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Abstract This paper investigates the use of conversational agents to scaffold on-line
collaborative learning discussions through an approach called Academically Produc-
tive Talk (APT). In contrast to past work on dynamic support for collaborative
learning, where agents were used to elevate conceptual depth by leading students
through directed lines of reasoning (Kumar & Rosé, IEEE Transactions on Learning
Technologies, 4(1), 2011), this APT-based approach uses generic prompts that en-
courage students to articulate and elaborate their own lines of reasoning, and to
challenge and extend the reasoning of their teammates. This paper integrates findings
from a series of studies across content domains (biology, chemistry, engineering
design), grade levels (high school, undergraduate), and facilitation strategies. APT
based strategies are contrasted with simply offering positive feedback when the
students themselves employ APT facilitation moves in their interactions with one
another, an intervention we term Positive Feedback for APT engagement. The pattern
of results demonstrates that APT based support for collaborative learning can signif-
icantly increase learning, but that the effect of specific APT facilitation strategies is
context specific. It appears the effectiveness of each strategy depends upon factors
such as the difficulty of the material (in terms of being new conceptual material
versus review) and the skill level of the learner (urban public high school vs. selective
private university). In contrast, Feedback for APT engagement does not positively
impact learning. In addition to an analysis based on learning gains, an automated
conversation analysis technique is presented that effectively predicts which strategies
are successfully operating in specific contexts. Implications for design of more agile
forms of dynamic support for collaborative learning are discussed.
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Introduction

With the recent press given to online education and increasing enrolment in Internet-
based courses, the need for scaling up quality educational experiences online has
never been so urgent. The biggest limitations are related to the human side of
effective educational experiences. While instructor time is a scarce commodity in
many such courses, students are plentiful. Thus, one important contribution the field
of intelligent support for group learning can make is to develop technologies to
structure interactions between students in order to maximize the benefit students
receive from one another. Effective collaborative learning experiences are known to
provide many benefits to learners in terms of cognitive, metacognitive, and social
impact (Kirschner et al. 2009; Scardamalia and Bereiter 1993, 2006; Webb and
Palinscar 1996). These experiences offer a potentially valuable resource for massively
open online courses, if affordances can be provided that facilitate high quality
collaborative learning interactions in the absence of human facilitators that can keep
up with the high enrolment in such courses. Effective, automated support for such
interactions is the key.

In this paper, we build on a paradigm for dynamic support for group learning that
has proven effective for improving interaction and learning in a series of online group
learning studies. In particular we refer to using tutorial dialogue agent technology to
provide interactive support within a synchronous collaborative chat environment
(Kumar et al. 2007; Chaudhuri et al. 2008, 2009; Kumar et al. 2010; Ai et al.
2010; Kumar and Rosé 2011). This form of support can be called dynamic for two
reasons. First, the conversational agents are interactive. They have the capability of
conducting multi-turn directed lines of reasoning with students that respond to the
particulars of student input in response to their prompts (Rosé et al. 2001; Rosé and
VanLehn 2005). Second and more importantly, they can be triggered through real
time analysis of the collaborative discussion as it unfolds (Kumar et al. 2007, 2010;
Adamson et al. 2013; Dyke et al. 2013). The decision making process for identifying
triggers in the ongoing collaboration in real time and then launching a specific
supportive behaviour at the appropriate time in response to those triggers can be
thought of as a strategy. In our prior work, each study described a single strategy that
was meant to behave dynamically, according to the same context-sensitive rules for
all student groups. In the current work, we explore the ways the dynamic support
strategy itself might need to be adapted depending upon the characteristics of the
student population. In particular, we build on prior work in triggering support based
on real time analysis of collaborative discourse and work towards a new characteristic
of dynamic support. Specifically, we are building an empirical foundation for
adapting the strategy taken by the support technology to the specific, contextual
needs of different student populations. We refer to the concept of strategy adaptation
that we work towards in this article as agile support for collaborative learning.

This paper integrates findings from a series of studies across content domains
(biology, chemistry, engineering design), grade levels (high school, undergraduate),
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and facilitation strategies. In each study, each experimental condition makes use of
only one strategy. As we observe the pattern of results across studies, where the
studies differ in domain and grade level, we see that the ranking among strategies in
terms of the relative effectiveness of alternative strategies differs depending on the
student population and learning task. We also observe a characteristic pattern in the
interaction between students within successful conditions that can be detected with
high reliability through automated collaborative process analysis. Thus we offer this
series of studies along with the automated process analysis technique as an initial
empirical foundation for the development of a more agile approach to dynamic
support for group learning. In particular, the choice of facilitation strategy can be
adapted in response to an assessment of the patterns of interaction, i.e., whether the
characteristic pattern indicating a successful intervention is present.

In the remainder of the paper we first describe a theoretical foundation from prior
work in the literature on computer supported collaborative learning, tutorial dialogue
agents, and classroom discourse. We then describe our technical approach, which is a
publically available architecture for dynamic support for collaborative learning called
Bazaar. Next we describe the set of experimental studies we present in this article.
Finally, we integrate across the results presented in the individual studies in order to
motivate a research agenda for future work in the area of intelligent support for group
learning. We conclude with a discussion of the limitations of this study and remaining
research questions.

Theoretical Framework

The theoretical foundation for the work reported in this paper comes from three areas.
We begin with literature from the Computer Supported Collaborative Learning
(CSCL) community. Here we draw insights into types of conversational interactions
that are associated with learning in groups and typical static technology for increasing
the prevalence of those types of interactions, and thereby increasing learning. Next
we review more recent work from the CSCL community where dynamic forms of
support for group learning have been developed and demonstrated to be advanta-
geous over more typical static forms of support. We then review the classroom
discussion facilitation literature that motivates the set of dynamic support strategies
we evaluate in this paper. We propose that these strategies can serve as building
blocks for a new form of dynamic support for group learning that we refer to as
“agile” support for group learning.

Supporting Effective Collaborative Discussion Using Static Script-Based Support

The field of Computer Supported Collaborative Learning (CSCL) has a rich history
extending for nearly two decades, covering a broad spectrum of research related to learning
in groups, especially in computer mediated environments. A detailed history is beyond the
scope of this article, but interested readers can refer to Stahl’s well known history of the field
(Stahl et al. 2006) and other foundational work (Dillenbourg et al. 1995).

An important technological goal of work in the field of CSCL is to develop
environments with affordances that support effective group learning. The foundation
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for this work comes from insight into the patterns of conversational interactions that
are valuable for learning. A series of studies in the computer-supported collaborative
learning field demonstrate the pedagogical value of social interaction from a cogni-
tive perspective, showing that interventions that intensify argumentative knowledge
construction, in support of group knowledge integration and consensus building,
enhances the development of multi-perspective knowledge (Weinberger et al. 2007;
Weinberger and Fischer 2006).

Despite differences in orientation between alternative subcommunities of the
learning sciences, some conversational behaviors that have been identified as valu-
able are very similar across subcommunities. Some such example frameworks for
characterizing valuable conversational behaviors share two aspects: namely, the
requirement for reasoning to be explicitly displayed in some form, and the preference
for connections to be made between the perspective of one student and that of
another. It is related to this characterization of valuable discussion behaviors for
learning that we base our work in this article. Alternative frameworks for analysis of
group knowledge building that privilege subtly different formulations of these be-
haviors are plentiful. In particular, these include Transactivity (Berkowitz and Gibbs
1983; Teasley 1997; Weinberger and Fischer 2006), Inter-subjective Meaning Mak-
ing (Suthers 2006), and Productive Agency (Schwartz 1998). Schwartz and col-
leagues arguing from a Sociocultural perspecive (Schwartz 1998) and de Lisi and
Golbeck arguing from a Piagetian Cognitivist perspective (de Lisi and Golbeck 1999)
make very similar arguments for the significance of these kinds of behaviors. The
idea of transactivity comes originally from a Piagetian framework. It is important to
note that when Schwartz describes, from a Vygotskian perspective, the mental
scaffolding that collaborating peers offer one another, he describes it in terms of
one student using words that serve as a starting place for the other student’s reasoning
and knowledge construction. This implies explicit articulations of reasoning, so that
the reasoning can be known by the partner and then built upon by that partner. The
process is explained similarly to how we describe the production of transactive
contributions. In both cases, mental models are articulated, shared, mutually exam-
ined, and possibly integrated.

The most popular formalization of the construct of transactivity (Berkowitz and
Gibbs 1979) includes 18 types of transactive moves. These characterize each stu-
dent’s conversational turn, as long as it is considered an explicit reasoning display
that connects with some previously articulated reasoning display. Within this schema,
transacts have been divided along multiple different dimensions, which we will draw
from later in the article to motivate our series of experimental studies. One important
dimension represents whether the transact might be self-oriented (the contribution
operates on the speaker’s own reasoning) or other-oriented (the contribution operates
on the reasoning of a partner) (Teasley 1997; Berkowitz and Gibbs 1979). Another
important dimension is whether the contribution represents the original idea as stated
or transforms it. Another dimension is whether the contribution is consensus oriented
or conflict oriented.

In order to support the growth of student discussion skills, it is necessary to design
environments with affordances that encourage transactive behaviors and other valu-
able learning behaviors. The most popular approach to providing such affordances in
the past decade has been that of script-based collaboration (Dillenbourg 2002; Kollar
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et al. 2006; Kobbe et al. 2007). A script is a schema for offering scaffolding for
collaboration. Some typical forms of scripts come in the form of instructions that
structure a collaborative task into phases, or structured interfaces that reify certain
types of contributions to the collaboration. Such scripts are typically implemented
statically, providing the same support in all cases. A script may describe any of a wide
range of features of collaborative activities, including its tasks, timing, the distribu-
tion of roles, and the methods and patterns of interaction between the participants.
Static scripts do not behave differently depending on what is happening in the
collaboration per se. Instead, they operate according to choices that are made ahead
of time and generally held constant within conditions in an experimental study.

Scripts can be classified as either macro-scripts or micro-scripts (Dillenbourg and
Hong 2008). Macro-scripts are pedagogical models that describe coarse-grained
features of a collaborative setting, which sequence and structure each phase of a
group’s activities to foster learning and social interaction. Micro-scripts, in contrast,
are models of dialogue and argumentation that are embedded in the environment, and
are intended to be adopted and progressively internalized by the participants. Scripts
can be more or less coercive, from strict “follow-me” style prompts to subtle
suggestions of behavior implicit in the activity’s structure. Stricter scripts can work
to reduce the gap between expected and observed student behavior, producing a more
uniform appearance of discussion. However, they run the risk of over-scripting
(Dillenbourg 2002), where the application of inappropriate or unneeded supports
have a detrimental effect on collaboration and learning.

Dynamic Script-Based Support with Conversational Agents

The early non-adaptive scripting approaches described above can sometimes result in
both over-scripting and in interference between multiple scripts (Weinberger et al.
2007), both of which have been shown to be detrimental to student performance.
More dynamic approaches can trigger scripted support in response to the automatic
analysis of participant activity (Soller and Lesgold 2000; Erkens and Janssen 2008;
Rosé et al. 2008; McLaren et al. 2007; Mu et al. 2012). This sort of analysis can occur
at a macro-level, following the state of the activity as a whole, or it can be based on
the micro-level classification of individual user contributions. Some prior work on
adaptive support for collaborative learning used hint-based support for individual
learning with technology to support peer tutoring interactions (Diziol et al. 2010).
Other prior work on dynamic conversational agent based support built on a long
history of work using tutorial dialogue agents to support individual learning with
technology (Wiemer-Hastings et al. 1998; Rosé et al. 2001; Graesser et al. 2002; Zinn
et al. 2002).

The collaborative tutoring agents described by Kumar and colleagues (Kumar and
Rosé 2011; Kumar et al. 2007) were among the first to implement dynamic scripting
in a CSCL environment. In that work, the role of the support was to increase the
conceptual depth of discussions by occasionally engaging students in directed lines of
reasoning called Knowledge Construction Dialogues (KCDs) (Rosé and VanLehn
2005) that lead students step by step to construct their understanding of a concept and
how it applies to the collaborative problem solving context. These encounters were
triggered in the midst of collaborative discussions by detection that students were
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discussing an issue that is associated with one of the pre-authored interactive directed
lines of reasoning. Thus, these interventions had the ability to be administered when
appropriate given the discussion, rather than being triggered in a one-size-fits-all
fashion. In an initial evaluation (Kumar et al. 2007), this form of dynamic support
was associated with higher learning gains than a control condition where students had
access to the same lines of reasoning, but in a static form. In a subsequent study,
students were found to gain significantly more if they had the option to choose
whether or not to participate in the directed line of reasoning when it was triggered
(Chaudhuri et al. 2009). Scripting such as this offers the potential for minimal
interventions to be used more precisely and to greater effect, with greater likelihood
of students internalizing the support’s intended interaction patterns. Further, the
benefits of fading support over time (Wecker and Fischer 2007) could be more fully
realized, as the frequency of intervention could be tuned to the students’ demonstrat-
ed competence.

A major limitation of the specific form of interactive support provided by KCDs is
that by their very nature they are content specific. Thus, for every new concept, a
separate authoring effort was necessary, which limits the scalability of the approach.

Towards a New Generation of Dynamic Support for Collaborative Learning Inspired
by Academically Productive Talk

A promising direction for addressing the issue raised above related to content
specificity is to draw inspiration from the classroom discourse literature, where
content independent strategies for eliciting valuable interaction between students
have been developed and tested. One notable framework for such elicitation is
Academically Productive Talk (APT) (Michaels et al. 2008). APT is a classroom
discussion facilitation approach that has grown out of instructional theories that
emphasize the importance of social interaction in the development of mental pro-
cesses, in particular ones that value engaging students in transactive exchanges.
Drawing on over 15 years of observation and study, Michaels, O’Connor and Resnick
propose a number of core “moves” displayed in Table 1. These serve as tools that
teachers can employ in order to encourage the development of academically produc-
tive classroom discussions – in other words, classroom discussions in which students
make their reasoning public, listen deeply and critically to one another’s contribu-
tions, and then interact with them transactively.

Our recent pilot efforts have begun to develop intelligent conversational agent
facilitators whose behavior is not content specific, but rather draws from this litera-
ture on facilitation strategies (Adamson et al. 2013; Clarke et al. 2013; Dyke et al.
2013). The design of such support is consistent with the literature on facilitation of
collaborative learning groups (e.g., Hmelo-Silver and Barrows 2006), and leverages
the large body of work that has shown that APT facilitation behaviors are beneficial
for learning with understanding (Adey and Shayer 1993; Bill et al. 1992; Chapin and
O’Connor 2004; Resnick et al. 1993, 2013; Topping and Trickey 2007; Wegerif et al.
1999).

The set of Academically Productive Talk moves includes the revoice of a student
statement: “So let me see if I’ve got your thinking right. You’re saying XXX?”, which
encourages students to reformulate or transform the articulation of their reasoning in
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order to clarify their meaning. Another move involves asking students to apply their
own reasoning to someone else’s reasoning: “Do you agree or disagree, and why?”,
which may stimulate sociocognitive conflict, otherwise known as conflict-oriented
consensus building. As we have illustrated in Table 1, these core moves can be
characterized in terms of the type of transactive behavior they might elicit from
students along the three dimensions we introduced above. It is important to note that
across these dimensions, these types of transacts can be seen as having a logical
ordering which might then apply to the corresponding APT facilitation moves as
well. For example, one must understand one’s own reasoning before one can hope to
understand another person’s reasoning, thus self-oriented transacts could be seen as
less demanding than other-oriented ones. Furthermore, one must understand reason-
ing as stated before one can transform or extend that reasoning, thus representational
transacts might be seen as less demanding than transformational ones. Reasoning
must be understood before it can be rightly challenged, thus, it would be possible to
argue that conflict oriented consensus building requires more than consensus oriented
transactive behavior. Some prior work has attempted to tease apart differential
meditational effects of transacts from these various categories (Azmitia and Mont-
gomery 1993). Building upon this foundation, it is reasonable to hypothesize that the
specific APT move that would be helpful to students would depend upon the
student’s specific capabilities or the difficulty of the material being discussed.

In earlier published studies where teachers used approaches like Academically
Productive Talk, students have shown steep changes in achievement on standardized
math scores, transfer to reading test scores, and retention of transfer for up to 3 years
(Adey and Shayer 1993; Bill et al. 1992; Chapin and O’Connor 2004; Resnick et al.
1993, 2013; Topping and Trickey 2007; Wegerif et al. 1999). These successes in the

Table 1 Academically productive talk facilitation moves

Example teacher utterance Accountable
talk move

Transact category

Explain your thinking. SAY MORE SELF ORIENTED, REPRESENTATIONAL,

CONSENSUS ORIENTED

What’s it prove? Put it into words. PRESS FOR

REASONING

SELF ORIENTED, REPRESENTATIONAL,

CONSENSUS ORIENTED

Let me see if I understand correctly. Are you
saying they were all adopted?

REVOICE SELF ORIENTED, TRANSFORMATIONAL,

CONSENSUS ORIENTED

If capital ‘G”s dominant, wouldn’t all babies be
orange?

CHALLENGE SELF ORIENTED, TRANSFORMATIONAL,

CONFLICT ORIENTED

Can you repeat what she said? RESTATE OTHER ORIENTED, REPRESENTATIONAL,

CONSENSUS ORIENTED

Help him out, Stephen. Can you add to what he
said?

ADD MORE OTHER ORIENTED, REPRESENTATIONAL,

CONSENSUS ORIENTED

Kelly, are they right? Do you agree or disagree
with what they said?

AGREE/

DISAGREE

OTHER ORIENTED, REPRESENTATIONAL,

CONFLICT ORIENTED

In your own words, explain why she’s right or
wrong.

EXPLAIN OTHER OTHER ORIENTED, TRANSFORMATIONAL,

CONFLICT ORIENTED
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classroom discourse literature offer hope that these facilitation strategies could be
used to design effective support for collaborative learning, a concept we refer to as
APT agents. However, none of these earlier studies have explored the question of
what the preconditions for successful use of specific APT moves might be, or what
kinds of learners would benefit most from which facilitation moves. Nevertheless,
this kind of detailed insight is needed if these moves are to be used to their maximum
benefit as support for collaborative learning.

We report on the first wave of APT agent studies in this article. Rather than treat
the conversational agents as the sole participants with enough authority to direct the
discussion, we encouraged the students to practice productive talk themselves. Thus
in each study we offered the students instruction on APT moves prior to their online
interaction with one another. The agents’ use of APT moves could then serve both to
model this style of discussion, as well as to directly facilitate transactive conversa-
tional behaviour between students. We also included an intervention to offer encour-
aging feedback to students for either using APT moves, or engaging in the behaviors
the moves were meant to elicit.

In an initial published proof of concept regarding the effectiveness of APT agents
at improving collaborative processes and learning (Dyke et al. 2013), the collabora-
tive task was to engage in a series of collaborative discussions in which students
make predictions, then make observations, and then explain why their predictions did
or did not come to pass. Through this experience, the students observe that glucose,
water and iodine molecules all diffuse through dialysis tubing while starch molecules
do not. The activity naturally lends itself to observing a variety of distinct cell models
involving dialysis tubing containing an inside environment immersed in a beaker
containing the outside environment. In each, a choice must be made for which liquid
will be placed outside and which liquid will be placed inside. The collaborative task
content, the macro-scripts that supported it, and the list of key concepts used for
revoicing were all developed iteratively with feedback from teachers and content
experts. An excerpt from the study that shows the agent offering an APT move in its
first turn and a Feedback move in its second turn is displayed in Table 2. The tutor’s

Table 2 Example of feedback and revoicing in the Dyke et al. study

Time Author Text

08:41 Student1 it weighs more because there is more in it

08:45 Student2 starch is tested with a tube as the glucose is tested with a piece of paper like material

08:45 Tutor Thanks for offering an explanation, Student1 :-)

08:46 Student3 the longer you leave the test strip in the water the darker green the strip gets and the more
weight the glucose solution collects

09:22 Student1 Student3, wouldn’t it just show that there was more in it

09:26 Tutor Would another way to say that be “indicators can prove that there was a change in
concentration ?”

09:31 Student2 Wat Student3 said and starch cant get any darker when purple and the water would be
clear so no more
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feedback move is triggered by Student1’s explanation attempt in the first turn. The
tutor’s revoicing move is triggered by Student3’s contribution in the fourth turn.

In this study, the APT agent provided both macro scripting and micro scripting
support in order to structure the interaction. The macro scripting support provided a
common task structure across conditions. While acting in the role of macro support
provider, the APT agent provided instructions for the collaborative task, and intro-
duced each step of the collaborative task, with the goal of controlling for time on task
across conditions. This behavior is not displayed in the excerpt above. The micro
level support was meant to respond to the particulars of the conversation as it
unfolded. Each experimental condition was defined based on which behaviors would
trigger a supportive move, and what that move would be.

The Dyke et al. (2013) study was run as a 2×2 between subjects factorial design in
which the interactive support provided some behaviors in common across conditions,
but other behaviors were manipulated experimentally. The first variable for manipu-
lation was the presence or absence of the Revoicing behavior. The second variable
was the presence or absence of the APT Feedback behavior, which is simply positive
reinforcement when students were detected to engage in APT behaviour with one
another. Students showed significant learning gains in all conditions, and there was a
significant main effect of Revoicing such that students in the Revoicing condition
learned significantly more between Pretest and Posttest, with an effect size of 0.34
standard deviations. There was no significant main effect of Feedback although there
was a trend for it to have a negative effect. And there was no significant interaction
between the two factors.

Despite the substantial literature supporting the effectiveness of APT in classroom
discussions, it must be acknowledged that much is not known about the mechanism
through which the complex intervention has done its work. This can only be
determined through more fine-grained, careful experimentation. The treatment has
always been complex involving multiple facilitation moves, used within whole
classes, where a human teacher insightfully decides when and with whom to use
each move. The series of controlled studies presented in this article was meant to
begin to fill this empirical gap, in order to begin to build an empirical foundation for
evidence-based design principles for development of effective APT-inspired dynamic
support for collaborative learning in groups. The Dyke et al. study is the first study
that demonstrated the effectiveness of Revoicing as support for collaborative learning
with 9th graders, and thus it forms the starting place for our series of studies
investigating the generality of the effect in this article.

Bazaar: A Flexible Architecture for Collaboration Support

The publically available Bazaar architecture 1 enables easy integration of a wide
variety of discussion facilitation behaviors that has enabled the set of experimental
studies we describe in the next section. We begin this section by describing from a
user perspective one integrated environment where Bazaar provides collaboration
support to distributed groups of learners collaborating synchronously. Next we

1 http://www.cs.cmu.edu/~dadamson/bazaar/
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describe the inner workings of the architecture and how it enables effective coordi-
nation of supportive facilitation behaviors. We then discuss how we have used this
resource to implement the facilitation behaviors we evaluate in our experimental
studies.

APT Inspired Dynamic Collaborative Learning Support

The Bazaar architecture (Adamson and Rosé 2012) has been used in a variety of
studies (Howley et al. 2012; Clarke et al. 2013; Adamson et al. 2013; Dyke et al.
2013) to implement supportive interventions involving conversational chat agents
that participate as facilitators in collaborative learning tasks. The architecture has
been successfully integrated with a variety of collaborative environments. These
include a standard interface for XMPP multiparty chat, a specialized text chat room
with a shared whiteboard (Mühlpfordt and Wessner 2005; Hohenwarter and Preiner
2007). Figure 1 displays an integration between Bazaar and the ConcertChat
(Mühlpfordt and Wessner 2005) synchronous chat collaboration environment, which
was used in the Dyke et al. (2013) study. Because the Bazaar architecture enables
quick development of supportive interventions, one can efficiently proceed from a
concept for a new support behavior to a fully functional collaboration environment. In
Fig. 1, the panel on the right hand side of the interface is a chat panel where students
interact with one another through synchronous chat. The turns labelled as “Tutor” are
turns that come from the intelligent conversational agent providing facilitation moves
in the conversation. In this example we see the agent performing a Revoicing move.
On the left is a shared white board where either the agent or the students can insert
images that are then visible to the whole group. In this case, the image displays a cell
model that the students were meant to discuss in the Diffusion Lab. The relative size
of the chat panel and the white board can be adjusted by clicking in between the two
panels and dragging in one direction or the other.

Bazaar

Bazaar is a modular framework for designing multi-party collaborative agents that
builds upon the earlier Basilica architecture (Kumar and Rosé 2011). Like Basilica, in

Fig. 1 CSCL environment from the Dyke et al. study
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addition to its core architecture, Bazaar plays host to a library of reusable behavioral
components that each trigger a simple form of support. More complex supportive
interventions are constructed by integrating multiple simpler behaviors. For example,
in the Dyke et al. (2013) study, in the condition with both Revoicing and Feedback,
the agent needed to coordinate the macro-level prompts with the micro-level prompts
from both the Revoicing and Feedback strategies.

Both the agent’s overall composition and the configuration of each component are
specified in plain-text properties files, offering a glimpse at the sort of low-overhead
flexibility for authoring, content, and deployment championed by recent work
(Kobbe et al. 2007). Bazaar and its predecessor are event-driven systems in which
independent behavioral components receive, filter, and respond to user, environment,
and system-generated events, and present the unified output of these components to
the user. Bazaar improves on the Basilica architecture by integrating the orchestration
of otherwise competing or conflicting agent behaviors, by simplifying the relation-
ships between components, and by offering an extensible mechanism selecting
proposed agent actions. The issue of potential clash between macro-level support
and micro-level support is especially important, as we have observed that experienc-
ing these clashes is distracting and confusing for students (Howley et al. 2013). Thus,
it is important to note that coordination between simple support behaviors is neces-
sary even when only one APT facilitation strategy is being used.

Figure 2 illustrates a typical Bazaar configuration where events triggered by
student contributions in the chat or whiteboard are aggregated in the Input Coordi-
nator. Unlike Basilica, event processing in Bazaar is divided into two distinct phases.

Fig. 2 In the Bazaar pipeline, events are processed in two stages
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Preprocessor components analyse the event stream in search of triggers for supportive
interventions. Two examples are shown in Fig. 2, including the Revoicable Annota-
tor, which looks for student turns that could be revoiced by the agent, and the
Participation Counter, which keeps track of how many utterances each student has
contributed recently. These preprocessed events are relayed to a set of Reactors
components. Depending on the active agent strategies, under specified circumstances,
these Reactors will propose tutor actions in response to these events. The Output
Coordinator, described in the next section, then makes decisions about sequencing
and timing and thus manages the coordination of potentially clashing interventions.
Thus, the Output Coordinator controls when the prompts or other behaviors associ-
ated with a triggered strategy are presented to the students.

The Output Coordinator houses Bazaar’s primary architectural improvement. In an
agent able to offer multiple dynamic behaviors, more than one support strategy may
be simultaneously appropriate. Bazaar’s predecessors sometimes suffered from
clashes between behaviors in cases where multiple were triggered simultaneously.
It is important to note that the interference of multiple supports caused by these
clashes could invalidate the benefit of any of them, to the detriment of the learner
(Weinberger et al. 2007; Howley et al. 2013). It is important to note that participants
in a collaborative session, including the facilitator, are not simply focused on the
task—they are involved in numerous simultaneous processes including social bond-
ing, idea formation, argumentation, time management, and off-task activity. Manag-
ing an APT discussion poses additional challenges. While the kind of in-depth
discussion that APT elicits is valuable for learning, it takes time. Facilitators must
always keep time constraints in mind in order to achieve an appropriate balance of
breadth and depth within and across topics as well as in parcelling out attention to
different students.

As we have alluded to, we observed problems with time management in an earlier
prototype implementation of an APT agent implemented using Basilica (Howley et al.
2013) that manifested as clashes between the macro and micro scripting behaviors
triggered during the study. As a technical solution to this multi-policy management
problem, Bazaar draws on and extends the “concurrent mode” approach described by
(Lison 2011). In Lison’s work, the author adds a “soft” constraint on new proposals
by increasing the relative weight of those from the same source as recent actions,
preferring that source as a “focus of attention” for as long as it had new actions to
propose. Proposals with a great enough activation weight (or priority) from different
sources can outweigh this preference, allowing flexible yet consistent responses in the
face of noisy input or multiple valid states. Evaluation in a simulated human-robot
learning task showed that this “soft” control method performed better than using a
hierarchical finite-state controller to select the next source of action. We apply this
approach in Bazaar, allowing recent actions to influence the priority of new pro-
posals, and extend it, allowing recent actions to promote or suppress proposals from
any source.

In the subsections that follow, we describe Bazaar’s event flow in more detail, and
the way in which it affords flexible orchestration between multiple behavioral
components. This orchestration is key to providing agile, responsive conversational
supports. It also underpins Bazaar’s role as a rapid research platform.
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Events and Components

In Bazaar, an Event is an object representing something interesting that has happened
in the world of the agent. Some Events come from the environment and map to the
actions of participants, like a user entering a chat room, or an incoming user
message—these may be annotated by Preprocessor components to reflect a rich
understanding of the Event. New Events can also result from the analysis of other
Events, or represent awareness of system state. Events such as these are used to
launch phases of macro-scripts, or to initiate dynamic support. Bazaar components
can generate and respond to arbitrary author-defined Events, thus it is not possible to
provide a comprehensive list. The default Event classes handled by the core Bazaar
components include Message (a chat message is sent by a student), Presence (a
student enters or leaves the chat room), Whiteboard (a student manipulates an object
in the shared whiteboard), Dormancy (a student or group has been idle for a certain
amount of time), Launch (author-specified conditions for beginning a macro-script
have been met), and Step Done (a stage in a macro-script step has been completed).

Components in Bazaar represent a modular representation of related behavior and
state-knowledge, corresponding to all or part of a single method of scripting or
support. Components respond to those Events they consider relevant. Bazaar defines
a two-step event-processing flow, dividing components’ event-processing responsi-
bility into Preprocessor and Reactor roles. While some components may act in both
roles, this two-stage processing is still enforced. When a new Event is received by the
system, all Preprocessor components that have registered for a particular Event class
are given the opportunity to respond to it. They may respond by generating new
Events (perhaps to indicate a shift in the conversation’s focus) or by adding infor-
mation to the original Event. Events are subsequently delivered to those Reactor
components which are registered for these Events’ classes. Reactors have the oppor-
tunity to respond to preprocessed Events (to dynamically enact sub-scripts or sup-
ports) by proposing actions to the Output Coordinator.

Output Coordinator: Prioritizing Proposed Actions

As mentioned above, the Output Coordinator is needed to avoid clashes between
multiple proposals that may have been triggered within the same period of time. Most
commonly, clashes occur between proposals related to macro level support and
proposals related to micro level support. Figure 3 illustrates an example proposal
flow within the Output Coordinator. Proposals for agent action, received from the
Reactor components, are queued by Bazaar’s Output Coordinator. When a Reactor
creates a Proposal, it is assigned a timed window of relevance, and a priority (between
0 and 1). Periodically, the Output Coordinator will re-evaluate the priority of each
remaining Proposal (by taking hints from recently enacted Proposals), rejecting those
that have expired, and accepting and enacting the Event with the highest priority. A
previously-accepted agent action can leave a lingering presence with the Output
Coordinator, a Proposal Advisor, which can re-weight the priority of (or entirely
suppress) incoming Proposals until its influence expires. Each action Proposal is
constructed with a timeout-window after which it is no longer relevant—if a queued

104 Int J Artif Intell Educ (2014) 24:92–124



Proposal has not been accepted when its timeout expires, it is removed from the
queue. When a message is accepted or rejected, a callback method (which may be
defined at the time of Proposal creation) is invoked, allowing the proposing Compo-
nent to update its state accordingly.

Bazaar provides methods for creating Proposals with Proposal Advisors for
common use cases. These include sending simple single turn messages, or interven-
tions that involve sequences of messages and that suppress all subsequent Proposals
(or those from a particular set of source components) for a given amount of time or
until the sequence of associated behaviors is complete (to allow an opportunity for
student follow-up, for example). In most cases, employing these pre-defined advisors
is sufficient to author a smooth and natural agent experience. Bazaar also supports
more advanced proposal-management techniques, such as affording a Proposal the
ability to re-evaluate its own importance in light of subsequent Events.

By allowing Proposals to establish constraints on near-future Events in a general
way, conversational agents authored in Bazaar can be responsive to changes in both
student behavior, and in the behaviors enacted by the agents’ behavioral components.
As support behaviors re-evaluate their own relevance, the agent thus has the potential
to effectively change strategies dynamically, based on whether the current strategy is
having the desired effect. Authors of Bazaar agents can specify these to suit their
experimental, pedagogical, and practical needs. In particular, the rigidity of timing
with which macro-scripted elements are executed can be adjusted along the spectrum
between replicability and internal experimental validity, and natural, external

Fig. 3 Proposals are managed by the Output Coordinator
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conversational validity. Table 3 details the Proposal and Advisor configurations for
components used in the studies described in this article.

Using Bazaar to Implement Supportive Interventions

Three different interventions are evaluated in the series of studies reported in this
paper. Revoicing elicits Self-Oriented, Transformational, Consensus Oriented trans-
acts. Agree-Disagree elicits Other-Oriented, Representational, Conflict-Oriented
transacts. Finally, APT Feedback is designed to offer non-specific encouragement
for students to engage in APT related behaviors. As will become clear, all of these
interventions reused many of the same components in their implementation.

Detecting Academically Productive Talk Candidates

The two APT interventions implemented for the studies reported in this paper
required the detection of task-relevant conceptual assertions. For example, attempts
at articulation of task-relevant assertions could be the focus of a reformulation elicited
by a Revoice facilitation move or the idea that a student agrees or disagrees with in
response to an Agree/Disagree move.

In order to identify task-relevant conceptual assertions, we worked with domain
experts and instructors to develop a “gold standard” list of statements that captured
important concepts and misconceptions for the unit of study. Such statements were
drawn from both the experts’ knowledge and expectations and from transcripts of an
unsupported dry-run of the task. We use a “bag of synonyms” cosine similarity

Table 3 Proposal and Advisor configurations for components described in this article

Bazaar
component

Behavior intent Proposal
priority

Proposal
timeout

Advisor implementation

Timed
script

Provide consistent time for
each section across
groups, allow time for
reading

High 60 s Block all tutor actions for a time
proportional to the length of the
displayed prompt.

Social
support

Offer immediate responses
to social cues

Low 3 s Block all tutor actions for 5 s.

APT
feed-
back

Give immediate feedback
on student APT
behaviors

High 3 s Block all other tutor actions for 5 s,
block other APT moves for 20 s

Revoicing Highlight and clarify
student-generated con-
cepts

Medium
(proportional
to candidate
similarity)

15 s Block all other tutor actions for
10 s, block other APT moves for
a further 45 s

Agree
disagree

Support discussion of
student-generated con-
cepts

Medium
(proportional
to candidate
similarity)

15 s Check for student followup before
acting. Prioritize agree-disagree
tutor followup prompts. Block
other tutor actions for 10 s, block
other APT moves for a further
45 s.

106 Int J Artif Intell Educ (2014) 24:92–124



measure (Fernando and Stevenson 2008; Mihalcea et al. 2006), which essentially
measures overlap in word usage. Student assertions which are within a certain
threshold of similarity to the gold statements are identified as revoicable or agree-
disagree candidates that could be evaluated by the group. Both the Revoicing and
Agree-Disagree supports described employ use the same detection method (imple-
mented as a Bazaar Pre-Processor component), although with a looser similarity
threshold in the latter case.

Revoicing Facilitation

One of the forms of support evaluated in this paper is a Bazaar agent that performs the
APT Revoicing move. The agent compares student input against a list of correct
statements drawn from the data collected in pilot runs of the studies. If an entry in this
list could be interpreted as a paraphrase of the student’s input using the method
described above, it is offered by the agent as a “revoicing” to the students. The same
statement was never offered more than once in the same session as a revoicing. When
student statements were not close enough to match the revoicing list but contained the
first mention of important lesson concepts (like “test strip” or “molecule size”), the
agent would ask the student or a peer to expand or restate their contribution.
Examples are given in Table 4.

An example from a unit of 9th grade biology on Genetics, which was the context
for Study 2 discussed below, is displayed in Table 5. Here all of the student turns that
are detected to be revoicable are marked with italics. The Tutor’s revoicing is marked
in bold. Note that while two turns were detected as revoicable in the Preprocessor, a
revoicing was only triggered once because of the constraint that the same concept
won’t be revoiced more than once in the same conversation. What we see in this
example is that the tutor’s revoicing of Student1 created the opportunity for that idea
to be the focus of reformulation and clarification, as shown by Student2’s followup.

Agree-Disagree Facilitation

We also present a conversational agent behavior based on the “Agree-Disagree” APT
move. As the group discusses flows, the agent monitors the chat for student assertions
that could be followed up by a check for agreement or understanding. This uses the
detection method described above, but with a looser match threshold than that

Table 4 Examples of Revoicing behaviors

Student contribution Revoicing facilitation response

Basically the glucose will get inside Maybe you could state that as “the cell membrane is
permeable to glucose.”

It changed because the tube absorbed the iodine, So are you saying “the molecules diffused through
the membrane?”

I predict that if the holes in the plastic are large
enough , the glucose will go into the water
solution..

Maybe you could state that as “both water and
glucose molecules are able to move between the
two environments.”
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employed by the Revoicing behavior. This results in the detection of a greater number
of candidate statements, and more opportunities for support than the Revoicing agent
could afford. Not all of these detected statements will result in the agent triggering an
Agree-Disagree move. Instead, when a candidate statement is identified, the Agree-
Disagree component waits for the other students in the group to respond to it. If
another student responds with an evaluation of their peer’s contribution (along the
lines of “I agree” or “I think you’re wrong”), but does not support their evaluation
with an explanation, the agent will encourage this second student to provide one. If a
student instead follows up with another candidate statement, the agent does nothing,
leaving the floor open for productive student discussion to continue unimpeded,
reducing the risk of over-scripting their collaboration. If the other students do not
respond with either an evaluation or a contentful followup, the agent prompts them to
comment on the candidate statement – for example, “What do you think about
Student’s idea? Do you agree or disagree?” This interactive process is illustrated in
Fig. 4.

Table 6 shows an example of this support in the high-school biology setting. Times
are given in seconds from the beginning of the excerpt. Rows marked in italics are the
automatically detected labels the agent uses to motivate its facilitation moves.
Student1 offers a contribution that is a candidate for evaluation. After 15 s of no
students following up, the agent inserts an Agree-Disagree prompt. Student2 then

Table 5 Extended Revoicing example in a 9th grade biology lesson from a Genetics unit

Time Author Text

00:12 Student1 Yes both of the parents are momozygous but yellow cat is dominent and white cat is
recessive

00:27 Tutor Let me make sure I understand you - are you saying a white cat had to come from
parents who both carry the recessive white fur gene?

00:36 Student2 Because the orange color coat is more dominant than the white color coat

00:57 Student1 Its true

Fig. 4 The agree-disagree move only triggers in the absence of productive student followup
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responds very quickly, and then Student3 follows suit. Thus, the agent’s prompt
seems to have successfully engaged the group in responding to Student1.

The excerpt shown in Table 7 is drawn from a unit of college Chemistry in
intermolecular forces. This exchange is typical of a group interaction in this
environment—Student1’s contribution at 17 s, although a candidate for evaluation,
is not acted upon by the agent because Student3’s follow up pre-empts it. After 15 s
following Student3’s statement without any sort of uptake by the group, the agent
prompts the group to agree or disagree with it. Student2 offers a challenge, which
leads to an extended back-and-forth between all three students.

APT Feedback

A final behavior implemented using Bazaar and evaluated in this paper provides
positive feedback for student APT. Here the goal is to offer encouragement when
students themselves begin to act as APT facilitators with one another. Thus, rather
than offer APT facilitation moves, the agent’s task here was to detect when students
were doing it. Student input was matched against a list of hand-crafted patterns
indicating APT moves including explanation, challenges, revoicing, and requests

Table 6 Agree-disagree example in a 9th grade biology lesson from a Genetics unit

Time Author Text

00:00 Student1 The yellow cat is probably GG and the white is gg

00:15 Tutor Do you agree with Student1? Why, or why not?

00:17 Student2 Gg,Gg.Gg.Gg.

00:31 Student3 I do shes right

00:47 Student1 I agree with Student2 for the possible outcomes

00:48 Student2 I agree with Student1

Table 7 Agree-disagree example in an undergraduate Chemistry unit on intermolecular forces

Time Author Text

00:00 Student1 Ok lots of things to do…

00:13 Student1 First one

00:17 Student1 Surface area is higher

00:20 Student2 Arrow up?

00:22 Student3 Ok, boiling pt will go up and vdW will go up for all of them consecutively… right?

00:37 Tutor Do you concur with Student3? Why, or why not?

00:41 Student2 Hmm not necessarily

00:47 Student1 Area goes up for each

00:50 Student2 Would it?

00:51 Student2 Im not sure

00:56 Student3 Yea for sure area goes up

Int J Artif Intell Educ (2014) 24:92–124 109



for others to provide each of the same. If a student statement matched, the agent
publicly praised the student’s move, and (when appropriate) encouraged the other
students to attend to and interact with that student. Rather than perform APT based
facilitation itself, as the Revoicing behavior does, the Feedback behavior was meant
to indirectly support the prevalence of APT in the discussions by encouraging
students to take this facilitation role. An example is presented in Table 8, where
moves detected as worthy of positive feedback are marked in italics, and the agent’s
feedback is marked in bold.

Method

The line of inquiry investigated in this article was prompted by the hypothesis that by
incorporating intelligent agents to model, support, coach, and provide feedback for
students using Academically Productive Talk (APT) moves, students will benefit in
terms of learning and interaction. Note that we do not hypothesize that all APT moves
are interchangeable. Rather, in this work we manipulate the usage of different APT
moves in order to understand better their separate and joint effects on measures of
learning and interaction. The experiments presented in this paper build on the early
success of a form of APT, namely revoicing support, in a study with 9th grade
biology students (Dyke et al. 2013). The series of studies presented in this paper
serve as a test of the generality of the effect.

As an advance organizer for the series of studies and analyses, what we will see in
these studies is that the positive effect of APT facilitation behaviors is context
specific. Thus, a more generalizable form of support would need insights into the
contextual pre-conditions for the success of these facilitation strategies. The pattern of
results across the studies begins to provide an empirical foundation for a more agile,
more generalizable form of support that can use APT facilitation behaviors in a more
nuanced, population sensitive way. Note that we are not claiming in our presentation
of these studies that we already have this agile form of support. Rather, our investi-
gations provide the initial empirical foundation for developing such an approach. In
addition to the learning gains analysis for each study, we present an automated
process analysis technique that proves surprisingly accurate in identifying which
interventions were most successful in each context. An automated measure that
provides an indication of the relative success of alternative intervention strategies

Table 8 Feedback example from the Dyke et al. study

Time Author Text

08:41 Student1 It weighs more because there is more in it

08:45 Student2 Starch is tested with a tube as the glucose is tested with a piece of paper like material

08:45 Tutor Thanks for offering an explanation, Student1 :-)

08:46 Student3 The longer you leave the test strip in the water the darker green the strip gets and the
more weight the glucose solution collects

09:22 Student1 Student3, wouldn’t it just show that there was more in it
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within contexts can be used to discover new associations between contexts and
facilitation strategies in real time. Thus, we will argue that beyond the insights into
the individual contexts investigated in this series of studies, the results allow us to
make cautious predictions beyond those contexts using the results from the process
analysis we present as one of the contributions of this paper.

Experimental Paradigm Common Across Studies

In all four studies discussed in this paper, which includes the foundational Dyke et al.
(2013) study and three new ones, the instructional goal is for students to understand
principles that explain causal mechanisms at a deep level. To that end, we prompt
students for explanation in the context of group discussion with the goal that students
will articulate and monitor their own reasoning, evaluate one another’s reasoning, and
challenge one another. In all cases, students interact with their group members by
logging into a chat room assigned to their group in the ConcertChat environment
displayed in Fig. 1 above, a discussion environment with a shared whiteboard
(Mühlpfordt and Wessner 2005).

Assessment

In all studies presented in this paper, we employ both summative assessments in the
form of pre/post domain-knowledge tests, as well as process assessments that mea-
sure the interventions’ success in eliciting more of the behaviors that mark effective
collaborative learning processes. Thus the first analysis we do in all studies is to
verify that learning took place between pre and post-test (using an ANOVA) and then
to test for differences in learning between conditions (using an ANCOVA).

Beyond the learning gains analyses, we also do a process analysis. The specific
interaction goal of APT interventions is to engage students in a more intensive
exchange of explanations. More specifically, the desired contributions within these
exchanges are what we referred to above as revoicable assertions. By more intensive,
we do not mean that students utter more explanations per se, but that the explanations
they utter are directed towards building on those of their partner students. The
motivation for attempting to achieve this was to raise the level of critical thinking
and learning. Thus, in addition to a Pre/Post test measure of learning, a process
analysis to verify that the intervention did its job is also important for evaluating our
hypothesis. Anecdotally, we have observed that in some conversations, there were
bursts of explanation behavior where this kind of intensive knowledge exchange was
taking place. The purpose of our quantitative process analysis was to measure the
extent to which this kind of bursty behavior was occurring within discussions as a
result of the manipulation.

In order to accomplish this, the chat logs were segmented into intervals such that
one observation is extracted per student for each interval. For young learners, we use
5 min as the interval since they type slower and take more time before responding
whereas for older, more advanced learners, we use 2 min as the interval. In this way,
we keep the average number of contributions per segment comparable between age
groups. In each observation, we count the number of revoicable assertions contrib-
uted by the student and the number of revoicable assertions contributed by other
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group members. Conversations with more bursty behavior patterns should have a
higher correlation between these two variables, which would signify that students are
more active in the conversation when their partner students are also active.

Thus, for the process analysis, we evaluate the effect of condition on the correla-
tion within time slices between occurrences of revoicable assertions of a student with
those of the other students in the same group. We used a multi-level model to analyse
the results in order to account for non-independence between instances. We expect to
see that the correlation is significantly higher in the condition with the intervention
when the intervention is effective. We do the analysis separately for each independent
factor within each study in order to contrast discourse behaviour between conditions.
Specifically, we used what is referred to as a random intercept and slope model,
which allows estimating a separate latent regression line for a student’s behavior in
relation to that of their partner students within time slices. In this model, each student
trajectory is characterized by a regression with latent slope and intercept.

To do this analysis, we used the Generalized Linear Latent and Mixed Models
(GLLAMM) (Rabe-Hesketh et al. 2004) add-on to STATA (Rabe-Hesketh and
Skrondal 2012). The dependent measure was number of revoicable assertions by
the student within the time slice. The independent variable was the number of
revoicable assertions contributed by the other students in the group within the same
time slice. The condition variable was added as a fixed effect, and as an interaction
term with the independent variable. A significant interaction between condition and
independent variable in this case would indicate a significant difference in correlation
between a student’s contribution of revoicable assertions and that of their partner
students. A positive difference would be indicative of an intensification of the
interaction between students. A significant positive difference in intercept between
conditions would indicate that the intervention raised the average number of
revoicable assertions within time slices.

Recap of Study 1: 9th Grade Diffusion Lab

The first of four studies, which we discussed above (Dyke et al. 2013), was carried
out during a module introducing the concepts of selective permeability, diffusion,
osmosis and equilibrium. This study took place in an urban high school, and the
content was relatively new to the students since they were at the beginning of a new
unit in their course. In this study, the students worked together in a collaborative
session for about 20 min. As mentioned, this study was run as a 2×2 between subjects
factorial design, where the first variable for manipulation was the presence or absence
of the Revoicing behavior. The second variable was the presence or absence of the
APT Feedback behavior. Students showed significant learning gains in all conditions,
and there was a significant main effect of Revoicing such that students in the
Revoicing condition learned significantly more between Pretest and Posttest, with
an effect size of 0.34 standard deviations. There was no significant main effect of the
APT Feedback manipulation although there was a trend for it to have a negative
effect. And there was no significant interaction between the two factors.

In order to compare the results from this study with those of the other studies, we
present now the process analysis results from this study. The process analysis using
the random intercept and slope model showed an interesting contrast between the
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Revoicing intervention and the APT Feedback intervention that is indicative of a
possible explanation for the differential effect on learning during the collaborative
activity. In the Revoicing condition (where there was a Revoicing agent to offer micro
level support), we saw the pattern that we anticipated in conjunction with a positive
learning effect in comparison with the Control condition (where were was no
Revoicing agent). There was no significant difference in intercept between condi-
tions, confirming that there was no difference in absolute number of revoicable
assertions between conditions. More importantly, there was no significant correlation
between the number of revoicable assertions of a student and that of his partner
students in the Control condition where there was not a Revoicing agent. However,
there was a significant interaction between the Revoicing condition variable and the
number of revoicable assertions contributed by partner students (R=0.14, z=2.03, p
<.05). This indicates that there was a significantly higher positive correlation between
the number of revoicable assertions contributed by a student and that contributed by
partner students in the Revoicing condition. Thus we do see evidence that in the
Revoicing condition, the intervention had the effect of precipitating pockets of
intensive discussion.

In contrast, with the APT Feedback intervention we see an entirely different
pattern. In this case, there was a significant positive effect on the intercept associated
with the APT Feedback condition, indicating that students contributed significantly
more revoicable assertions in the APT Feedback condition. However, there was a
marginal interaction between condition and the number of revoicable assertions, this
time with a negative coefficient (R=−0.16, z=−1.87, p=.07). This indicates that
while students were talking more, they were interacting with one another less
intensively, which is consistent with the finding of no effect on learning. A possible
explanation is that the Feedback agent elicited interaction between students and itself
while the Revoicing agent elicited interaction between students, which was the goal.

Study 2: 9th Grade Genetics

The second study was conducted within the same course where the first study was
conducted, but 2 months later, in a unit on Genetics. The study was carried out during
a module specifically introducing the concept heredity, and the use of Punnet squares
as a tool to reason about the inheritance of single traits. At the time of the study, the
material was somewhat familiar to the students since they were towards the end of the
unit by the time the study took place. In the collaborative activity that lasted for about
20 min, student groups were presented with a set of three problems and asked to
reason about the physical and genetic traits of the hypothetical parents of a set of
sibling organisms. Specifically, in each problem, students were shown a litter of eight
kittens that varied in fur color (either orange or white), and were instructed to identify
the genotypes and phenotypes of the parents, and to explain their reasoning to their
teammates. This sort of “backwards” reasoning had not been explicitly addressed in
the course to date—students only had prior experience with “forward” reasoning
from given parental traits. The mystery parents were presented as the inputs to an
unpopulated Punnet square, as shown in Fig. 5. As an incentive, students were told
that the best team, determined by a combination of discussion quality and post-test
scores, would be awarded with a modest prize of food. Each of the three tasks was
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progressively harder than the last in that fewer clues about the parent’s identities were
included.

The collaborative task content, the macro-scripts that supported it, and the list of
key concepts used for revoicing were all developed iteratively with feedback from
teachers and content experts.

Participants

This study was conducted in the same seven 9th grade biology classes of an urban
school district that the first study was run in, only 2 months later. The classes were
distributed across two teachers (with respectively 3 and 4 classes) for a total of 78
consenting students, who were randomly assigned to groups of 3. Groups were
randomly assigned to conditions.

Experimental Manipulation

In this study, only Revoicing behaviors were manipulated experimentally. The APT
Feedback that was evaluated in the first study was not repeated in the second study
since it did not lead to a positive effect with this student population in that study. In
both conditions of this study, the agent provided the same macro level support by
guiding the students through the activity using the same phases introduced in such a
way as to control for time on task. Only the micro-level support varied between
conditions.

Study Procedure

Just like in the first study, the students first participated in a normal class lesson on
genetics as part of the course curriculum. At the end of the period, they took a pre-
test. The pre-test included four multiple-choice questions testing the students’ ability
to use Punnet squares to reason about the likelihood of genetic and physical traits of
children based upon the traits of the parents, and one open-ended question designed

Fig. 5 Example of a Punnet square
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to elicit explanation of reasoning about parental identity based upon the physical
traits of offspring.

In the next class period, the students participated in a 20 min collaborative
computer-mediated activity during which the experimental manipulation took place.
The students did the activity in groups of three students, scaffolded by conversational
agents. Students within classes were randomly assigned to groups and then groups to
conditions. As in the first study, this activity was introduced by a cartoon depicting
the use of APT and a reminder of the basic science principles underlying the activity,
in this case principles of simple inheritance. At the end of this second phase, the
students took a post-test of the same design as the pre-test, although with different
characteristics and genotypes presented in each problem.

Results

As in the Diffusion Lab study, we evaluated pre-to-post test learning and the effect of
condition on learning and on the collaborative process. However, the material appears to
have been too easy for the students. Post-test scores were higher on average than pre-tests
scores, but not significantly. And although the trend was for students in the Revoicing
condition to learn more than students in the Control condition, the difference was not
significant or even marginal. Thus we do not elaborate on the learning gains analysis here.

While the learning gains analysis does not allow us to draw new insights about
learning, we can observe how the collaborative processes play out with the same
student population used in Study 1, but with material that appears to be less
challenging for them. The process analysis using the random intercept and slope
model showed an interesting contrast between this study and the Diffusion lab study.
Similar to the Diffusion study, there was no significant difference in intercept
between conditions, confirming again that there was no difference in absolute number
of revoicable assertions between conditions. This time, however, there was a signif-
icant correlation between the number of revoicable assertions of a student and that of
his partner students in both conditions (R=0.31, z=3.59, p<.001), and no difference
in slope between conditions. Thus, we have confirming evidence that there was no
difference in effect between conditions. Students were interacting productively in
both conditions regardless of support, possibly because the material was easy for
them and thus they may not have needed the revoicing support.

Study 3: Freshman Engineering Design

As a second replication of the successful Diffusion Lab study, we ran a study in a
Freshman Engineering Design course at a selective private university. The material
presented in the study was relatively familiar to the students. The experimental
manipulation was identical to that of Study 1, including both the APT Feedback
manipulation and the Revoicing manipulation.

Participants

One hundred nine mechanical engineering students participated in the experiment,
which was held over six sessions spread evenly between 2 days. Students were
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grouped into teams of three or four individuals. The number of three person and four
person groups was roughly evenly distributed between conditions. In each session,
the groups were evenly distributed between the three conditions. The 2 days of the
experiment were separated by 2 weeks.

Experimental Procedure

Each session started with a follow-along tutorial of computer-aided analysis where
the students analysed a wrench they had designed in a previous lab. A pre-test with 11
questions (7 multiple choice questions and 4 brief explanation questions) was ad-
ministered after the analysis tutorial. The experimental manipulation happened during
the Collaborative Design Competition after the pre-test. Students were asked to work
as a team over 90 min to design a better wrench taking three aspects into consider-
ation: ease of use, material cost and safety. Students were instructed to make three
new designs and calculate success measures for each of the three aspects under
consideration. As part of this process, students occasionally were requested to make
predictions and explain them, however, it should be noted that this task was some-
what less conceptually oriented than that used in the other studies.

Results

The results of this study were strikingly different from the two conducted in 9th grade
Biology. In particular, rather than achieving a positive effect, the Revoicing manip-
ulation had a significant negative effect on learning within the APT Feedback
condition with this more advanced population of learners.

As in the earlier studies, we began our analysis by first verifying that students
learned between pre and posttest. For this analysis, we treated Test as a repeated
measure, with Pre and Post being the two time points. We conducted an ANOVA test
with Test as the dependent variable. Time point, Revoicing, and Feedback were
independent variables. We included all two-way interaction terms as well as the
three-way interaction term. There was a significant main effect of Time point
F(1,210)=9.28, p<.005, demonstrating that students learned. None of the interaction
terms were significant. Thus students learned between pre and posttest regardless of
condition.

Next we tested for differences in learning between conditions. For this analysis, we
conducted an ANCOVA with Post-test as the dependent variable and Pre-test as a
covariate. Revoicing and APT Feedback were the two independent variables. We also
included the interaction term in the model. Here there was almost no effect of APT
Feedback F(1, 104)=0.03, p=.87. There was a trend for a negative effect of the
Revoicing manipulation F(1, 104)=2.22, p=.13. The interaction between APT Feed-
back and Revoicing was not significant, however, it should be noted that within the
APT Feedback condition, there was a significant negative effect of Revoicing (p
<.05). Thus, there is some qualified evidence of a potential detrimental effect of
Revoicing with this population.

Consistent with the negative trend, the process analysis using the random intercept
and slope model showed an interesting contrast with the earlier studies when we
evaluated the effect of the Revoicing manipulation. Similar to the earlier studies, there
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was no significant difference in intercept between conditions, confirming again that
there was no difference in absolute number of revoicable assertions between condi-
tions. There was, however, a significant correlation between the number of revoicable
assertions of a student and that of his partner students in the control condition (R=0.1,
z=3.7, p<.001), as well as an interaction between condition and slope. In contrast to
the Diffusion study where we saw a positive effect of revoicing both on learning and
on the slope, here we see a negative impact on slope based on the correlation on the
interaction term. This echoes the trend for a negative effect on learning (R=−0.1, z=
2.4, p<.05). Thus, we have confirming evidence that there was a negative impact of
the Revoicing manipulation with this population. When we do the same analysis to
evaluate the effect of the APT Feedback condition, we see no effect of any variable.

Study 4: Freshman Honors Chemistry

In the final study, published as a conference paper (Adamson et al. 2013), we tested
the hypothesis that one reason why Study 3 was not successful was that the students
did not need support in making themselves clear. Instead, we hypothesized that
instead of support for basic articulation of ideas, they needed support to the next step
of challenging each other’s reasoning. We consider this study to be a good compar-
ison case to Study 3 because the student population was similarly university level
from the same selective private university, and the material was similarly relatively
familiar to the students.

The collaborative task, which lasted for about 90 min, focused on intermolecular
forces and their influence on the boiling points of liquids. For each problem in the
activity, students were asked to predict whether a given substance would have a
higher or lower boiling point than two of its relatives, explaining their reasoning
about the set of molecules in terms of their structure and the forces at play. Each
problem of this sort was followed up by revealing the actual boiling point of the
mystery molecule, and asking students to revisit their predictions and explanations in
light of the new data. A liquid’s boiling point can be influenced simultaneously by a
number of different intermolecular forces, each of which arises as a consequence of
the molecules’ particular structural attributes. Correctly identifying the pertinent
structural features of molecules and reasoning about how they will affect the liquid’s
boiling point is a non-trivial and multi-faceted task. Because multiple types of
intermolecular forces influence liquids’ boiling points, we employed the Jigsaw
technique (Aronson et al. 1978), assigning students within each group to read
individually about one of three forces that contribute to a molecule’s boiling point.
This division also provided intrinsic motivation for collaboration, as the task could
not be completed without knowledge from each of the student experts.

Participants

The participants in our study were first-year undergraduate students studying
intermolecular forces in an Honors Chemistry course. Students were randomly
assigned to groups of three or four, and then groups were randomly assigned to
conditions. The balance of three and four person groups was even between condi-
tions, and there was no effect of team size on any of our dependent measures. All
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students in the course were required to participate in the online exercise for course
credit, but they had the option of not consenting for their data to be included in our
research. Thus, we only report results for consenting students. Altogether, our
analysis includes data from 18 students from 6 different groups, which is 9 students
and 3 groups in each condition.

Experimental Manipulation

Our experimental design was a simple 2-condition between-subjects design where
teams were assigned randomly either to the Agree-Disagree condition or the Control
condition. Both conditions were identical except for inclusion of the Agree-Disagree
facilitation move by the agent. Thus, both conditions benefitted both from macro-
level and micro-level script based support. In the Agree-Disagree condition, when-
ever the agent was not engaged in a directed dialog, it was receptive to opportunities
to dynamically offer support using the Agree-Disagree behavior, discussed above.

Experimental Procedure

The experimental procedure was simple. Students took a pretest, then participated in
pairs in the online collaborative activity, and finally completed a post-test. Pre and
post tests were used to measure learning during the collaborative exercise.

Results

Our hypothesis was that the introduction of the Agree/Disagree agent would intensify
the interaction between students, which might increase critical thinking, and subse-
quently increase learning. Our analysis offers qualified support for the hypothesis.

As before, we began our analysis by first verifying that students learned between
pre and posttest. For this analysis, we treated Test as a repeated measure, with Pre and
Post being the two time points. We conducted an ANOVA test with Test as the
dependent variable. Time point and Revoicing were independent variables. We
included the interaction between Time point and Condition as well. There was a
significant main effect of Time point F(1,31)=7.58, p<.01, demonstrating that
students learned. The interaction term was not significant. Thus students learned
between pre and posttest regardless of condition. As before, to evaluate the effect of
condition on learning, we used an ANCOVAwith posttest as the dependent variable,
pretest as a covariate, Condition as an independent variable. In this analysis, there
was a marginal effect of Condition on learning (F(1,11)=1.82, p<.1, effect size 0.55
standard deviations), such that students in the Agree/Disagree condition learned
more. The effect was moderate.

Next we examined the intensifying effect of the intervention on the interaction
between students using the same random intercept and slope model approach used in
the earlier studies. The analysis showed the pattern that we expected. There was no
significant difference in intercept between conditions, confirming that there was no
difference in absolute number of revoicable assertions between conditions. More
importantly, there was no significant correlation between the number of revoicable
assertions of a student and that of his partner students in the control condition where
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there was not an Agree/Disagree agent. There was, however, a significant interaction
between the condition variable and the number of revoicable assertions contributed
by partner students (R=0.14, z=2.03, p<.05). This suggests that there was a signif-
icant positive correlation between the number of revoicable assertions contributed by
a student and that contributed by partner students in the Agree/Disagree condition.
Thus we do see evidence that the intervention had the effect of precipitating pockets
of intensive discussion.

Discussion

The pattern of results across studies is consistent with what we expected to see given the
connection between types of transactive discussion behavior and how they are related to
the three different discussion facilitation behaviors we explored in this paper. In
particular, we contrasted Revoicing, which is meant to elicit self-oriented, consensus-
oriented transacts, which we have argued should be less demanding and to some extent
logically prior to other-oriented, conflict-oriented transacts, which are elicited by
Agree-Disagree facilitation moves. It would therefore be consistent to expect that
Revoicing moves would be most needed by younger, less sophisticated learners,
whereas Agree-Disagree moves would be more appropriate for more advanced learners.
In prior studies of the effect of transactivity on learning (Azmitia and Montgomery
1993), the effect was only observed in material that was difficult for learners, thus we
would expect that learners who were close to mastery would not benefit substantially
from APT. Thus, where material is easy for learners, we would not predict a difference
between conditions where we test APT in comparison with other facilitation behaviors
or even no facilitation. A summary of results across studies is given in Table 9.

In study 1 where we test Revoicing against Feedback for APTwith young learners
on material that was difficult for them, we observe a positive effect of Revoicing. In

Table 9 Summary of results across studies

9th grade diffusion 9th grade
genetics

Freshman engineering design Freshman
Honors
Chemistry

Experimental
manipula-
tion

Revoicing vs no APT,
feedback vs no feedback

Revoicing
vs no
APT

Revoicing vs no APT,
feedback vs no feedback

Agree-disagree
vs no APT

Learning
effect

Positive effect of
Revoicing, no effect of
feebdack

No
signifi-
cant
effect of
Revoici-
ng

No main effect but significant
negative effect of
Revoicing in feedback
condition

Marginal
positive
effect of
agree-
disagree

Process
analysis

Significant positive effect
of Revoicing, marginal
negative effect of
feedback

No effect of
Revoici-
ng

Significant negative effect of
Revoicing, no effect of
feedback

Significant
positive
effect of
agree-
disagree
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study 2, we test Revoicing again, but this time with material that was easy for the
students. Here there was no significant difference between conditions. This contrast is
consistent with what we argued above. It is true that since the group of learners was
the same in the two studies, the difference in effect could have potentially been
related to the fact that the students were already familiar with the support agents. It is
clear, however, that re-exposure to the same manipulation does not completely
explain the difference in results across these two studies. In the first study, we
observed a significant pre to post test gain across all conditions, including the
condition where no support was offered beyond the macro level structuring of the
activity. In the second study, no significant pre to post test gain was observed in any
condition. Rather, both pre and post test scores were high across conditions, which
highlights the fact that the material was easy for the students.

Studies 3 and 4 involve more advanced learners on material that was moderately
familiar to them. More advanced learners are already good at articulating their own
ideas. Thus, Revoicing support is unneeded support for them. Rather, they need to be
pushed beyond that to connect to the reasoning of their partner students. We expect
then not to see a positive effect in study 3 where we test Revoicing on these advanced
learners, and we do expect to see a positive result with Agree-Disagree, which we test
in the final study. And we do see this.

The pattern of results with learning gains is as expected from prior work. What is more
striking is the picture that emerges when we compare the pattern of results from the learning
gains analysis with that from the process analysis. What we see from the series of studies
presented in this paper is that the effect of condition on learning gains and on collaborative
process provide largely converging evidence across studies. This convergence highlights the
value of the simple form of process analysis presented in this article for evaluating in process
effect of collaboration support. It shows that this process analysis can be used to gauge
whether an intervention is working appropriately with a group of learners. If the process
analysis indicates that the strategy is not a good match for the learners, the strategy can be
adjusted. The new strategy can then be evaluated in process the same way, and further
adjustments can be made. Thus, this simple automated process analysis technique could
form the foundation for a new, more agile approach to dynamic support for group learning
where the strategy itself can adapt to the needs of the population of learners.

Conclusions and Current Work

In this paper we have laid an empirical foundation for a research agenda for a new
generation of dynamic support interventions to improve collaborative learning, which
we have termed agile support for collaborative learning. As we have demonstrated
through an integration of results from four experimental studies, the effects of dynamic
support vary based on the ability level of learners as well as the nature of the material
itself. Human instructors are highly agile in their usage of complex interventions such as
Academically Productive Talk along many dimensions, including selection of students,
selection of facilitation moves, timing, and sequencing. Thus, we argue that achieving a
higher level of agility is what is needed to move to the next stage—agility in terms of
selection of students to target, selection of interaction strategies, and timing. Neverthe-
less, while the results presented in this article are compelling, it would be more
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compelling to examine the contrast between multiple different strategies within the same
study. This will be important future work.

Agility comes with challenges from an experimental standpoint, however. As men-
tioned in the architecture discussion above, Bazaar’s flexible approach to interactive
script integration allows a variety of scripting paradigms to be implemented, with
varying effects on the agents’ internal and external validity. For example, specifying
high priority and rigid constraints on macro-scripted actions, alongside low priority for
dynamic feedback, produces an agent configuration with high internal experimental
validity. In such a configuration, macro-script stages reliably occur at specified intervals,
guaranteeing that each group of students interacting with instances of the agent engage
with each stage of the script (and the associated learning opportunities) for the same
amount of time. However, this comes with a loss of agility, and the potential for lost
opportunities for natural collaborative conversation. The beginning of a new script phase
may cut off an ongoing student conversation, or deny another component’s chance to
complete a follow-up move. On the other hand, if the dynamic components are
configured to reserve more follow-up time after their behaviors are enacted (or the
macro-script is configured to wait for a period of inactivity before preceding), there’s
greater opportunity for natural flow and resolution in student and agent interactions. This
lends a greater external validity to the experience, but with greater variability in timing
and experience between instances.

The technical approach presented in this article enables a wide variety of strategies to
be implemented. The work presented in this paper provides the beginnings of the needed
empirical foundation. However, we do not argue that the foundation provided here is
sufficient. Rather, we offer this set of results as an argument in favour of a larger, more
thorough and systematic investigation of the space of possibilities. We offer the publi-
cally available Bazaar architecture and the set of results presented here to the commu-
nity, inviting further work from a broad and creative community of researchers working
on intelligent support for group learning. While the statistical analysis technique used to
estimate the effectiveness of a collaborative learning intervention is simple, we have
demonstrated that it is highly accurate in separating effective from ineffective interven-
tions. Because the approach is simple, it can be easily used by other researchers who take
up the challenge to join the effort to fill out the space of results needed to work towards
agile support for collaborative learning as a community of researchers.
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