.	 Per-visitor entry and exit time, to estimate visit duration. The duration varies 
greatly depending on entrance time. This survey considered approximately 40 
days, with particular emphasis on the first Sundays of each month, which is a free 
entrance day. Each day opening time was divided into 37 slots of 15 min each, 
corresponding to the time slots available for ticket booking via web (in previous 
days).

The analysis aimed at: 

1.	 Providing a daily forecast of the number of visitors;
2.	 Estimating the expected visit duration as a function of entrance time slots.

For the prediction model, we used ARIMA models (Shumway and Stoffer 2011) 
with good results.

Although the series proved to be highly volatile due to the impact of concomitant 
public holidays, the further addition of information related to the time series of the 
reserved tickets [through a Transfer Function Analysis (TF) model of (Box and Jen-
kins 1970)] considerably improved the prediction accuracy. One particular problem 
we needed to overcome is the absence of reserved-entrance data for free Sundays, 
when advance booking is not allowed. Hence, via typical tools of data analysis such 
as factorial analysis and clustering, we attempted to identify a characteristic week 
profile week by analysing the weekly cycle, thus obtaining an improved forecast for 
free-entrance Sundays. As regards the probability density function of visit duration 
we found out that, with good approximation, it behaves like a gamma-type stochastic 
variable (by way of example, see the data of the first Sunday of June 2018 shown in 
Fig. 4).

It is important to emphasize that visit duration, of vital importance in the sim-
ulation of behaviors and consequently for booking same day tickets, is variable 
throughout the day, ranging on average from over 120 min in the early morning to 
around 100 min in the late morning, and decreasing to an average of 60–70 min for 
visitors entering after 16:00 h. This type of variability was verified in different peri-
ods of the year, summer to winter.

4.1 � Prediction of daily visitors number

The time series available consists of the per-day number of visitors. It shows spe-
cial features, since the Museum closes on Mondays and on other special holidays. 
Furthermore, such incidents as strikes, particular weather conditions, air condition-
ing failures, have caused anomalous series variations. This made it necessary to re-
organize or modify the data so as to make the series more homogeneous from a sta-
tistical point of view. One of the series representations, shown in Fig. 5, is relevant 
to the period January 2nd , 2016 – December 31st , 2018. Data seasonality appears 
evident from the figure (visitors in fact increase in spring and summer), as well as 
a marked daily volatility. The use of ARIMA modeling requires series stationarity: 
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in simple terms, constant mean and variance. We achieved this feature by taking the 
raw differences of the series, which resulted in the differentiation presented in Fig. 6.

The high volatility did not allow to obtain satisfactory forecasts. In view of this 
drawback, we introduced the series of visitors who booked in advance. This new 
series significantly improved the features of the forecasting model. The ARIMA 
model that provided excellent results was ARIMA(5, 1, 0):

where

•	 Yt is the time series of daily visitors
•	 Zt is the differentiated time series
•	 �1,�2,…�5 and � are coefficients estimated by the model
•	 Xt are the visitors booked for time t that are known at time t − 1

Yt = Yt−1 + �1Zt−1 + �2Zt−2 +…+ �5Zt−5 + � Xt + �t,

Fig. 4   Visiting time on June 03rd, 2018
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•	 �t is a sequence of independent random variables (white noise)

Figure.7 resumes the model output via the analysis of residuals (estimated white 
noise by model). The figure confirms the validity of the model since, as expected, 
the spectrum is a white noise. All elaborations were made using the software pack-
age R (Team RC  2019).

4.2 � Improving the prediction: weekly schedule

A further aid to the forecast is provided by the study of the weekly cycle, that is a 
data cycle linked to the days of the week, which was found to be independent of 
visitor numbers. To this end, data were first structured as a matrix, where every row 
contains data relevant to a week from Tuesday to Sunday (recall that the Museum is 
closed on Mondays). To highlight a week profile, data were re-cast as a percentage 
of the total number of visitors per week. Part of this matrix is shown in Table 1.

This operation aims at identifying similarities in behaviors, regardless of the par-
ticular time of year. Those data were then classified, after reduction with Principal 
Components Analysis (PCA) (Greenacre 2018), in order to eliminate redundancies, 
to highlight profiles and to enable a graphical representation of those profiles. An 
interesting result is shown in Fig. 8, which shows the correlation between the per-
centage of visitors on different week days.

Fig. 5   Time series of daily visitors from January 2016 to December 2018 ( Y
t
)
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We point out that the classification problem can be considered an open chapter of 
mathematical statistics, since the answer to the question how many groups exist of 
a specific set of data? hardly ever has a unique and optimal answer. This said, we 
tackle the problem of identifying a number of groups, based on a fundamental concept 
known as the Principle of Parsimony (Sober 1981). In fact, unless particular endog-
enous and/or exogenous constraints are involved, to understand and use reference 
groups it is necessary for them to be limited in number. Complying with this principle, 
in our case we look for a solution with ≤ 3 − 10 groups. In particular, we use two clas-
sification tools which, with a further dose of common sense, would yield an accept-
able solution. It is important to stress that, to facilitate the analysis of the results with 
the different methodologies employed, the input data were made homogeneous by per-
forming all tests using the matrix of factorial coordinates rather than raw data. This is 
done in order to use the most stable information, also considering that more than 76% 
of the total variance is expressed by the first two factorial coordinates.

The first tool used, BEST CLUST (Attanasio et al. 2013; Maravalle and Sime-
one 1995) is based on the decrease of internal inertia, that is the intra-group vari-
ance as the number of groups increases. It is related to the Huyghens’ formula 
that binds the sum of the individual groups’ internal inertia to the total one. Its 

Fig. 6   Differentiated time series Z
t
= ∇Y

t
= Y

t
− Y

t−1
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Fig. 7   Plot of the ARIMA(5, 1, 0) process

Table 1   Data week profile Week Sun Tue Wed Thu Fri Sat

1 04/01/15 28.34 20.26 13.26 11.26 13.18 13.69
2 11/01/15 22.16 15.85 16.44 11.92 13.12 20.52
3 18/01/15 17.86 16.82 14.73 14.54 15.22 20.83
4 25/01/15 20.81 16.18 12.06 15.24 14.58 21.14
5 01/02/15 27.58 15.99 13.26 11.78 13.74 17.64
6 08/02/15 18.40 16.39 12.96 13.03 16.08 23.14
7 15/02/15 20.31 16.12 16.14 15.76 14.02 17.65
8 22/02/15 18.77 17.98 14.54 14.50 14.89 19.32
9 01/03/15 24.23 15.83 15.10 13.79 13.39 17.65
. . … … … … … …

. . … … … … … …
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Fig. 8   Correlation between the percentage of visitors on different week days

Fig. 9   Optimal number of groups
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application shows relative maxima corresponding to 5 or 7 groups, as shown by 
the leftmost plot of Fig. 9.

The second classification tool used was Partitioning Around Medoids (PAM) 
(Kaufman and Rousseeuw 1990). It also provided a chart that highlights the optimal 
number of seven groups as shown in Fig. 9, right.

Following this analysis, we decided for a seven group classification.

4.3 � Prediction of visit duration

A fundamental parameter for queue management is the duration of the visit to the 
Museum (Centorrino et al. 2021). As one can easily understand, the visit duration 
is a function of many subjective parameters and, there fore, varies significantly from 
subject to subject. Figure 10 presents a plot of the average duration as a function of 
entrance slot. Visit time shows a decreasing (but not linear) trend during the day, 
that is: the earlier the visit the longer the duration. This behavior occurs regardless 
of the day of the week or the time of year.

Fig. 10   Average duration of the visit as function of entrance slot
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A probabilistic trend was then highlighted within each slot, strongly characterized 
and linked to the gamma distribution shown in Fig. 4, whose analytical expression 
is:

where

•	 x is the random duration
•	 Γ(r) is the mathematical function gamma
•	 � and r are characteristics linked to the duration mean �X and variance �2 by the 

relationship:

We could therefore characterize the trend by associating two numbers with each 
entry slot: the average � and the standard deviation � . Analyzing the data collected 
with daily surveys between the end of 2016 and the beginning of 2017—for a total 
of 65,536 admissions—we obtained the following Table 2, where:

•	 slot is the entrance time slot

f (x, r, 𝜆) =
𝜆r xr−1

Γ(r)
e−𝜆 x x > 0

r =
(�x

�

)2

and � =
�x

�2

Table 2   Average and standard deviation of visit duration as a function of the entrance slot

Slot Num � � Slot Num � �

1 8:15–8:30 492 143.09 59.13 20 13:00–13:15 1879 106.24 43.55
2 8:30–8:45 1606 136.89 54.51 21 13:15–13:30 1505 108.68 45.09
3 8:45–9:00 2047 144.67 58.11 22 13:30–13:45 1465 101.52 41.08
4 9:00–9:15 2172 140.83 58.78 23 13:45–14:00 1564 99.81 38.07
5 9:15–9:30 2392 138.07 58.33 24 14:00–14:15 2052 100.49 38.26
6 9:30–9:45 2625 131.16 58.82 25 14:15–14:30 1746 97.66 34.15
7 9:45–10:00 2853 131.09 55.74 26 14:30–14:45 1513 92.73 34.93
8 10:00–10:15 3258 129.06 55.44 27 14:45:15:00 1413 89.56 30.72
9 10:15–10:30 3038 126.40 52.06 28 15:00–15:15 1339 89.12 28.51
10 10:30–10:45 2957 124.59 54.17 29 15:15–15:30 1246 81.41 24.64
11 10:45:11:00 2842 119.70 51.33 30 15:30–15:45 1046 78.25 24.16
12 11:00–11:15 2708 118.77 52.45 31 15:45–16:00 835 71.16 20.59
13 11:15–11:30 3224 115.73 49.92 32 16:00–16:15 551 64.56 16.26
14 11:30–11:45 2691 114.36 47.76 33 16:15–16:30 320 55.91 16.49
15 11:45–12:00 2546 111.04 48.43 34 16:30–16:45 135 45.95 12.99
16 12:00–12:15 2711 109.02 48.16 35 16:45:17:00 111 37.92 10.03
17 12:15–12:30 2435 109.49 47.91 36 17:00–17:15 11 29.31 13.66
18 12:30–12:45 1925 106.23 46.64 37 17:15–17:30 1 14.35 −

19 12:45:13:00 2282 102.35 46.90
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•	 num is the number of visitors in the time slot of the entire period
•	 � and � are the mean and the standard deviation of the visit duration

At this point, for each slot t, we calculated an output probability vector �t , based on 
the characteristic gamma function of that slot. Each component ph of the vector rep-
resents the probability that a visitor entering the Museum at slot t leaves the museum 
at slot h. Trivially, ph = 0 if h ≤ t and the sum of all ph is equal to one. The collection 
of vectors for each t form a matrix that we refer to as Output Probability Matrix P , 
whereby it is possible to evaluate the exit flow for a given visitor entry flow. This allows 
us to dynamically estimate the number of people inside the Museum, and to determine 
the maximum number of visitors for each entry slot without exceeding the Museum 
capacity. Live data and model predictions are compared in Fig. 11, showing the number 
of visitors leaving the premises as a function of exit time, for two different entrance 
slots on Sunday, June 3rd, 2018. The agreement is excellent.

An important feature, which lends general validity to the model devised in the pre-
sent study, is the evaluation of the daily number of visitors as a function of the Museum 
capacity. The latter then becomes a simple parameter which can easily be tailored to the 
specific requirements of different buildings with controlled access.

5 � Prescriptive model

Given the output probability matrix P returned by the prediction model, we want 
to calculate the number of tickets that can be issued for each slot t. The model must 
consider: 

Fig. 11   Comparison of live data and model predictions for the number of visitors leaving the premises as 
a function of exit time for two different entrance slot on Sunday, June 3rd, 2018
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1.	 The capacity of the x-ray body scanners in the main entrance, equal to St visitors 
per time slot;

2.	 The maximum number of allowed visitors in the exhibit area, Ct;
3.	 The ticket price, ut;
4.	 The number of tickets reserved (either in the same day or in previous days), At.

The goal is to maximize the Museum income without introducing congestion (delays) 
at the entrance. The model uses the following (integer) variables:

The objective function amounts to maximize the Museum total income, that is:

In what follows we discuss results for free-entrance days, in which the Museum 
wants to maximize the number of visitors (corresponding to ut = 1 for all slots). The 
system, for each time slot t, has the following constraints:

(i) the maximum capacity St of the x-ray body scanners in the main entrance repre-
sents a bound on the maximum number of tickets issued for slot t: 

(ii) the maximum number of allowed visitors in the exhibit area, Ct , cannot be 
exceeded.

To implement the latter constraint, we need to evaluate the number of visitors present 
in the Museum in each time slot t. Under the assumption that the visitors entering dur-
ing slot t exactly correspond to the tickets issued in that slot, the number of visitors in 
slot t are equal to the number of tickets issued in slots {1,… , t} : that is, 

∑t

h=1
xh minus 

the number of visitors who left in slots {1,… , t − 1} . The latter figure can be evaluated 
from the output probability matrix P , being ptjxt the expected number of visitors enter-
ing the Museum at t and leaving it at j. The resulting linear constraint has the form:

and the complete model reads:

xt = number of tickets issued for slot t

max
∑

t∈T

utxt

xt ≤ St t ∈ T

t∑

h=1

xh −

t−1∑

h=1

t−1∑

j=1

phjxh ≤ Ct

(1)max
∑

t∈T

utxt

(2)
t∑

h=1

xh −

t−1∑

h=1

t−1∑

j=1

phjxh ≤ Ct t ∈ T
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Note that in (3) we introduced a lower bound on tickets availability, that accounts 
for the tickets to be issued in t. Two facts determinate At > 0 : the first concerns the 
tickets reserved in advance (i.e., in days preceding the current planning day); the 
second concerns model execution at time t̄ > 1 , when tickets for time slots t < t̄ have 
already been issued.

All in all, the ILP model (1)–(3) contains |T| integer variables and |T| constraints 
and it is easily solvable by Commercial-Off-The-Shelf ILP solvers (CPU time typi-
cally does not exceed seconds). This is a crucial property, since the model is repeat-
edly solved during the opening hours of the Museum.

An example of the system dynamics is reported in Fig.  12. The graphs are 
obtained by evaluating optimal solutions �∗ to model (1)–(3) at the beginning 
of the day, with the matrix P defined as in Sect.  4 and with ut = 1 , At = 50 , 
Ct = 1000 and St = {200, 250, 300} (respectively, red, blue and green lines in the 
chart). Then, we simulated the system for each time slot t assuming that all x∗

t
 vis-

itors enter the Museum at slot t, flowing at regular pace through the x-ray scan-
ners. Each visitor will stay in the system for a time drawn from the �t distribution 
associated with t. Dashed lines in Fig.  12 represent the number of visitors per 
minute entering the Museum (values are reported on the right y-axis). Continuous 
lines represent, with a granularity of one minute, the number of visitors present 
in the exhibit area (values are reported in the left y-axis). The three scenarios 
lead to 6400, 6750 and 7050 total visitors respectively. In this simulation one can 
observe that the capacity constraints (2) are substantially fulfilled for the whole 
time horizon, despite the approximations introduced by the 15-min time slot 

(3)
At ≤ xt ≤ St t ∈ T

� ∈ ℤ
T

Fig. 12   Simulation with C
t
= 1000 , A

t
= 50 and S

t
= {200, 250, 300}
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discretization and the roundoff error introduced in representing the coefficients of 
P in model (1)–(3). In other worids, for all scenarios and after the initial ramp-
up, the number of visitors in the system fluctuates around 1000. Recall that in 
the real system, a visitor cannot enter the exhibit area if more than Ct people are 
already in. Thus, when Ct is exceeded, a queue (i.e., a delay from the estimated 
entering time) occurs. These periods appear rather limited in all three scenarios.

Scenarios mainly differ by the time in which the exhibit area is filled up. Of 
course, a rate of 300 people per time slot results in an overall larger number of 
visitors, but such a rate requires structural changes in the visitor body scan pro-
cedure. Interestingly, a longer time to saturate the system may be useful for the 
decision maker to correctly assess the system dynamics. In fact, during Museum 
opening hours, model (1)–(3) is run every 15 min (at the end of each time slot) 
and it is updated with real time data. If t̄ is the time slot at which the model is 
executed, the following changes affect model (1)–(3): 

1.	 xt variables for t < t̄ are fixed at a value corresponding to the number of visitors 
actually entering the Museum at t;

2.	 Tickets that have already been issued for slots t ≥ t̄ must be considered, and At 
updated accordingly;

3.	 After the first hour (i.e., for t > 4 ) one can also check the correctness of the dis-
tributions used to predict visitors behavior, as a statistically significant number 
of visitor has already left the Museum. In case of a noteworthy deviance, one can 
also change matrix P for t ≥ t̄;

4.	 Ct can be updated as well.

In practice, having the system saturated later in the day (as in the scenarios with 
St = {200, 250} ) leaves more room for assessing visitors behavior. Furthermore, 
by running the model and simulating the system every 15  min during the day, 
one can visualize the real and estimated complete day trend and make decisions 
accordingly.

Figure 13a and b report an example of on-field results. Graphs show the real-
ized tickets distribution on two free-entrance days (10/07/2018 and 01/06/2019). 
The green line represents the tickets issued, the red one the checked-in visitors in 
each time slot.

First, one observes that the number of issued tickets significantly varies over 
the day w.r.t. the ideal simulation of Fig.  12. However, this does not affect the 
time visitors physically spend queueing, since the difference between the expected 
and the actual entry time for both days never exceeded 17 min (with an average of 
14 min). This basically means that almost all visitors actually enter the Museum 
in their booked slot.

From the graph one can also observe that the difference between the number 
of tickets issued and the checked-in visitors increases during the day. A detailed 
analysis of the data shows that reservations in the morning for the afternoon 
tend to have a higher no-show rate. In our practice, tickets issued but not used 
are removed from the model, i.e., they are made available starting from the first 



428	 A. Attanasio et al.

1 3

time slot following the no-show. However, in case of high ticket request (as on 
free-entrance days), a significantly high no-show rate may result in no tickets 
availability for long time during the central hours of the day. In this case one 
can decide to overbook some afternoon slots. The overbooking can be handled 
through parameter Ct . Basically, one virtually increases the Museum capacity by 
making more tickets available for slots in which the no-show rate is expected to 
be high. The overbooking level is then chosen by simulating system dynamics for 
a set of Ct values, and so evaluating the maximum acceptable delay that conges-
tion causes in visit time, if the no-show rate drops to a physiological value.

6 � The end user hardware/software solution

The combined use of the predictive model and of the prescriptive (optimization) 
model provides a reliable knowledge of the number of visitors that can access the 
Museum in a given time slot with little/no waiting time at the Museum entrance. 
Moreover, at a given time t̄ , one can calculate the number of available tickets for all 
the time slots following t̄ . Thus, our solution is designed to show visitors the next 
possible entry times, allowing them to choose one, and to print a voucher containing 
a reservation for a time t > t̄.

The solution is deployed through the installation of seven digital kiosks outside 
the gallery. Each kiosk allows visitors to self-print the voucher with their own speci-
fied entry time. Once reserved the voucher, visitors can leave the Uffizi area and 
enjoy the surroundings until their reservation time. In the near future a free mobile 
application with the same capability as the digital kiosks will be developed and 
delivered to the app stores, allowing users to book the visit from a personal device.

Fig. 13   Ticket distribution
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By using the same barcode readers described in the previous section, we also 
developed an application that simply reads the QR code printed on the voucher 
and checks that the visitor enters in the correct time slot. To keep visitors 
informed about the current entry time (that is, of possible delays), we placed two 
big displays outside the gallery which run an application connected to the system 
that also gives information about the overall voucher availability for the day.

A view of the the digital kiosks infrastructure, displays, and vouchers is shown 
in Fig. 14. Our system has been implemented on the field during the free-access 
Sundays since October 2018.

To realize the software components for our solution we developed another 
Spring Web Application (Pivotal 2019) completed by other external services.

There are three main controllers that expose API to handle vouchers through 
a unique service: one requests the first available entry time from kiosks; another 
shows on the big displays general information like the current entry time or 
the voucher availability at kiosks; the third one gathers information on specific 
vouchers scanned by the readers at the entrance, and eventually validates them.

Other important tasks are performed by the Scheduler which, where neces-
sary, changes some of the settings to update the optimization results. To achieve 
this, it uses two services: a simulation service makes use of the probability matrix 
returned by the prediction model to simulate how many people enter/exit the 
Museum. This makes it possible to forecast presences inside the gallery in a spe-
cific time. The second service, instead, is responsible for calling the external opti-
mization module, represented by a web service developed in Python, and focused 

Fig. 14   The digital kiosks and monitors in operation
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on ILP solver functions that are useful to define and execute our model with good 
performances.

Results obtained from both calculations or voucher request are stored in a 
MySQL database (Fig. 15).

7 � Lessons learned

Looking at the overall experience, we can share the following main lessons 
learned while designing a data-driven application for monitoring and forecasting 
visitors of a museum:

Fig. 15   The end-user application software architecture
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Infrastructure. Understanding the data to be acquired goes hand by hand with 
analyzing the existing infrastructure. The main challenges we faced are: lack of a 
public WiFi connection inside and outside the Museum, lack of proper turnstiles, 
legacy cctv cameras provided by different vendors and ranging from very old 
to very new, limited server infrastructure, lack of digital tickets. Moreover, the 
historical nature of the building added a number of important constraints, such 
as: inability to drill walls for attaching new devices, extremely high ceilings that 
made the use of some people-counting technology unfeasible, limited space to 
mount proper turnstiles.
Human vs. automated data collection. Human or automated data collection may 
bring different kinds of challenges. Data collected by human operators may be 
incomplete due to the difficulty of tracking each single visitor. On the other hand, 
automated data collection by hardware devices requires extensive software and 
hardware testing to avoid logging mistakes.
How much data is enough? As above said, we collected data to forecast both the 
number of visitors and their expected visit duration. One of our concerns was 
the amount of data sufficient for an accurate forecasting. In order to answer this 
question, we first refined the daily forecast model so as to reach a discrepancy 
not larger than 10% in terms of estimated number of visitors versus the real data. 
Once achieved this threshold, we compared the estimated visit duration with the 
one collected during the day. On September 2nd 2018, we ran an in-the-field 
experiment in Uffizi, to compare at run-time the real visit duration with the esti-
mated one, getting the results discussed in Fig. 11.
Booking. Knowing the number of booked visitors maximizes the precision of 
our estimate. We discovered that the information about booked visitors increases 
accuracy to 0.93. The reason is that guided tours and schools are a large share of 
visitors in the high season and their visits are always booked in advance.
External waiting time recording. The RFID/barcode solution adopted in our 
approach, although precise and flexible, is quite expensive in terms of human 
resources (two people required) and hardware (two readers and throwaway RFID 
tags). We are currently moving towards the use of digital cameras and AI to count 
crowds and people in lines.

8 � Conclusions and future work

This article relates our 2-years experience within the UFFIZI Gallery project. By 
following the process reported in Fig. 1, we identified the data to be collected, cre-
ated an infrastructure to collect, clean, and merge the data, realized the models, and 
implemented, deployed and operated the software.

Figure 16 provides a visual comparison between the queue observed on Septem-
ber 02nd 2018 (traditional system) and the (almost null) ones on October 07th 2018 
and November 04th (our system). We hold the comparison fair, since:

•	 6961 people accessed the Museum on September 02nd versus 7765 on October 
07th (essentially, we handled more people);
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•	 7036 vouchers had been distributed at 6:35 pm on September 02nd versus 
7385 at noon on October 07th (essentially, the flow of incoming visitors was 
much higher in October);

•	 the average queuing time dramatically dropped from 64  min on September 
02nd (for a total of 445,504 queueing minutes) to 14 min on October 07th.

In our view, this is the first step towards a longer-term plan.
First of all, cultural tourism is steadily growing, both in Italy and in other EU 

countries (European Commission 2018), and so is the number of visitors that the 
most attractive museums and cultural areas are able to attract. Therefore, urban 
security issues and waiting queues are expected to increase, unless solutions like 
ours are experimented and developed. Our solution is a valuable approach to a 
problem which is supposedly growing. We expect and aim to generalize it, with 
applications to other museums and cultural areas.

Secondly, our approach is currently being extended for improving tourism sus-
tainability. In fact, the time saved from queuing in a museum, can be used to visit 
other places. This would increase the number of visitors to less known muse-
ums located near the main attractions. We developed the preliminary version of 
a planner that provides information on nearby museums (associated to the Uffizi 
Gallery) to be visited when the Uffizi is busy. A preliminary empirical analysis, 
performed immediately before the COVID-19 pandemic broke out, showed that 
the number of visitors to locations around the Uffizi (for example, Palazzo Pitti) 
actually increased during the implementation of our system. This can mitigate the 
consequences of overtourism in the main attractions, at the same time addressing 
more visitors to nearby museums (Phi 2019).

Fig. 16   Before and after
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Thirdly, we plan to add a dynamic pricing strategy so as to change the Museum 
admission price into one based on supply-and-demand, and on other external market 
factors.
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