
RESEARCH ARTICLE

Reinforcing Math Knowledge by Immersing Students
in a Simulated Learning-By-Teaching Experience

Douglas B. Lenat & Paula J. Durlach

Published online: 21 May 2014
International Artificial Intelligence in Education Society (Outside the U.S.) 2014

Abstract We often understand something only after we’ve had to teach or explain it to
someone else. Learning-by-teaching (LBT) systems exploit this phenomenon by
playing the role of tutee. BELLA, our sixth-grade mathematics LBT systems, departs
from other LTB systems in several ways: (1) It was built not from scratch but by very
slightly extending the ontology and knowledge base of an existing large AI system,
Cyc. (2) The “teachable agent”—Elle—begins not with a tabula rasa but rather with an
understanding of the domain content which is close to the human student’s. (3) Most
importantly, Elle never actually learns anything directly from the human tutor! Instead,
there is a super-agent (Cyc) which already knows the domain content extremely well.
BELLA builds up a mental model of the human student by observing them interact
with Elle. It uses that Socratically to decide what Elle’s current mental model should be
(what concepts and skills Elle should already know, and what sorts of mistakes it
should make) so as to best help the user to overcome their current confusions. All
changes to the Elle model are made by BELLA, not by the user—the only learning
going on is BELLA learning more about the user—but from the user’s point of view it
often appears as though Elle were attending to them and learning from them. Our main
hypothesis is that this may prove to be a particularly powerful and effective illusion to
maintain.

Keywords Intelligent tutoring systems . Learning-by-teaching .Mathematics . Student
model . Software agent . Teachable agents

Int J Artif Intell Educ (2014) 24:216–250
DOI 10.1007/s40593-014-0016-x

This paper is being submitted in the category of “New Ideas that could lead to transformative educational
technology in mathematics and science”. A Special Issue on Landmark Learning Systems and New Ideas and
Developments in Mathematics and Science Learning in memory of Erica Melis

D. B. Lenat (*)
Cycorp, Austin, TX, USA
e-mail: lenat@cyc.com

P. J. Durlach
Advanced Distributed Learning Initiative, Orlando, FL, USA
e-mail: paula.durlach@adlnet.gov

Introduction

We are in the process of applying Cyc, an enormous symbolic Artificial Intelligence
platform (Lenat et al. 1985, 2010; Lenat and Guha 1990), to function as an ITS
(intelligent tutoring system) for 6th grade mathematics. Applying Cyc means slightly
extending its ontology of 500,000 terms, its knowledge base of ten million assertions
and rules, its representation language (first order predicate calculus with several
second- and higher-order extensions), its inference engine (which comprises a general
theorem prover and 1,100 special-purpose efficient reasoners), and its natural language
generation/explanation subsystem. In addition to making these five relatively small
extensions to Cyc, we have designed and developed a substantial new gamification
element and corresponding interface. This extended version of Cyc has its own name:
BELLA.

Most ITS’s simulate a teacher; the user plays the role of the student (Fletcher 2011).
Teachable agent systems, which are surveyed in the following section, are ITS’s which
reverse this paradigm and simulate a learning agent, which the user is then placed into
the role of teaching. These are also called learning-by-teaching (LBT) systems. BELLA
appears to the user to be that sort of teachable agent system, though in actuality it is
something rather different: BELLA already understands 6th grade math content, it
merely runs an avatar, called Elle, who appears to need help in that subject, who has an
even shakier understanding of pre-algebra than does the user. As the user—playing the
role of tutor—interacts with Elle, BELLA (not Elle) watches and learns more and more
about the user every time he/she corrects Elle, and even by his/her silence and inaction.
That user model helps BELLA infer pedagogically useful changes to make in Elle’s
mental model, which then affect Elle’s behavior on future problems. From the user’s
point of view, it often appears that Elle is being taught by them.

While we plan to experiment with various pedagogical principles for selecting
the best Elle model for the user, at any given moment, initially the choice is to
have Elle’s model match the current user model as closely as possible with a slight
exaggeration of each knowledge gap, incorrect skill, tendency to make a particular
type of mistake or fall into a particular type of trap. For example, if the current
user sometimes evaluates all operations left to right in an arithmetic expression,
Elle will be given that same tendency with an even higher likelihood to the same
sort of operator-precedence error, so Elle will make even more egregious and
obvious such errors which the user will have a good chance of noticing,
correcting, and hopefully, in the process of doing so, the user will refresh and
improve their own understanding of operator precedence.

In cases where BELLA does not yet know some elements of the current user’s
model, it errs on the side of having Elle make those errors; if/when the user
corrects Elle, two good things happen as a result: BELLA learns something it
needed to know about this user and, at the same time, it has given the user a small
positive esteem-building experience (esteem-building both in the very act of
having caught the error and also in seeing that Elle is much less likely to make
that error henceforth, thus believing that they have taught Elle something she
needs to know.)

At some abstract level, BELLA truly is a LBT system, just like most teachable-agent
systems, because its main function is to get the user to act like a tutor and, through that

Int J Artif Intell Educ (2014) 24:216–250 217

tutoring, to thereby deepen the user’s own understanding of pre-algebra. But the
process that is actually going on is not building up of “Elle’s brain” by the user, rather
it is dynamic diagnosis and treatment of the user by BELLA. Elle only appears to the
user to be a teachable agent; Elle is just a puppet controlled by BELLA, a diagnostic
instrument BELLA manipulates the way a doctor manipulates a stethoscope.

Before discussing BELLA in more detail, we review the origins of LBT and the
current state of the art in LBT software systems. We then describe a cognitive task
analysis we performed with several dozen sixth graders, and review relevant elements
of Cyc. These three legs of the tripod (others’ state-of-the-art work on learning-by-
teaching systems; student observation; and Cyc) provide the context in which we then
describe some of our design decisions, preliminary experiences and challenges, current
efforts, and future plans for BELLA.

Learning-By-Teaching Systems

Seneca the Younger wrote more than 2,000 years ago, docendo discimus, i.e., by
teaching, we learn (Stone 2004). Research has tended to confirm that teaching pro-
duces benefits for the teacher (e.g., Berliner 1989; Chase et al. 2009; Cohen et al. 1982;
Michie et al. 1989; Roscoe and Chi 2007; Stern 2011). Biswas et al. (2001) suggest that
three phases of teaching can enhance knowledge in the teacher: (1) planning, (2)
explaining and (3) interpreting student questions and feedback. These can produce
benefits in knowledge understanding for the teacher by promoting reflection, self-
explanation, and studying for understanding (rather than memorizing). These, in turn,
lead to better knowledge organization and schema structure. Learning-by-teaching has
gone by several names, including LdL (Lernen durch Lehren,Graef and Preller 1994), the
Monitorial System (Tschurenev 2008), the Bell-Lancaster method (Lancaster 1821),
learning companion systems (Uresti and du Boulay 2004), and teachable agent systems
(e.g., Biswas et al. 2001; Chin et al. 2010; Matsuda et al. 2012a, b; Zhao et al. 2012).

Intelligent tutoring systems emerged in the 1920’s in hard-wired mechanical form
(Fry 1960), and transitioned to software in the 1960’s, catalyzed by the development of
the LOGO programming language (Feurzeig et al. 1969). For the last 50 years, most
ITS’s generally have had the computer “agent” playing the role of the teacher, and the
student user playing the role of, well, the student. But there have been several ITS’s
which have experimented with the learning-by-teaching paradigm, generally calling
themselves either “learning companion systems” (Uresti and du Boulay 2004) or
“teachable agent systems” (Biswas et al. 2001; Chin et al. 2010; Matsuda et al.
2012a, b; Zhao et al. 2012).

For example, in Leelawong and Biswas (2008) and Segedy et al. (2013), a human
student teaches “Betty”—a simulated tutee—about ecology by constructing a concept
map. The map is made of nodes (ecological variables) and links representing causal
relationships between nodes (causes increase or causes decrease). The user can ask
Betty questions or have her take a generated quiz to determine how well she has
learned. Inference rules applied to the map are used to generate Betty’s answers.
Feedback on quiz answers (provided by a mentor agent, Mr. Davis), ideally, prompt
iterative cycles of reading and adding knowledge to or correcting the concept map, in
order to enhance Betty’s quiz performance. Other teachable agent systems have also

218 Int J Artif Intell Educ (2014) 24:216–250

used the building of concept maps, or other direct manipulation of the teachable agent’s
knowledge base as the technique by which the human student teaches a computer agent
(Chin et al. 2010; Nichols 1994; Uresti and du Boulay 2004; Zhao et al. 2012).
Research on Bettty’s Brain (e.g., Wagster et al. 2007; Roscoe et al. 2013) has demon-
strated that many students (acting as teachers) need some support for their
metacognitive and self-regulated learning skills to fully reap the benefits of learning-
by-teaching in these kinds of systems. This support includes such tactics as Betty or Mr.
Davis asking the student to reflect on Betty’s errors in order to focus on what she needs
to learn, discouraging students from using trial and error methods for correcting the
concept map, and Mr. Davis providing help when asked, in response to Betty’s quiz
performance. Adaptive prompts for reflection on what would best help a peer learner
have also been found to be useful in peer tutoring (Walker et al. 2012). An attempt was
made to extend this approach to 6th grade math (Husain et al. 2010; Katzlberger 2005),
but the representation (a network of binary causes/impedes links) proved to be poorly
impedance-matched to the complex concepts and procedural skills involved in this
subject, unlike ecology (Blair et al. 2006; Brophy et al. 1999).

Several other teachable agent systems have also used the building of concept maps,
or other direct manipulation of the teachable agent’s knowledge base, as the technique
by which the human student teaches a computer agent (e.g., Chin et al. 2010; Nichols
1994; Uresti and du Boulay 2004; Zhao et al. 2012). Generally the learning agent’s
model starts out empty, and is built up step by step by the user. This body of research
has demonstrated that many human students (acting as teachers) need some support for
their metacognitive and self-regulated learning skills to fully reap the benefits of
learning-by-teaching in these kinds of systems (Wagster et al. 2007; Roscoe et al.
2013).

Other digital LBT systems have more closely tried to mimic real teaching. Rather
than the human tutor manipulating the teachable agent’s “brain” directly, the human
tutor does example problems and/or holds conversations with the agent. While not a
dedicated teachable agent system, Operation ARIES! (Millis et al. 2011), has a
component in which users can help a teachable agent better understand topics
concerning scientific inquiry through conversation (e.g., independent vs. dependent
variables). Trialogs can occur among the human user, a teacher agent, and a teachable
agent, and can vary according to which participant plays the most active role as
“teacher.” These conversations are governed by a question, a pre-scripted ideal answer,
and a set of hints and prompts based on expected partial answers or misconceptions, in
a manner similar to AutoTutor (Graesser et al. 2005). When deemed to have sufficient
knowledge, the human user in Operation ARIES! has the responsibility to “teach” the
teachable agent, while the teacher agent mostly just observes.

Some LBT systems use artificial intelligence models of learning, generalization, and
classification to learn (i.e., by induction, not by “being told.”) In Winston (1970), users
gave positive examples, negative examples, and near misses, to help the program learn
the Boolean combination of features that define an “arch” composed of three blocks.
Another early system, Math Concept Learning System (MCLS) (Michie et al. 1989),
was designed to learn to solve linear equations in one variable. Its users could interact
with the system in four ways: (1) They could show the system how to solve an equation
by demonstration. (2) They could inspect the rules the system had already learned. (3)
They could test the current rule they were trying to teach by asking the system to use

Int J Artif Intell Educ (2014) 24:216–250 219

that rule to solve an equation. (4) They could ask the system to solve an equation, with
the user providing feedback for each step. Internally, MCLS represented problems as a
set of attributes that could be either values or operators. MCLS learned how to solve
equations by using past examples to induce the different actions that could be taken to
solve equations (e.g., collect like terms) and when to apply each rule. SimStudent is a
more recent version of the same general approach (e.g., Li et al. 2011; Matsuda et al.
2010, 2012a). SimStudent learns production rules by attempting to solve algebra
equations and obtaining feedback from the human user on each step. If given negative
feedback, SimStudent can try a different solution step or ask for a hint, in which case
the user responds by performing the step. SimStudent occasionally asks users for
explanations, such as why a particular problem was selected to work on, or why they
provided negative feedback. The user responds to these requests by selecting a choice
from a drop down menu or in free text. Like for the concept mapping systems, users
can test their SimStudent by giving it a system-generated quiz. When quiz questions are
fixed, Matsuda et al. (2012b), found that students may “teach to the quiz,” resulting in a
SimStudent that performs poorly on new problems. So, as with the concept net systems,
students may apply strategies that are not conducive to deeper understanding (by the
teachable agent and by themselves) unless meta-level mechanisms are built into the
system to support their teaching.

In an effort to enhance student motivation and engagement, many digital learning-
by-teaching systems include game-like elements (e.g., Chase et al. 2009; Kiili et al.
2012; Gulz et al. 2011; Matsuda et al. 2012a; Pareto et al. 2012; Zhao et al. 2012), and/
or use animated characters to represent the teachable agents (e.g., Chin et al. 2010; Gulz
et al. 2011; Kiili et al. 2012; Leelawong and Biswas 2008; Zhao et al. 2012). Many of
these systems have a learning phase and a separate challenge phase, analogous to the
quiz in Betty’s Brain, but couched in more engaging activities For example, in one
instantiation of SimStudent (Matsuda et al. 2012a), a game show-like competition
between SimStudents was offered as an option (in addition to the quiz). Likewise, in
the Eedu Elements math game (Kiili et al. 2012), human students instruct their
teachable agents (mice) in a simulated classroom; but, subsequently each mouse must
use its learning to compete with a cat in navigating a maze. The system developed by
Gulz et al. (2011) and Pareto et al. (2012) more fully integrates the teaching and the
game components. This system supports playing a card game requiring knowledge of
base-ten concepts, such as place-value, carrying, and borrowing. The card game itself is
played by two players, who could be a pair made up of any combination of human
students, teachable agents, or system-generated agents. The human player can
teach an agent how to play by (1) playing themselves, with the agent observing
and asking questions, (2) allowing the teachable agent to play, and commenting on
its actions, or (3) allowing the teachable agent to play unsupervised. Humans
communicate with agents by selecting utterances from a menu of plausible
response alternatives generated by the system. Pareto et al. (2012) found that
when student pairs (9 and 10 year olds) were left to choose how they wanted to
play, they adopted several different methods. For example many pairs team-
supervised one teachable agent playing against a computer-generated agent; an-
other frequently selected pattern was to collaborate on teaching two teachable
agents as the agents played. On the whole, the self-selected patterns of play were
more collaborative than competitive.

220 Int J Artif Intell Educ (2014) 24:216–250

This paper presents an overview of a new LBT system currently under development
and aimed at reinforcing mathematics knowledge in sixth graders (pre-algebra), a key
foundation for future success in science, technology, engineering, and mathematics
(STEM). Like some of the systems described above, the student—the user—interacts
with an animated agent (named Elle) and helps her solve problems.

Our system, BELLA, extends the LBT paradigm, but departs from previous systems
in several ways:

& BELLA “works” by building up and utilizing a symbolic knowledge model of the
human student. Previous LBT systems, like SimStudent, support learning in a
teachable agent and use the representation of what the teachable agent has learned
to govern its problem solution behavior; however, they do not select the problems
that the agent must solve based on an evaluation of what the human students
themselves understand or misunderstand. For example, SimStudent allows the
human student to choose the problems that SimStudent works on. In contrast,
BELLA maintains a student model and uses that model to determine the nature
of the next problem to be presented, in a manner analogous to many ITS’s systems
(VanLehn 2006) but unlike most LBT systems. In addition to influencing the nature
of each problem, the student model also determines Elle’s problem solving behavior
and her interactions with the student. From the user’s point of view, it seems as if
they are teaching Elle; however, in actuality, Elle has multiple correct and incorrect
parameterized models and the choice of models (and parameters) is made by
BELLA based on the current user model. Thus, strictly speaking, Elle does not
learn and is not a teachable agent. Rather, BELLA selects a model for Elle to
follow, deemed to be pedagogically advantageous, based on the state of the student
model.

Our main hypothesis is that this very distinction—pretending to be taught
versus “really” directly being taught by the user—may prove useful and
powerful. This is precisely what enables BELLA in principle to be able to
more wisely manipulate the user into better understanding the underlying
subject matter than any “true LBT” system could. The latter must by
necessity obey its user and believe its user,1 starting as a tabula rasa and
learning only what it has been told by its user. But BELLA is more like a
parent who sees exactly what their child doesn’t understand and then feigns
ignorance very selectively, role-plays someone with an intelligently-selected set of
foibles so as to maximally help their child see the error of his/her current miscon-
ceptions. BELLA is therefore better able (than true LBT systems) to make sure that
the interaction between the human user and simulated tutee focuses on specific
difficulties that this particular user suffers from. Similarly, BELLA is able to
carefully reason about what the next math problem should be which this user faces,
rather than leaving the training sequence up to the user (or totally fixed).

In the coming year, we plan to gather rigorous, objective, and statistically
significant data to test our central conjecture; as of yet we have only a small sample
of anecdotal results (from sixth graders using BELLA) which are nonetheless
interesting and encouraging; we discuss this later in this paper.

1 Except in cases where the user tells the LBT system contradictory things, and it detects that.

Int J Artif Intell Educ (2014) 24:216–250 221

& Most LBT systems have the teachable agent start out more or less as a blank slate,
and the user incrementally builds up that agent model piece by piece. Elle starts
with a mental model of pre-algebra which is almost at the same level as the user. If
it has gaps or errors which the user lacks, those will get filled in quickly and give
the user some feeling of accomplishment in the process. Elle’s gaps and errors
which mirror the user’s may be exaggerated, to help the user notice them and repair
them in Elle (and thence, in themselves). BELLA chooses what Elle to puppet,
what face to pretend to show to the user. BELLA can also choose when to have Elle
pretend to start relapsing, start forgetting previous lessons learned. In those hope-
fully rare cases where the user is hopelessly lost, too confused even to correct Elle,
BELLA can decide to subtly—and briefly—reverse their tutor-tutee roles by having
Elle appear to have an epiphany, a breakthrough which then allows her to explain
her new insight to the user.

& The interactions all take place in the context of an engaging adventure game:
Elle’s spacecraft has crash-landed, and she faces numerous challenges that she
requires help with (Fig. 3) Many intelligent tutoring systems—and many
intelligent human teachers!—incorporate game elements to make the learning
process more engaging (ATLT, 2012). But in BELLA, we have worked hard
to make all the math problems emerge naturally in the course of that adven-
ture, rather than being disembodied, isolated game show questions (e.g., Chase
et al. 2009) or disembodied, isolated problems simply handed to the user
(ATLT, 2012). For example, if Elle needs to add up several mixed numbers,
it might be because she sees a map with segment distances marked, and she
needs to find the shortest route to her destination, but not because “it was
assigned”. If the user skips the option to check their answer, because they are
in a hurry, they might later have to backtrack and re-work the problem. If the
user decides to guess at an answer or even bypass a problem entirely, they can
do so, but over time they are led to see the consequences of that: that they have
wasted time and resources by doing so, that time after time it’s cost-effective to
set things up as math problems and “do the math”. The reader need look no
further than Pokemon or Magic the Gathering or the “auction house” of almost
any MMORPG to see overwhelming evidence that many of the same students
who struggle with abstracted-out arithmetic and probability math problems in
class are able to carry out more advanced versions of the same reasoning and
skills in the context of a game.

Sixth Grade Math and Sixth Grade Math Students

STEM education is a key to technical competitiveness of individuals, organizations,
and nations. And M is the foundation for S, T, and E. But mathematics is highly
cumulative, and the knee of the curve appears to be pre-algebra (Brizuela et al. 2013).
I.e., an individual’s deep understanding of pre-algebra is a predictor of lifelong math
and science literacy; and, conversely, a poor understanding of it is a predictor of
lifelong STEM illiteracy and a bar to entering higher education. According to the
President’s Council of Advisors on Science and Technology (2010), about 70 % of U.

222 Int J Artif Intell Educ (2014) 24:216–250

S. eighth graders scored below proficiency. So the present work targets what in the U.S.
is 6th grade math: pre- algebra and pre-geometry.

In order to guide BELLA design decisions, we tested some of our initial design
conceptions with sixth grade math students in Austin. In an initial session, 26 sixth
graders were presented with four math word problems on the white board, and asked to
complete them individually, showing their work. While the teacher was convinced
these problems would pose no difficulty for her students, most of them made many
errors and took significantly longer than she expected. Half the errors were not
computational, but rather involved understanding the problem and solving the correct
equations. In retrospect, the teacher believed that the results were due to her method of
teaching: a blocked approach where practice problems in any given homework assign-
ment or quiz are all of a very particular type, and for which students have just recently
learned the step by step procedure for solving that type of problem. In contrast, our four
problems were of multiple types, and required students to recall and apply procedures
without the benefit of priming by recent instruction. (“We haven’t had to know this
stuff for weeks!”) Their difficulty with this task highlights the need to reinforce prior
learning and deepen conceptual understanding.

In another series of sessions, we observed peer tutoring on a new set of problems.
We observed both naturalistic peer tutoring and peer tutoring in the form of a game we
devised to parallel our initial BELLA user interface conception. In the game, one
student takes on the role of the solver, and the other the clue-giver, and they
collaborate to earn points by solving problems correctly, quickly, and with the
fewest number of clues (Fig. 1).

The clue-giver had cards and tokens which they could place on the solver’s
worksheet or on the game board (with subtler clues costing less to the point score than
more direct clues). Both situations suggested that sixth grade math students were
not very good math tutors, even if they themselves were good at math. Rather than
help the tutee, peer tutors had a tendency to just take over the problem and do it
themselves. Peer tutors and clue-givers often provided inaccurate feedback, had
difficulty providing explanations, and failed to recognize the possibility of alter-
native valid solution paths (for example, one tutor told their tutee they were wrong
for multiplying two fractions’ denominators before multiplying their numerators).

Fig. 1 A pair of students playing “Clued In”, our paper-and-pencill version of BELLA. As the Solver works
through amath problem, the Clue-Giver (tutor) selects cards and tokens to place directly on the Solver’sworksheet
or—for extra points—gives a more subtle hint by placing it on a category of error on the game board

Int J Artif Intell Educ (2014) 24:216–250 223

We had much better results when the role of the tutee was played by a teacher or
experimenter.

I.e., an adult played the role of the tutee and used their mental model of the student
to determine what mistakes to make, when to appear stumped, and what questions to
ask of the tutor. We found that students were eager to correct the adult’s errors, and did
so reliably with a bit of leading by the tutee. This observation led us to the position that
BELLA might be more effective if users did not truly teach Elle, but only appeared to
do so. Thus, rather than rely on the student teaching her, Elle is “taught” only by
BELLA—i.e., whenever BELLA decides that this user will benefit from some change
in Elle’s model. Generally, BELLA keeps Elle functioning at a slightly lower level of
comprehension than the user; i.e., Elle usually has an ablated version of the student
model. As the student learns/regresses, BELLA improves/degrades Elle’s mental
model, so it will make fewer/more mistakes.

Even when adults role-played the tutee, students still had difficulty explaining why a
step was correct or incorrect, however. This observation highlights the need to reinforce
not just procedures, but also conceptual understanding (Roscoe and Chi 2007). BELLA
addresses this in part by varying the way that Elle solves isomorphic problems, and in
part by having Elle ask the tutor useful questions. Since Elle’s mental model is only
slightly lagging behind the user’s, Elle can function more like a collaborator than a truly
naïve tutee, and thus make leading suggestions and comments. Like SimStudent, Elle
may sometimes request explanations; at other times, Elle may take self-corrective
action and provide explanations especially when the student appears uncertain or stuck
at a plateau.

Cyc and Bella

The Cyc artificial intelligence platform (Forbus 2012; Lenat and Guha 1990; Lenat
et al. 1985, 2010) is the foundation of BELLA. Cyc comprises an ontology of half a
million terms, a symbolic knowledge base (KB) of ten million hand-written rules and
general pieces of information (e.g., water flows downhill; dogs have four legs). Cyc’s
KB contains a great deal of knowledge about types of events, places, professions,
organizations, etc. but almost no information about specific proper nouns. Cyc by
design should go out to appropriate databases and websites and web services to obtain
whatever specific information it needs as it reasons.

Over the last 30 years, this has been expanded to encompass various domain-
dependent rules and assertions in various fields, such as cell biology, oil well asset
operations, and network security. These are represented in symbolic logic—mostly
first-order predicate calculus plus some second- and higher-order extensions to allow
Cyc to have assertions that talk about other assertions, talk about predicates (relations),
talk about the problem solving process to date, and so on. The Cyc inference engine can
do general deduction (via Resolution) (Melis and Siekmann 1999) but, over the years,
over a thousand special-purpose reasoners (many with their own special-purpose
representations) have been added in as independent agents. Together, this community
of agents tackles each problem and each sub-problem; the general theorem prover
always could apply, but 99 % of the time one of the other reasoners can jump in and
solve or simplify the problem instead, in vastly less time. Cyc also has a natural

224 Int J Artif Intell Educ (2014) 24:216–250

language understanding and generation subsystem (Lenat et al. 2010), the latter of
which BELLA uses to express its inferences and questions in English, and recursively
to produce explanations of its multi-step lines of reasoning.

For the purposes of BELLA (see Figs. 2 and 3), Cyc has been extended with (1) the
domain concepts and skills required to solve the domain math problems,2 (2) the ability
to declaratively model the human student’s relevant knowledge, (3) the ability to
declaratively model Elle’s knowledge, and (4) pedagogical and psychological rules of
thumb for controlling Elle’s interactions with the human student, rules inferring updates
to the human student model (based on that user’s choices, actions, and even their
inaction), and rules for updating Elle’s model based on changes to the user model.

Cyc reasons by producing all the pro- and con- arguments it can for a proposition,
and then comparing and weighing them to decide which ones trump which other ones,
etc., and eventually whether to believe the proposition or not. This makes exceptions
straightforward to handle (Rover is a dog; dogs have four legs; but Rover happens to
have three legs), along with defeasible defaults (birds fly; penguins don’t; but penguins
are birds).

Cyc’s KB is divided into microtheories each of which has a set of contextual
assumptions and some body of content; the content is internally consistent, and the
assumptions help prescribe the contexts in which that content is asserted to hold true.
For example, the assertion “Bill Clinton is President” was true in the U.S. for certain
years, never true in Uganda, known by most people while it was true and since then,
not known by anyone beforehand, etc. This context mechanism allows for the existence
of different, contradictory mental models, sets of beliefs and opinions, different strat-
egies and tactics for tackling problems, etc.—all of which are used in BELLA.

Math word problems—and the in-game situations they describe—are represented in
Cyc as declarative expressions with open variables in predicate calculus using the Cyc
language (CycL). Correct mental models for Elle were developed, and the various
incorrect models are generated (in some cases by hand, in some cases automatically) by
extirpating portions of the KB. For a particular math problem, BELLA can block Elle
from solving it by going through each Cyc argument in each solution to the problem
and either (i) removing at least one assertion3; in effect these represent gaps which Elle
needs to fill (at least one of), or (ii) adding in an incorrect assertion which overrides the
correct still-present ones; in effect these represent misunderstandings and errors in
Elle’s mental model. The type-(i) are much easier to generate mechanically than the
type-(ii) which are still generally written by us by hand. As with model-tracing ITS’s
(Aleven et al. 2006; Anderson et al. 1995; VanLehn et al. 2000), BELLA explicitly
represents and tries to recognize common misconceptions.

BELLA often gives Elle the same types but more exaggerated deficiencies than the
user (which in turn it gets from the user model). Elle then manifests this exaggerated

2 In general, Cyc already knew this; for example, how to efficiently and correctly solve “3x−2 ¼ 1 4
9 þ 2x ”.

But for BELLA, we had to go back and give Cyc explicit scripts by which it could manipulate and solve such
equations step by step by step, based on laws and rules (and do that step by step process incorrectly when
given a flawed set of laws and rules assigned to the then-current Elle mental model).
3 Due to the robustness of Cyc’s understanding of the material, it is sometimes necessary to remove a piece of
domain knowledge, re-ask the same query, see that Cyc still found a way to solve the problem (correctly) in a
different way, remove one of the supports of that chain of reasoning, and repeat this process until finally Cyc
fails to solve the problem.

Int J Artif Intell Educ (2014) 24:216–250 225

Fig. 2 Percentage-wise, BELLA is a small expansion of Cyc’s KB (about 1/10,000th) and inference engine
(about 1/1000th). BELLA knows 6th grade math, but controls an avatar, Elle, who is very shaky on those
concepts and skills. User is a 6th grader playing the role of tutor to Elle, but Elle never directly learns from
User. Instead, BELLA observes what User says and does, thereby models them, and uses that to select useful
flaws and gaps for Elle to have in her domain model

Fig. 3 Our “3D sandbox role-playing game”-style UI. Note the mini-map (upper right) showing an overhead
view of nearby corridors and rooms, clues (such as the blue post-it note on the ground which contains the
expression “4x-3” scribbled on it), obstacles (such as the large electromagnetically locked door), inventory
(currently holding some batteries of two different voltages), and a place to use the solution to the math
problem to overcome the obstacle (in this case, placing the correct linear combination of batteries into the slots
just to the right side of the door, so as to sum to the voltage needed which will open this door.) Trial and error
works, here, of course, but only after a long period of wasted effort (which Elle complains about.)

226 Int J Artif Intell Educ (2014) 24:216–250

errorful behavior, thereby providing opportunities for the user to coach Elle on concepts
and skills just at the leading edge of their own knowledge. As the tutoring session
continues, the user’s actions cause BELLA to update its knowledge model of him or
her; and that in turn causes BELLA to adjust Elle’s knowledge model, so that Elle’s
understanding (and lack thereof) keeps tracking just behind the user’s.

If the user notices a mistake made by Elle, especially right away, then BELLA is
more likely to assess the user as now better understanding that concept/skill; that
usually is enough for BELLA to modify Elle’s model so that Elle will be less likely
to make that same type of mistake. Eventually, BELLA gives Elle a model that simply
doesn’t make that type of mistake. As the user collaborates with Elle, Elle’s perfor-
mance will incrementally increase (as evidenced by problem solving ability); but, the
important effect is not that the software agent Elle becomes increasingly competent, but
that the user’s understanding of that material increases as the tutoring of Elle proceeds.

If the user does not notice that Elle made a mistake, or the user seems shaky about
what mistake exactly was made, then BELLA is more likely to keep Elle with that
erroneous mt (microtheory; specifically, the Cyc microtheory representing her mental
model), or even give her a worse mt so she will manifest that same type of error more
often and more obviously (e.g., where the problem is much simpler, or the outcome is
absurd). If the user still does not notice that Elle made a mistake, Elle herself might
evidence some self-reflection and self-questioning.

The student model comprises about 150 tuples, each of which corresponds to either a
Common Core concept (such as the associativity or commutativity of addition), or a
Common Core skill (such as how to multiply two fractions), or a specific type of “bug” or
“missing heuristic” which students may have. An example of a bug is the student
believing they should work through all the multiplications in an arithmetic expression
left to right before doing any divisions, which leads to the wrong answer in problems such
as this one: 1½÷3×2. An example of amissing heuristic is failing to notice that reordering
addends can drastically simplify solving problems such as illustrated in Fig. 4.

Each of these 150 model elements is summarized as a number from 0 (meaning that
the student definitely does not understand this concept, definitely cannot do this skill,
never avoids this bug) to 100. We referred to each element as a “tuple,” above, not just
a scalar percentage probability, because BELLA stores the entire history of every model
element: the 0–100 value at which it started (for that student), and every incident—
every action or inaction by the user—which caused that number to go up or down. The
teacher has access to that full history through a UI. For example, the user (here
anonymized to “Barry Chen”) made a good choice in the situation depicted in
Fig. 4a (selecting an excellent piece of advice out of the three possible feedback lines
of dialogue to respond back to Elle); that action caused BELLA to increase its certainty
of belief that Barry does deeply understand “reordering operands to opportunistically
group like terms” (in this case, terms with the same denominators.) BELLA then chose
to modify Elle’s mental model to permit Elle to understand and recall and employ that
reordering-addends heuristic, and Elle therefore appears (Fig. 4b) to benefit from the
User’s suggestion, to take that suggestion and judiciously reorder the addends. That
particular user model element had been initially set to 0.84 for Barry; he then went
through the event depicted in Fig. 4a and b, where he made the choice which caused
BELLA to increase that model element to 0.89, which is where it happens to currently
be at the time that screenshot 4c is taken. If the teacher clicks on the indicated 0.89 cell,

Int J Artif Intell Educ (2014) 24:216–250 227

a tab opens up (Fig. 4d), displaying the exact historical in-game situation—and user
actions/choices—which caused BELLA to revise that model element.

Fig. 4 aWhen a math problem begins, the Math Panel window opens. Elle performs a step, and the user then
chooses from a set of feedback options (orange highlight when hovered over) for the player to give to Elle. In
this case, Elle was about to doggedly add those four numbers in order, left to right, without realizing that
reordering them makes the whole problem much simpler. User is about to select that piece of advice; the
second possible feedback option is a red herring; the third (“OK. Continue.”) represents inaction at this point
by the user. b Elle appears to remember that addends can be reordered in this way (“That’s right, I might put
together numbers that are easy to add”), and takes the User’s suggestion. Behind the scenes, what’s really
happening is that BELLA decides that the User has shown they understands this concept, hence so should
Elle. c 13 of the 150 model elements for Barry Chen (rows), and the history of all changes to those elements
(columns). The events of a-b occur while Elle is solving Roverbot problem 1. d The teacher drills down to see
when/why this change was made (by clicking on the 0.97 in the red circle in c), and sees this historic
record of the events (a-b) that caused BELLA to make that change in that model element of that
user, Barry, raising it by + 0.13, from 0.84 to 0.97

228 Int J Artif Intell Educ (2014) 24:216–250

All of these specific event drill-downs (Fig. 4d) are available to the teacher; they
aggregate into the student model (Fig. 4c), and all the students in that teacher’s classes
are further aggregated and summarized for them in the top-level UI for that teacher
(Fig. 5)

One of our hypotheses is that it suffices, for the BELLA task, to model each student’s
(and Elle’s) domain knowledge, at any point in time, as no more and no less than this set
of about 150 Common Core elements and “known bugs and heuristics”, and to keep
around the historical context for each change that wasmade to each of those numbers. By
the time we have fully covered the sixth grade Common Core Curriculum, we estimate
that the size of the user model (and hence the Elle model) will be about 200 tuples.

Clicking on this displays Fig. 4d,below

c

Fig. 4 (continued)

Int J Artif Intell Educ (2014) 24:216–250 229

While we have not settled firmly on the best way to initialize the student model, the
methods we are considering are: (a) pretesting, (b) starting with a normative 6th grade
model, (c) interviewing the teacher (about this student), (d) interviewing the student, (e)
starting with a very incompetent Elle (which will quickly get better, to match the
student), or—most likely—some combination of these. One interesting expected (not
yet tested) advantage of the “very incompetent Elle” starting model is that the user
should easily catch and correct several mistakes of Elle’s very early on, which may in
turn may build up the user’s confidence and self-esteem, and may reinforce the user’s
belief that Elle needs tutoring and more generally needs their help.

Fig. 4 (continued)

230 Int J Artif Intell Educ (2014) 24:216–250

In parallel with the above steps, the user interface and the adventure game context
for BELLA had to be designed. Our original UI conception (upon which the Clued-In
game (Fig. 1) was based) turned out to be far too complicated, offering hundreds of
actions a user could take at any time. Our new streamlined UI (Fig. 3) is less daunting
and more familiar to users who play video games. Elle moves through a virtual
environment facing problems and challenges. When solving problems, Elle pauses
after each step, allowing input from the user (Fig. 4a and b). The most frequent input is
just “Okay. Continue on” but the most telling events occur when the user chooses one
of the other optional responses instead. At each step, BELLA selects the most produc-
tive three or four choices to present to the user, based on the current situation (current
state of the problem, current student model, and Elle’s current model). BELLA decides
whether to change the Elle model, based on what the user just said (or didn’t say), and
Elle responds—sometimes disagreeing with the user or appearing (due to gaps and
errors in Elle’s model) to not even understand the user’s suggestion.

Looking Under the Hood

Microtheories in BELLA As Elle and the user work a problem together, there might be
dozens of these “memorable interactions.” Every time the user or Elle says or does
something, that event spawns a new reified context which is a slight extension of the

Fig. 5 All the students in this teacher’s sixth grade math classes are summarized at this top-level interface.
Clicking on Barry Chen’s column, e.g., opens up the interface showing how each of these 0–100 numbers got
to where it is (Fig. 4c). Clicking on a number there drills down to show the detail in Fig. 4d

Int J Artif Intell Educ (2014) 24:216–250 231

previous context. In the new context, time will have advanced one “tick”, and a few
things might be true that used to be false or vice versa, such as the state of the problem,
or Elle’s model, or the user model. This results in a rich tapestry of dozens of new
microtheories generated in a small amount of time (see Fig. 6), and one of the
challenges to Cyc’s inference engine in early 2013 was how to keep up with this
proliferation in real time. The short answer is that this was accomplished by pre-
creating and caching a large resource pool of such mts.

As our example (in the next section) illustrates, this structure enables Elle to plan its
future actions; it enables Elle and the user to refer to earlier states in their dialogue and
access the history of what each of them said and did; and it allows BELLA to reason
partially about what the user could and should have known—and precisely, totally,
about what Elle did know—in each past context. Cyc already had the capability to
represent these types of knowledge and do these types of reasoning; one of the benefits
of constructing BELLA as an extension to Cyc was its being able to utilize this
machinery.

BELLA maintains and uses several types of mts; a few of these mt-types are
depicted in Fig. 6. Each green triangle mt states (or inherits) assertions representing
what Elle believes about the current state of the world in general, the relevant math
concepts and skills in particular, and the current state and history of it (Elle) working on

Fig. 6 As Elle and the user interact, a growing graph of interaction contexts is built. They snapshot the user
model at that moment, the Elle model, the state of the problem (and subproblem, etc.) being worked on, etc.
This provides a way for Elle or the user to refer to past states of their dialogue, to back up a step or two, and
grist for BELLA to induce short- and long-term conclusions about the user

232 Int J Artif Intell Educ (2014) 24:216–250

this problem. Each purple diamond mt contains a temporal snapshot of the user
model—i.e., the things which the user believes about the world (more accu-
rately, what BELLA believes the user to believe.) Blue circle mts represent time
points of interest where user actions, planning steps, and Elle’s chat statements
and Math panel actions occurred.

There are also several types of timelessmts (which therefore do not appear in Fig. 6):
Process mts each represent a script, a particular algorithm—which might be correct or
erroneous—for how to carry out a procedure such as adding mixed fractions. Math
beliefmts involve facts that might be required when reasoning through a problem, such
as order of operations (including potential erroneous “facts”). Quantitative relationship
mts represent formulas, such as the formula for the area of a circle, or the formula
relating time, speed, and distance (again, including possible erroneous formulas).
Problem interpretation mts represent targets for Elle to understand game-world situa-
tions (or word problems), i.e., how to set up a mathematical problem or equation given
what the game-world challenge or opportunity is. Tactician mts represent alternative
plans of attack (possibly errorful) on a type of problem, and strategist mts represent
rules for selecting a tactician mt and deciding when to suspend the current one and try a
different plan of attack on the problem.

With regard to computational steps, e.g., adding two fractions, or finding the area of
a circle, the steps can be carried out in multiple ways, but many students have learnt
only one way. Cyc has no trouble representing alternative methods (both correct and
erroneous), as separate mts (e.g., Process mts). In BELLA, some of the erroneous mts
were created by hand, and added to the Cyc KB; gradually, a larger and larger fraction
have been produced automatically by introducing systematic errors into a correct mt,
much as Brown and VanLehn (1980) did with DEBUGGY subtraction flowcharts.4

Elle’s assigned mts are examined during her reasoning by the use of articulation
axioms, also called lifting rules (Sowa 1995). These are if/then rules that specify which
mt a premise is to be satisfied in, or which mt a conclusion is to be recorded as holding
true in. Process mts are not generally visible to the reasoning mts described above, but
the other mts are, reducing the amount of lifting that BELLA needs to do.

Natural Language Understanding and Generation Before starting the example, we
want to remark on the method of interaction in what appears to be readable English,
that occurs back and forth between the user and Elle (in reality, in BELLA, not in the
fictional universe!):

& NLG: Elle comments many of her math problem steps with chatty English com-
mentary (such as, in Fig. 4a, “Before adding fractions, I have to make sure the
denominators are the same”). These are produced by BELLA using Cyc’s natural
language generation (NLG) subsystem (Lenat et al. 2010) built around a semantic
construction grammar (SCG) comprising about 200,000 rules and assertions. These
recursive templates do a good job of converting Cyc’s internal predicate calculus
representation into understandable English. In cases of multi-step explanations, Cyc
has a moderate ability to combine the sentences generated and introduce pronouns

4 Though that is not a focus of our research, we note that, as with their research, we have found some overlap
between automatically generated errorful mts and the common math errors that sixth graders actually make.

Int J Artif Intell Educ (2014) 24:216–250 233

etc. so that they don’t sound quite so artificial. Fortuitously, most users just attribute
any residual stiltedness in the generated sentences to the fact that Elle is a robot.

& NLU: Despite 60 years of progress, understanding unrestricted natural language
(NLU) is far from a solved problem. In BELLA, we sidestep this by providing the
user with gestures (left-click on places or things in the game world; see Fig. 3) and—
especially while in the process of solving a particular math problem—a menu of
responses to choose from (see Fig. 4a and b). At each step (Fig. 4a-b), BELLA
formulates five or ten possible choices for what the user might want to say to Elle. It
does this by running a set of alternative-generator rules which apply broadly,
augmented here and there with hand-formulated alternatives for pivotal decision-
points in the game. For example, one banal alternative-generator rule says
“Whenever a mixed number is involved, suggest converting it to a fraction”.
Instead of overwhelming the user with long menus, BELLA invokes meta-rules to
decide which three or four of those alternatives are best: most useful at further
revealing details of the user’s mental model, or most useful at helping the user see
how to correct something that Elle is doing wrong. So the user usually sees just two
or three revealing alternatives to select among.

Example Problem Scenario

This section provides more details about BELLA, presented in the context of an
extended example, which in turn is motivated by a brief précis of the adventure game
which we have built around BELLA, and which from the user’s point of view is “the
BELLA application”. For even more detail about how/why the math problems in this
example (setting up and solving a few univariate linear equations) arise naturally during
the gameplay, please see Appendix 1; for even more examples of the sorts of math
problems in BELLA and how they arise naturally, please see Appendix 2.

The game backstory situates the user as a 12 year old living in 2265.5 Elle is a robot
companion permanently linked to the user mentally. The starship carrying Elle and tens
of thousands of other inactive companions is attacked and crashes onto a planet’s
surface. All the equipment to activate them is damaged, but the user had just (coinci-
dentally, and against the rules) woken Elle up just before the crash. So Elle finds herself
stranded, in a dangerous situation, with only a mental link to the user as outside
communication. Elle must traverse multiple challenges at ever-increasing “scale”:
exploring and exploiting the crashed ship, the nearby area, adversaries, buried alien
ruins, etc.—eventually triumphing by repairing the ship and awakening all the other
robots.

In the specific example challenge which we elaborate here, Elle needs to get past a
series of electro-magnetically-operated doors which are currently not working due to

5 The students did not like our initial choice of storyline (shopping, cooking, construction; they wanted
futuristic sci-fi, robots, and aliens), “lame” character names, confusing cluttered interface design, and un-
motivated word problems. The design and examples presented here represent our “Year 2” versions of all
these.

234 Int J Artif Intell Educ (2014) 24:216–250

main ship’s power being out. The example illustrates (1) how Elle’s current
mental model impacts her next action, (2) how the user input leads to revision
of BELLA’s model of the user, (3) how the user model affects which menu
choices the user is offered. Appendix 2 presents seven more examples of game-
emergent math problems.

The Example The story so far6: Elle has learned that a 227 V door could be opened
by connecting (in series) 11 20-V batteries plus three small unmarked batteries.
The next door she encounters is labeled “228 V”. Ten 20 V batteries are fused to
the wall next to the door, already permanently connected to the door. There is a
pile of five7 of the now-familiar but unmarked small batteries here. If the user has
Elle connect these, the door is still underpowered and doesn’t budge. Elle says: “I
need more small batteries. But, how many? I guess it depends on how much
voltage each one supplies.” If the user doesn’t head back to the previous (227v)
door on their own, Elle says “Let’s go back to the last room to check it out.” The
user moves Elle back up the corridor to the room with the 227v door. Elle says,
“Let’s figure this out. To get to 227 V, I used 11 20 V batteries here and three
small batteries.” At that point, the Math Panel (similar to Fig. 4a and b) pops up;
after the problem is solved (or the user decides to give up on it and sidestep it, or
guesses it by trial and error), that panel disappears.

For most users, Elle sets up the problem correctly, namely as (11 * 20 V)+3x=
227 V, and works through it step by step. The user sees what Elle writes on the Math
Panel, along with her narration of what she’s doing (see “NLG:”, above). At each
step, the user can click on the “Okay” option, and Elle just moves on to the
next step. The alternatives are things that the user could say to Elle at that
moment, ostensibly to tutor it to better understand what it’s doing wrong. Some
of those tutoring options are good, some are bad, but all of them are revealing
in the sense that each and every choice enables BELLA to extend, refine, and
update its model of this user at this time.

For the sake of this discussion, let us conceptually separate

& Game: the adventure game (running Unity 3D)
& UI: the user interface (running Firefox) displaying the Math Panel and Teacher

Panel
& Cyc: the knowledge base and reasoning system (running Java) which declaratively

represents and modifies the user models and the Elle models and the underlying
math.

& User: the current sixth grader logged into the system; let’s continue to call him
Barry.

So Game sends Cyc a message that this particular math problem is being started.
Elle must now decide—meaning that Cyc must now decide—on Elle’s strategy and

6 Appendix 1 goes through the first part of this scenario in much greater detail.
7 These variables—227, 228, 20, 10, 5, etc.—are chosen by BELLA at the time the user enters this series of
corridors, based on elements of the user model such as their ability to multiply numbers of various magnitudes,
and problem specific constraints such as the door voltages not being a multiple of the large battery voltage.

Int J Artif Intell Educ (2014) 24:216–250 235

tactics for approaching this type of problem. Of course Cyc could solve this problem
right away, correctly, but that’s beside the point! Elle’s mental model is now what is
being “run”, not Cyc’s, and Elle’s current mental model has gaps, errors, shakiness, etc.
In this case, suppose that Cyc’s current model of Barry indicates that he is moderately
skilled at setting up simple algebraic expressions. Based largely on that, Cyc has
allowed Elle’s current model to correctly recognize this as the type of problem
in Cyc’s ontology called “a moderately good student solving a linear equation
in one unknown”. Elle believes (correctly, it turns out) that she can solve this
type of problem in three phases: (1) simplify the equation as much as possible,
then (2) isolate the terms containing the variable x from the non-x terms, and
then (3) multiply or divide each side of the equation by the right scalar to turn
the variable-term side into just plain x, at which point the equation will read
“x = <number>” and she believes she will be done.8

Cyc sends UI the information to fill in the first “step” on the Math Panel,
stating the problem and explaining in English why this problem is being
worked on, why it was set up the way it was. In this case, the equation to
display on the Math panel is (11 * 20 V)+3x=227 V, and the string to display
before it is “This is the equation we need to solve.” Cyc’s NLG produces this
string to display after the equation: “11 20 V batteries plus three small batteries
total to 227 V.”

Cyc now has the goal of communicating this plan (currently represented as a set of
predicate calculus formulae) to the user. Cyc’s NLG subsystem translates the predicate
calculus for the first phase of the plan into English as: “I need to simplify and get the x
term by itself over on the left side.”9 Cyc sends this to the UI, and the UI displays it on
the Math Panel.

Then, step by step, Cyc sends the UI specific information about what MathML
(www.w3.org/Math/) it should display and what NLG comments (if any) it
should display. For each step—each lozenge of the sort depicted in Fig. 4a
and b—Cyc creates and names a brand new interaction context. Let’s say the
next interaction context (which is a microtheory or mt in Fig. 6) gets the name
“Step37”.

Cyc runs the Elle model, executing the next step (in this case the first step)
in the declarative script which this current Elle will follow, to solve the
problem. That script says to discharge expressions in parentheses first if
possible, so Elle takes the step of replacing (11 * 20 V) by 220 V. This is
indeed one step toward simplifying the equation. Cyc sends to the UI web
service the chat message “Eleven times twenty is 220” with an associated
“STEP37” tag for alignment purposes, and a Math panel message containing
the MathML for “220 V+3x=227 V” also with the tag “Step37”. The user sees
that equation and that comment and the list of possible reactions to say back to
Elle, one of which is always just “Okay. Continue on” (for consistency, this is
always the last option listed). To decide on the set of most salient options,

8 If it ends up as “<number> = x”, this slightly rigid model of Elle will believe that the problem is not yet
solved, and take a whole extra step to change it into the “x = <number>” form.
9 For efficiency reasons, this part of Cyc’s work gets performed at the very start of ZONE3, just before the first
“electromagnetic door”—i.e., back at the same time that various parameters (227, 220, 20, 228, 11, 5, etc.)
were chosen.

236 Int J Artif Intell Educ (2014) 24:216–250

http://www.w3.org/Math/

BELLA uses the current user model (and to a lesser extent prior models of this
user), prioritizes them, picks the top-rated few, and sends a message to the UI:

<Choice List of options STEP37

& How did you calculate that 11×20 V is 220 V?10

& Why do that first?11

& Can we multiply volts times non-volts?>12

After those three starred options, the game/UI automatically displays the “Okay”
option as well.

Not all users will see the “Can we multiply volts times non-volts” option. Something
that Barry has done in the past, or failed to do in the past, impacted elements of his
model, and that in turn caused this option to get a higher rating than others which
different users might see instead (e.g., other users might instead see this option:
“Shouldn’t it be ‘3x volts’, there, not just ‘3x’?)

Suppose the user clicks Okay at interaction Step37. Then BELLA continues to run
the Elle model, which selects the next appropriate step for Elle to do in solving this
linear equation. In this case, the first phase was repeatedly simplifying until there’s
nothing more to do, and in fact after this one simplification step there is no more to do,
so the second phase of the script that Elle is following starts: isolating “like terms”
(getting all the ones with variables on one side, all the ones without variables on the
other side). This it can perform, on the current equation, and Cyc chooses to subtract
220 V from both sides. Cyc records its decision, and composes a message to the UI (in
Elle’s name of course) with the MathML for “220 V - 220 V+3x=227 V - 220 V” for
the Math panel, and a synchronized NLG message “I can subtract 220 from each side.”
A slightly different Elle model might have had her explicitly say “220 V” instead of just
“220”; an even more different Elle model might have had her subtract a different
quantity, or divide every term in the equation by 3, and so on.

Cyc’s NLG could translate, into English, any or all of the symbolic logic derivation of its
previous conclusion—i.e., its step by step reasoning “argument” that led it to decide to
subtract 220 V from both sides. This quite long and detailed logic proof gets pared down to
the one or two crucial steps in the argument, which are then translated into English (by the
NLG rules), which in turn gets packed into the message format and transmitted to the UI.
So, onscreen, Elle adds the comment “If I subtract the same number from each side of the
equation the two sides stay equal, so it’s okay for me to subtract 220 from each side. and
220–220 will simplify in the next step to zero, which I think is making progress.” Let’s say
the user clicks “Okay” now.

10 If chosen, Elle’s model will respond “That’s just multiplication.” And BELLAwill probably downgrade the
element of the user model involving doing certain ranges of multiplications “in one’s head”
11 If chosen, Elle’s model will respond “Take care of parentheses first.”And BELLAmay adjust the certainty of the
user model element involving order of precedence of operations, particularly parenthetical expressions. If the current
model value is very low, thenmove it upwards toward 0.50, and if it’s very high thenmove it downwards toward 0.50
12 If chosen, this makes an important addition to the user model, namely that this user at this moment has
confused the inability to add/subtract unlike unit of measure quantities with the inability to multiply/divide
unlike unit of measure quantities (the latter of which of course is fine); and a prediction that the user may get
the unit of measure wrong if multiplying two quantities which have the same unit of measure. Instead of over-
writing what the previous model said, a new user model is created, marked as a modified version of the extant
user model, and the appropriate meta-level information is recorded about when and why this was created

Int J Artif Intell Educ (2014) 24:216–250 237

The math panel advances, and a re-write of the equation appears “0 V+3x=227 V -
220 V.” Cyc also tells the UI to include in that step’s lozenge the comment “220 – 220=0”.

The next two steps—in an order determined by Elle’s model—remove the “0 V”
addend entirely, from the left side, and simplify the right hand side to “7 V”.

So at this point—call this interaction context”Step41”—the Math panel is showing
the current state of the equation as: “3x=7 V. “This is a pivotal moment: what happens
next depends in a big way on the current Elle model. A good thing for Elle to do is to
divide both sides by 3. A wasteful thing to do is to divide both sides by 7. Adding or
subtracting something from both sides would also be wasteful.

Let’s Suppose that Elle’s Current Model has a Serious Bug in it, Namely it Thinks that
3x – 3=x This is a surprisingly common bug amongst human sixth graders, by the way.
The same bug causes Elle to incorrectly conclude that “7 V—3” will evaluate to 4 V. At
this point in time, therefore, perfectly logically correct reasoning—given that bug in its
mental model—leads Elle to believe she can make progress by subtracting 3 from each
side of “3x=7 V”; i.e., Elle thinks the left hand side will turn into “x” and the right hand
side will be easily evaluated and turn into “4 V”.

The Math panel now shows “3x - 3=7 V – 3” Cyc NLG has told the UI to include
the comment “Okay, now I’ll just subtract 3 from each side.” Suppose this interaction
mt gets the identifier “Step42”.

If user hits “Okay”—fails to correct Elle at this crucial moment—then (Cyc’s
simulation of) Elle blithely continues on and says in the UI “Good, we’re done!” and
then “Each small battery is 4 V.”

The user can still recover by selecting an option to have Elle check her work, in
which case she realizes she’s done something wrong: “Let me double-check. If x=4 V,
does 3x=7 V?”

“No way! Three times four is twelve, so I must have made a mistake. Let’s back up a
little bit.” At this point, Elle decides to back up to the Step42 interaction context. There
can sometimes be hysteresis learning effects, but in this case the “state” is almost
exactly the same as though the user had just said something other than “Okay” back at
the step where Elle wrote: “3x - 3=7 V - 3”.

So suppose at the Step42 mt (step, interaction context, lozenge,…) above, the user
had chosen, instead of “Okay”, one of the other set of possible responses. Those
possible responses are generated by Cyc by running option-generator rules, followed
by running meta-rules which prioritize them, namely evaluate (i) the pedagogical value
of each option choice to the user at this moment in time (based on the latest user model)
and (ii) the information-gathering potential for BELLA to learn more about the user’s
current mental model. Cyc picks the few highest-rated choices, composes the proper
message, and eventually this is presented to the user as the non-Okay choices of
response in the Math panel for that step. Almost anything the user selects here will
be revealing, and hence will result in updates to the user model (see Fig. 7).

Each of the four choices in Fig. 7 illustrates some interesting aspect of the BELLA
system, so let’s go through them one by one.

Case 1: A very subtle hint. Let’s say the selected the first option, [id 100], “Is 3x the
same as 3+x?” This is a moderately good suggestion for the user to make—
i.e., it would be a good suggestion if the user were tutoring an actual human

238 Int J Artif Intell Educ (2014) 24:216–250

being. The user wants Elle to realize that if the left hand side of the “3x=7”
equation had been “3+x” instead of “3x”, then subtracting an integer from
both sides could indeed turn the left hand side into just “x”. But the left hand
side is not “3+x”, it’s “3x”.

Case 2. A moderately subtle hint. Let’s say the user selected option [id101]—“What
would happen if you subtracted 3 from each side?”—instead of [id100]. This
is another good option, to get Elle to realize that subtracting 3 does not turn 3x
into x. Since this involves triply-nested modal operators, let’s restate this in
slightly more detail: Cyc believes (logically abduces) that the User believes that
Elle would believe all of the following: that subtracting 3 from both sides of “3x=
7” is allowable, that the left side would then simplify to zero and the right
side (7 -4) would simplify to 3, that the resulting equation would be “0=4”, and
that Elle would immediately realize that 0=4 is absurdlywrong. Representing this
triply-nested modal assertion (what Cyc believes that the User believes that Elle
believes), and reasoning efficiently with it, is a good example of why the power
of Cyc’s expressive representation language (higher order logic) and community-
of-1000-specialized-reasoners inference engine are needed, in BELLA.

Depending on Elle’s current mental model, Cyc might or might not have Elle
carry out this line of reasoning and reach an “Aha!”moment wherein Cyc allows
Elle’s model to shift to correct the above bug. More specifically, Elle learns
nothing directly from the user choosing response [id100] or [id101]. But Cyc
learns something important, namely that the user would not have made this
mistake, in this problem, and understands why. Suppose that the current user
model says that Barry is somewhat shaky on these concepts, on solving univar-
iate linear equations. Barry’s wise choice id100 or id101 choice gives Cyc an
argument for creating a modified user model, an updated one which says that
even though Barry previously was shaky in that way, there is new evidence that
he now understands it more deeply and no longer suffers from that problem. If
that shakiness, in turn, had been the last reasonwhy Cyc had given Elle’s model
this bug, then Cyc would allow Elle to have a mini-epiphany, report such to the
user, and from now on13 not have this bug in the Elle model any longer, not make
this mistake in the future.14 That improved Elle model concludes that Elle should

13 So long as this user doesn’t relapse into this bug; more precisely, in those future contexts where the user
model BELLA ascribes to Barry lacks that particular shakiness assertion.
14 Generally this is not instantaneous and permanent learning on the part of the user, hence all that changes is a
decrease in the frequency with which Elle will make this mistake. Gradually, eventually, she won’t make it any
more. Over an even longer time frame, some rules might predict that Elle may begin to forget this, or she may
do a superficially similar type of problem where rules predict cognitive dissonance occurring; in either of these
bases, that bug could recur in Elle’s mental model, hence the frequency of this sort of error might increase
again.

Fig. 7 Cyc generates three response options besides “Okay. Please Continue.” The formal predicate calculus
representations get ids# 100, 101, 102, 103, and the Cyc NLG converts those into the four strings shown here,
which get sent to the UI to display to the user

Int J Artif Intell Educ (2014) 24:216–250 239

not have subtracted 3 from both sides of the equation in the previous step, and a
message gets sent to the math panel: “I see what I did wrong. Let’s go back to the
3x=7 V step.” At this point, the intervening Step42 step is grayed out, the 3x=
7 V step (Step41) is copied down as if it were a brand new step, and given a new
ID number, say Step45. This does not cause an infinite loop, because Elle’s
previous bad model has been replaced by a less-bad one, and in particular Elle
will not repeat the mistake of subtracting 3 from each side of the “3x=7”
equation. Instead, she will proceed to apply her phase 1 simplifying rules (no
simplifying to do), her phase 2 isolating rules (no isolating to do), and then—
correctly!—her scaling rules (yes, scale by dividing both sides by 3).

Case 3. A poor “correction” of Elle. Let’s say the user selected option [id 102] instead
of [id 100] or [id101] or [id103], at Step42, above. Elle turns the equation into
3x
7 ¼ 7 volts

7 , and then simplifies the right hand side. This is not wrong, exactly,
just an unnecessary complication. If user selects this, the new user model will
indicate (if it doesn’t already) that Barry does not understand why it’s better
to turn the coefficient of x into “1” than to turn the non-x term into “1”. Elle
might get stuck here, depending on her model, and back up to the Step42
choice again, or she might know that to convert the left side of “ 3x

7 ¼ 1volt ”
into x by multiplying both sides by 7/3, or (even more obscurely) dividing
both sides by 3/7. Even if these do eventually get Elle to a correct solution,
the path is much longer and more awkward than necessary.

Case 4. Avery direct, very heavy-handed correction of Elle. Let’s say the user selected
option [id 103]—“Should we just divide both sides by 3 instead?”—instead
of [id100] or [id101] back at Step42. That is slightly better skill-wise than the
other options, because it requires fewer reasoning steps on Elle’s part—hence
it’s slightly better (for a human tutor to make to a human tutee, and slightly
better for the user to make to Elle) if and only if the goal is to improve the
tutee’s skill; it is slightly worse from the point of view of getting the tutee to
understand the mathematics conceptually. And fromCyc’s point of view, it is a
slightly less clear demonstration that Barry really does understand the under-
lying math (than if he had selected option id100 or 101). As with option
[id100] and [id101], this selection by Barry is evidence—albeit weaker
evidence—that Barry’s user model should be upgraded if it currently lists
him as being shaky on this type of problem. In this case, and especially in the
[id100]a nd [id101] cases, Barry’s choicemay in turn cause Cyc to upgrade the
Elle model so Elle no longer makes this sort of mistake, or at least does so less
frequently.

After selecting [id103], Elle writes on the Math panel 3x3 ¼ 7 volts
3 prefaced by the Cyc

NLG-generated comment “Okay, I divide each side by 3.” Elle similarly writes, after
that equation, “I need to get rid of the coefficient of 3 in front of the x. If I divide both
sides of the equation by the same number they will stay equal. So I am going to divide
both sides by three, since 3x/3 = x”.

One way or the other, then these cases will eventually, usually, hopefully,… lead
Elle to the end of this problem. Cyc tells the UI to display the answer: “x=2 1/3 volts”
in the Math Panel, along with a chat comment “Good, we’re done!” followed by “Let

240 Int J Artif Intell Educ (2014) 24:216–250

me double-check that.” followed by “If x=2 1/3 volts, then 3x is 6 3/3 V, which is 7 V.
Good.” Followed by “So each small battery is 2 1/3 volts.” None of this sequence of
messages is interruptible, they are just kept on different lines to make them more
readable. Control passes back to the Game, the User goes back to the 228v door

Continuing on (finally!) to interaction Step46, Elle says: “I need to take batteries
from here to the next room. How many 2 1/3 volt batteries do I need so the door will
open and close without getting stuck?” followed by “Ten 20 V batteries are already
stuck there, so this is the equation I should solve:” followed by the equation
“(10 * 20 V)+y * 2 1/3 volts=228 V”, and the comment “I need to simplify and
get the y term by itself on the left side of the equation.” This proceeds much like the
previous linear equation solving, and Elle ends up eventually with y=12 V. Since there
were 5 small batteries already in the next room, Elle concludes that she must carry at
least 12 - 5=7 more from here to there. In one version of the system, Elle comments that
she can’t carry seven small batteries in her hands, finds a basket that will hold them,
takes them to the next room, and hooks them in, along with the five already there, and
the door opens.

Open Issues, Future Development and Testing

The above introduction to BELLA raises many questions: What will prevent student
brute-forcing and cheating? What about the value of drill & practice? Also, since we
aim to begin “alpha-testing” of the latest version of BELLA shortly in schools, that in
itself raises a set of additional issues: What resources will the teacher have? How will
appropriate students who will benefit from this experience be selected? How should
each such student’s user model get initialized? Here we provide at least preliminary or
expected answers to such questions, and discuss more generally the path forward.

What About Brute-Forcing? By the way, Barry could have had Elle solve this problem
by trial and error, in the game: by just filling up the basket with dozens of small
batteries, carrying them up the corridor from the 227-V-door room to the 228-V-door
room, and adding them one by one until the door unlocks. If the user had Elle do this,
then the user model would be updated to indicate that they tend to brute-force problems
more often than had been thought, and the next linear equation problem might result in
Cyc choosing larger coefficients, to dissuade Barry from solving such problems via
guess-and-check. Using a pop-up box to type in the number of batteries to connect in
series means that an answer of 1,240 would be fine, but stolidly typing in all the
numbers from 1 to 1,240 as separate guesses would reinforce the advantage of—at least
sometimes—setting things up as a math problem and “doing the math”. Other incen-
tives to “do the math” include (i) having the problem reset each time (in this case, that
could be arranged by having all the batteries burn out, in case of a wrong wiring
solution, hence new ones would need to be gathered from around the ship), (ii) having a
competitor non-player character who will solve the problem and get the reward instead
of the user if too much time is taken, (iii) having a points system, a declining energy
level, time limits, or other resource limitations that incent efficient, correct solving of
the problems.

Int J Artif Intell Educ (2014) 24:216–250 241

What About Cheating? Players inevitably circulate “walk-throughs” and post them
online, but almost all of Elle’s problems can be automatically altered by Cyc, and the
order of feedback options randomized, and of course one of the main points of BELLA
is that each user should get an experience which is customized to their exact starting
state and micro-response history as they progress through it. Players also abuse
Save&Load Game features, so while teachers and researchers will be able to have
unfettered access to those features, each “real” player will only be able to move forward
in the game, what in online games is often referred to as “Iron Man mode”: they can
save their game, and come back to it, and continue playing, but never be able to go back
and reload that earlier save-game.

What About Drill and Practice? Although we want the user to be immersed in the
game, and engaged by it, there is also something to be said for the value of their doing a
large number of problems (in total, and per unit time), not just a few very well
motivated ones. We have some in-game systems in place already, and some which
are designed but are still being implemented, to make this problem-density adjustable,
including (i) problems which enable resources to be gathered, such as mining ore
deposits on the planet’s surface, can “feed” smelting and refining equipment which
feeds reactors and engines, etc. which keep needing more and more fuel, and the varied
locations of the ore deposits and number of deposits provide a limitless source of
organically-motivated problems; (ii) items (e.g., electric drills) in the game can wear out
over time, which forces the player to go back and repeat some problems similar to ones
done earlier, in order to build replacement items; (iii) Elle can be made to forget
things, forcing the user to re-tutor her by solving problems similar to ones she’d
already solved; (iv) many problems can be converted from one-step to two- three-
or more steps, such as fueling a vehicle where the fuel itself can be created only
through mixing components and each component can be obtained only through
sub-component mixing or assembling devices to produce those components; (v)
replaying the whole game on a harder “difficulty level”, by having an Elle that’s
harder to teach, having problems with larger and more complicated numbers,
shorter timers, and so on.

How Should a New User’s Model be Initialized? 5w?>We have several candidate
approaches and expect some combination of them will suffice: (i) Pretesting; our
current pretest involves a set of math questions where the candidate user is asked not
to solve them but to rate them on a 1–5 scale of “easy” to “no idea”, and a set of
personality-testing questions to determine their empathy and patience levels. (ii)
Interviewing the teacher about this student, essentially having the teacher fill out the
pretest for the student; (iii) Starting with a normative model of the typical sixth grade
math student who benefits from BELLA; (iv) Ingesting user data from other math
learning applications; and (v) Starting with a very low-ranked user model in all 150–
200 areas, and rapidly increasing the appropriate user model components early on in the
game. One potential benefit of that last approach is that it will provide a natural way to
teach students how to use the interface on fairly simple problems—Elle would be
making glaring errors initially—and also start them off with a positive experience that
builds self-efficacy and self-esteem as they quickly notice and correct those obvious
mistakes.

242 Int J Artif Intell Educ (2014) 24:216–250

How Can We Incent Deep Understanding and Disincent Memorized Algorithms? In
observing pairs of humans playing “Clued In” (Fig. 1), we often saw even the “A”
students exhibiting very rigid behavior: If the tutee deviated at all from the way that the
tutor would have solved the problem, the tutor would stop them, say they were wrong,
and tell them what to do. It became clear that even these good students had memorized
algorithms and skills, much like magic incantations, and either never had the underly-
ing conceptual understanding or had since forgotten some of it. To address this issue,
we need to model the way that the user approaches and solves a kind of problem, and
then have Elle sometimes intentionally solve it a different way, to stretch the user’s
understanding; or get confused at a step where the user model predicts that user is
operating on memorized skills alone. We or other researchers will need to create the
rules to more precisely decide the occurrence of these variations.

What About Forgetting and Cognitive Dissonance? An obvious issue which we have
only started to address is forgetting, or to put it more positively timely reinforcement.
We all know that when students are taught concepts and procedures in a “unit” or
block, forgetting occurs unless they have multiple delayed opportunities to use those
concepts and procedures. The logarithmic forgetting curve was well understood over a
century ago: Ebbinghaus (1913) popularized it and showed that it can be remediated by
a handful of refreshing just before they would have become necessary (Fig. 8). We are
still tuning Elle’s forgetting algorithm, such that she will lose some knowledge with
disuse, and require help from the student on material previously covered. In-game, this
can emerge from utility devices which gradually wear out, or more prosaically by just
having Elle forget things (ideally just prior to when the user would have forgotten
them.) This is exacerbated when superficially similar concepts are involved: students
who used to multiply fractions efficiently get confused by addition of fractions and start
putting fractions over common denominators before multiplying them, and then don’t
multiply the denominators; or conversely add fractions by adding their numerators and

Fig. 8 Ebbinghaus’s well-known forgetting versus reminding curve. From: http://www.learningspy.co.uk/
featured/deliberately-difficult-focussing-on-learning-rather-than-progress/

Int J Artif Intell Educ (2014) 24:216–250 243

http://www.learningspy.co.uk/featured/deliberately-difficult-focussing-on-learning-rather-than-progress/
http://www.learningspy.co.uk/featured/deliberately-difficult-focussing-on-learning-rather-than-progress/

adding their denominators. That sort of cognitive dissonance may be ameliorated by
continually mixing the types of problems, not leaving them sorted into a sequence of
curriculum “units”, and BELLA could do that same sort of intermixing of problem
types to keep the user mindful of recognizing the type of problem they were about to
solve rather than falling back on syntactic or, even worse, temporal cues.

Teacher and Administrator Interfaces and Utilities We have begun to evaluate BELLA
starting with small scale user tests where we can conduct one-on-one observations, but
larger, classroom-scale trials will soon follow. Prior to getting to that point, we will
need to understand and incorporate what teachers want from BELLA with regard to
providing information about their students. We will need to understand how teachers
want to monitor student progress and provide them with both individual and aggregate
views of class performance. Our initial implementation of such interfaces and tools can
be seen in Figs. 4c, d, and 5, but much empirical work remains to be done in this area.

Student Interfaces and Utilities What should the student be able to see, besides the
game itself? Should they able to see the current Elle model (probably so), and if so in
what form? Other learning-by-teaching systems provide this capability (e.g., Betty’s
Brain and MCLS); however, it is not clear whether such specific and frank information
about (BELLA’s model of) his/her abilities, competencies, inabilities, and incompe-
tencies would be of benefit, and possibly even harm, to the BELLA user. It may be
motivational for students to be able to view their progress in the form of a score card of
concepts and procedures that that have been covered in the course of the storyline and
that they have helped Elle master, or an aggregation of that such as Elle’s test results
and report card. This needs to be studied empirically. Should they be able to drill down
further in asking her why she did something, why she did that, etc.? Should they be
able to see how their responses and inactions impact their model? Impact Elle’s model?
These are all questions which can and should be studied anecdotally at first and then
using more rigorous educational research methods.

How to Motivate the Users We also intend to explore multiple methods for keeping
students engaged. Through gamification, obviously, we aim to provide a steady stream
of incentives. As the user “levels up” they should gain new types of interaction options
(in addition to other rewards). The gradual introduction of new options should allow
bypassing the overwhelming complexity students experienced with our initial user
interface (in which all possibilities were present from the start). Some actions that
require multiple steps in an early problem may later be chunked as a single macro-
action or shortcut. As the story progresses, these methods will hopefully increase the
user’s sense of responsibility for Elle and rapport with Elle, and through those the
overall motivation and overall effectiveness. Looking farther out in time, we hope that
we and/or others will experiment with extending this approach to other grade levels and
other subjects. But some users are motivated by constructing, and they should be able
to craft new math problems for other future users. Still other users will be much more
effectively motivated by competition, and there could be mathletic tournaments where
different tutored Elle’s compete against each other within a class, across classes, or
even across schools as in science fairs. Some users will care about certificates and “high
score” bragging rights. Some users will be motivated more by tiny but real-world prizes

244 Int J Artif Intell Educ (2014) 24:216–250

such as candy bars or $1 app downloads. So another direction for future development is
to create an effective pretest to decide what will motivate this particular user, and
provide that differentially for them.

Does it Work? It almost goes without saying that a key performance indicator is the
effectiveness of this pseudo-LBT puppeteering paradigm. Short and long term studies
should measure its absolute benefit and compare that with the use of other sorts of
teachable agents in education and, more generally, as compared with the effectiveness
of all the other paradigms of educating students. If some subpopulation of students does
particularly benefit from our approach, devising diagnostic tests to identify that sub-
population will be an important area for future research. This dovetails with the
pretesting to initialize the user model: extreme ranges of scores on that test might
signify “They are not ready for BELLA yet”, or “It would be too easy for them”, or
“They won’t be motivated to play it”, or “They won’t benefit much from playing it for
some other, more subtle reasons.”

In conclusion, we hope that BELLAwill be a useful research tool to study aspects of
how learners interact with it, and through that explore questions about how people
learn.

Acknowledgments We would like to thank Alan Kay and the staff members at Cycorp who built and
experimented with BELLA during Year 1, including David Ayliff, David Baxter, Andrew Beck, Brad Bouldin,
Jon Curtis, Gloria Dholakia, Keith Goolsbey, Jessica Gutierrez, John Jantos, Tim Jones, Saket Joshi, Robery
Kahlert, Babak Kaveh, Louis Lupin, Emma Pallen, Sheldon Picatti, Karen Pittman, Dan Quattrone, Ben Rode,
Dave Schneider, Abhishek Sharma, Blake Shepard. We also like to acknowledge the constructive reviews
provided on an earlier version of this paper. This material is based upon work supported by the US Army
ACC-APG Natick Contracting Division under Contract No. W911QY-12-C-0106,15 and we wish to acknowl-
edge our research funders, the Advanced Distributed Learning Initiative and, more generally, the Office of the
Secretary of Defense of the United States, and the individuals there and at DoDEA who have helped with
BELLA design and feedback, including Marcus Birtwhistle, Rob Chadwick, J. Dexter Fletcher, Steve Hicks,
Patrick Martin, Kristy Murray, Jonathan Poltrack, Elaine Raybourn, Damon Regan, and Frank DiGiovanni.

Appendices

Appendix 1. Detailed Lead-In to the Example Problem Scenario

This is a preface to the Example Scenario, above. It comprises mostly in-game actions,
and is not relevant to the main theme of this paper, but we include it here for readers
who better want to understand the context in which the Example Scenario, above,
occurs.

At the first (and simplest) door, there is a control panel right at the door, a label
“60 V”, a crate of large unmarked batteries, and a place next to the door to hook them
in. The player (the user) can click on the control panel at the door which directs Elle to
walk over to it. Elle pushes a button on the control panel. Nothing happens. The Game
opens a chat window, and sends a message to the Cyc webservice that requests

15 Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the US Army ACC-APG Natick Contracting Division.

Int J Artif Intell Educ (2014) 24:216–250 245

incidental dialog; this message is of the form <incidental-dialog?ZONE3-PANEL0
user-id interaction-id timestamp>. Cyc looks up relevant incidental dialog and sends
the string “This isn’t working.” to the Game. Elle says in the chat window: “This isn’t
working.” Similarly, the player could click on the door, and get the message “The ship’s
main power is out. This door needs power to open.” The player can click on the crate of
batteries, and Elle goes over and picks it up. (The player can click on other things,
move Elle around, etc. but that won’t open this door. There is another door, which
requires a combination to open, and there is a clue on the ground to what that
combination is.) The player clicks on the place next to the door where any number
of batteries would fit, and Elle hooks up that battery. This repeats two more times. After
three batteries are in place, the door hums slightly. The user can click on it and Elle
goes over to it and is able to push it open now. This simple problem introduces the user
to the various elements of this genre of door-opening challenges. Since three big
batteries in sequence totaled to 60 V, it also forms a simple tutorial for how to help
coach Elle as she works through math problems, in this case 3x=60 V.

Door#1 opens onto a corridor leading to the second door, and this one is not so easy
to get past. It is obviously much larger and heavier than door#1 was. Elle and the user
see its label, “227 V.” They also see a nearby crate of large batteries each now marked
“20 V” (if Elle and the user together correctly solved the Door#1 math problem 3x=
60 V), and a crate of small batteries whose voltage is not marked (but these appear to be
the same as each other). 227 and 20 (and the voltage of the small batteries, and the
voltage of the next door) are zone parameters—game variables the values of which are
selected by BELLA based on the user model. E.g., if the current user model says that
the user’s comfort zone on dividing integers of this size is low, then the numbers chosen
by BELLA might be smaller. If the current user model says that the user tends to “brute
force” their way through problems by guess-and-check, then the numbers chosen by
BELLA might be larger, to dissuade them from doing that here. BELLA also applies
rules that constrain the choices to forestall its accidentally choosing variable values that
admit easy solutions such as 240 and 20, in which case no small batteries at all would
need to be used, in order to open door#2.

This is a good lead-in for the reader to go through the detailed Example Scenario. It
illustrates how setting up and solving linear equations can occur naturally in the course
of game-play. The next Appendix gives a few more examples of how sixth grade math
problems arise naturally in BELLA.

Appendix 2. More Examples of Game-Emergent Math Problems

As of the time of this writing, there are about 150 different problems which can arise in
the game, and which Elle can solve with the user’s tutorage. We are also developing a
new problem crafting interface, which should accelerate the rate of creation of new
problems, and allow teachers and students to propose new ones to add to the game
themselves. Here are some examples illustrating the way that various sorts of sixth
grade Common Core Curriculum math problems can arise in BELLA.

1. Elle can launch mining robots from the ship, but hasn’t yet figured out how to
control where they land. The direction is random, the distance is random, but their
maximum range is 10 miles. Elle needs about ten of these mining robots to land in

246 Int J Artif Intell Educ (2014) 24:216–250

a particular 2×2-mile square area. She has 100 robots to launch. Should she (a)
launch them, this will probably work, (b) skip it, this is very unlikely to be enough
robots? (Answer: she should calculate it will take about 250 random launches, so
this is not worth her time.) If they do the math first, they will realize they just saved
themselves ten minutes of mindless button-pushing. Or, if the user sits there for
10 min and pushes the launch button 100 times, Elle will go through the math
herself and see that it was doomed to failure; that will hopefully reinforce their
belief that sometimes it is faster to “do the math” than to “just hope for the best”.

2. Later on, Elle finds one single advanced mining robot which she will be able to
command, once it lands; it lands at some coordinates (x,y), i.e., x units east and y
units north of the ship. She sees a sensor display of the location of ten specific
resource sites the rover needs to visit. But these are given in coordinates based on
the ship being (0,0), and the rover is unfortunately commanded by telling it relative
to wherever it currently is how many units to go in the x (east) and y (north)
directions before digging again. Elle needs to find a reasonable route for it, and
then communicate that route as a series of relative x,y movements, watching it on-
screen as it moves around, seeing it and the deposit sites it needs to visit. There is
the appearance of pressure on Elle in the form of the robot’s fuel gauge, for the first
such foray there will be just enough fuel no matter how circuitous the route Elle
directs it along.

3. Elle encounters color-coded doors with keypad locks. Besides the usual calculator
arrangement of keys, there is an Input and Output LED display. One of the security
consoles on the ship’s bridge contains formulae for the lowest-security doors;
generally these will be linear algebraic expressions in terms of the Input x, e.g.,
“20 - 3x”. The first few doors will be simple enough that Elle and the user could
just stand there and try one natural number after another, and get through in a
minute. Some of these panels provide a “too high” or “too low” readout, that even
facilitates something like binary search guessing. In some cases, the formula is not
written out already for the student, but they can put in any IN value other than the
one asked for (in this case, 21) and the door will flash what the OUT value would
have been for that input. Gradually, the doors’ formulae get more complicated.
With increasing frequency, the doors provide the output and need the user to type
in the input on the keypad, so the user needs to invert the formula, to find the value
of x which, using the security console formula for that color of door, would result
in that given output. We have recently added a few even more difficult keypad-
locked doors, e.g., to optional equipment rooms, and we have made these problems
more emergent by, e.g., making the formulae and its elements found by having Elle
search cabins, count things on the ship, and access real facts about the Earth (facts
which are unlikely to change on Earth between now and 200 years from now, such
as the number of continents.)

4. Elle needs to power a ship’s system whose fuel supplies are gone. However, the
ship had an extensive laboratory where workers could synthesize various
chemicals, including fuel for the system in question. Enough of the lab is intact
for her to synthesize the fuel herself. Before she can make the attempt, Elle must
first discover the recipe for the fuel. It in turn is made of two substances
(thiotimoline and hydrosilium) mixed in a particular ratio, and each of those two
substances needs to be synthesized separately out of other substances. Elle needs to

Int J Artif Intell Educ (2014) 24:216–250 247

figure out where the component substances are, how much of each she will need,
move them to the mixing apparatus, do the synthesis of the thiotimoline and
hydrosilium and then mix those. There are many opportunities for errors, and for
diagnosing and fixing those errors, and not all the errors require restarting from
scratch. E.g., if Elle makes too much of some component, she and the user can
learn from that, can realize that they just wasted some time and resources.

5. Elle, still in the enormous crashed starship, sees a sensor display of some of the
immense tunnel system underneath the surrounding terrain, and sees the location of
an unusual site to investigate. The length of each point-to-point tunnel segment is
marked (including “the ship”which crashed near one of the tunnel openings), but Elle
has to do the math herself to figure out which will be the shortest total path to get to
the unusual site. She has a motive for minimizing her time off-ship (a competitor/
opponent who will simultaneously be racing to get to the same site). This is a family
of increasingly (or, if the user has trouble with it, decreasingly) difficult problems,
introducing complications such as the speed that Elle can go in different tunnel
lighting conditions, roughness of terrain, and steepness of incline. It also deeply
conveys the “three meanings” of the relationship between speed, distance, and time.

6. Given a metric nut and a large assortment of non-metric wrenches (whose sizes are
expressed as maximally simplified fractions and mixed numbers, as in real life),
select the closest non-metric wrench for the job. Elle and the user can see, each
time a wrench is tried, if it’s too large or too small.

7. Elle needs to know howmany crates of batteries she has, total, on board the ship. They
are all stacked up in a huge rectangular fashion L ×W×H. But one of the top corners is
missing; it’s where the battery crates must have been taken from, already. The “missing
corner” has dimensions l, w, h. (Elle needs to set this up as L ×W×H – l × w × h, and/
or needs to learn from doing it inefficiently.)

References

Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2006). Toward meta-cognitive tutoring: a model of help-
seeking with a cognitive tutor. International Journal of Artificial Intelligence in Education, 16, 101–130.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: lessons learned. The
Journal of the Learning Sciences, 4, 167–207.

ATLT (Advanced Training and Learning Technologies). (2012). Game-based tutoring technologies final
report. Virginia Beach: ATLT.

Berliner, D. (1989). Being the teacher helps students learn. Instructor, 98, 12–13.
Biswas, G., Schwartz, D. L., Bransford, J. D., & The Teachable Agents Group at Vanderbilt. (2001).

Technology support for complex problem solving: From SAD environments to AI. In K. Forbus & P.
Feltovich (Eds.), Smart machines in education (pp. 71–98). Menlo Park: AAAI/MIT Press.

Blair, K., Schwartz, D., Biswas, G., & Leelawong, K. (2006). Pedagogical agents for learning by teaching:
teachable agents. Journal of Educational Technology and Society, Special Issue on Pedagogical
Agents.

Brizuela, B. M., Martinez, M. V., & Cayton-Hodges, G. A. (2013). The impact of early algebra: results from a
longitudinal intervention. Journal for Research in Mathematics Education, 2(2), 209–241.

Brophy, S., Biswas, G., Katzlberger, T., Bransford, J., & Schwartz, D. (1999). Teachable agents: Combining
insights from learning theory and computer science. In S. P. Lajoie & M. Vivet (Eds.), Artificial
intelligence in education (pp. 21–28). Amsterdam: Ios Press.

248 Int J Artif Intell Educ (2014) 24:216–250

Brown, J. S., & VanLehn, K. (1980). Repair theory: a generative theory of bugs in procedural skills. Cognitive
Science, 4, 379–426.

Chase, C. C., Chin, D. B., Oppezzo, M. A., & Schwartz, D. L. (2009). Teachable agents and the protégé effect:
increasing the effort towards learning. Journal of Science Education and Technology, 18, 334–352.

Chin, D. B., Dohmen, I. M., Cheng, B. H., Oppezzo, M. A., Chase, C. C., & Schwartz, D. L. (2010). Preparing
students for future learning with teachable agents. Educational Technology Research and Development,
58, 649–670.

Cohen, P. A., Kulik, J. A., & Kulik, C. L. C. (1982). Education outcomes of tutoring: a meta-analysis of
findings. American Educational Research Journal, 19, 237–248.

Ebbinghaus, H. (1913). Memory: A contribution to experimental psychology (trans: Ruger, H. & Bussenius,
C.). New York, NY: Teachers College, Columbia University. (Original work published in 1885).

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1969). Programming-Languages as a
conceptual framework for teaching mathematics, Final Report on NSF-C project 558. Washington,
DC: National Science Foundation, Office of Computing Activities.

Fletcher, J. D. (2011). DARPA education dominance program: April 2010 and November 2010 digital tutor
assessments, IDA NS D-4260, Log: H 11-000117. Alexandria: Institute for Defense Analyses.

Forbus, K. (2012). How minds will be built. Advances in Cognitive Systems, 1, 47–58.
Fry, E. (1960). Teaching machine dichotomy: Skinner vs. Pressey. Psychological Reports, 6, 11–14.
Graef, R., & Preller, R. D. (1994). Lernen durch Lehren. Rimbach, Germany: Verlag im Wald, Rimbach.
Graesser, A. C., McNamara, D. S., & VanLehn, K. (2005). Scaffolding deep comprehension strategies through

Point and Query, AutoTutor, and iSTART. Educational Psychologist, 40, 225–234.
Gulz, A., Haake, M., & Sivervarg, A. (2011). Extending a teachable agent with social conversation modules –

Effects on student experience and learning. In G. Biswas, S. Bull, J. Kay, & A. Mitrovic (Eds.), Artificial
intelligence in education, LNAI 6738 (pp. 106–114). Berlin: Springer.

Husain, L., Meletli, N., Boström, M., Axelsson, K., & Samvik, R. (2010). Teachable agent for Elevdata’s
Matematikhuset. Sweden: Lund University.

Katzlberger, T. (2005). Learning by teaching agents (Doctoral thesis). Nashville, TN: Vanderbilt University
Kiili, K., Koivisto, A., Finn, E., & Ketamo, H. (2012). Proceedings from the European conference on games

based learning: Measuring user experience in tablet based educational game. Sonning Common:
Academic Conferences and Publishing International.

Lancaster, J. (1821). The Lancasterian system of education. Baltimore: Lancaster School.
Leelawong, K., & Biswas, G. (2008). Designing learning-by-teaching agents: the Betty’s brain system.

International Journal of Artificial Intelligence in Education, 18, 181–208.
Lenat, D., & Guha, R. V. (1990). Building large knowledge-based systems: Representations and inference in

the Cyc project. Boston: Addison-Wesley.
Lenat, D., Prakash, M., & Shepherd, M. (1985). CYC: using common sense knowledge to overcome

brittleness and knowledge acquisition bottlenecks. AI Magazine, 6(4), 65–85.
Lenat, D., Witbrock, M., Baxter, D., Blackstone, E., Deaton, C., Schneider, D., Scott, J., & Shepard, B. (2010).

Harnessing Cyc to answer clinical researchers’ ad hoc queries. AI Magazine, 31(3).
Li, N., Cohen, W., Koedinger, K. R., & Matsuda, N. (2011). Proceedings from the Fourth International

Conference on Educational Data Mining. In M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C.
Romero, & J. Stamper (Eds.), A machine learning approach for automatic student model discovery.
Eindhoven: TU/e printservice.

Matsuda, N., Cohen, W. W., Koedinger, K. R., Stylianides, G., Keiser, V., & Raizada, R. (2010). Proceedings
from the International Workshop on Adaptation and Personalization in E- B/Learning using Pedagogic
Conversational Agents (APLeC). In D. Perez-Marin, I. Pascual-Nieto, and S. Ball (Eds.), Tuning cognitive
tutors into a platform for learning-by-teaching with SimStudent technology. Retrieved from http://ceur-
ws.org/Vol-587/paper4.pdf.

Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., Stylianides, G., Cohen, W. W., Stylianides, G., &
Koedinger, K. R. (2012a). Proceedings from international conference on intelligent tutoring systems. In S.
Cerri & W. Clancey (Eds.), Motivational factors for learning-by-teaching: The effect of a competitive
game show in a virtual peer-learning environment. Berlin: Springer.

Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., William, W. C., Stylianides, G., & Koedinger, K. R.
(2012b). Proceedings from the annual conference of the cognitive science society. In N. Miyake, D.
Peebles, & R. P. Cooper (Eds.), Shallow learning as a pathway for successful learning both for tutors and
tutees. Austin: Cognitive Science Society.

Melis, E., & Siekmann, J. (1999). Knowledge-based proof planning.Artificial Intelligence Journal, 115(1), 65–105.
Michie, D., Paterson, A., & Hayes-Michie, J. (1989). Learning-by-teaching. In H. Jaakkola & S. Linnainmaa

(Eds.), 2nd Scandinavian conference on artificial intelligence 89 (pp. 307–331). Amsterdam: Ios Press.

Int J Artif Intell Educ (2014) 24:216–250 249

http://ceur-ws.org/Vol-587/paper4.pdf
http://ceur-ws.org/Vol-587/paper4.pdf

Millis, K., Forsyth, C., Butler, H., Wallace, P., Graesser, A. C., & Halpern, D. (2011). Operation ARIES! A
serious game for teaching scientific inquiry. In M. Ma, A. Oikonomou, & J. Lakhmi (Eds.), Serious
games and edutainment applications (pp. 169–196). London: Springer.

Nichols, D. (1994). Proceedings of the East-West International Conference on Computer Technologies in
Education (EW-ED’94), volume 1. In P. Brusilovsky, S. Dikareva, J. Greer, & V. Petrushin (Eds.), Issues
in designing learning-by-teaching systems (pp. 176–181). Crimea, Ukranine.

Pareto, L., Haake, M., Lindström, P., Sjödén, B., & Gulz, A. (2012). A teachable-agent-based game affording
collaboration and competition: evaluating math comprehension and motivation. Educational Technology
Research and Development, 60, 723–751.

President’s Council of Advisors on Science and Technology. (2010). Prepare and inspire: K-12 education in
Science, Technology, Engineering, and Math (STEM) for America’s future. Washington, DC. Retrieved
from http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf.

Roscoe, R. D., & Chi, M. T. H. (2007). Understanding tutor learning: knowledge-building and knowledge-
telling in peer tutors’ explanations and questions. Review of Educational Research, 77, 534–574.

Roscoe, R. D., Segedy, J., Sulcer, B., Jeong, H., & Biswas, G. (2013). Shallow strategy development in a
teachable agent environment designed to support self-regulated learning. Computers and Education, 62,
286–297.

Segedy, J. R., Kinnebrew, J. S., & Biswas, G. (2013). The effect of contextualized conversational feedback in a
complex open-ended learning environment. Educational Technology Research and Development, 61, 71–
89.

Sowa, J. (1995). Syntax, semantics, and pragmatics of contexts, AAAI technical report FS-95-02. Vestal:
American Association of Artificial Intelligence.

Stern, N. (2011). Teach some, learn some: The benefits of tutoring. Retrieved from http://www.brassmagazine.
com/article/teach-some-learn-some-benefits-tutoring.

Stone, J. R. (2004). The Routledge dictionary of latin quotations: The Illiterati’s guide to Latin maxims,
mottoes, proverbs, and sayings. New York: Routledge.

Tschurenev, J. (2008). Diffusing useful knowledge: the monitorial system of education in Madras, London and
Bengal, 1789-1840. Paedagogica Historica: International Journal of the History of Education, 44(3),
245–264.

Uresti, J., & du Boulay, B. (2004). Expertise, motivation, and teaching in learning companion systems.
International Journal of Artificial Intelligence in Education, 14, 67–106.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in
Eductaion, 16, 227–265.

VanLehn, K., Freedman, R., Jordan, P., Murray, C., Osan, R., Ringenberg, M., Rose, C., Schulze, K., Shelby,
R., Treacy, D., Weinstein, A., &Wintersgill, M. (2000). Proceedings from intelligent tutoring systems: 5th
international conference: Vol. 1839. Lecture notes in computer science. In G. Gauthier, C. Frasson, & K.
VanLehn (Eds.), Fading and deepening: The next steps for Andes and other model-tracing tutors. Berlin:
Springer.

Wagster, J., Tan, J., Wu, Y., Biswas, G., & Schwartz, D. L. (2007). Proceeding from the 29th meeting of the
Cognitive Science Society. In D. S. McNamara & J. G. Trafton (Eds.), Do learning-by-teaching
environments with metacognitive support help students develop better learning behaviors? Nashville:
Cognitive Science Society.

Walker, E., Rummel, N., Walker, S., & Koedinger, K. R. (2012). Noticing relevant feedback improves learning
in an intelligent tutoring system for peer tutoring. In S. A. Cerri, W. J. Clancey, G. Papdourakis, & K.
Panourgia (Eds.), Intelligent tutoring systems, 2012 (pp. 222–232). Berlin: Springer.

Winston, P. H. (1970). Learning structural descriptions from examples. (doctoral thesis). Cambridge, MA: MIT.
Zhao, G., Ailiya, & Shen, Z. (2012). Learning-by-teaching: designing teachable agents with intrinsic

motivation. Educational Technology and Society, 15, 62–74.

250 Int J Artif Intell Educ (2014) 24:216–250

http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf
http://www.brassmagazine.com/article/teach-some-learn-some-benefits-tutoring
http://www.brassmagazine.com/article/teach-some-learn-some-benefits-tutoring

	Reinforcing Math Knowledge by Immersing Students in a Simulated Learning-By-Teaching Experience
	Abstract
	Introduction
	Learning-By-Teaching Systems
	Sixth Grade Math and Sixth Grade Math Students
	Cyc and Bella
	Looking Under the Hood
	Example Problem Scenario
	Open Issues, Future Development and Testing
	Appendices
	Appendix 1. Detailed Lead-In to the Example Problem Scenario
	Appendix 2. More Examples of Game-Emergent Math Problems

	References

