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Abstract Providing learners with multiple representations of learning content has
been shown to enhance learning outcomes. When multiple representations are
presented across consecutive problems, we have to decide in what sequence to
present them. Prior research has demonstrated that interleaving tasks types (as
opposed to blocking them) can foster learning. Do the same advantages apply to
interleaving representations? We addressed this question using a variety of research
methods. First, we conducted a classroom experiment with an intelligent tutoring
system for fractions. We compared four practice schedules of multiple graphical
representations: blocked, fully interleaved, moderately interleaved, and increasingly
interleaved. Based on data from 230 4th and Sth-grade students, we found that
interleaved practice leads to better learning outcomes than blocked practice on a
number of measures. Second, we conducted a think-aloud study to gain insights into
the learning mechanisms underlying the advantage of interleaved practice. Results
show that students make connections between representations only when explicitly
prompted to do so (and not spontaneously). This finding suggests that reactivation,
rather than abstraction, is the main mechanism to account for the advantage of
interleaved practice. Third, we used methods derived from Bayesian knowledge
tracing to analyze tutor log data from the classroom experiment. Modeling latent
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measures of students’ learning rates, we find higher learning rates for interleaved
practice than for blocked practice. This finding extends prior research on practice
schedules, which shows that interleaved practice (compared to blocked practice)
impairs students’ problem-solving performance during the practice phase when using
raw performance measures such as error rates. Our findings have implications for the
design of multi-representational learning materials and for research on adaptive
practice schedules in intelligent tutoring systems.

Keywords Multiple representations - Interleaved practice schedules - Intelligent
tutoring systems - Classroom evaluation - Bayesian knowledge tracing

Introduction

In this paper, we present research conducted with an intelligent tutoring system for
fractions learning that focuses on the effects of practice schedules of multiple graphical
representations on students’ learning. The question of how to sequence multiple graphical
representations is interesting for several reasons. First, designers of educational materials
frequently face this question, as many domains employ multiple graphical representations
across consecutive problems. Second, learning sciences research on the sequence of task
types (e.g., of addition and multiplication problems) has frequently demonstrated advan-
tages of interleaved sequences, compared to blocked sequences (e.g., Bahrick et al. 1993;
Schmidt and Bjork 1992; de Croock et al. 1998). Yet it remains unclear whether the
advantage of interleaving task types also applies to interleaving graphical representations.
Thus, the question of how best to interleave multiple graphical representations is also of
theoretical interest. Third, problem sequences are highly relevant to intelligent tutoring
systems, for example because problem selection methods based on cognitive models
often vary in terms of the degree to which they block or interleave problem types (e.g.,
Koedinger et al. 2011; Koedinger et al. 2013). Finally, conducting research on the effects
of sequencing graphical representations in the context of intelligent tutoring systems is
particularly interesting because they offer novel opportunities to implement adaptive
sequences of multiple graphical representations—adapting, for instance, to the prior
knowledge level of a given learner. Although we do not explicitly investigate adaptive
sequences in the present paper, our findings provide insights into the potential benefits of
adaptively sequencing multiple graphical representations. Thus, the research presented in
this paper is of practical and theoretical relevance.

In conducting this research, we combined a number of methodologies. First, we
conducted a classroom experiment with the Fractions Tutor, a classroom-proven an
intelligent tutoring system for 4th-and Sth-grade fractions learning that we developed as
platform for research into the use of multiple graphical representations (Rau et al. 2013c;
Rau et al. 2012a). Next, to gain insights into the learning mechanisms that account for the
findings of the classroom experiment, we analyzed verbal data from a think-aloud study
that we conducted with the version of the Fractions Tutor that was shown to be most
effective in the classroom experiment. Finally, we used Bayesian knowledge tracing to
analyze the data obtained from the classroom experiment to further clarify open questions
about the learning mechanisms. In sum, these different methods complement one another:
each method serves the goal to clarify the insights gained by another.
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Multiple Graphical Representations of Fractions

In this paper, we present results from a multi-methods program of research to
investigate how best to temporally sequence multiple graphical representations within
the Fractions Tutor. Graphical representations of learning contents are used not only
in fractions instruction, but in many other areas of mathematics (Common Core State
Standards Initiative 2010; Kilpatrick et al. 2001; NCTM 1989, 2000, 2006; NMAP
2008) and science (Kozma 2003; National Research Council 2002). Multiple repre-
sentations are considered to enhance learning in part because different representations
emphasize complementary conceptual aspects of the learning material and have
differential effects on mental processing (Cox 1999; Cromley et al. 2010; Eilam
2013; Gagatsis and Elia 2004; Gegenfurtner et al. 2011; Goldman 2003; Hinze et al.
2013; Kozma et al. 2000; Larkin and Simon 1987; Reed and Ettinger 1987; Schnotz
and Bannert 2003; Schwartz and Black 1996a; Tabachneck et al. 1997; Zhang 1997,
Zhang and Norman 1994). Theoretical accounts highlight several beneficial functions
of the use of multiple representations in educational materials (Ainsworth 2006;
Scaife and Rogers 1996), such as computational offloading (reducing cognitive
effort), re-representing (highlighting complementary conceptual aspects), and graph-
ical constraining (mutually constraining interpretations).

In spite of the well-documented promise of learning with multiple representations, it
is widely recognized that multiple representations (compared to single representations)
do not necessarily enhance student learning. Research on multiple representations shows
that they only enhance learning when students adequately understand each individual
representation (Ainsworth 2006; Eilam 2013), and when they make connections be-
tween representations (Ainsworth 2006; de Jong et al. 1998; Gobert et al. 2011; Gutwill
et al. 1999; Ozgﬁn—Koca 2008; Rathmell and Leutzinger 1991; Superfine et al. 2009;
Uttal 2003; van der Meij 2007). Therefore, one of the challenges curriculum designers
face with regard to designing multi-representational learning environments is how best
to support students in learning from multiple graphical representations. Unfortunately,
we still know little about how best to implement multiple graphical representations in
instructional materials, let alone how best to take advantage of the specific opportunities
intelligent tutoring systems offer to enhance students’ learning with multiple graphical
representations.

Fractions are one of many areas in mathematics where multiple graphical repre-
sentations are used extensively (NMAP; NCTM 2000, 2006). As in many other
science and mathematics domains, instructional materials of fractions typically em-
ploy different graphical representations. Typically used graphical representations
include circle diagrams, rectangles, and number lines (see Fig. 1). Each graphical
representation emphasizes a slightly different conceptual viewpoint on fractions
(Charalambous and Pitta-Pantazi 2007), as discussed below.
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Fig. 1 Interactive circle, rectangle, and number line representations, as used in the fractions tutor
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Practice Schedules

When designing instruction that uses multiple graphical representations, curriculum
designers must decide how to temporally sequence the different graphical represen-
tations. How frequently should the curriculum alternate between graphical represen-
tations? Practice schedules are likely to have an impact on students’ robust learning of
the domain knowledge. In line with Koedinger and colleagues (2012), we define
robust learning as the acquisition of knowledge that transfers to novel tasks and lasts
over time. In creating practice schedules that involve multiple graphical representa-
tions, it matters, most likely, whether the different representations are practiced in a
“blocked” manner or are interleaved with practice of other representations. Although
instructional materials employ multiple graphical representations in many different
ways, including side-by-side use of different representations, our current study
focuses on the special case in which each tutor activity involves a single graphical
representation, in addition to text and symbols. (As discussed below, this study is a
step in a broader program of research that also looks at side-by-side use of represen-
tations). Thus, in a blocked practice schedule, consecutive tutor problems may for
example involve the following sequence of representations: circle—circle—circle—
number line-number line—number line. By contrast, an interleaved sequence might
look as follows: circle-number line—circle-number line—circle—number line. Blocked
schedules allow students to gain in-depth experience with one graphical representa-
tion before switching to a new representation, and may thus enhance students’
understanding of individual representations. Interleaved schedules, on the other hand,
provide frequent opportunities to compare different graphical representations to one
another (every time the student switches from one representation to the other), thus
allowing students to make connections between different representations. Research
shows that interleaved practice schedules lead to better long-term retention and
transfer than blocked practice in a variety of domains including vocabulary learning
(Bahrick et al. 1993; Cepeda et al. 2006), motor tasks (Hebert et al. 1996; Immink and
Wright 1998; Li and Wright 2000; Meiran 1996; Meiran et al. 2000; Ollis et al. 2005;
Schmidt and Bjork 1992; Shea and Morgan 1979; Simon and Bjork 2001), algebra
(Rohrer 2008; Rohrer and Taylor 2007; Taylor and Rohrer 2010), troubleshooting (de
Croock et al. 1998; Van Merriénboer et al. 2002), and decision-making tasks
(Helsdingen et al. 2011). However, interleaved practice schedules often result in
lower performance during the acquisition phase (i.e., while students practice).

A limitation of this research is that it has exclusively focused on practice schedules of
different task types (for instance, addition—addition—addition—multiplication—multipli-
cation—multiplication, versus addition—multiplication—addition—multiplication—addi-
tion—multiplication). Task types differ in terms of the problem-solving procedure (or
action sequence, in the case of motor tasks; memory trace in the case of fact retrieval or
vocabulary learning) a given problem involves, whereas graphical representations differ
in terms of the concepts they invoke. In our prior research (Rau et al. 2013a) we
compared interleaving of task types to interleaving of representations (i.e., interleaving
task types while blocking graphical representations versus interleaving graphical repre-
sentations while blocking task types). We found that when the choice is to interleave one
while blocking the other, the choice should be made to interleave task types. However,
in practice, it is often not necessary to interleave one but block the other; the decision to
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interleave can often be made separately for each dimension. Therefore, in the current
research, we drop the constraint that only one dimension can be interleaved. Consistent
with our prior work, we look at situations in which task types are (moderately)
interleaved, and ask what level of interleaving of representations is ideal, in combination
with moderately interleaving task types.

The advantage of interleaved practice has been attributed to two kinds of processes
that play a role in deep, cognitive processing of the learning material (Rau et al. 2013a).
First, interleaved practice schedules require learners to frequently reactivate the knowl-
edge needed to solve each learning task (de Croock et al. 1998; Lee and Magill 1983,
1985): when tasks are presented in an interleaved sequence, the required knowledge has
to be retrieved more frequently from long-term memory—it cannot be kept in memory
from one task to the next if there is not overlap in requisite knowledge. Retrieval from
long-term memory strengthens the association between cues and associated elements in
long-term memory, and increases the likelihood that this knowledge can be recalled later
on (Anderson 1993; Anderson 2002). Second, interleaving may help students abstract
knowledge across different learning tasks (de Croock et al. 1998; Shea and Morgan
1979). When knowledge needed for different learning tasks is simultaneously active in
working memory, students can compare the knowledge relevant to the respective
learning tasks. While this process may happen consciously or unconsciously, it helps
learners to see which task properties are key and which are incidental, thereby directing
their attention to aspects relevant to knowledge construction (Bannert 2002; Paas and
van Gog 2006; van Merriénboer et al. 2002).

What might these learning processes correspond to when interleaving graphical
representations in particular? Frequently switching between different graphical rep-
resentations may require students to frequently reactivate representation-specific
knowledge, such as knowledge regarding the specific conceptual aspects emphasized
by the particular graphical representation at hand. Repeated reactivation of
representation-specific knowledge may thereby support the ease with which students
can retrieve knowledge about individual graphical representations: students may
become more fluent at using representation-specific knowledge. Frequently switching
between graphical representations may also provide students with more opportunities
to make connections between corresponding elements of the different graphical
representations, for instance, by relating the numerator presented in a circle to the
numerator presented in a number line. This connection-making process might help
students to abstract from the different graphical representations a more generic
understanding of fractions — regardless of the graphical representation they are
depicted as. We note that it reactivation and abstraction processes are not necessarily
mutually exclusive: to a certain extent, they may both be active at the same time. Yet,
it remains an open question whether one of the two learning processes is more likely
than the other to account for the benefits of interleaved practice.

As mentioned, the present study is part of a broader program of research on
the use of multiple graphical representations in learning with an intelligent
tutoring system. Our prior research showed that multiple graphical representa-
tions lead to better learning than a single graphical representation (Rau et al. 2009,
2013c). We further showed that when a choice has to be made to interleave either task
types or graphical representations, we should interleave task types (Rau et al. 2013a).
However, our prior work did not address the question of whether interleaving graphical
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representations of fractions leads to better learning than blocking graphical representa-
tions. Another open question regards the learning processes that account for the
advantage of interleaved practice: is reactivation or abstraction the most likely mecha-
nism by which interleaved practice leads to better learning than blocked practice? We
address these open questions in this paper.

The Fractions Tutor

We conducted our research in the context of the Fractions Tutor: a successful
intelligent tutoring system for fractions that uses multiple, interactive graphical
representations (e.g., Rau et al. 2013b, c). We have used the Fractions Tutor as a
platform in several experiments for investigating research questions about how to use
multiple graphical representations to promote robust learning. This research has led to
a number of instructional design principles for the use of multiple graphical repre-
sentations, summarized elsewhere (Rau et al. 2013b, c). The Fractions Tutor has been
iteratively updated based on the outcomes of these studies and as a result, embodies
these design principles.

The Fractions Tutor is an example-tracing tutor (Aleven et al. 2009a), a type of
Cognitive Tutor (Koedinger and Corbett 2006). Cognitive Tutors have a proven track
record in improving students’ mathematics achievement (Koedinger and Corbett
2006). Example-tracing tutors are behaviorally similar to Cognitive Tutors, meaning
that they provide step-by-step guidance in the form of feedback and on-demand hints.
In contrast to Cognitive Tutors, example-tracing tutors rely on generalized examples
of correct and incorrect solution paths rather than on a rule-based cognitive model of
student behavior. We created the Fractions Tutor with the Cognitive Tutor Authoring
Tools (CTAT; Aleven et al. 2009a), designing tutor interfaces separately for each
problem type and representation. The design of the interfaces and of the interactions
students engage in during problem-solving are based on a number of small-scale user
studies that we conducted in our laboratory, on prior classroom experiments (see Rau
et al. 2013b for an overview), as well as on Cognitive Task Analysis of the learning
domain (Baker et al. 2007; Clark et al. 2007). Furthermore, an experienced mathe-
matics teacher was involved in developing the tutor problems. Across the different
classroom experiments, we have iteratively updated and improved the Fractions Tutor
based on our findings. The Fractions Tutor covers a comprehensive set of supple-
mentary instructional materials ranging from fraction identification to equivalent
fractions and addition and is available to students and teachers on a free website
(https://fractions.cs.cmu.edu; Aleven et al. 2009b).

Several other intelligent tutoring systems have been developed that support frac-
tions learning but the Fractions Tutor appears to be unique in that it focuses on
conceptual learning with multiple, interactive, abstract graphical representations.
Like many other intelligent tutoring systems, the Fractions Tutor includes interactive,
virtual manipulatives (Moyer et al. 2002). Research has demonstrated that students
can benefit from using virtual manipulatives of fractions (Reimer and Moyer 2005)
and that virtual manipulatives can be at least as effective in supporting students’
learning as physical manipulatives (Suh et al. 2005). ASSISTments, a system for
middle-school math (e.g., Heffernan et al. 2012), includes fractions, but focuses on
procedural tasks such as adding fractions. ActiveMath is an intelligent tutoring
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system that supports self-regulated learning based on a constructivist approach
(e.g., Goguadze et al. 2008). Although ActiveMath includes graphical represen-
tations, students do not manipulate them directly. Rather, changes in the
representations reflect students’ interactions with symbolic fractions. Kong and
Kwok (2003) describe an intelligent tutoring system that heavily relies on
rectangle representations, but it does not include other graphical representations.
In the MFD system (“Mixed numbers, Fractions, and Decimals”; Beck et al.
1997; Arroyo et al. 1999), students interact with various concrete representa-
tions of fractions (e.g., sets of dogs and animals, buttons to measure lengths),
but it does not include abstract graphical representations. In addition, there are
several other interactive learning environments that use multiple, interactive,
abstract graphical representations (e.g., Akpinar and Hartley 1996; Reimer and
Moyer 2005), but these are not intelligent tutoring systems.

The Fractions Tutor includes several abstract and interactive graphical rep-
resentations: circle diagrams, rectangles, and number lines (Fig. 1). Each graph-
ical representation emphasizes certain aspects of different conceptual interpretations
of fractions (Charalambous and Pitta-Pantazi 2007). The circle as a part-whole
representation depicts fractions as parts of an area that is partitioned into
equally-sized pieces. The rectangle is a more elaborate part-whole representa-
tion as it can be partitioned vertically and horizontally. At the same time, it
does not have a standard shape for the unit, like the circle does. Finally, the
number line is considered a measurement representation and thus emphasizes
that fractions can be compared in terms of their magnitude, and that they fall
between whole numbers. We chose abstract graphical representations based on
the notion that they lead to more transferable knowledge because the representation is
not tied to a specific scenario (e.g., pizza sharing) (Goldstone et al. 2003; Smith 2003).
In addition, abstract representations may be advantageous because they facilitate inter-
pretations of a situation in terms of abstract relations rather than specific attributes
(Resnick and Omanson 1987; Schwartz and Black 1996a, b). However, to
promote students’ understanding of graphical representations based on their
prior real-world experiences (e.g., Grady 1998; Heim 2000; Nisbett and Ross
1980), we introduce the abstract graphical representations within real-world
contexts and concrete representations (e.g., pizzas, chocolate bars). Thus, our
approach to using abstract graphical representations while introducing them
with concrete graphical representations corresponds to Goldstone and Son’s
(2005) approach of “concreteness fading”, which was shown to be successful
in an experimental study. In our own classroom studies, we found that students
enjoy a version of the Fractions Tutor more if it includes problems that
introduce the abstract graphical representations in the context of realistic sce-
narios (Rau et al. 2013D).

The way in which the Fractions Tutor supports students’ interactions with
the graphical representations is based on extensive reviews of education stan-
dards (e.g., NCTM 1989, 2006, 2008), interviews and focus groups with
teachers, and several iterations of classroom experiments and lab-based user
studies (Rau et al. 2013b). The Fractions Tutor includes a variety of multi-step
problems and provides step-by-step guidance. It supports various ways for
students to interact with the graphical representations: by clicking on fraction
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pieces to highlight or select them, by dragging and dropping fraction pieces,
and through buttons to change the partitioning of the graphical representations.

The Fractions Tutor covers a comprehensive set of task types including
interpreting graphical representations, reconstructing the unit of fraction representa-
tions, and improper fractions, described briefly in Table 1. The tutoring system takes
a conceptually-focused approach in introducing fractions, as detailed in Table 1. A
common theme throughout the Fractions Tutor is the unit of the fraction (i.e., what
the fraction is taken of). The concept of the unit is being introduced in the first task
types, and revisited during the later task types as students learn about improper
fractions. Figure 2 shows an example of a problem in which students make circle
representations for two given symbolic fractions and are then prompted to reflect on
the relative size of the two fractions. The concept of the unit lays the foundation for
introducing improper fractions, by demonstrating that fractions can be larger than one
unit (i.e., 1 1/2 is one unit plus 1/2 of that unit).

The present version of the Fractions Tutor builds on our prior research in
two important ways. First, each problem included conceptually oriented prompts
(see Fig. 2) to help students relate the multiple graphical representations to the
symbolic notation of fractions. We found these prompts to be effective in an
earlier experimental study (Rau et al. 2009). Second, the Fractions Tutor
moderately interleaves task types, building on our earlier finding that interleav-
ing task types leads to better learning than blocking task types (Rau et al.
2013a). We use this moderately interleaved sequence of task types consistently
across the different sequences of multiple graphical representations contrasted in
the present experiment.

The Fractions Tutor has been demonstrated to lead to significant learning gains
across several classroom experiments with over 3,000 students in grades 4-5 (e.g.,

Table 1 Description of task types covered by the fractions tutor

Task type # Task type description Description of example task
1 Naming unit fractions and Determine what fraction (unit fractions and proper
proper fractions fractions) a given graphical representation shows
(using circle diagrams, rectangles, and number lines)
2 Making representations of unit ~ Construct a graphical representation for a fraction given
fractions and proper fractions symbolically (using circle diagrams, rectangles, and

number lines)

3 Reconstructing the unit I Given a unit fraction, reconstruct the unit of the fraction
(using circle diagrams, rectangles, and number lines)

4 Reconstructing the unit 11 Given a proper fraction, (a) find the unit fraction, and
(b) reconstruct the unit of the fraction (using circle
diagrams, rectangles, and number lines)

5 Naming improper fractions Determine what improper fraction a given graphical
representation shows (using circle diagrams,
rectangles, and number lines)

6 Making representations of Construct a graphical representation for a fraction given
improper fractions symbolically (using circle diagrams, rectangles, and
number lines)
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Fig. 2 Making a circle given a symbolic fraction, combined with prompts to compare the two fractions.
Reflection prompts are implemented with drop-down menus, shown in the bottom half of each problem

Rau et al. 2012, b). In our most recent classroom experiment with 599 4th- and Sth-
graders (this experiment took place after the experiment reported in the current paper—
see Rau et al. 2012a), we found that the Fractions Tutor substantially improved
students’ knowledge of fractions. After 10 h of instruction with the Fractions
Tutor, students improved significantly with a medium effect size of d=0.40 at
the posttest (p<0.01). When we administered a delayed posttest a week later,
we found that students retained these learning gains with an effect size of d=0.60 (p<
0.01). These are pre/post effect sizes when the Fractions Tutor was used as supplemental
instruction, after the regular fractions instruction had been completed.

Classroom Experiment: Effects of Practice Schedules

The goal of the classroom experiment (also see Rau et al. 2012b) was to evaluate the
effect of different practice schedules of graphical representations on students’ learn-
ing of fractions. We contrasted four conditions that differed only in the degree to
which, in the tutor’s problem sets, the graphical representations where blocked or
interleaved. In accordance with the results from our earlier experiment (Rau et al.
2013a), we consistently used a moderately interleaved practice schedule of task types
across all conditions. Furthermore, our goal was to investigate students’ learning
gains from working with the Fractions Tutor by comparing their performance on
equivalent pretests, posttests, and delayed posttests.

Research Hypotheses

Specifically, we contrasted four conditions, all of which worked with multiple
graphical representations, but differed with regard to the practice schedule according
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to which graphical representations were sequenced. A blocked practice schedule
switched infrequently between the representations. A fully interleaved practice
schedule switched maximally frequently between the representations. A moderately
interleaved schedule of multiple graphical representations switched between repre-
sentations after every couple of problems. Finally, an increasingly interleaved sched-
ule of multiple graphical representations gradually moved from a blocked schedule to
a more and more interleaved schedule.

In line with prior research on interleaved practice, we expect that students
learn with all four practice schedules but that interleaving graphical represen-
tations supports more robust learning than the other schedules, through two
possible mechanisms: interleaving may allow students to abstract across multi-
ple graphical representations and to frequently reactivate their knowledge about
fractions representations and fractions concepts. Our specific hypotheses are:

Hypothesis 1: Students significantly improve from pretest to posttest on all mea-
sures of robust learning, namely, reproduction with area models,
reproduction with number lines, transfer of conceptual knowledge,
and transfer of procedural knowledge.

Hypothesis 2:  Students who learn with multiple graphical representations presented
in an interleaved fashion will outperform students who learn with
multiple graphical representations presented in a blocked fashion
on all measures of robust knowledge.

Methods
Experimental Design

Figure 3 illustrates the practice schedules of task types and graphical representations for
the four multiple graphical representations conditions. In all conditions, students worked
through the same sequence of task types and fraction problems, and switched task types
after every six of a total of 108 problems. Each task type was visited three times. We
randomly assigned students to one of four conditions. Students in each condition worked
with multiple graphical representations, presented according to different practice sched-
ules. In the blocked condition, students switched graphical representations after 36
problems. In the moderate condition, students switched representations after every six
problems (initially offset by three problems so as to not switch representations at the
same time as task types'). In the fully interleaved condition, students switched
representations after each problem. In the increased condition, the length of the
blocks was gradually reduced from twelve problems at the beginning (initially
offset by nine problems) to a single problem at the end. To account for possible
effects of the order of graphical representations, we randomized the order in which
students encountered the graphical representations.

! We chose not to switch graphical representations at the same time as task types (except, by virtue of its
nature, in the fully interleaved condition) so as to make it easier for students to see correspondences
between different task types when they use the same graphical representation.
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Fig. 3 Practice schedules for the multiple graphical representations conditions. In all conditions, six task
types were presented three times. Numbers 1-6 indicate task types, shapes depict representations

Participants

A total of 474 4th- and Sth-grade students from six different schools (31 classes)
participated in the study during their regular mathematics instruction. The schools’
rankings in the academic year of 2009/2010 were in the top 10 % of 2468
Pennsylvania public schools.? In the school year of 2009/2010, 10-30 % of all students
in the participating school districts were enrolled in free or reduced-price lunch pro-
grams, over 90 % of all students were white, less than 5 % African American. Students
were aged 8 to 11 years. All schools were located in Western Pennsylvania.

We excluded students who missed at least one test day, and who completed less
than 67 % of all tutor problems. We had to apply this stringent criterion to ensure that

2 The precise numbers are withheld to preserve anonymity of the participating schools.
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students in the blocked condition encountered all three graphical representations (see
Fig. 1). This results in a total of N=230 (»=63 in blocked, »=53 in moderate, n=52
in fully interleaved, n=62 in increased).

Experimental Procedure

Prior to working with the Fractions Tutor, students completed a pretest. The pretest took
about 30 min. On the following day, all students started working with the Fractions
Tutor. Students accessed the Fractions Tutor from the computer lab at their schools and
worked with it for about 5 h as part of their regular math instruction for five to six
consecutive school days (depending on the length of the respective school’s class
periods). All students worked on the Fractions Tutor at their own pace, but the time
students spent with the system was held constant across classrooms and across exper-
imental conditions. On the day following the tutoring sessions, students completed the
immediate posttest, which took about 30 min. Seven days after the posttest, students
completed an equivalent delayed posttest.

Test Instruments

We assessed students’ knowledge of fractions at three test times using three equiv-
alent test forms. We randomized the order in which they were administered. The tests
included four knowledge types: reproduction with area models (i.e., circles and
rectangles), reproduction with number lines, conceptual transfer and procedural
transfer. The area model items and number line items covered identifying fractions
given a graphical representation, making a graphical representation given a symbolic
fraction, and recreating the unit given a graphical representation of both unit fractions
and proper fractions. Conceptual transfer items included proportional reasoning
questions with and without graphical representations. Procedural transfer items in-
cluded comparison questions with and without graphical representations. The theo-
retical structure of the test (i.e., the four knowledge types just mentioned) resulted
from a factor analysis performed on the pretest data. All test scales included items
adapted from standardized state assessments. The test scales reproduction with area
models and reproduction with number lines constitute reproduction items: the test
items closely relate to the knowledge covered in the Fractions Tutor. Creating
separate scales for area models and number lines seemed reasonable given that
number lines are believed to be more challenging for students than area models
(Cramer et al. 2008; NMAP 2008).

Results

As mentioned, we analyzed the data of N=230 students. There was no significant difference
between conditions with respect to the number of students excluded (x*<1). There were no
significant differences between conditions at pretest for any dependent measure, ps>0.10.
There was no significant effect for order of multiple graphical representations within the
intervention conditions for any dependent measure, F(5, 285)=1.56, ps>0.10.

We used a hierarchical linear model (HLM, see Raudenbush and Bryk 2002) with
four nested levels to analyze the data in order to take into account for nested sources
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of variance, due to the fact that a student’s performance can be partially explained by
his/her class and school. At level 1, we modeled performance on each of the tests for
each student. At level 2, we accounted for differences between students. Level 3
models random differences between classes, and level 4 random differences between
schools. The HLM is the outcome of a forwards-inclusion procedure in which we
used the Bayesian Information Criterion (BIC) to find whether the inclusion of a
variable increased model fit. If the BIC decreased as a consequence of including a
variable (indicating better model fit), we kept the variable. If the BIC did not
decrease, we did not include the variable. We tested a number of variables, including
teacher, sequence of graphical representations, test form sequence, grade level,
number of problems completed, total time spent with the tutor, random intercepts
and slows for classes and schools. Equation 1 shows the resulting HLM:

Yijklz (((M+W1)+Vk1)+ﬁ3*cj+ﬁ4*pj+55*cj*pj+Ujk1) + 5, *ti-i-ﬁz*Cj*ti-l-Rijkl
(1)
with

(level 1) Yija=cjiat 51 *ti+ B2 *¢;* ti+Ryjg

(level 2) gja=dit+F3* i+ Ba™*pit Bs* ¢;*pit Uja
(level 3) (5k1:’}/1+vk1

(leVel 4) ’)/IZIU"‘WI

with the index i standing for posttest time (i.e., immediate and delayed posttest), j for
the student, & for class, and / for the school. The dependent variable Yjjy is student;’s
score on the dependent measures at posttest time t; (i.e., immediate or delayed
posttest), €ji is the parameter for the intercept for student;’s score, (3; is the
parameter for the effect of posttest time t;, 3, is the effect of the interaction of
condition ¢; with posttest time t;, 33 is the parameter for the effect of condition
Cj, P4 is the parameter for the effect of student;’s performance on the pretest pj,
s is the parameter for an aptitude-treatment interaction between condition c;
and student;’s performance on pretest p;, dy is the parameter for the random intercept
for classy, v is the parameter for the random intercept for school;, and p is the overall
average.

Since the HLM described in (1) uses students’ pretest scores as a covariate, it does
not allow us to analyze whether students in the various conditions improved from
pretest to immediate and delayed posttest. To analyze learning gains, we included
pretest score in the dependent variable, yielding:

Yi = (0 + Wi) + Vi) + B3 % ¢j + Uja) + B *ti + By % ¢j * ti + Ry (2)
with

(level 1) Yipa=cja+ 51 * ti+52* ¢i* ti+ R
(level 2) Ejk]:5k1+ﬁ3*cj+Ujk1

(level 3) d=%+Vi

(level 4) v=p+W,

with the index 7 standing for test time (i.e., pretest, immediate, and delayed posttest).
The dependent variable Yy is student;’s score on the dependent measures at test time
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t; (i.e., pretest, immediate posttest, or delayed posttest). Excluded from formula (1)
were the parameters (3,4 for the effect of student;’s performance on the pretest p;, and
the parameter (35 is for an aptitude-treatment interaction between condition c¢; and
student;’s performance on pretest p;.

We used planned contrasts and post-hoc comparisons to clarify results from the
HLM analysis, all of which were computed as part of the HLM to clarify results from
the HLM analysis. All reported p-values were adjusted using the Bonferroni correc-
tion for multiple comparisons. Table 2 shows the means and standard deviations for
the dependent measures by condition and test time.

Learning Effects

To investigate hypothesis 1 (that all students significantly improve from pretest to
posttest on all measures of robust learning), we analyzed learning gains using the
HLM described in formula (2) (which uses pretest as a dependent measure). The main
effect of test time (i.e., pretest, immediate posttest, and delayed posttest) was signif-
icant for reproduction with number lines, F(2, 867)=20.09, p<0.01, partial 7°=0.03,
for reproduction with area models, F(2, 867)=17.54, p<0.01, partial 7°=0.02,
conceptual transfer, F(2, 867)=38.78, p<0.01, partial °=0.03, and marginally
significant for procedural transfer, F(2, 867)=2.84, p<0.10, partial 7°=0.01. The
interaction between test time and condition was significant for reproduction with area
models F(12, 862)=2.06, p<0.05, partial 7°=0.01. These results show that students
(regardless of condition) benefited from working with the Fractions Tutor on
reproduction with number lines, reproduction with area models, procedural and
conceptual transfer. On reproduction with area models, students’ learning gains
depended on the condition.

Table 2 Means and standard deviations (in parentheses) for dependent measures at pretest, immediate
posttest, delayed posttest by condition

Reproduction Reproduction Conceptual Procedural

with area with number  transfer transfer
models lines
Pretest Blocked 0.56 (0.26) 0.45 (0.28) 0.60 (0.30) 0.51 (0.34)
Moderately interleaved  0.64 (0.25) 0.50 (0.27) 0.70 (0.27)  0.51 (0.31)
Fully interleaved 0.59 (0.31) 0.46 (0.25) 0.71 (0.22)  0.60 (0.36)
Increasingly interleaved  0.64 (0.25) 0.48 (0.26) 0.69 (0.25) 0.55(0.36)
Immediate posttest Blocked 0.62 (0.25) 0.51 (0.31) 0.72 (0.30) 0.52 (0.37)
Moderately interleaved  0.64 (0.26) 0.54 (0.25) 0.77 (0.24)  0.55 (0.36)
Fully interleaved 0.71 (0.24) 0.58 (0.25) 0.78 (0.23)  0.60 (0.34)
Increasingly interleaved  0.73 (0.22) 0.58 (0.26) 0.75 (0.27)  0.53 (0.37)
Delayed posttest Blocked 0.69 (0.25) 0.57 (0.30) 0.71 (0.31)  0.60 (0.37)
Moderately interleaved  0.71 (0.20) 0.62 (0.25) 0.78 (0.26)  0.65 (0.32)
Fully interleaved 0.69 (0.25) 0.64 (0.25) 0.83 (0.19) 0.56 (0.37)

Increasingly interleaved 0.77 (0.20) 0.60 (0.28) 0.77 (0.25) 0.55(0.32)
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Differences between Practice Schedules

To investigate hypothesis 2 (that students who learn with multiple graphical represen-
tations presented in an interleaved fashion will outperform students who learn with
multiple graphical representations presented in a blocked fashion on all measures of
robust knowledge), we computed the HLM presented in formula (1) for the intervention
conditions (using pretest as a covariate). There was no significant main effect of practice
schedules on any knowledge type, indicating that there was no global effect of practice
schedules across immediate and delayed posttests. An interaction between posttest time
and condition was marginally significant for reproduction with area models, F(3, 867)=
2.57, p<0.10, partial 77=0.01, so that the effect of condition was possibly stronger on
the immediate posttest than on the delayed posttest, suggesting that the effect of practice
schedules on reproduction with area models may be somewhat temporary. The
interaction between pretest score and condition was marginally significant for
conceptual transfer, F(3, 219)=2.52, p<0.10, partial 7°=0.02, suggesting that students
with different pretest scores benefit from different practice schedules.

To clarify the interaction between posttest time and condition, we used post-hoc
contrasts separately for the immediate and the delayed posttest. To limit the number of
comparisons, we only compared the most successful practice schedule against the
remaining three practice schedules taken together, as summarized in Table 3. We found
some support for a benefit of interleaving multiple graphical representations: the fully
interleaved condition significantly outperformed the not-fully-interleaved conditions
(i.e., blocked, moderately interleaved, and increasingly interleaved) on conceptual
transfer at the delayed posttest. Furthermore, we found a marginally significant advan-
tage for the increasingly interleaved condition over the not-increasingly-interleaved
conditions (i.e., blocked, moderately interleaved, and fully interleaved) on reproduction
with area models at the immediate and the delayed posttests.

To clarify the interaction between pretest score and condition on conceptual
transfer, we computed post-hoc comparisons for students with extremely low or high
pretest scores. For students with a pretest score of 15 %, 20 %, and 25 %, we found a

Table 3 Results from post-hoc comparisons on differences between multiple representations conditions at
immediate posttest (post) and delayed posttest (delayed) by type of knowledge. “ns” indicates non-
significant differences. “— indicates that no post-hoc comparisons were computed

Effect Test Reproduction- Reproduction- Conceptual Procedural
area models  number lines  transfer transfer

Fully interleaved>blocked, post - ns ns -
Fnoderal.tely ipterleaved, delayed — s p<0.05, _
increasingly interleaved d=033

Increasingly interleaved > post p<0.10, - - -
blocked, moderately d=0.30
mterleaved, fully delayed p<0.10, o -~ -~
interleaved d=0.30

Moderately interleaved > post - - - ns
blocked, fully interleaved, delayed — - - ns

increasingly interleaved
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significant advantage for the fully interleaved over the blocked condition (ps<0.05).
We found no differences for high prior knowledge students.

As an alternative test for hypothesis 2, we used post-hoc comparisons within the
HLM described in formula (2) in order to investigate whether students’ learning gains
differ between conditions (using pretest as a dependent variable). Specifically, we
computed post-hoc comparisons that contrasted students’ scores at the immediate
posttest and the delayed posttest, compared to the pretest. Tables 4 and 5 provides a
summary of these post-hoc comparisons. Generally, we found significant learning
gains at the delayed posttest for most conditions on reproduction with area models,
reproduction with number lines, and conceptual transfer. On procedural transfer, only
the moderate condition showed significant learning gains at the delayed posttest. The
learning gains are most consistent for the fully interleaved condition: we found
significant learning gains on all measures but procedural transfer at the immediate
and delayed posttest.

Discussion

The results from the classroom experiment are generally in line with hypothesis 1
(that students significantly improve from pretest to posttest on all measures of robust
learning). We found that students across conditions significantly improved from
pretest to posttest on reproduction with number lines, area models, and on conceptual
transfer, albeit with small effect sizes. Altogether, the learning gains were most
consistent for the fully interleaved condition. As Tables 4 and 5 illustrates, the
analysis of learning gains by condition shows learning gains for most conditions on
reproduction with area models, reproduction with number lines, and conceptual
transfer. However, only the moderately interleaved condition showed significant
gains on procedural transfer, albeit only at the delayed posttest. The lack of learning
gains on procedural transfer may reflect the fact that the Fractions Tutor focuses on
conceptual learning of fractions more so than on procedural learning. Thus, altogeth-
er, we can conclude that students learn from the Fractions Tutor, especially when they
work with the fully interleaved version.

Table 4 Improvement of test scores at immediate posttest (post) over pretest (pre) and delayed posttest
(delayed) over pretest by knowledge types and conditions. “ns” indicates non-significant differences

Condition Effect Reproduction Reproduction Conceptual Procedural transfer
with area models with number lines transfer
Blocked post>pre ns ns p<0.05,d=0.42 ns
delayed>pre p<0.05, d=0.52 p<0.01,d=0.39 p<0.05,d=0.39 ns
Moderately ~ post>pre ns ns p<0.05,d=0.29 ns
interleaved  gojayed>pre ns p<0.01,d=0.50 p<0.05,d=0.30 p<0.05, d=0.45
Fully post>pre p<0.05, d=0.45 p<0.01,d=0.51 p<0.01,d=0.34 ns
interleaved  jojaved>pre p<0.05, d=0.38 p<0.01,d=0.75 p<0.01,d=0.60 ns
Increasingly — post>pre p<0.05,d=0.38 p<0.01,d=0.43 ns ns
interleaved  gojaved>pre p<0.05, d=0.55 p<0.01,d=0.46 ns ns
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Table 5 Number of surface con-
nections and conceptual connec-
tions by implicit and explicit

Implicit prompts Explicit prompts Overall

prompts averaged across students Surface 4.17 233 2.94
Conceptual 0.58 1.63 1.28
Overall 2.38 1.98

The results provide qualified support for hypothesis 2 (that students who learn
with multiple graphical representations presented in an interleaved fashion will
outperform students who learn with multiple graphical representations presented
in a blocked fashion on all measures of robust knowledge). We found a significant
advantage of the fully interleaved condition (compared to the other conditions, see
Table 3) only on conceptual transfer at the delayed posttest. We found a marginally
significant advantage of the increasingly interleaved condition (compared to the
other conditions, see Table 3) only on reproduction with area models. Yet, there was
a significant interaction of condition with pretest, so that the fully interleaved
condition showed significantly better performance on the posttests than the blocked
condition for students with low prior knowledge. This finding was consistent
regardless of which cut-off value was used to identify low prior knowledge students.
Further support for hypothesis 2 comes from the analysis of learning gains by
condition. As Table 3 illustrates, only the fully interleaved condition shows consis-
tent learning gains on all dependent measures (except for procedural transfer, on
which we found no learning gains, with one exception). Furthermore, the blocked
condition never outperformed any of the interleaved conditions (see Tables 2 and 3).
Thus, we can carefully conclude that there is an advantage of interleaving graphical
representations over blocking them, especially for students with low prior
knowledge.

The finding that the effect of practice schedules on students’ learning outcomes
depends on their prior knowledge is particularly interesting. While students with low
prior knowledge benefit from fully interleaved practice, we found no effect of
practice schedules for students with high prior knowledge. This finding might
indicate that students with high prior knowledge are equipped to abstract across
different graphical representations even when they are presented across a longer
period of the learning sequence (as in the blocked condition). They might also have
less of a need to frequently reactivate knowledge about the specific representations
and the conceptual aspects they highlight because this type of knowledge is more
accessible to them than to low prior knowledge students.

The finding that the increasingly interleaved condition (which gradually moves
from a blocked sequence to a more and more interleaved sequence) is most effective
on reproduction with area models but not on reproduction with number lines might be
attributed to the relative difficulty of number lines, compared to area models. Area
models are considered to be relatively intuitive and easy to understand (Cramer 2001;
Lamon 1999), whereas number lines tend to be more difficult and less intuitive
(Siegler et al. 2010; NMAP 2008). To a very limited extent, our finding thus supports
the notion that allowing students to gain in-depth experience with one representation
before introducing another representation (i.e., increasingly interleaved practice)
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helps students improve their understanding of a graphical representation that is easy
to learn. Early in the learning sequence, students might benefit from a blocked
schedule because it allows them to apply one graphical representation across a
sequence of different task types. This procedure might allow students to gain deeper
understanding of the graphical representation. However, keeping a blocked practice
schedule across the entire learning sequence (as in the blocked condition) does not
enhance students’ learning. A blocked practice schedule is only effective in the early
learning sequence, provided that later on, students switch increasingly frequently
between representations. That procedure may help students to consolidate their
understanding of area models by allowing them to reactivate their understanding of
area models frequently, every time they switch to a new representation. How might
we explain that increasingly interleaved practice does not lead to an advantage
(compared to other conditions) in learning about the number line? Students tend to
have little prior knowledge about number lines (Siegler et al. 2010; NMAP 2008). It
is possible that practice schedules do not have an impact on students’ learning of a
more difficult graphical representation. It is also possible that a different pace of
moving from a blocked to a more and more interleaved practice schedule might have
been more successful than the practice schedules we implemented. In fact, given that
the effect of practice schedules appears to depend on students’ prior knowledge, and
the difficulty of a graphical representation, it is possible that students may have
benefited more from a schedule that moves less rapidly from a more blocked to an
increasingly interleaved schedule.

Although our interpretations regarding how the effectiveness of different practice
schedules relates to students’ prior knowledge and the particular target knowledge
(i.e., conceptual transfer versus reproduction with area models and number lines) are
speculative, they highlight an open question that is particularly interesting with
respect to intelligent tutoring systems. If indeed, the effectiveness of a given practice
schedule depends on a learner’s level of prior knowledge and the type of target
knowledge, intelligent tutoring systems might be used to take advantage of these
effects. To take into account the hypothesized interaction between practice schedule
and prior knowledge, the intelligent tutoring system might (1) initially select a
practice schedule that is appropriate for the given student’s level of prior knowledge,
and (2) monitor the student’s acquisition of knowledge throughout the learning process to
adapt the practice schedule accordingly. To take into account the hypothesized interaction
between practice schedule and type of target knowledge, the intelligent tutoring system
might (3) initially prioritize on a particularly important type of knowledge, such as
conceptual knowledge, to select the appropriate practice schedule, and (4) use mastery
learning to detect when the student has mastered that target knowledge, to switch to a
different practice schedule that is more appropriate to a secondary type of target knowledge
(e.g., reproduction with area models). Future research should investigate a potential three-
way interaction between practice schedules, prior knowledge (perhaps even speed of
learning), and type of target knowledge, as well as implications for the use of adaptive
practice schedules in intelligent tutoring systems.

In conclusion, the findings from the classroom experiment provide (albeit limited)
support for the notion that instructional materials should provide interleaved practice
with multiple graphical representations in order to promote students’ robust learning,
in particular if the goal is to promote the acquisition of conceptual knowledge that
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transfers to novel tasks. We further found that the multiple-representations version of
the Fractions Tutor leads to significant learning gains (in particular when multiple
graphical representations are presented according to an interleaved practice schedule)
on most measures of robust learning, and that these learning gains persist over at least
1 week after students’ work with the tutoring system.

Think-Aloud Study: Underlying Mechanisms

To gain insights into the cognitive processes underlying the advantage of interleaved
practice schedule (as identified in the classroom experiment), we additionally
conducted a small think-aloud study (also see Rau et al. 2012b). The goal of the
think-aloud study was to investigate the role of specific mechanisms that underlie the
advantage of interleaved practice, namely, whether repeated reactivation or abstrac-
tion are more likely to account for the advantage of the interleaved practice schedule.
As mentioned, one possible mechanism is repeated reactivation (de Croock et al.
1998; Lee and Magill 1983; Sweller 1990), which might help students to become
more fluent in using representation-specific knowledge. Another possible mechanism
is abstraction (de Croock et al. 1998; Shea and Morgan 1979), which might help
students to make connections between graphical representations when they are
presented in an interleaved fashion.

In order to gain further insight into these cognitive processes underlying the benefits
of an interleaved practice schedule, we conducted a small-scale think-aloud study with
six students who worked on the fully interleaved version of the Fractions Tutor. The
fully interleaved condition was selected for this analysis because it was the most
successful condition for two of four measures (see Table 2), and because the learning
gains were most consistent for the fully interleaved condition (see Table 3). The goal of
the think-aloud study was to gather information that might help us distinguish between
the two alternative explanations just described. Thus, we wanted to investigate what
kinds of spontaneous connections students make between graphical representations
when working with the interleaved version of the Fractions Tutor, and whether students
who fail to make spontaneous comparisons can be prompted to do so. If the mechanism
underlying the advantage of interleaved practice consists mainly in abstraction of
fractions knowledge across multiple graphical representations, we would expect to see
evidence of spontaneous connection making. If, however, the main mechanism is
repeated reactivation of representation-specific knowledge, we may not expect students
to make many spontaneous connections between graphical representations. We also
investigated whether students are able to make connections between consecutively
presented graphical representations when prompted to do so.

Methods

Six Sth-grade students participated in the think-aloud study. The think-aloud study
was conducted in our laboratory and included three sessions. During the first session,
students took the same pretest that was used in the classroom experiment reported
above. The pretest took about 30 min to complete. During the second session,
students worked for 1 h on a subset of problems taken from the interleaved version
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of the tutoring system while being prompted to think aloud, following the procedure
described in Ericsson and Simon (1984). In the third session, students worked with
similar tutor problems for 1 h while being prompted to relate the different graphical
representations to one another. We varied the type of prompts based on a within-
subjects design: the prompt questions were either implicit (i.e., without directly
prompting comparisons between the representations; e.g. “How is this problem the
same as the last two you did?” or “How is this problem different from the last one you
did?”), or explicit (i.e., directly referring to aspects that the different representations
share; e.g., “What is the unit in the circle / rectangle / number line?” or “How are the
rectangle and the circle and the number line the same / different?”). All students
received two implicit prompts and four explicit prompts, in a fixed sequence.
Students’ utterances were recorded and transcribed. We combined top-down and
bottom-up approaches in developing a coding scheme: the experimenters identified
types of connections that students might make prior to the think-aloud study, and then
refined the coding scheme after viewing the transcripts from the think-aloud study.
Connections between graphical representations were coded as surface connections if
they either referred to the color of the representation, the shape of the representation,
or the action performed on the representation (e.g., dragging and dropping). For
example, when asked “how is the circle like the rectangle?” a student’s response “you
have to drag something into a diagram of the unit” would be coded as a surface
connection. Connections were coded as conceptual if they referred to the correspond-
ing features of the representations (i.e., numerator, denominator, unit), or the magni-
tude represented. For instance, when asked: “how is the number line like the circle?”
for improper fractions, a student’s answer “they both have one whole unit plus a
fraction of another unit that’s the same” would be coded as a conceptual connection.

Results

The results from the pretest indicate that all students had a good understanding of
fractions. During the spontaneous comparison phase of the think-aloud study, we
found only five instances of connections. These five connections were uttered by five
of the six students. All five connections were surface connections. In the prompted
session, we found 138 instances of prompted connection making. Tables 4 and 5
summarizes the average number of connections coded as surface and conceptual
connections for implicit and explicit prompts. Given the small number of students, a
statistical test on the types of connections in response to implicit and explicit prompts
is not warranted. Tables 4 and 5 suggests, however, that students generated substan-
tially more surface connections than conceptual connections. We can also see that the
implicit prompts yielded most of the surface connections, but almost none of the
conceptual connections. Explicit prompts seem to have yielded more of the concep-
tual connections, compared to the implicit prompts.

Discussion
The observations from the think-aloud study show that students tend not to sponta-

neously make connections between multiple graphical representations: we found only
five spontaneous connections, and all of them were surface connections. However,
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students are able to make these connections when prompted to do so. In particular,
explicit prompts are well-suited to enhance conceptual connections.

It is important not over-interpret the generalizability of these observations, as the
think-aloud study was conducted with only a small number of students. Yet, our results
do not provide any indication that the advantage of interleaved practice might stem from
spontaneous connection-making activities between multiple graphical representations.
Thus, it seems that students’ benefit from interleaved practice with multiple graphical
representations does not stem from conscious abstraction across the different represen-
tations. Rather, interleaved practice may be attributed to requiring students to repeatedly
reactivate knowledge about the specific graphical representations. The fact that students
were able to make connections when prompted to do so demonstrates that the lack of
spontaneous connection-making activities is not an artifact of the think-aloud method
being an unsuitable metric for detecting students’ connection-making processes.

Furthermore, the observation that students generate a substantial number of con-
ceptual comparisons between the graphical representations when explicitly prompted
suggests that students might benefit from receiving such explicit prompts as part of a
future version of the Fractions Tutor. Indeed, the literature on learning with multiple
representations demonstrates the importance of making connections between multiple
representations (Ainsworth 2006; Cook et al. 2007; Even 1998; Gutwill et al. 1999;
Ozgﬁn-Koca 2008; Plotzner et al. 2001; Plotzner et al. 2008; Schnotz and Bannert
2003; Schwonke et al. 2008; Schwonke and Renkl 2010).

Bayesian Knowledge Tracing: Differences during the Acquisition Phase

Another goal of our research was to investigate whether we can detect advantages of
interleaved practice using data obtained while students practiced with the Fractions Tutor
in the classroom experiment (i.e., acquisition-phase data). Analyzing student performance
during the acquisition phase (i.e., while students learn) is particularly interesting when
investigating the effects of practice schedules: a common finding is that interleaved
practice schedules lead to better long-term retention and to better transfer than blocked
schedules, but they often lead to worse performance during the acquisition phase (Battig
1972; de Croock et al. 1998; Helsdingen et al. 2011; Pashler et al. 2007; Rohrer and
Taylor 2007; Schmidt and Bjork 1992; Schneider 1985; Simon and Bjork 2001; Van
Merriénboer et al. 2002). Therefore, it is often believed that the advantage of interleaved
practice over blocked practice is not apparent during the acquisition phase, but can only be
detected with long-term retention tests and transfer tests administered affer the acquisition
phase. However, it may be that educational data mining techniques focused on latent
student variables during the acquisition phase may have something to offer over previous
investigations, none of which used such techniques, to the best of our knowledge.

We use Bayesian knowledge tracing (Corbett and Anderson 1995) based on the tutor
log data to investigate whether “machine-learned” learning rate estimates constitute a
more suitable metric to detect the effects of practice schedules on students’ learning
during the acquisition phase (also see Rau and Pardos 2012). Knowledge tracing tracks
student knowledge over time using a two state Hidden Markov Model assumption of
learning. It uses correct and incorrect responses in students’ problem-solving attempts to
infer the probability of a student knowing the skill underlying the problem-solving step
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at hand. This method has been used to investigate learning differences between condi-
tions during the acquisition phase (Pardos et al. 2011).

More specifically, we investigate whether learning rate estimates, based on knowledge
tracing, can detect the advantage of interleaved practice even during the acquisition phase.
We chose Bayesian knowledge tracing and not Performance Factors Analysis (which is
often used to predict students’ performance in intelligent tutoring systems research and
educational data mining; Pavlik et al. 2009), because the latter focuses on prediction of
performance and does not include the notion of ability change over time. In other words,
Performance Factors Analysis would not allow us to model our variable of interest:
learning rates. To summarize, our analysis investigates whether knowledge tracing
provides a suitable metric for detecting the effects of an intervention that is known not
be accessible through simpler metrics such as performance during the acquisition phase.

Bayesian Models

We combined our Bayesian model with several other extensions to knowledge tracing to
each of the four conditions of the experimental study to investigate differences in estimated
learning rates between the conditions in the Fractions Tutor. Specifically, we evaluated four
Bayesian models based on the Fractions Tutor log data. Two of the models were created for
the purpose of analyzing the learning rates of the conditions in the experiment while the
other two were used as baseline models to gauge the relative predictive performance of the
new models. None of the tested models included a knowledge component model, so each
step in the tutor is treated as a knowledge component.

Learning Analysis Models

We employed two models that served as benchmarks for model fit and designed two
novel models for evaluating learning differences among the experiment conditions. We
compared the resulting four Bayesian models all of which were based around knowl-
edge tracing. Figure 4 provides an overview of the different models that we compared.
The Standard-Knowledge-Tracing model and the Prior-Per-Student model correspond
to our two benchmark models. The Standard-Knowledge-Tracing model includes only
knowledge tracing without taking students’ prior knowledge (S) (Pardos and Heffernan
2010), experimental condition (C), or fraction representation (R) into account. The
Prior-Per-Student model (Pardos and Heffernan 2010) includes the individual students’
prior knowledge (S). Both the Standard-Knowledge-Tracking model and the Prior-Per-
Student model assume that there is a probability that a student will transition from the
unlearned to the learned knowledge state at each opportunity regardless of the particular
problem just encountered or practice schedule of the student.

The Condition-Analysis model and the Condition-Representation-Analysis model
are analogous to hypothesis 2 of the classroom experiment described above, namely,
that condition (i.e., different practice schedules are a significant predictor of students'
learning rates). Specifically, we hypothesize that within each given task type (de-
scribed in Table 1), the fully interleaved condition will show higher learning rates
than the blocked condition. Thus, we depart from the simplifying assumption of a
single learning rate per skill and instead fit a separate learning rate for each of the four
practice schedules implemented in the Fractions Tutor. To do so, we adapted
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Node Representation

K: Knowledge node (h.) C: Condition node (o.)

Q: Question node (0.) R: Representation node (o.)
S: Student node (0.)  T: Task type node (0.)

Standard-Knowledge-Tracing Model

P(G): Probability of guess on Q

P(Sl): Probability of slip on Q

P(L,): Probability of initial student knowledge
P(T): Probability of learning from Q,_to Q__, P(L,) P(T) P(T)

>
Prior-Per-Student Model K
P(G): Probability of guess on Q
P(Sl): Probability of slip on Q

P(T): Probability of learning from Q, to Q,

v

Condition-Analysis Model P(G) Q P(G) Q P(G) Q
P(G): Probability of guess on Q P(S! 1 P(Sh) 2 P(SI) 3

P(Sl): Probability of slip on Q
P(L,): Probability of initial student knowledge

Wi 2
P(T|C): Probability of learning from QtoQ,
Condition-Representation-Analysis Model
P(G|R): Probability of guess on Q —
P(SI|R): Probability of slip on Q

P(L,): Probability of initial student knowledge
P(T|C): Probability of learning from QtoQ

Y

Fig. 4 Overview of the four different Bayesian Networks tested, with observed (0.) and hidden (h.) nodes

modeling techniques from prior work that evaluated the learning value of different
forms of tutoring in (non-experiment) log data of an intelligent tutor (Pardos et al.
2010). Furthermore, we use techniques from KT-IDEM (Pardos and Heffernan 2011)
to model different guess and slips for problems depending on the representation used
in the tutor problem. This procedure allows us to estimate four different learning rates
per task type, each corresponding to the particular condition (i.e., blocked practice,
fully interleaved, moderately interleaved, or increasingly interleaved) assigned to the
student—as opposed to using a single learning rate per task type, independent of
condition. The Condition-Analysis model includes students’ prior knowledge and
models the effect of experimental condition (C). In addition, the Condition-
Representation-Analysis model takes into account that different representations of
fractions are expected to result in different degrees of difficulty in solving the tutor
problem (Charalambous and Pitta-Pantazi 2007). Thus, the Condition-Representation-
Analysis model incorporates students’ prior knowledge (S), condition (C), and the
graphical representation encountered by each student in each problem (R).

Model Fitting Procedure

In order to determine model fit by task type, we analyzed the log data by task type.
For the evaluation of predictive performance, reported in the next section, a 5-fold
cross-validation at the student level was used. For the reporting of learning rates by
practice schedule, all data was used to train the model.

The parameters in all four models were fit using the Expectation Maximization
algorithm implemented in Kevin Murphy’s Bayes Net Toolbox (Murphy 2001). For
the Condition-Representation-Analysis Model the number of parameters fit per task
was 12 (2 prior+4 learn rate+3 guess+3 slip). Probabilities of knowledge are fixed at
1 if the skill was already known, P(L,_;)=1, to represent a zero chance of forgetting,
an assumption made in standard knowledge tracing. If a student was previously (at
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learning opportunity n—/) in the unlearned state, the probability that he/she will now
(at opportunity n) have transitioned to the learned state is:

P(Ln) :P(Ln—l> + ((1_P(Ln—l))*P(T|CS))> (3)

where P(L,,;) is the probability of a student already knowing the skill, is the condition
assigned to a student (i.e., blocked, fully interleaved, moderately interleaved, increas-
ingly interleaved), and T is the given task type (see Table 1).

Evaluation Results

To evaluate the predictive accuracy of each of the student models mentioned above,
we conducted a 5-fold cross-validation at the student level. By cross-validating at the
student level we can have greater confidence that the resulting models and their
assumptions about learning will generalize to new groups of students. The metrics
used to evaluate the model are root mean squared error (RMSE) and area under the
curve (AUC). Lower RMSE equals better prediction accuracy. For AUC, a score of
0.50 represents a model that is predicting no better than chance. An AUC of 1 is a
perfect prediction.

As shown in Table 6, the Standard-Knowledge-Tracing model has an overall
RMSE of 0.3445, the Prior-Per-Student model has an RMSE of 0.3469, the
Condition-Analysis model has an RMSE of 0.3466, and the Condition-
Representation-Analysis model has the lowest RMSE with 0.3427 as well as the best
AUC. The fact that the model fit indices altogether are relatively low might be
attributed to the fact that we did not include a knowledge component model, but
instead treated each step in the tutor as a separate knowledge component. We
conclude that the Bayesian network that includes students’ prior knowledge (S),
experimental condition (C), and representations used for a certain problem (R)
provides the best model fit.

Table 7 provides a summary of students’ performance on the Fractions Tutor
problems during the acquisition phase, based on the overall first-attempt correct steps
students made during practice with the Fractions Tutor. A repeated measures ANOVA
with students’ performance on each task type as dependent measure and practice
schedule as independent factor showed that students’ performance during the acqui-
sition phase did not significantly differ between practice schedules (F<1). Planned
contrasts between the blocked condition and each of the interleaved condition did not
yield significant differences in students’ performance (1s<1). Table 8 shows the
learning rates obtained from the Condition-Representation-Analysis model for each

Table 6 Summary of the cross-validated prediction results of the four tested models using RMSE and
AUC metrics

Model RMSE AUC
1 Condition-Representation-Analysis Model 0.3427 0.6528
2 Standard-Knowledge-Tracing Model 0.3445 0.6181
3 Condition-Analysis Model 0.3466 0.5509
4 Prior-Per-Student Model 0.3469 0.5604
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Table 7 Average number of correct first attempts by task type and practice schedule (standard deviation in
brackets). Higher numbers indicate higher performance during the acquisition phase

Task type Blocked Moderate Interleaved Increased

1 0.85 (0.08) 0.86 (0.06) 0.86 (0.06) 0.87 (0.05)
2 0.88 (0.07) 0.89 (0.07) 0.89 (0.05) 0.89 (0.05)
3 0.91 (0.05) 0.88 (0.07) 0.88 (0.06) 0.87 (0.07)
4 0.87 (0.06) 0.84 (0.07) 0.81 (0.07) 0.84 (0.06)
5 0.83 (0.10) 0.86 (0.06) 0.83 (0.08) 0.83 (0.07)
6 0.88 (0.10) 0.90 (0.06) 0.89 (0.07) 0.89 (0.07)
Overall 0.87 (0.08) 0.87 (0.07) 0.86 (0.07) 0.87 (0.06)

condition for each of the task types that the Fractions Tutor covered. Overall, the
learning rate estimates align with the results obtained from the posttest data: the fully
interleaved condition demonstrates higher learning rates overall than the other con-
ditions. Examining the learning rates by task type provides more specific insights on
the nature of the differences between conditions in learning rates. For all but the
fourth task type (naming improper fractions), the fully interleaved condition demon-
strates a higher learning rate than the blocked condition. To test whether these
differences are statistically significant, we employed the binomial test used in
Pardos et al. (2010). The advantage of fully interleaved practice over blocked practice
was statistically significant for task types 1, 2 and 3 (ps<0.05) and moderately
significant for task type 5 (p<0.10). The fully interleaved condition achieved the
highest overall learning rate, which was twice that of any other condition. This
advantage is remarkable, given that performance, as established by the average
number of errors made during the acquisition phase, did not differ between condi-
tions. Learning rates of the increased condition fall between the blocked and fully
interleaved conditions on most task types 1, 2, and 5, as might be expected. However,
the increasingly interleaved condition shows very low learning rates on task types 3
and 4; these are task types that required students to reconstruct the unit of a fraction, a
particularly challenging topic that is typically not part of school curricula for
fractions.

Table 8 Learning rates by task type and practice schedule from the Condition-Representation Analysis
Model. Higher numbers indicate higher learning rates during the acquisition phase. * indicates significant
differences between conditions, ** indicates marginally significant differences

Task type Blocked Moderate Interleaved Increased
1* 0.0061 0.0061 0.0080 0.0072
2% 0.0019 0.0032 0.0065 0.0036
3* 0.0149 0.0059 0.0337 0.0030
4 0.0037 0.0022 0.0035 0.0014
5060 0.0108 0.0220 0.0124 0.0130
6 0.0043 0.0107 0.0078 0.0090
Overall 0.0062 0.0056 0.0120 0.0062
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Discussion

The findings from the Bayesian knowledge tracing analysis support and augment the
findings from the classroom study in several ways. The finding that the Condition-
Representation-Analysis model provides the best fit to the log data is in line with the
overall finding from the classroom experiment that practice schedules of multiple
graphical representations matter. The differences between conditions on learning rate
estimates provide further support for hypothesis 2 in the classroom experiment, that
students who learn with multiple graphical representations presented in an interleaved
fashion will outperform students who learn with multiple graphical representations
presented in a blocked fashion.

The learning rates model a latent factor for students’ gains in knowledge, separate
from problem difficulty induced by the graphical representation, which is accounted for
by conditioning the guess-and-slip parameters on the graphical representation used in
each step (in the Condition-Representation-Analysis model). This procedure allows us
to assess students’ learning from different practice schedules more accurately than pure
performance measures do: in a way, Bayesian knowledge tracing allows us to “tease
apart” the effects of practice schedules on learning (captured by the learning rate
estimates) and on problem difficulty (captured by the guess-and-slip parameters).

The literature on practice schedules shows that interleaved sequences often impair
performance during the acquisition phase (e.g., de Croock et al. 1998). It is assumed
that temporal variation between consecutive problems interferes with immediate
performance since students have to use a new problem-solving procedure each time
they encounter a new task. This interference leads to higher processing demands and
lower performance during the acquisition phase, but results in better long-term
retention and transfer performance later on. In the light of this literature, one might
expect that higher learning gains in the interleaved condition become apparent only in
the posttest data, but not during the acquisition phase because they might be
“masked” by impaired performance due to contextual interference. Our data does
not show that interleaved practice schedules result in lower performance during the
acquisition phase. It is possible that in tutored problem solving, the performance
differences may be less pronounced than in untutored problem solving. Furthermore,
building on our prior work (Rau et al. 2013a), we interleaved task types in all
conditions so that even in the condition that blocked graphical representations,
another aspect of the tutor problems (namely task types) were interleaved. This
consistent degree of interleaving in all conditions may have diminished the expected
differences between conditions in performance during the acquisition phase.

Although we do not find lower performance in the interleaved conditions, our
findings are in line with the overall notion that performance measures are not suitable
for detecting differences between practice schedules during the acquisition phase.
Rather than investigating differences between directly observed behaviors, Bayesian
knowledge tracing models “machine-learn” a latent variable, namely the probability
that a student transitions from the unlearned state to the learned state. These learning
rate estimates appear to be a more suitable metric to detect advantages of interleaved
practice even during the acquisition phase. In other words, “naive” methods such as
performance during the acquisition phase are not suitable to detect differences in
students’ learning from different practice schedules. Bayesian knowledge tracing
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analyses allow detecting learning gains that may be too subtle to detect during the
acquisition phase when relying on student performance only.

Why might we not have found significant differences between conditions on learning
rate estimates for all topics? There were no differences on task types 4 and 6.
Interestingly, task type 4 (reconstructing the unit for proper fractions) strongly builds
on task type 3 (reconstructing the unit for unit fractions). Likewise, task type 6 (making
improper fractions) strongly builds on task type 5 (naming improper fractions).
Following our argument that the effect of interleaved practice might depend on students’
prior knowledge, it might be possible that task type 3 equipped students with substantial
“prior knowledge” to task type 4 (and task type 5 to task type 6, respectively) so that the
advantage of interleaved practice was diminished as a result. The surprisingly low
learning rates for the increasingly interleaved condition on the particularly challenging
but unfamiliar task types 3 and 4 may also reflect a possibly complex interaction
between practice schedule, prior knowledge, and task type difficulty. As noted earlier,
this explanation is highly speculative. However, this finding might illustrate yet again
that much is to be gained by investigating more thoroughly the interaction between
practice schedules of graphical representations and students’ prior knowledge.

General Discussion

Taken together, our analysis of the learning outcomes from the classroom study, the
think-aloud study, and the Bayesian knowledge tracing analysis yield interesting
insights that are both of theoretical and practical significance. From a practical
perspective, our results provide qualified evidence that interleaving graphical repre-
sentations leads to better learning than blocking graphical representations. The
analysis of the learning outcomes shows a significant advantage of interleaved
practice only on transfer of conceptual knowledge at the delayed posttest, and a
marginally significant advantage of the increasingly interleaved condition on repro-
duction with area models. The advantage of the fully interleaved condition over the
blocked condition was particularly true for students with low prior knowledge.
Furthermore, the blocked condition never outperformed any of the interleaved con-
ditions. Finally, the learning gains from pretest to the (immediate and delayed)
posttests were most consistent for the fully interleaved condition.

The Bayesian knowledge tracing analysis provides further support for this practical
recommendation. The results show that a model that includes practice schedules as a
predictor fit the data best. This finding is in line with our interpretation of the results on
learning outcomes, namely, that practice schedules affect students’ learning.
Furthermore, the Bayesian knowledge tracing analysis shows that interleaving graphical
representations leads to better learning than blocking graphical representations.

In sum, based on the results from the learning outcomes and from the tutor log
data, we cautiously recommend that designers of learning materials provide multiple
graphical representations in an interleaved rather than in a blocked sequence, in
particular if learners have low prior knowledge, and if the goal is to promote
conceptual transfer. Given that graphical representations are used across many edu-
cational technologies in science and mathematics domains, our findings provide
guidance for instructional designers of a wide range of instructional materials.
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Our results also provide novel insights from a theoretical perspective. We extend
the literature on interleaved practice, which has mostly focused on the effects of task
types in a variety of domains. In particular, we provide evidence that the advantage
of interleaved practice generalizes to sequences of multiple graphical
representations.

The small-scale think-aloud study suggests that interleaved practice does not
enhance students’ learning by the mechanism of abstraction. Students who worked
with the fully interleaved version of the Fractions Tutor did not spontaneously make
connections between representations or abstract across them. This observation sug-
gests that repeated reactivation of representation-specific knowledge, and not abstrac-
tion, is the main mechanism that accounts for the advantage of interleaved practice
with multiple graphical representations. When students work with interleaved graph-
ical representations, they have to reactivate the knowledge relevant to using that
graphical representation to solve fractions problems more often than when working
with blocked practice schedules of graphical representations. The process of loading
representation-specific knowledge components from long-term memory into working
memory increases the strength of the association between the graphical representation
and that knowledge component, which in turn improves the chances that a student
will be able to retrieve the knowledge component later on. However, these consid-
erations are somewhat speculative, given that we did not directly assess reactivation
processes in the classroom experiment. Future work should thus investigate whether
indeed the advantage of interleaving representations results from repeated
reactivation of knowledge about specific representations.

Understanding which of the proposed mechanisms is most likely to account for the
advantage of interleaved practice is not only interesting from a theoretical standpoint but
also has important practical implications as to which scenarios we can expect our
findings to generalize to. If reactivation is the major accountable mechanism, we expect
that interleaving graphical representations will lead to better learning than blocking
them, provided that the representations are sufficiently dissimilar in terms of some
critical conceptual aspect. In other words, there has to be some critical knowledge that
is not shared between representations and that (consequently) is being reactivated and
thereby strengthened every time students switch between representations. Reactivation
may even occur if the different representations are maximally dissimilar-they might
even be about a completely different topic (although that might not be a wise design
decision for pedagogical reasons or learning-efficiency considerations).

If abstraction is the major accountable mechanism, we expect that interleaving
graphical representations will lead to better learning than blocking them, provided that
the representations are sufficiently dissimilar (so that there is some difference to abstract
across) and sufficiently similar, so that there is some common conceptual commonality
that students can abstract from the different representations. For abstraction to occur,
students need to hold relevant components of knowledge (which are shared by both
representations) in working memory at the same time. If the number of shared knowl-
edge components exceeds working memory capacities (i.e., if the representations are too
similar), abstraction might be jeopardized, especially if students lack prior knowledge to
select conceptually relevant aspects to attend to. If the number of shared knowledge
components is too small (i.e., if the representations are too dissimilar), abstraction will
fail because there’s not enough shared information to abstract.
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These considerations regarding the mechanisms that account for the advantage of
interleaved practice have implications for the generalizability of our findings to learning
materials. In our classroom experiment, we employed only three graphical representa-
tions. Do our findings apply to learning materials that include more than three graphical
representations? If reactivation is the main learning mechanism, we would expect that
the advantage of interleaved over blocked practice does not depend on the number of
graphical representations involved. If, however, abstraction is the main learning mech-
anism, we might expect that whether or not interleaved practice leads to better learning
than blocked practice crucially depends on the type of information shared between
consecutively presented graphical representations. As long as students can abstract the
target concepts from consecutive graphical representations, we expect that interleaved
practice will lead to better learning than blocked practice.

We note again that both learning mechanisms might be at work, as they are not
necessarily mutually exclusive. Although we did not observe explicit abstraction in our
think-aloud study, it is possible that (1) abstraction does occur, but it did not in our
sample of six students, (2) abstraction does occur but remains unconscious, or (3) that
students would benefit even more from interleaved practice if they were also explicitly
prompted to abstract across representations. While we cannot make claims regarding
arguments (1) and (2), the findings from the third phase of the think-aloud study, that
students make connections between representations when prompted to do so, is in line
with argument (3). Given the extensive literature that shows that students benefit from
receiving support for connection making between text and diagrams (Bodemer and
Faust 2006; Bodemer et al. 2004; Plotzner et al. 2001) and between symbols and graphs
(van der Meij and de Jong 20006), it is likely that students’ would benefit from explicit
support for connection making between different graphical representations. We inves-
tigate this question in subsequent work (Rau et al. 2012a; Rau et al. 2013d).

Our analysis of the tutor log data using Bayesian knowledge tracing also provides
interesting theoretical insights. The results from the log data analysis are in line with
the interpretation that interleaved practice mainly enhances students’ learning via
repeated reactivation. Repeated reactivation of representation-specific knowledge
may support the ease with which students can retrieve knowledge about a given
graphical representation. The higher learning rates that we found for the interleaved
condition (compared to the blocked condition) indicates that students become more
accurate at solving fractions problems, all of which include graphical representations.
This is what we would expect if students acquire representational fluency: the ability
to use graphical representations as tools to solve domain-relevant tasks. Based on this
finding, we hypothesize that interleaved practice with graphical representations
enhances students’ learning of fractions by promoting their representational fluency
(through repeated reactivation of representation-specific knowledge).

Finally, the Bayesian knowledge tracing analysis extends the literature on interleaved
practice by showing that the advantage of interleaved practice cannot only be detected
based on long-term retention and transfer assessments (de Croock et al. 1998), but also
based on “machine-learned” latent variable of students’ learning rates, inferred from
students’ problem-solving behaviors. To the best of our knowledge, the present study is
the first to empirically establish advantages of interleaved practice over blocked practice
using data from the acquisition phase. We demonstrate that methods of educational data
mining provide unique opportunities to gain deeper insights into educational
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psychology questions in a way that is not possible using “naive” methods of looking at
performance data alone.

Our findings also extend our own prior work on learning with multiple graphical
representations. We showed that multiple graphical representations lead to better
learning than a single graphical representation (Rau et al. 2009). Further, we showed
that, when faced with a choice to interleave one dimension, task types or represen-
tations, we should interleave task types rather than representations. Our current work
extends this finding by showing that interleaving both dimensions, task types and
graphical representations, leads to the best learning gains. Building on the observa-
tions in the small-scale think-aloud study, our subsequent work (Rau et al. 2012a)
shows that students’ learning can additionally be enhanced by providing explicit
support for connection making between graphical representations.

Future Research Directions

There are several open questions that we might consider in future research. One
particularly interesting question concerns the generalizability of our findings to other
domains. We have argued that most STEM domains use multiple graphical representa-
tions to emphasize different conceptual aspects of the domain knowledge, such as
chemistry (Kozma et al. 2000; Kozma and Russell 2005; Stieff et al. 2011; Zhang and
Linn 2011), biology (Cook et al. 2007; Simons and Keil 1995), physics (Larkin and
Simon 1987; Lewalter 2003; Urban-Woldron 2009; van der Meij and de Jong 2006),
engineering (Nathan et al. 2011; Walkington et al. 2011), and programming (Kordaki
2010). Let us consider chemistry as one example. Chemistry uses a variety of graphical
representations of molecules (Kozma et al. 2000; Kozma & Russell 2005; Stieff et al.
2011; Zhang and Linn 2011): Electrostatic Potential Map (EPM) representations make
the concept of electron density and molecular dipoles easily accessible, but make it more
difficult to perceive the details of the chemical structure and molecular geometry. On the
other hand, ball-and-stick figures show the complete chemical structure of a molecule
and provide information on the geometry (i.e., the spatial arrangement of the molecule’s
atom), but they do not depict electron density. To predict the reactivity of the molecule,
both electron density and molecular geometry are important factors. Thus, both graph-
ical representations share a common concept (i.e., chemical molecules) but emphasize
complementary aspects of the concept (electron density versus molecular geometry).
Based on our research, we would expect the best learning gains (e.g., in the ability to
predict reactivity of given molecules) if these different graphical representations were
presented to students in an interleaved rather than in a blocked fashion, so that students
can frequently reactivate their knowledge about molecule surfaces and molecule struc-
ture. To a (possibly) lesser extent, students may also abstract conceptual understanding
of what constitutes a chemical molecule from molecule surface features and molecule
structure features. However, in light of our observations in the small-scale think-aloud
study, we might further hypothesize that students will require additional, more explicit
support to engage in connection-making activities that allow them to abstract conceptual
knowledge about chemical molecules from these graphical representations. As this
example illustrates, we often employ multiple, conceptually complementary graphical
representations to support students’ learning of domain knowledge in STEM domains.
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Another interesting question regards the potential benefits of adaptive interleaved
practice schedules. Our finding that interleaved practice schedules are particularly
effective for students with low prior knowledge suggests that, as students acquire
more and more robust knowledge through practice, the choice of practice schedules
has a diminished impact on their learning. Furthermore, our finding that interleaved
practice enhances conceptual transfer and reproduction with area models, but not
procedural transfer and reproduction with number lines, suggests that the effective-
ness of a practice schedule may depend on the knowledge that is targeted. It is even
possible that there is a three-way interaction between practice schedules, prior
knowledge, and target knowledge. Our study is limited in that we implemented only
four fixed practice schedules. Future research should investigate the effectiveness of
other possible practice schedules in enhancing different aspects of domain knowledge
for particular types of learners. Intelligent tutoring systems offer unique possibilities
in adapting practice schedules to the students’ prior knowledge level and learn rate.
Yet, we still know too little about what types of adaptive practice schedules might be
most effective. A further interesting question for future research might be to what
extent the higher effectiveness of adaptive problem sequences (compared to fixed
problem sequences) can be traced back to the fact that adaptive problem sequences
are often more highly interleaved than fixed problem sequences. By demonstrating
that practice schedules do matter, and that their effectiveness depends on students’
prior knowledge, our research provides a first step in this direction.

Conclusions

In sum, our research demonstrates how multiple methodological approaches can com-
plement one another to investigate different aspects of a research question. To investi-
gate which practice schedule works best, we conducted a controlled classroom
experiment and analyzed the learning outcomes. This is a common approach in many
fields related to intelligent tutoring systems research (including instructional design
research, learning sciences research, educational psychology research, etc.). Yet, ana-
lyzing the learning outcome data does not answer the question of why we find differ-
ences between conditions. This question is not only of theoretical relevance, it also has
practical implications regarding possible scenarios that we can expect our findings to
generalize to (as discussed above). To address this open question about which learning
mechanism is most likely to account for differences between conditions, we conducted a
think-aloud study. Although we cannot rule out that abstraction may occur concurrently
with reactivation processes, our think-aloud study does not provide evidence of students
explicitly engaging in abstraction processes. Our observations in the think-aloud study
suggest that reactivation, rather than abstraction, is more likely to account for the
advantage of interleaved practice we found in the classroom experiment. To further
augment these observations, we used Bayesian knowledge tracing analysis to investi-
gate differences between conditions in learning rates during the acquisition phase. Our
finding that latent measures of learning replicate the advantage of interleaved practice
that we found in the classroom experiment is in line with our interpretation of the think-
aloud study that reactivation is a likely learning mechanism to account for the advantage
of interleaved practice (although other interpretations are possible, as argued above).
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Taken together, our work illustrates how the use of a variety of methodologies can
complement one another to answer the questions of what works, and why does it work.

Within the research community on intelligent tutoring systems, there are many
other examples illustrating what is gained by this multi-methods approach. For
example, Li and colleagues (2012) use SimStudent, a machine-learning agent that
learns skills from demonstrated solutions, to investigate whether positive or negative
feedback accounts for the effects of interleaved versus blocked practice. Their results
show that interleaved practice schedules increase the amount of negative feedback the
simulated student receives. They conclude that negative, rather than positive feed-
back may account for the differences between practice schedules. Pavlik and col-
leagues (2013) use additive factors modeling to investigate forgetting and spacing
effects in an experiment of interleaved versus blocked practice in musical training.
Work by Rummel and colleagues (2012) illustrates how the analysis of verbal data
and log data contribute complementary perspectives in our understanding of the
mechanisms by which scripted collaborative learning with intelligent tutoring sys-
tems enhances students’ robust learning. Like our multi-methods study, these other
examples illustrate one of the key benefits of conducting interdisciplinary research.
Intelligent tutoring systems research can crucially benefit from the insights we gain
from multi-methods approaches about mechanisms that underlie effects of instruc-
tional design. Furthermore, we can use this knowledge to further our research on
developing interventions that make use of the advantage that intelligent tutoring
systems offer, for instance, to provide adaptive practice schedules.

In conclusion, our research was done in the context of a successful intelligent tutoring
system that focuses on conceptual learning with multiple interactive, abstract graphical
representations. We extend the literature on learning with multiple representations by
demonstrating that interleaved practice of graphical representations promotes students’
learning. It seems more likely that the mechanism underlying the advantage of inter-
leaved practice is repeated reactivation of representation-specific knowledge rather than
abstraction. Further, we demonstrate that learning rate estimates based on Bayesian
knowledge tracing are an appropriate metric for detecting advantages of interleaved
practice even during the acquisition phase. Our findings lead to instructional design
recommendations that developers of intelligent tutoring systems can draw upon when
designing instructional materials that present multiple graphical representations across
consecutive tasks. Although our findings are subject to further investigation, we recom-
mend that learning materials should provide multiple graphical representations in an
interleaved fashion, rather than in a blocked fashion, especially if the goal is to promote
students’ acquisition of conceptual knowledge that can transfer to new tasks and if
students have little prior knowledge of the domain.
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