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Abstract Within STEM domains, physics is considered to be one of the most
difficult topics to master, in part because many of the underlying principles are
counter-intuitive. Effective teaching methods rely on engaging the student in active
experimentation and encouraging deep reasoning, often through the use of self-
explanation. Supporting such instructional approaches poses a challenge for devel-
opers of Intelligent Tutoring Systems. We describe a system that addresses this
challenge by teaching conceptual knowledge about basic electronics and electric-
ity through guided experimentation with a circuit simulator and reflective dialogue
to encourage effective self-explanation. The Basic Electricity and Electronics Tuto-
rial Learning Environment (BEETLE II) advances the state of the art in dynamic
adaptive feedback generation and natural language processing (NLP) by extending
symbolic NLP techniques to support unrestricted student natural language input in
the context of a dynamically changing simulation environment in a moderately com-
plex domain. This allows contextually-appropriate feedback to be generated “on the
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fly” without requiring curriculum designers to anticipate possible student answers
and manually author multiple feedback messages. We present the results of a system
evaluation. Our curriculum is highly effective, achieving effect sizes of 1.72 when
comparing pre- to post-test learning gains from our system to those of a no-training
control group. However, we are unable to demonstrate that dynamically generated
feedback is superior to a non-NLP feedback condition. Evaluation of interpretation
quality demonstrates its link with instructional effectiveness, and provides directions
for future research and development.

Keywords Intelligent tutoring systems · Natural language processing · Tutorial
dialogue

Introduction

Within Science, Technology, Engineering, and Math (STEM) domains, physics is
considered by many to be one of the most difficult topics to master, in part because
many of the underlying principles are counter-intuitive. Students’ naı̈ve conceptions
have proven to be highly resistant to traditional lecture-based methods of instruc-
tion and this finding has been the impetus for a tremendous amount of research into
alternative, more effective instructional techniques. One approach that has proven
effective is called the conceptual change method (Duit and Treagust 2003). This
approach relies on two key processes. First, students should be presented with
unavoidable and incontrovertible evidence that explicitly contradicts their existing
naı̈ve conception(s). Second, they should be guided just enough to allow them to
generate an accurate conceptualization of the phenomena and principles within the
domain.

This approach is consistent with the basic principles of many learning theo-
ries. For example, the second stage relies on the tutor taking on a Socratic role
(Seeskin 1987) and leverages what we know about student learning through post-
activity reflection and self-explanation (Chi et al. 1994; Katz et al. 2003, 2007; King
1997; Kolb 1984; Lee and Hutchison 1998; Mestre et al. 2011). At its core, this stage
recognizes the importance of getting students to generate or construct their own inter-
pretation and understanding of a domain (Duffy and Jonassen 1992; Osborne and
Wittrock 1983).

A consideration of the conceptual change approach indicates that an intelligent
system capable of implementing this type of science instruction needs to include
both a simulation environment for the first stage and a tutorial dialogue capability
for the second. Interestingly, while there are many computer-based tutoring systems
that use simulation as a training tool (e.g. de Jong and van Joolingen 1998) and
tutorial dialogue systems that ask students to provide justifications for problem
solving steps (Aleven et al. 2002; Khuwaja et al. 1994; VanLehn et al. 2007)
and to explain their conceptual reasoning (Graesser et al. 1999; Jordan et al. 2006;
Litman and Silliman 2004), relatively few existing systems combine experimentation
in an interactive environment with self-explanation (Pon-Barry et al. 2004; Ros et al.
2004).
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In this paper, we tackle the problem of developing an effective curriculum based
on the conceptual change method within the context of an Intelligent Tutoring Sys-
tem (ITS) for a sub-topic of physics, electricity and electric circuits. We leveraged
existing research on common misconceptions in this domain to create a curriculum
with exercises conducted in a simulated circuit workbench, designed to contradict
such misconceptions, and post-exercise guided reflective dialogues to help students
formulate new conceptions. To our knowledge, the Basic Electricity and Electronics
Tutorial Learning Environment (BEETLE II) is the first ITS that integrates the inter-
active experimentation and reflective dialogue components of the conceptual change
approach, using natural language processing to understand student explanations and
provide context-specific feedback.

Part of the challenge in building such a system is the requirement to deal with a
dynamically changing simulation environment. Student utterances need to be inter-
preted in the context of the current state of the simulation, and tutoring feedback must
also be adapted to the current context. This generally means that feedback must be
generated “on the fly”, which presents a serious challenge for the natural language
processing (NLP) module in a tutoring system.

The BEETLE II system addresses this challenge by providing a natural lan-
guage interpreter and a tutorial planner and generator that work together to provide
dynamic feedback generation. The BEETLE II dialogue component supports context-
specific interpretation and diagnosis of natural language student explanations, and
implements a set of generic tutoring tactics that can be instantiated in different
problem-solving contexts. This allows for dynamic selection and automatic genera-
tion of context-adaptive feedback to student answers. Our approach improves upon
the state of the art in dialogue ITSs that support automatic feedback generation by
tackling more complex language input, while still allowing for integration with an
interactive simulation.

After reviewing previous work in NLP for tutorial dialogue, we describe the design
and implementation of the BEETLE II system, including the construction of the
curriculum and a system architecture to support dynamic feedback generation. We
evaluate the overall system’s effectiveness in terms of learning gain and user satis-
faction and assess the contribution of the NLP module. We then carry out a detailed
evaluation of the natural language interpreter, looking at its overall performance and
how that correlates with learning outcomes. Finally, we describe an error analysis
focusing on the different types of interpretation failures possible in the system, and
their relationship with desired outcomes. Based on this evaluation, we discuss future
directions for research and development.

Previous Work

It has been solidly established that eliciting self-explanation (Chi et al. 1994) and
contentful talk (Litman et al. 2009; Purandare and Litman 2008) from students is
correlated with increased learning gain. Therefore, there has been substantial interest
in developing tutoring systems in STEM domains that are able to understand and
provide feedback to natural language input.
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Decisions about how to provide feedback during natural language dialogue can
be seen in the more general context of providing formative feedback in an ITS. The
types of feedback that an ITS can provide include simple verification feedback that
confirms whether or not an answer is correct, correct response (or “bottom-out”)
feedback that gives away the correct answer, and different forms of elaborated feed-
back which includes giving general advice on the topic, re-teaching the material,
flagging problematic parts of student responses, or giving hints, cues and prompts
(Shute 2008). We will focus on the provision of “informative tutoring feedback”
or “tutoring tactics” (Chi et al. 2009; Narciss and Huth 2004; Narciss 2004), that is,
feedback that combines verification, error flagging and hints adapted to the context.

In this section, we review work on dialogue ITSs that provide feedback for rel-
atively short (1 to 2 sentence) explanation questions asking students to explain
their observations or justify problem-solving steps. Several existing tutorial dialogue
systems focus instead on helping students to produce short essays in answer to
an explanation-type question (Graesser et al. 1999; Jordan et al. 2006; Litman and
Silliman 2004). These systems incorporate NLP approaches that are highly effective
in assessing longer texts. However, methods suitable for essay assessment may not
perform well when applied to shorter explanations (Ventura et al. 2004).

Systems that provide feedback on short explanations have used both statistical and
symbolic methods for answer analysis. The statistical methods employ techniques
from textual entailment and paraphrase identification to compare the text of the stu-
dent answer against sets of possible correct and incorrect answers anticipated by
system developers (Jordan et al. 2007; McCarthy et al. 2008; VanLehn et al. 2007).
These methods are generally robust to unexpected student inputs, and require less
upfront investment in NLP infrastructure than symbolic methods. However, since
they rely on matching text strings rather than building semantic representations, they
use finite-state machines for dialogue management and require system developers
to manually author feedback messages for every machine state. This requires care-
ful attention to authoring tools to avoid redundancy that can cause student confusion
(Jordan et al. 2005), and to deal with unanticipated answers which in one study
accounted for 30 % of student utterances (Jordan et al. 2009).

In contrast, symbolic methods involve using rule-based parsers and reasoners to
build semantic structures representing fine-grained details of utterance content. The
availability of such detailed representations supports dynamic adaptive feedback gen-
eration because it allows a system to maintain a library of generic tutoring tactics and
then choose a tactic at each point of the interaction according to a particular tutor-
ing policy, instantiating it with relevant content from the student answer (Callaway
et al. 2006; Glass 2000; Pon-Barry et al. 2004). Symbolic NLP approaches are more
brittle to unexpected student input than statistical approaches, and require more
upfront investment in parsing and interpretation infrastructure to develop and deploy
in new domains. However, the structured semantic representations they produce
offer particular advantages for integrating tutoring with simulation-based environ-
ments or with environments where problems are dynamically generated, such as
cognitive tutors (Aleven et al. 2002). These representations allow such systems
to offer feedback that explicitly refers to the current state of the simulation or
problem-solving situation.
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The development of the BEETLE II system is an attempt to expand the application
of the symbolic NLP approach to support dynamic feedback generation in conjunc-
tion with a curriculum that embodies best practices in science teaching and requires
support for moderately complex natural language input. Compared to other systems
that support dynamic feedback generation, the BEETLE II system allows for sig-
nificantly more complex input than the CIRCSIM-Tutor (Glass 2000), which asks
questions requiring 1–2 word answers; and BEETLE II supports explanations of about
the same average length as the SCoT-DC tutor (Pon-Barry et al. 2004), but attempts
to handle a wider range of topics (SCoT-DC covers three main topics, whereas the
BEETLE II curriculum covers 10 main topics, with 14 exercises involving around 150
different natural language questions asked by the system).

Another system that supports symbolic understanding and reasoning about student
explanations is the Geometry Explanation Tutor (Aleven et al. 2002), which aims
to give feedback on sentence-long explanations for geometry problems. However,
unlike BEETLE II, in order to generate feedback it represents all possible partially
correct explanations in its domain ontology. The BEETLE II system aims to imple-
ment a set of generic tutoring tactics (discussed in the “System Implementation”
section) which does not require possible incorrect answers to be specified in advance
as concepts in the ontology.

Among the systems that use statistical NLP approaches to understanding, the clos-
est in philosophy to BEETLE II is the AUTOTUTOR system (Graesser et al. 1999).
The tutoring in AUTOTUTOR is based around expectations of the answer, expressed
as natural language statements. Student input is matched against those expectations
using latent semantic analysis. For each missed expectation, the instructional design-
ers author a list of feedback messages that correspond to different tutoring tactics:
pumps (or “contentless prompts”), hints and assertions. This provides the system with
a collection of tactics it can choose from at each point in the interaction according to
the desired tutoring policy. However, since no structured representation is used, the
feedback messages cannot be generated automatically and have to be authored for
each problem.

The BEETLE II domain was chosen to be more restricted than the AUTOTUTOR
domains, so that it allows for building domain reasoners and symbolic models, but
is more complex than the systems that use symbolic approaches discussed above.1

One of our research aims was to investigate whether we can effectively handle
more complex language by using a domain adaptation technique originally devel-
oped for task-oriented spoken dialogue systems. In contrast to previous approaches
to symbolic NLP in tutoring (which rely either on entirely domain-specific process-
ing modules, or on syntactic parsers with domain-specific lexicons), our architecture
uses a wide-coverage syntactic parser and a domain-independent lexicon and ontol-
ogy that is adapted to a given domain with the aid of ontology mapping rules. This

1Any comparisons based on the number of topics or size of the domain ontology are approximate, because
there can be substantial differences in granularity which are difficult to quantify. However, we tried to
ensure that the numbers as cited provide a fair comparison based on our understanding of the referenced
systems.
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architecture has been successfully used to improve portability and robustness of pars-
ing and semantic interpretation in task-oriented dialogue systems (Dzikovska et al.
2008). This gave us reason to believe that it can effectively support understanding
explanations in a tutorial dialogue system that combines conceptual learning with
experimentation in a simulation environment.

Next, we provide a general description of the curriculum, the high-level tutoring
strategies used in the system, and the role that NLP plays in supporting them.

Curriculum Development

As mentioned earlier, physics is considered by many to be an extremely difficult
field to master, due in large part to the inclusion of many concepts that appear to
be counter-intuitive to our everyday experiences. We focused our curriculum on the
sub-topic of electricity and electric circuits. This is a foundational topic for electri-
cal engineering and electricians, and a common part of school physics curricula in
order to enable students to understand the electrical appliances and machinery they
encounter in everyday life. Our research goal, however, is not to teach circuits per se,
but to understand how teaching techniques involving hands-on interaction and reflec-
tive dialogue, known to be effective when used by human tutors, can be implemented
in a computer system integrating simulation and natural language dialogue.

In order to develop our learning materials, we leveraged the existing research in
science education as much as possible. At the heart of over two decades of research
in physics education we find a number of studies designed to elicit and identify com-
mon misconceptions (Chinn and Brewer 1993; Halloun and Hestenes 1985a; Tallant
1993). From there, researchers went on to develop psychometrically robust tests of
conceptual understanding to support the body of research evaluating the effectiveness
of a wide variety of different teaching strategies (Carey 1986; Eylon and Linn 1988;
Farnham-Diggory 1994; Halloun and Hestenes 1985b; Scott et al. 1992; Vosniadou
and Brewer 1987). By tying into this body of research, we were able to establish
learning objectives that align with an established set of common misconceptions,
apply an instructional strategy that has been demonstrated to be effective, and eval-
uate our system using tests and conceptual inventories that are known to be reliable
and valid.

In the rest of this section, we will elaborate on the specifics of the course that
we implemented in BEETLE II, at three levels. We begin by addressing the content,
i.e. the specific concepts that our curriculum addresses and how those concepts are
sequenced. Next, we address the primary high-level instructional strategy that was
used to deliver this content. Finally, we briefly explain how we arrived at the low-
level tutoring tactics implemented in the system in order to help a student complete
each step required by the instructional strategy.

Instructional Content and Approach

We implemented approximately four hours of instruction, using content and activities
drawn from the materials published by the Physics Education Group at the Univer-
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sity of Washington (McDermott et al. 1995). These materials are based on years of
research in science education conducted by this group and others, and have been iter-
atively refined through multiple experiences in college classrooms. The curriculum
explicitly covers topics such as open and closed paths, voltage, series and parallel
circuits, and finding faults in a circuit with a multimeter. In addition, the simulation-
based exercises themselves are carefully designed to elicit and counter common
misconceptions in this domain. For example, many people intuitively analyze circuits
sequentially. They begin by looking at the power source and then follow the circuit
with their eyes, anticipating that the electrical phenomena will occur in sequence until
there is a disruption in the circuit or they return to the power source. This sequential
reasoning underlies several misconceptions, including the misconception that current
flows out of a battery and through light bulbs until it reaches a gap, and the miscon-
ception that each light bulb consumes a bit of the current that passes through it. Our
curriculum includes numerous exercises using a variety of different circuit configura-
tions that consistently demonstrate that students must reason globally about a circuit,
because a sequential analysis does not correctly predict electrical phenomena.

The sequence of concepts and activities described by the Physics Education Group
are nested within the conceptual change instructional approach. (The low-level tac-
tics that we implemented were based on an analysis of human tutoring behavior
with this same curriculum, as will be discussed later in this section.) At the core of
this approach is an analysis of the fundamental concepts in a scientific domain and
a series of activities designed to illustrate these concepts and contradict commonly
held misconceptions. Students are taken through several cycles of making predic-
tions based on their existing conceptions, completing activities, and then reflecting on
the outcomes and implications for their conceptions of the field. There are repeated
demonstrations in the literature of the effectiveness of this approach (Redish et al.
1997; Thacker et al. 1994).

The lessons in BEETLE II apply this instructional approach within the context
of a simulated circuit workbench. For each topic, the students are asked to predict
the behavior of a given circuit and explain that prediction. Next, the students test
their predictions in the circuit simulator by building the circuits and observing their
behavior. After the test is complete, the students are asked whether the simulated
results matched their predictions. Finally, when predictions were not realized, stu-
dents are asked to try and generate an explanation for the behavior of the circuit that
they just observed. We refer to this general flow as the “Predict-Verify-Evaluate”
strategy (PVE). Most of the curriculum is set up in this manner, which encourages
students to think deeply about the phenomena that they observe and attempt to infer
the underlying explanatory principles in the domain.

It may be informative at this point to compare our strategy to the strategies imple-
mented in other ITSs that address misconceptions, such as Why2-ATLAS (Jordan
et al. 2006), ITSPOKE (Litman and Silliman 2004) and AUTOTUTOR (Graesser
et al. 1999). These systems have a library of remediations tailored to the assorted
misconceptions. They ask students questions, and use natural language interpreta-
tion to attempt to diagnose misconceptions present in the answer and to select a
matching remediation. With our tutoring strategy we do not use misconception-
specific dialogue-based remediations. The simulation-based exercises are designed
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to elicit and counter common misconceptions. Students who make faulty predic-
tions of circuit behavior based on misconceptions are engaged by the tutor in
a dialogue designed to have them explicitly acknowledge the inability of their
existing conceptual framework to accommodate the observed phenomena and then
to “reverse-engineer” a more appropriate conceptual understanding of the basic
principles of electricity and circuits.

We hypothesize that two things are working together to make our curriculum
effective in overcoming common misconceptions. The first is our content—the pre-
sentation of a carefully designed sequence of concepts. The second is our primary
tutoring strategy—the exercises associated with those concepts embedded within
Predict-Verify-Evaluate cycle.

In our conceptualization of this strategy, the role of the tutor is to help students
accomplish each step within the cycle, i.e. ensure that the student correctly performs
the required simulations, that they remember their predictions and are aware of any
differences between the predictions and the observations, and that they complete each
reflection dialogue with knowledge of the correct explanation. This cannot be fully
accomplished without a tutorial dialogue capability that helps students to generate for
themselves accurate statements about the underlying principles of basic electricity
and electronics.

The challenge for the dialogue component is then to select an appropriate
generic tutoring tactic aimed at completing the current step, and then instantiate it,
on the fly, within the context created by both the student’s statements and the state
of the objects in the simulation environment. Our choice of tactics was based on a
human-human tutoring study in the context of our curriculum, described in the next
section.

Tutoring Tactics

Before implementing our curriculum in the BEETLE II system, we piloted it with
three experienced human tutors, each of whom worked through the exercises individ-
ually with multiple students, providing feedback during the prediction and reflection
stages as necessary. All of the tutors were knowledgeable in the area of electricity
and circuits. Two of the tutors had experience providing military technical training
and the other had experience teaching college courses and providing private tutor-
ing. A total of thirty students participated in this pilot study for approximately four
hours each. The curriculum was presented to the student on a laptop and the student
interacted with their tutor via a chat interface. All of the student and tutor questions,
answers, and feedback were logged.

After all of the participant data were collected, our team analyzed the transcripts in
order to identify effective tactics used by our human tutors. First, we developed a hier-
archical coding scheme for the low-level techniques that the tutors used in response
to student answers (both correct and incorrect) (Steinhauser et al. 2007). The scheme
described micro-level decisions taken by the tutors while trying to help the student
perform post-exercise reflection, for example, giving hints to help the student arrive
at a better explanation of what they observed, and used eight different tactic codes at
the lowest level.
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Once all of the transcripts were coded according to this scheme,2 we turned our
focus to evaluating the effectiveness of each tactic and the effectiveness of the most
commonly occurring sequences of remediation tactics (when a single tactic was not
successful at eliciting the correct answer from a student). Each mini tutorial dialogue
that followed each question in the curriculum (across all participants and all tutors)
was classified according to its sequence of codes and according to the success of its
final result. A mini tutorial dialogue was classified as successful if it resulted in the
student generating a full and correct answer and as unsuccessful if the tutor was the
one who eventually provided the full and correct answer to the student.

For example, one common sequence found in the transcripts was:

Student: Partially correct, some missing information
Tutor: Remediates with generic prompt for more information
Student: Fully correct
Sequence: Successful

These sequences were tallied and the most frequently used successful sequences
were promulgated for implementation as tutoring tactics in the BEETLE II system.
While the ultimate goal was to develop a system that could be used to test a wide vari-
ety of tutoring tactics, we felt that this selection would yield a strong initial version of
the system. Our analysis also indicated that tutorial dialogues that were not success-
ful after three tutor turns were rarely ever successful. Hence, we recommended that
the BEETLE II system default to providing the full and correct answer to the student
if three attempts at eliciting the answer were not successful.

Based on this analysis, we developed a scheme to structure the tactics generated
by a computer tutor. The list of tactics, found in the Appendix, reflects a collection
of the various tactics that our tutors used. The details of how tactics are chosen and
instantiated at each step of the dialogue are discussed in the “Tutorial Planner and
Natural Language Generation” section. The Appendix also illustrates how the PVE

strategy and the dialogue remediation tactics work together in the BEETLE II ITS to
address student misconceptions. It contains examples of students making incorrect
predictions in the beginning and arriving at the correct answer during reflection dia-
logue, either by themselves after observing the discrepancy in simulation, or with the
aid of the system.

Assessment

To allow us to test the effectiveness of our instruction, we developed pre- and post-
tests by leveraging published conceptual inventories in the domain of electricity and
electronics, particularly the “Determining and Interpreting Resistive Electric Circuits
Concepts Test” (Engelhardt and Beichner 2004) and the “Electric Circuit Diagnostic
Test” (Sokoloff 1996). After selecting a subset of questions that were relevant to our
curriculum, we conducted pilot testing of these items with 106 students at the US

2Three independent raters achieved kappa scores ranging from 0.69 to 0.88 across the levels of the coding
hierarchy, indicating agreement ranging from moderate to substantial.
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Navy Training Command Great Lakes. In this pilot test, we followed each multiple
choice question with the open-ended question, “Why?” The primary objective of this
pilot effort was to determine the extent to which the distractors were valid representa-
tions of common misconceptions in the field. In other words, we evaluated the extent
to which the students’ written explanations for selecting a distractor were consistent
with the misconception that the distractor was purported to represent. The results of
this analysis provided positive evidence for the validity of the test items. In addition,
these data allowed us to assemble two different tests that were well-matched in terms
of both difficulty and content coverage. We used one test, with 22 questions, for our
pre-test and the other, with 21 questions, for our post-test in the current study. Note
that further evidence for the equality of these two tests is presented later, through the
performance of the no-training control condition of our study.

System Implementation

Architecture

A screenshot of the system is shown in Fig. 1. The student interface includes an
area to display reading material, a circuit simulator, and a dialogue history window.
All interactions with the system are typed to avoid issues with speech recognition.3

Students read pre-authored curriculum slides and carry out exercises which involve
experimenting with the circuit simulator. They are asked to explain observed behavior
by answering questions such as “Why was bulb C off when switch Z was open?”.
The system also asks high-level questions, such as “Under what circumstances will a
switch affect a bulb?”. The graphical user interface is integrated with the open-source
GNUCAP circuit simulator,4 which is used to correctly display bulb brightness and
provide accurate voltage and current readings for arbitrary circuits.

An excerpt from the example dialogue in Fig. 1, formatted for readability, is shown
in Fig. 2. Students are intended to learn that a bulb will light up when it is in a
closed path with a battery. Thus, when the student says that the bulb is contained
in a closed path, the system treats the answer as partially correct but incomplete. It
restates the student answer to confirm the correct part, a tactic that is effective in
human-human tutoring (e.g. Dzikovska et al. 2008), and then prompts the student
to complete the answer. When the student is unable to continue correctly, the sys-
tem gives two different hints until the student arrives at a correct answer. We will
use the first exchange (turns 2–3) of this dialogue as a running example to illustrate
the system’s capabilities. Some additional examples demonstrating system behav-
ior and strategies used, excerpted from our evaluation corpus, are provided in the
Appendix.

3We are currently engaged in data collection to obtain speech recordings necessary to build language
models and support spoken interaction (Bell et al. 2012).
4http://www.gnucap.org
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Fig. 1 Screenshot of the BEETLE II system

The system architecture is shown in Fig. 3. The system behavior can be seen as
an instance of the two-loop approach from VanLehn (2006). The outer loop consists
of the system presenting a series of high-level activities to the user. Each activity is

Fig. 2 Example dialogue with the system, excerpted from Fig. 1
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Fig. 3 System architecture diagram

made up of a series of questions, which roughly correspond to steps within Vanlehn’s
inner loop.5 Both the activities and the questions are generated by a curriculum plan-
ner. For each question, the system provides a dialogue-based feedback service. The
tutor processes student input (either natural language or a circuit submission) and
gives feedback and hints until the correct answer is established, either by the student
answering correctly, or by the tutor deciding that further remediation will be unpro-
ductive and therefore telling the student the correct answer and moving on to the next
question.

To provide feedback on natural language answers, the feedback service uses a
standard interpretation pipeline, with domain-independent parsing and generation
components supported by domain-specific components for tutorial decision-making.
Student answers are first analyzed by a deep parser. A contextual interpreter is then
used to provide reference resolution and to transform the parser output into the
domain-specific representation used by the domain reasoner. The diagnoser checks
the student answer representation for factual correctness and matches it against the
expected answer, returning a detailed diagnosis containing a list of correctly men-
tioned objects and relations, those that are missing, and those that contradict the
expected answer. Next, the diagnosis is passed to the tutorial planner, which decides
on an appropriate response, including which tutoring tactics to use. Finally, the natu-
ral language generator converts the tutorial planner’s high-level decision into the text
of a response to be presented to the student.

5The analogy is imperfect, since the focus of our activities is on teaching concepts rather than solving
multi-step problems. Questions asked by the system often build on each other to help students build up
their understanding of a complex concept, but are not as inter-dependent as problem solving steps.
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Curriculum Planning and Exercises

The high-level lesson flow, including the presentation of reading material and exer-
cise sequencing, is managed by the curriculum planner. For each exercise, the planner
stores the reading material to be presented and the questions the system will ask the
student, together with the associated circuits and reference answers (described later
in the “Domain Reasoning and Diagnosis” section). These are used by the dialogue
manager to load the appropriate circuits into the simulator and set up the dialogue
context at the beginning of each exercise.

At present, exercises and questions are presented to all students in the same fixed
sequence, based on a lesson plan specified by the curriculum designers. We are
considering implementing a more flexible approach in the future, allowing the cur-
riculum planner to choose both exercises and questions to be presented based on a
student model and an adaptive planner (e.g. Cho 2000). The fixed lesson plan was
selected as the simplest possible option, since the focus of our work has been on adap-
tive feedback generation in the feedback service. However, the dialogue manager we
have implemented in the system is fully capable of handling a dynamic lesson plan,
and an adaptive curriculum planner could be substituted in without any changes to
the rest of the system’s architecture.

The curriculum includes four different types of questions:

• Identify: Object and attribute identification questions, e.g. “In this circuit, which
bulbs will be on and which bulbs will be off?” These questions ask the student to
identify one or more objects or attributes. They require short answers which are
much simpler to interpret than explanation questions, but still require the system
to correctly resolve references to objects on the screen (“The bulb in 1”), ellipsis
(“all off”), etc., requiring proper interpretation and integration with the domain
reasoner.

• Explain: Explanation and definition questions, e.g. “What are the conditions
for a bulb to light?” These questions are key to supporting self-explanation, and
student answers to these are the most difficult to process.

• Multiple choice: Multiple choice questions, requiring students to answer “yes”
or “no”, or to choose from a set of alternatives. These questions can be processed
straightforwardly using simple template matching.

• Number: Number questions, either a measurement report (“What voltage read-
ing do you get?”) or a count (“How many closed paths can you find in diagram
1?”). These questions require some post-processing, but again, can be dealt with
straightforwardly using a simple grammar.

In the remainder of this section, we discuss the interpretation and dynamic
feedback generation pipeline, focusing on the processing necessary to produce
automatically generated feedback for “identify” and “explain” questions.

Dialogue Management

The interpretation and feedback generation pipeline is coordinated by the dialogue
manager. Our approach is based on the information-state update approach to dialogue
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management (Larsson and Traum 2000), in which the dialogue manager keeps the
central representation of the state of the dialogue, and individual components con-
sult it to support context-specific interpretation and generation, and update the state
with the results of their processing. The dialogue manager calls the components in
the feedback service pipeline (interpretation, domain reasoning and diagnosis, then
tutorial planning and generation) to process the student answer and generate appro-
priate feedback, and decides when to pass control to the curriculum planner to move
on to the next question.

Dialogue state is represented by a cumulative answer analysis which tracks, over
multiple turns, the correct, incorrect, and missing parts of the answer. Every time
the student attempts an answer, the objects and relations mentioned are added to
the dialogue state. Content from the hints produced by the tutor is also added. This
allows the system to track the answer over multiple turns. For example, if the system
asks “Which components are in a closed path”, expecting the answer “the bulb and
the battery”, the student may say “the bulb.” When prompted to say more, they may
complete their answer by saying “the battery.” The dialogue manager will combine
the information from the two answers and conclude that the complete answer has
been provided, allowing the student to move on to the next question.

Next we describe the implementation of the pipeline components.

Interpretation Components

To parse student utterances, the system uses a two-stage process. First, the TRIPS
dialogue parser (Allen et al. 2007) produces a domain-independent semantic rep-
resentation including high-level word senses and semantic role labels. Next, the
contextual interpreter uses a reference resolution approach similar to Byron (2002)
and a set of hand-written rules specific to our domain to transform the domain-
independent parser output into the domain-specific representation employed by the
domain reasoner, using the ontology mapping mechanism described in Dzikovska
et al. (2008).

Example output from the TRIPS parser and the contextual interpreter is shown in
Fig. 4. The details of the parser representation are beyond the scope of this paper.
Note, however, that it identifies a referential pronoun “it”, and provides some addi-
tional syntactic information (not shown here for brevity, see Allen et al. (2007) for
details) that serves as the input to the reference resolution algorithm. It also identifies
that the word “in” is used in its spatial, and not temporal, sense.

The contextual interpreter takes the parser output and resolves the pronoun to a
specific bulb in the environment, LightBulb-4-1, using information from the
domain reasoner about the objects visible on screen, and the dialogue history which
records the most salient object based on the last question asked.6 The meaning of

6The interpreter also performs ellipsis resolution. For example, if the student replies “all off” in answer to
the question “If switch Y is closed and switch Z is open, which bulbs will be on, and which bulbs will be
off?”, the interpreter can determine that it can be taken to mean “all of the bulbs will be off”.



298 Int J Artif Intell Educ (2014) 24:284–332

Fig. 4 a The domain-independent semantic representation produced by the TRIPS parser, and (b) the
corresponding domain semantic representation produced by the BEETLE II interpreter for turn 2 in our
example dialogue (Fig. 2). Some details are omitted for readability

the word “in” is further refined from “spatial location” specified by the parser. The
interpreter determines that it corresponds to the knowledge base conceptcontains,
used to represent the relationship between a component and a path (and not, for
example, state-of, as it would in the sentence “the two terminals are in the same
state”).

This two-stage interpretation approach has been adapted from previous work on
multi-domain task-oriented dialogue systems (Dzikovska et al. 2008) as a means
to improve system robustness to unexpected answer phrasings. One of the major
sources of interpretation failures in systems that use symbolic interpretation meth-
ods is missing lexical entries and grammar rules from hand-coded grammars and
lexicons for the domain. The use of a domain-independent parser and semantic
representation allows the system to recognize syntactic variations which represent
the same meaning, e.g. “The bulb is contained in a closed path” and “There is a
closed path containing a bulb.” The domain-independent ontology used by the TRIPS
parser allows the system to recognize synonyms. For example, if the student says
“Terminals 1 and 2 are linked”, the system will identify “linked” as an instance
of the LF::Attach domain-independent sense, which is a synonym for “con-
nected”. Both words will be automatically mapped to the connected-to concept
understood by the domain reasoner by writing a single mapping rule that matches
the LF::Attach and connected-to concepts in the domain-independent and
domain-specific ontologies.

The TRIPS grammar and lexicon incorporate information from existing wide-
coverage resources (Dzikovska et al. 2004; Swift 2005) and have been used in
different dialogue domains over many years, further extending their coverage. There-
fore, lexical entries and grammar rules are less likely to be missing compared to
domain-specific grammars used in symbolic semantic interpreters for earlier dialogue
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ITSs, though occasional gaps in coverage are unavoidable. In addition, interpre-
tation may fail where concepts that have similar meanings in a specific limited
domain are not synonymous in a broader context. For example, if a student says
“a broken path” instead of “an open path”, the equivalence may not be recog-
nized because “broken” and “open” are not synonyms in a domain-independent
ontology. This issue is addressed in part by writing additional rules to cover
domain-specific semantic information not encoded in the domain-independent ontol-
ogy, and in part by using an error recovery policy that points out the specific
terms in an utterance that the interpreter fails to recognize, discussed later in this
section.

Domain Reasoning and Diagnosis

The domain reasoner uses the Knowledge Machine system (Clark and Porter 1999;
Dzikovska et al. 2006) to answer factual questions about the state of the world (e.g.
whether a given switch is open, or which bulbs are lit in a given circuit). It uses a
description logic formalism and incorporates a knowledge base with an ontology of
the objects that can be seen on the screen, their properties, and relations between them
(currently 14 object types and around 50 properties and relations). The reasoner sup-
ports contextually-appropriate interpretation and generation, and, most importantly,
diagnosis of answer correctness.

While student answers to multiple choice and number questions are either right
or wrong, for “identify” and “explain” questions the situation is more complicated.
The diagnoser compares the objects and relations in the student answer against
the reference answer to determine the correct, contradictory, missing and irrelevant
answer parts (Dzikovska et al. 2008). At present, the system uses a heuristic match-
ing algorithm to classify answer parts into the appropriate category. In future we
will consider using a statistical classifier similar to Nielsen et al. (2008). For
“identify” questions, reference answers are automatically computed based on the
information provided by the domain reasoner. For “explain” questions, reference
answers are provided by instructional designers to ensure that they match the
curriculum goals.

Each student explanation is checked on two levels, verifying both (a) factual
and (b) explanation correctness. Going back to our example, we must check (a)
that the bulb identified as LightBulb-4-1 is indeed in a closed path, and (b)
that being in a closed path is an acceptable explanation for the bulb being lit. Differ-
ent remediation tactics are needed depending on whether the student made a factual
error (i.e. they misread the diagram and the bulb is not in a closed path) or pro-
duced an incorrect or incomplete explanation (i.e. the bulb is indeed in a closed path,
but they failed to mention that a battery needs to be in the same closed path for
the bulb to light). The diagnoser verifies factual correctness by querying the domain
reasoner and explanation correctness by matching the student answer against the ref-
erence answer. An example of the output from the diagnoser is given in Fig. 5. In this
case, everything the student said was correct with respect to the reference answer,
and there were two missing parts (corresponding to “the battery must be in the same
closed path”).
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Fig. 5 The diagnosis produced for turn 2 in our example dialogue

Tutorial Planner and Natural Language Generation

The system generates tutoring feedback automatically based on the diagnosis of the
student answer. In order to generate a response, the tutorial planner first makes a
high-level decision on which tactic or set of tactics to use, and then passes them to a
natural language generator to realize as text.

The tutorial planner supports a set of generic tutoring tactics and implements
a top-level tutoring policy for choosing appropriate tactics at each point of the
interaction. An example textual summary of a decision rule is shown in Fig. 6.
It says that early in the dialogue, if the student is on the right track but some parts
of the answer are missing, the system should give positive feedback, acknowledge
the correct portion of the student’s statement, and go back for more information,
using a generic “keep going” prompt to try to elicit the missing parts of the student’s
answer.

Figure 7a shows the tutorial planner output for turn 3 in our example, produced
based on the diagnosis from Fig. 5 and the rule in Fig. 6. The tactic decisions are
expanded into planning operators using relevant portions of the diagnosis structure,
specifying the content to be acknowledged. This output is passed on to the natural
language generator. The system uses a domain-specific sentence planner to determine
how to allocate content to sentences and to choose syntactic structures and lexical
items. The sentence planner output is shown in Fig. 7b. It shows, for example, that
the system decided to use the ACKNOWLEDGE-CORRECT template for confirming

Fig. 6 Pseudocode for the rule used by the tutorial planner to decide on a sequence of tactics in turn 1 in
our example dialogue. Tutorial planner output from application of this rule is shown in Fig. 7a



Int J Artif Intell Educ (2014) 24:284–332 301

Fig. 7 Tutorial planner output resulting from the application of the tutoring rule in Fig. 6, along with the
sentence planner output and the realized text

correctness (e.g. saying “Right”). When reinforcing the correct portion of the student
answer, the sentence planner decided that it was most appropriate to use the phrase
“bulb A”, as opposed to “the bulb” or “it”, and that the focus of the sentence should
be the bulb, rather than the path (in the latter case, the same content would be realized
as “There is a closed path containing bulb A”.) This representation is finally passed to
an existing wide-coverage surface realizer, FUF/SURGE (Elhadad and Robin 1992),
which outputs the corresponding text.

The tutorial planner typically has multiple possible tactics available at each
point in the interaction. In our example, instead of making the decision to rein-
force correct student content and use a contentless prompt, the tutorial planner could
have used the content from the missing field in the diagnosis to generate
hints. Some example hints generated by the system are shown in turns 5 and
7 in Fig. 2. For a low specificity hint the system typically selects an as-yet unmen-
tioned object and hints at it, in our case, saying that the answer should mention
the battery. For high-specificity hints, it attempts to hint at a two-place relation,
in our example saying that the battery must be contained in something, with the
hope that the student can fill in the blank by remembering the concept of a closed
path.
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The choice of which of the applicable prompt, hint or restatement tactics to
use is governed by a rule-based tutoring policy. In our current policy, if remediation
is necessary, the system starts by giving a contentless prompt (optionally restating
the correct part of the answer, if any), then proceeds to more specific hints and
suggestions for reading slides as appropriate for the context. Finally, if the student
is unable to arrive at the correct answer after three to four attempts, the system
gives away the answer using the bottom-out tactic. The specific decisions about
which prompt or hint to use at each step take into consideration the error type
(by checking matched, contradictory and missing parts of the diagnosis, as shown
in Fig. 6), the number of incorrect answers received in response to the
current question, and the number of previous answers that the system failed to
interpret.7

In addition to remediation tactics after flawed answers, the system implements
different tactics for responding to correct answers, to predictions and to interpreta-
tion difficulties. If the student gives an acceptable answer, the tutorial planner can
choose to either accept it and move on, or to accept it, but restate the answer using
better terminology, based on the policy discussed in Dzikovska et al. (2008). For pre-
dictions, the system initially accepts the prediction neutrally (without acknowledging
correctness) and then either confirms that the student was correct, or re-iterates the
difference between the prediction and the actual outcome in the evaluation stage
(see dialogue with Participant 9 in the Appendix). The list of tactics and example
dialogues annotated with tactic names are given in the Appendix.

Finally, the tutorial planner implements an error recovery policy (Dzikovska et al.
2009) to deal with non-interpretable utterances. As discussed in the “Interpreta-
tion Components” section, the domain independent parser and ontology support
alternative syntactic phrasings and synonyms, but interpretation may fail, for
example, when the student uses terms that are related in the domain but not
labeled synonymous in the domain-independent ontology. To help mitigate
interpretation failures, the tutorial planner attempts to produce a message
that describes the problem but without giving away the answer. For example, if
the student refers to a broken or damaged path, the system will say, “I’m sorry,
I’m having a problem understanding. I don’t understand when you say that paths
are damaged. Batteries or bulbs can be damaged, but not paths”.8 The help
message is accompanied by a hint at the appropriate level, again depending on
the number of previous incorrect and non-interpretable answers. In task-oriented
spoken dialogue systems, this method has been used successfully to help users
learn to phrase their requests in a way that is understood by the system (Hockey
et al. 2003). We evaluate its effectiveness in the context of tutorial dialogue in the
next section.

7The system was designed to support experimentation with different policies. The decisions about which
tactics to use and which factors to take into account in BEETLE II were based on the data analysis described
in the “Curriculum Development” section. The same tutorial planner component has been used in a dif-
ferent system, where other factors such as student confidence were taken into account (Callaway et al.
2007).
8The content of such a message is computed automatically from the ontology.
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Evaluation

Setup

A key decision in any system evaluation is the nature of the control condition(s). In
this study, we included two control conditions. The first was a no-training control
condition, where participants completed the pre-test and the post-test, separated by an
hour of distractor tasks (a lesson on differential equations). The purpose of including
this condition was to generate the data needed to calculate effect sizes for the training
systems of interest using Cohen’s d .

Next, given that the focus of this research is on developing the NLP capability
necessary to support tutorial dialogue during the reflection phase of the PVE cycle,
we determined that our second control condition should be a system that applied the
same curriculum and only differed from our dynamic, adaptive, NLP-enabled ITS in
the nature of the follow-up dialogue. The BEETLE II tutor we have described in this
paper aims to elicit the correct answer from the student over multiple turns through
adaptive natural language feedback guiding them towards the correct answer. We
will refer to this as the “elicit answer” system (ELICIT). In addition, we built another
version of the system which immediately tells the student the correct answer without
analyzing the answer or providing any explicit corrective feedback (the “tell answer”
system, TELL).9 The user interface, lesson materials, activities and even the tutor
questions were exactly the same in the two versions. The only thing that differed was
the type of feedback the students received after answering a question (including all
identify, explain, multiple choice, and number questions discussed in the previous
section).

The ELICIT version of BEETLE II processed student input and produced a diag-
nosis and dynamically generated feedback and hints as described in the previous
section. In the TELL version of BEETLE II, the system did not attempt to provide any
explicit feedback on the accuracy of student answers. Instead, each time a student
answered a question the tutor would simply give them a neutral acknowledgment,
followed by a statement of the correct answer (bottom-out). An example interaction
with the TELL system is given in Fig. 8. The system moves on to the next question
without attempting remediation. It is left entirely up to the student to notice whether
their answer matches the answer given by the system, and to determine whether any
differences in phrasings and terminology are meaningful.

Procedure

After reviewing the informed consent paperwork, all participants filled out a demo-
graphic questionnaire and took the pre-test. The participants were then introduced to
BEETLE II and given a brief demonstration of its functionality. The students spent
the majority of the experimental session working through two lessons with either the
TELL or the ELICIT system. Students typically spent 2–3 hours working through the

9This distinction follows the terminology from Chi et al. (2009).
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Fig. 8 Example dialogue with the TELL system, corresponding to turns 1–3 with the ELICIT system in
Fig. 2

lessons. The difference in the type of feedback provided by the ELICIT versus TELL

system was the only difference between these two conditions.
After the students completed the lessons, they took a post-test which included 21

multiple choice questions and filled out a usability and satisfaction questionnaire. The
REVU-IT (Report on the Enjoyment, Value, and Usability of an Intelligent Tutoring
System) (Dzikovska et al. 2011) Questionnaire was used to assess usability and sat-
isfaction with BEETLE II. REVU-IT asked participants to rank their agreement, on
a 5-point Likert scale, to both positive and negative statements regarding the lesson
materials (10 questions), the circuit-building workspace (13 questions), the computer
tutor (35 questions), and their overall reaction to BEETLE II (5 questions). They were
then debriefed, thanked and paid. The full study took 3–4 hours per participant.

In the no-training condition, participants first reviewed an informed consent
document and then completed the same demographic survey and pre-test as the par-
ticipants in the other two conditions. Next, they spent an hour completing a distractor
task, which involved working through a lesson on differential equations within the
context of modeling predator and prey relationships. This was followed by the post-
test. They were then debriefed, thanked and paid. The no-training group took 2 hours
to complete the study.

Corpus

Guided by VanLehn et al. (2007), we conducted a power analysis and determined
that a total of 120 participants (40 per condition) would give us reasonable statistical
power (0.85) to reject the null hypothesis (alpha = 0.05), assuming an effect size of
0.75 between our conditions. Participants were recruited from a Southeastern Uni-
versity in the US using the University’s online recruiting tool. The recruiting system
advertised for students that had no prior knowledge of electronics and electricity and
participants had to confirm the lack of prior knowledge before they were enrolled in
the study. A total of 122 participants took part in the study. The no-training group
consisted of 41 participants, who ranged in age from 18 to 38 years old (M = 21.4).
Participants in the training conditions were randomly assigned to the ELICIT or TELL

condition. There were 41 participants in the ELICIT condition and 40 participants
in the TELL condition. Data from eight participants in the training conditions was
dropped: four participants due to technical errors with the system, three who were
outliers with respect to learning gain, and one outlier with respect to interpretation
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problems.10 Outliers were defined as being three standard deviations from the mean
for those variables.

Our analysis data set therefore includes 35 participants in the ELICIT condition,
whose ages ranged from 18 to 37 years (M = 21); and 38 participants in the TELL

condition, aged from 18 to 42 years (M = 21.5). In both training conditions, students
were required to work through 26 exercises with a total of 215 questions asked by
the system, 150 of which required natural language answers (the remaining questions
required building circuits only). In the ELICIT condition, an average of 422 student
turns were taken (SD = 32), with an average of 230 natural language turns (SD =
24). Transcripts contained on average 1417 student words (SD = 217). In the TELL

condition, there was an average of 335 student turns (SD = 6.25), with an average
of 156 language turns (SD = 2.04). Transcripts contained on average 900 student
words (SD = 218).

The differences in the number of turns and in the number of words were significant
between conditions (average number of student language turns: t (71) = 18.78, p <

0.0001; average number of student words: t (71) = 10.14, p < 0.0001). This is as
expected, given that the students in the ELICIT condition were asked to revise their
answers if they were incorrect, while the students in the TELL condition were allowed
to move on regardless of answer correctness.

Results

We begin by presenting descriptive and inferential statistics on our two primary
outcome measures, student learning and student satisfaction. Student learning is mea-
sured both in terms of individual gain scores and effect size by condition. While other
studies have found that student satisfaction is not always directly related to learning
outcomes (Jackson et al. 2009; Papadopoulos et al. 2009), we include it as an impor-
tant outcome measure because it contributes to a student’s willingness to continue to
use a training system.

Next, we focus on one of our primary system characteristics—natural language
interpretation of student answers. Accurate language understanding is a prerequi-
site for providing accurate feedback, and was therefore the main focus of our initial
evaluation. Evaluating other aspects of the interaction, in particular the quality and
appropriateness of system feedback, is the next step in our planned research program
and is discussed in more detail in the “Future Work” section.

In our evaluation of the BEETLE II interpretation component, we first describe
how human coders judged the correctness of student answers. Then we provide
a number of measures of system accuracy in interpreting student answers, when
compared to this human assessment. Finally we look more deeply into the impact
of interpretation quality on our two primary outcome measures (student learning
and satisfaction). These final analyses point to different strategies for improving

10After examining the transcript of the single participant who was an outlier in terms of frequency of
interpretation problems, it seemed likely that they either refused to engage altogether or had some problem
with English that prevented them from interacting with the system in a sensible manner.
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the system’s performance and the effects they may have on the desired learning
outcomes.

Overall System Effectiveness

As expected, there was no learning gain in the no-training group. The participants
in this condition had a mean pre-test score of 0.39 (SD = 0.13) and mean post-
test score of 0.38 (SD = 0.14), with an average normalized learning gain of
−0.04 (SD = 0.22). Learning gain was calculated using the formula: posttest−pretest

1−pretest .
The maximum score on both the pre and post-tests was 1.0 (i.e. 100 %); thus the
maximum learning gain using this calculation is 1.0.

In contrast, both the ELICIT and TELL versions of BEETLE II were highly effective
at teaching basic electricity and electronics concepts. Participants learned signifi-
cantly between pre- and post-test. The ELICIT condition had a mean pre-test score
of 0.35 (SD = 0.13) and mean post-test score of 0.75 (SD = 0.12). The aver-
age normalized learning gain was 0.61 in ELICIT (SD = 0.15), with a significant
increase between pre- and post-test, (paired t-test, t (34) = −19.15, p < 0.00001).
The TELL condition had a mean pre-test score of 0.34 (SD = 0.13) and mean post-
test score of 0.77 (SD = 0.14). The average normalized learning gain was 0.65 in
TELL (SD = 0.21), again a significant increase between pre- and post-test (paired
t-test, t (37) = −17.38, p < 0.00001). However, there was no significant difference
in normalized learning gain between conditions, t (71) = −0.863, p = 0.39.

To determine the effect of the ELICIT and TELL conditions, effect sizes, using
Cohen’s d , were calculated as Mexp−Mnotrain

σpooled
, where Mexp is the mean of the cor-

responding experimental condition (ELICIT or TELL), Mnotrain is the mean of the
no-training condition, and σpooled is the pooled standard deviation for the no-training
condition and the relevant experimental condition. Both experimental conditions had
a large effect on student learning. When compared to the no-training condition, the
ELICIT system had an effect size of d = 1.72, and the TELL system had an effect size
of d = 1.69.

With respect to student satisfaction, we focus on the two sections of the REVU-
IT questionnaire that are related to tutoring quality.11 The Tutor score represents
the subset of questions assessing satisfaction with the natural language tutor; for
example, “I felt that the tutor understood me well” or “I found our dialogues to be
boring.” The Overall score covers the five questions addressing overall satisfaction
with the system, e.g. “I would use this system again in the future to continue to learn
about electricity.” The full questionnaire, and the divisions into specific subsets, are
presented in Dzikovska et al. (2011). The mean Overall satisfaction scores were 3.4
out of 5 (SD = 0.87) for ELICIT and 3.67 out of 5 (SD = 0.85) for TELL. There
was no significant difference between conditions (t (71) = −1.31, p = 0.20). In
contrast, the Tutor satisfaction score was significantly higher in TELL than in ELICIT

11The 4 sections are: reading material, simulation interface, tutoring and overall satisfaction. Assessment
of reading material and simulation interface are outside the scope of this paper.
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(TELL: M = 3.33, SD = 0.65, ELICIT: M = 2.57, SD = 0.61; t (71) = −5.13,
p < 0.0001).

Since the only difference between the ELICIT and TELL systems is the natural
language feedback used in ELICIT to elicit the correct response from the student,
we surmised that the quality of the natural language interpretation may affect the
learning outcomes. This led us to carry out a detailed evaluation of the performance
of the NLP module in the ELICIT system.

Evaluating NLP Performance

Creating The Gold Standard

Evaluating NLP components for tutorial dialogue systems is complicated, because
the representations used by current systems are domain specific, and therefore there
are no shared data sets or standard methodologies for evaluating system performance.
Ideally, we would like to have a “gold standard” semantic representation for each
student answer, and then compare how well the representations generated by the
system match against such standard representations. However, this requires human
annotation with good inter-rater reliability, which is labor intensive and impractical
on a large scale. Therefore, to evaluate the interpretation component, we use a previ-
ously established methodology based on comparing the correctness judgments made
by the BEETLE II diagnoser with accuracy codes assigned to the same utterances by
human raters (Dzikovska et al. 2012). This approach simplifies creation of the gold
standard.12

The outputs from the BEETLE II diagnoser are mapped into a 5-class annota-
tion scheme as shown in Table 1. This scheme is based on the DEMAND coding
scheme for assessing correctness of student answers in human-human dialogue
(Campbell et al. 2009). All student utterances in the corpus were manually labeled
with DEMAND labels (κ = 0.69, see Steinhauser et al. 2010) and automatically
converted into our 5-class annotation scheme.13 The resulting corpus consists of all
student utterances in the data, each associated with two labels: a gold standard label
based on the manual annotation, and an automatic label based on the output of the
diagnoser. Examples of gold standard labels assigned to student utterances in the
corpus are given in Table 2. The system is evaluated by comparing the labels and
computing standard classification metrics.

Evaluation Data Set

The evaluation data set consists of all student utterances typed in response to tutor
questions, together with labels automatically assigned by the diagnoser, and manually

12The disadvantage of this approach is that it does not distinguish between the errors made by the
interpreter and the diagnoser. However, increased reliability in human gold standard labels is a major
advantage.
13The motivation and details for the conversion are given in Dzikovska et al. (2012) and Dzikovska et al.
(2012).
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Table 1 Label set used for evaluating interpretation accuracy

Label Description

non domain Metacognitive, social and nonsense expressions.

correct The student answer is fully correct.

pc incomplete The student said something correct, but incomplete, i.e. some parts of the expected

answer are missing

contradictory The student’s answer contains something that contradicts the expected answer,

rather than just an omission.

irrelevant The student’s statement is correct in general, but it does not answer the question.

annotated gold standard labels as discussed earlier. We report evaluation scores for
the ELICIT system only. The TELL system did not attempt any remediation. The entire
data set covers the 150 questions requiring natural language answers asked by the
system, and 8004 student answers. In our evaluation, we built three main test sets,
based on the question types discussed in the “Curriculum and Exercise Management”
section.14

• All questions: a test set containing every student response submitted to the
system, together with the manual label and the automatically assigned class.15

• Explain: student responses to all explanation and definition questions, except
those which asked for a prediction.

• Identify: all student responses to object or attribute identification questions,
except those which ask for a prediction.

Table 3 shows the characteristics of our evaluation sets in terms of the number of
student answers (total number of items in the set), and the number of unique questions
from which the evaluation set items were drawn.

Evaluation Metrics

We focus on several different aspects of the system’s performance. First, we need to
have a metric that reflects the student’s overall experience: if a student is interacting
with the system, how accurately is the system interpreting their answers overall, and,
correspondingly, how appropriate is the feedback that they are getting? Second, since

14We did not separately evaluate the answers to multiple choice and number questions, because they are
processed through a separate template-based mechanism which is sufficiently simple to implement with
basic NLP tools.
15Student answers to prediction questions are always accepted neutrally (without acknowledging cor-
rectness) – no remediation is given until the evaluation stage. Because the system does not attempt
remediation, it skips some interpretation steps (such as ellipsis resolution with respect to question text),
which can sometimes lead to an answer being incorrectly labeled as pc incomplete instead of correct.
These answers are included in our All questions data set, and thus scores computed for it reflect
a conservative estimate of system performance. However, we decided to exclude answers to prediction
questions from our Explain and Identify subsets, in order to focus on the system’s performance on
questions for which it attempts to give adaptive feedback.
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Table 2 Examples of gold standard annotations for student answers in our evaluation corpus

Question What are the conditions that are required to make a bulb light up?

Reference Answer There is a closed path containing both the bulb and a battery

Annotated Answers • The light bulb must be in a closed path with a connected battery. correct

• closed path, connected to a battery pc incomplete

• battery is in a holder irrelevant

• I dont know non domain

Question Explain why you got a voltage reading of 1.5 for terminal 1 and

the positive terminal.

Reference Answer Terminal 1 and the positive terminal are separated by the gap

Annotated Answers • because there was not direct connection between the positive correct

terminal and bulb terminal 1

• Because terminal 1 is connected to the positive battery terminal contradictory

• tell me the answer non domain

we are particularly interested in supporting open-ended explanation questions, we
want to evaluate the system’s performance on these questions separately. Finally, we
want to establish baseline performance for comparing more advanced versions of the
system against this initial version, and for comparing different NLP approaches to
the natural language interpretation task.

From the “student experience” point of view, the most relevant metric is overall
interpretation accuracy (referred to as simply “accuracy” in Tables 5 and 8). It is
defined as the relative frequency of instances in which the label assigned by the
system matches the gold standard label: accuracy = #matching

#total = 1− #errors
#total . Thus the

accuracy value on the All questions set reflects the total number of times the
system makes a correct decision about which tutoring tactic to use.

However, accuracy scores do not take into account potential skewness of answer
class distribution. Table 4 shows that some classes are much more common than
others in the corpus. For example, 60 % of all student answers are rated as correct, but
only 14 % are labeled pc incomplete and 2 % overall are rated as irrelevant. In such
unbalanced class distributions the overall accuracy metric often favors systems that
focus on the most frequent classes at the expense of ignoring less frequent ones. In
our case, it is possible to achieve 60 % interpretation accuracy simply by classifying
every student utterance as correct and never attempting any remediation. From the
point of view of establishing the baseline and comparing different system versions,
we need to ensure that the system is doing well across all classes, and not just the

Table 3 Characteristics of our
evaluation sets Test set Student answers Unique questions

All questions 8004 150

Explain 3510 48

Identify 1319 26
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Table 4 Gold standard label
distribution in our evaluation
sets. Proportion of total label
count in parentheses

All questions Explain Identify

correct 4814 (0.60) 1549 (0.44) 880 (0.67)

pc incomplete 1097 (0.14) 804 (0.23) 149 (0.11)

contradictory 1655 (0.21) 788 (0.22) 263 (0.20)

irrelevant 140 (0.02) 118 (0.03) 15 (0.01)

non domain 298 (0.04) 251 (0.07) 12 (0.01)

most common ones. Therefore, following Dzikovska et al. (2012), we report per-
class F1 scores for each class, to show how well each class is recognized, and the
macro-average F1 score, to characterize overall system performance.

For each class, the F1 score can be defined as16

F1(c) = 2 ∗ truepositive(c)

2 ∗ truepositive(c)+ falsenegative(c)+ falsepositive(c)

The macro-average F1 score is defined as an unweighted average of individual class
scores,

F1(macro) = 1

Nc

∑

c

F1(c)

where Nc is the number of classes (5 in our case).
We report three other evaluation metrics related to student experience. First, we

report a score based on a binary “accept/reject” decision as proposed in Dzikovska
et al. (2012). Mismatches between system and human judgments are labeled as errors
when computing the overall accuracy score but do not necessarily mean that the sys-
tem will give inappropriate feedback. For example, in the dialogue with participant
24 in the Appendix, student turn msg255 is misdiagnosed by the system as irrelevant,
when human annotators assigned a pc incomplete label. Ideally, the system should
acknowledge that the student’s answer is largely correct. Instead, the system gives
hedged feedback (“Hmmm...”) followed by a hint. Although not optimal, this feed-
back is still reasonable and does help the student to improve their answer. Therefore
we computed an alternative accuracy measure, “accept-reject accuracy”.17 Using this
metric, an answer counts as accepted if the diagnoser labeled it as correct. An answer
counts as rejected if the diagnoser labeled it as flawed18 or the interpreter rejected it
as non-interpretable. In other words, an accepted answer is one where the system tells
the student that it is correct and moves on, and a rejected answer is one where the
system tells the student that there is a problem, and either asks the student to improve
it or provides a correct alternative itself. This metric effectively assesses how well
the system is able to decide when to accept the student answer as “good enough”
and when to attempt a remediation. It does not consider whether the assigned label

16In information-theoretic terms, 2 precision∗recall
precision+recall .

17This metric was introduced in Dzikovska et al. (2012), called “corrective feedback decision” there.
18We will use “flawed” to denote all answers identified as not entirely correct, i.e. pc incomplete,
contradictory and irrelevant.
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will allow the tutorial planner to choose an adequate remediation tactic.19 Compar-
ing this metric against the overall accuracy shows how the interpreter’s performance
is affected by confusions between different types of answer flaws (as opposed to
differentiating between correct and flawed answers).

Finally, we break down the errors that contribute to overall accuracy to look sep-
arately at the relative frequency of non-interpretable and misinterpreted utterances.
It is well known from spoken dialogue system research that there is a trade-off
between the frequency of misunderstandings (i.e. situations where the system incor-
rectly understands the user and takes the wrong actions) and non-understandings (i.e.
situations where the system asks the user to repeat or rephrase the utterance rather
than risk taking an incorrect action). Most dialogue systems make a decision to reject
certain utterances as non-interpretable when it is not possible to find an interpretation
that is reliable enough to use in response generation (Bohus and Rudnicky 2005).
Such rejections can be frustrating to users. However, giving feedback based on a
misinterpreted utterance can mislead and confuse the students as well. We observed
many dialogue breakdowns caused by misinterpretation in early system pilots, and
therefore developed a policy for dealing with non-understandings, where the system
acknowledges its lack of understanding and gives a message describing the source
of the problem (discussed in more detail in the next subsection). Separating out the
non-interpretable from the misinterpreted utterances provides additional information
about the misunderstanding vs. non-understanding trade-off within the BEETLE II
system.

Evaluation Results

We report the values of our evaluation metrics for the complete set of student
utterances, and for the Explain and Identify subsets separately. Overall accu-
racy, “accept-reject” accuracy, macro-average F1, and relative frequencies of non-
interpretable and misinterpreted utterances are reported in Table 5. Table 6 breaks
down the macro-average F1 into individual class metrics. The evaluation scores show
that the system makes largely correct decisions about whether to accept a student
answer or to request that it be rephrased, as reflected in its high “accept-reject” accu-
racy; this is also reflected in a high F1 score for the correct class. However, the system
often makes incorrect decisions about which class a flawed answer belongs to. This
is reflected in lower scores for classes other than correct, and correspondingly lower
macro-averageF1 scores. Unsurprisingly, explanation questions are the most difficult
to interpret, and thus the evaluation scores for this subset, on all metrics, are much
lower compared to the overall system average. We first provide an intrinsic evalua-
tion of system performance, and return to the relationship between overall metrics
and learning outcomes in the next two sections.

For intrinsic evaluation of classifier accuracy, a reasonable comparison is to the
“majority class” baseline, in which the interpreter would label every student utterance

19For human annotations, an accepted answer is one labeled as correct, and a rejected answer is one labeled
with any other category.
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Table 5 Overall evaluation
scores for the ELICIT system Metric All

questions Explain Identify

macro-average F1 0.49 0.46 0.74

overall accuracy 0.66 0.47 0.88

“accept-reject” accuracy 0.85 0.80 0.96

non-interpretable frequency 0.16 0.29 0.07

misinterpreted frequency 0.18 0.24 0.05

using the most frequent class according to the gold standard. As can be seen from
Table 4, this would mean labeling every student utterance as correct. Table 7 shows
the comparison between this baseline and the BEETLE II interpreter. The baseline
has a macro-averaged F1 score of 0.15 and an accuracy score of 0.60 on our All
questions data set, and macro-averaged F1 of 0.20 and accuracy of 0.44 on the
Explain subset. The BEETLE II interpreter outperforms the majority class baseline
in both cases, and by a particularly large margin on macro-averaged F1. The differ-
ences between the interpreter evaluation scores and the majority class baseline scores
are statistically significant for all three data sets, and for both macro-averaged F1 and
accuracy scores, with p < 0.01.20

Our discussion in this paper focuses on the overall interpretation metrics. We also
conducted further system evaluation looking at confusion matrices and examining
how different confusions correlate with learning gain. The confusion matrices and
evaluation results are provided in Dzikovska et al. (2012).

Another question is how the system’s accuracy compares to other state-of-the-
art NLP methods. Direct comparison to other tutorial dialogue systems is difficult
because of the lack of systematic reporting of standardized interpretation quality
measures in the existing literature. However, the data from our corpus was used as
part of a shared task on student response analysis at the 7th International Work-
shop on Semantic Evaluation (SemEval-2013), with the goal of investigating the
performance of state-of-the-art NLP approaches in our setting. The participants were
provided with a data set of question-answer pairs based on explanation questions
extracted from the BEETLE II evaluation corpus, and challenged to build a system
that directly classifies student answers into the same 5 classes that we used in our
evaluation. The participating teams used approaches based on semantic similarity
scores, recognizing textual entailment, domain adaptation, machine translation, com-
bining different features, and supervised classification methods. The systems and
results are discussed in detail in Dzikovska et al. (2013). For the 5-way classification
task, the results ranged from 0.44 to 0.71 accuracy (0.31 to 0.62 macro-averaged F1),
and for the 2-way “accept-reject” task the accuracy ranged between 0.64 and 0.84.

These results are not directly comparable to those reported in Table 5, because the
evaluation corpora in the SemEval task were split into training and test sets in order

20We used the approximate randomization significance test with 1000 iterations for testing for significant
differences in F1 scores, and the McNemar test for testing for significant differences in classification
accuracy, as recommended by Dietterich (1998) and Yeh (2000).
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Table 6 Per-class F1 scores for
the ELICIT system Metric All

questions Explain Identify

F1 correct 0.86 0.73 0.97

F1 pc incomplete 0.53 0.48 0.85

F1 contradictory 0.63 0.32 0.81

F1 irrelevant 0.15 0.17 NA

F1 non domain 0.31 0.59 0.35

macro-average F1 0.49 0.46 0.74

to support training and testing of statistical classifiers. However, they show that our
system, which was developed based on an analysis of the transcripts from 8 pilot
sessions, performs in the same range as state-of-the-art statistical NLP approaches
trained on data collected from 73 students interacting with the system (combining
the data from both the ELICIT and TELL conditions). It also shows that the analysis
task is intrinsically difficult, with none of the systems reaching ceiling. We describe
avenues for performance improvement in the Discussion section.

Impact of Interpretation Quality

While there is much scope for improvement in interpretation quality, it is also impor-
tant to understand whether such improvements will contribute to improved outcomes.
It is reasonable to hypothesize that improved interpretation should lead to improved
feedback and correspondingly improved overall learning gain and satisfaction. There
is a long tradition of investigating the importance of different interaction parameters
by correlating system performance characteristics with desired outcomes in spoken
dialogue systems within the PARADISE evaluation framework (Walker et al. 2000).
Similar studies have been carried out for dialogue-based ITSs (Aleven et al. 2004;
Litman and Forbes-Riley 2005; Pon-Barry et al. 2004). Although such correlational
analyses are not proof of causality, they can help develop actionable hypotheses about
system improvement that can then be tested in user experiments (Rotaru and Litman
2009). We therefore carried out an exploratory analysis investigating the relationship
between interpretation quality and learning gain in our data set.

Table 7 Comparison in evaluation scores between the ELICIT system and a majority class baseline

Metric All questions Explain Identify

BEETLE II macro-average F1 0.49 0.46 0.74

Baseline macro-average F1 0.15 0.20 0.16

BEETLE II overall accuracy 0.66 0.47 0.88

Baseline overall accuracy 0.60 0.44 0.67

BEETLE II “accept-reject” accuracy 0.85 0.80 0.96

Baseline “accept-reject” accuracy 0.60 0.44 0.67
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We first computed the interpretation quality scores listed in Table 5 for each stu-
dent separately, and then computed the correlations between these individual scores
and learning gain and user satisfaction for that student. As argued above, explana-
tion questions constitute an important subset of our data with respect to both tutoring
and to difficulties in natural language processing. Therefore, we also investigated
the relationship between system performance on Explain questions for individual
students, and their learning outcomes. The correlations we found are summarized in
Table 8.21

The results show that overall interpretation accuracy is significantly correlated
with both learning gain (r = 0.38, p = 0.02) and Tutor satisfaction (r =
0.37, p = 0.03). Recall from the previous section that the errors in the overall
accuracy computation are split into two types: non-interpretable utterances, in
which the system finds no possible interpretations; and misinterpretations, where
the system assigns an incorrect class to the utterance. Our evaluation shows that
they occur at similar rates (see Table 5). However, the results in Table 8 show that
only the frequency of non-interpretable utterances correlates with learning gain
and user satisfaction: (learning gain r = −0.40, p = 0.02; Overall satisfac-
tion r = −0.35, p = 0.04; Tutor satisfaction r = −0.48, p = 0.004). In
contrast, misinterpretations are not significantly correlated with either learning
gain or user satisfaction. This suggests that students are sensitive to the system
explicitly acknowledging interpretation failures, but may be less sensitive to
non-optimal feedback.

When looking only at explanation questions, overall interpretation accuracy
was not correlated with learning gain (r = 0.24, p = 0.15), but was correlated
with Tutor satisfaction (r = 0.33, p = 0.05). And when error types were
examined separately, this correlation was only significant for non-interpretable
utterances, similar to the pattern observed in the All Questions dataset.
This underscores the need to better understand the impact of non-interpretable
utterances on learning outcomes. We examine this issue further in the next
subsection.

Impact of Non-interpretable Utterances

Our results clearly show that the frequency of non-interpretable utterances is neg-
atively correlated both with learning gain and with user satisfaction. As with the
overall interpretation quality scores, one inference is that if the interpreter can be
improved, this will lead to the overall reduction of error scores, and hopefully to a
correlated improvement in learning gain. We outline some possibilities for improving
interpretation robustness in the “Future Work” section. However, even with technol-
ogy improvements we can expect that some proportion of student utterances will be
difficult or impossible to interpret. This has been observed in spoken dialogue sys-
tem research in general. Tutoring introduces additional difficulties for interpretation

21Macro-averaged F1 score was not significantly correlated with any of the desired outcome metrics, and
is therefore not included in the table.
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Table 8 Correlations between interpretation quality metrics and outcome metrics in ELICIT. Significant
correlations (with p < 0.05) in bold

overall accuracy non-interpretable misinterpreted

All All All

questions Explain questions Explain questions Explain

Learning gain 0.38 0.24 −0.40 −0.27 −0.23 −0.13

Overall satisfaction 0.31 0.26 −0.35 −0.12 −0.12 −0.11

Tutor satisfaction 0.37 0.33 −0.48 −0.46 −0.07 −0.11

because when students struggle with unfamiliar domain terminology they some-
times say things that even human tutors find difficult to understand and evaluate.22

Moreover, different students have different degrees of success in mimicking the ter-
minology used by the system (Steinhauser et al. 2011). Therefore, it is important
to evaluate the impact of non-interpretable utterances on learning outcomes, to gain
better understanding of appropriate error recovery policies.

As discussed in the evaluation metrics section, in developing a dialogue system
there is always a trade-off between the rate of non-interpretable and misinterpreted
utterances. It is possible to build a system that never reports any non-interpretable
utterances by having the interpreter assign a pre-determined class (e.g. correct or
irrelevant) to every utterance it fails to interpret, and then letting the tutorial planner
make tutoring decisions based on that analysis. However, this will mean that some
utterances previously treated as non-interpretable will be misinterpreted instead,
resulting in an increase in inappropriate feedback decisions. In early system pilots, we
observed situations where misinterpretations caused considerable confusion for the
students. We were particularly concerned about situations in which the system mis-
interpreted correct answers as flawed and produced feedback that further confused
the students and derailed the dialogue (Dzikovska et al. 2009).

In light of the pilot results, we decided that rejecting some student utterances
as non-interpretable was preferable to certain misunderstandings. Therefore, as dis-
cussed in the “System Implementation” section, we implemented an error recovery
policy that gives students information about terms that were not understood by the
system when an interpretation failure occurs. We also hoped that these help messages
would teach students to use terminology correctly, which can in turn improve learning
outcomes, since higher levels of lexical cohesion with the tutor can be positively cor-
related with learning gain (Ward and Litman 2006). However, given that we observed
significant negative correlations between the frequency of non-interpretable utter-
ances and both learning gain and user satisfaction, it appears that the error recovery
policy implemented in the system was not effective.

22It is not possible to quantify the proportion of such utterances given our data; however, the evidence of
such difficulties is occasional requests from human tutors for the student to rephrase, in our human-human
corpus, and the substantial but less than perfect inter-rater agreement on evaluating the accuracy of student
contributions.
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In order to improve our recovery policy implementation, we performed a more
detailed analysis of the features of the utterances that the system failed to interpret,
and of the correlations between different help message types and learning outcomes.
The first thing worth noting is that non-interpretable utterances show a markedly
different distribution of answer classes from interpretable utterances, which can
be seen from Table 9. In particular, recall that in the corpus as a whole 60 % of
utterances are labeled correct, and 21 % are labeled contradictory. But looking at
the utterances that the system fails to interpret, only 25 % are labeled contradic-
tory, with 38 % contradictory. Among the interpretable answers, 67 % are correct,
and 17 % are contradictory. In fact, answers labeled contradictory were dispropor-
tionately likely to be non-interpretable (overall, P(nonint|contradictory) = 0.30,
while P(nonint|correct) = 0.07). This difference in distributions is statistically
significant: χ2(4) = 875.5, p < 0.0001.

This analysis shows that flawed student answers are intrinsically more difficult
to interpret, probably because they are more likely to contain vague or incorrect
terminology that the system (and in some cases even human tutors) may find diffi-
cult to understand. We can also conclude that, relatively speaking, there is little risk
involved in treating non-interpretable utterances as flawed and requesting that the
student improve them.23 Thus, our initial concern about the consequences of treat-
ing difficult-to-interpret utterances as flawed was not supported by the data. But
clearly something different is needed in place of the error recovery policy that we are
currently using.

We further examined the impact of interpretation failures by taking the fine-
grained classification of interpretation problems developed in Dzikovska et al.
(2010), and identifying four broad classes based on the cause of the problem and the
way the system deals with it.

• no-semantic-analysis-possible: the system cannot find a full parse
and a reasonable fragment combination that covers the input is also impossible;
or else the system can find a parse, but does not recognize the meaning of any
of the content words;24 or (in rare instances) a crash in one of the components is
preventing feedback from being generated. The system tells the student that they
were not understood and asks them to rephrase (possibly with a hint).

• identifiable-failure-point: The system knows most of the words in
the sentence, but there is an unknown word or word combination that interferes
with finding a complete interpretation;25 or otherwise there is a pronoun that the
system cannot resolve. The system points out the word or word combination it
hasn’t understood and optionally gives a hint.

23With the obvious safeguard of providing extra reading suggestions or other helpful tutoring tactics if
possible, and bottoming out and moving on after a number of failed attempts, in the same way as the
system already does for utterances it diagnoses as flawed.
24If only some of the content words are unknown, the system decides either that they can be ignored
and proceeds with a partial interpretation, or produces a more specific error message, using the approach
described in Dzikovska et al. (2009).
25These are typically words that are in the parser’s lexicon, but which the interpreter fails to understand
because of the limitations of the domain-independent semantic ontology, as discussed in the “Interpretation
Components” section.
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Table 9 Gold standard label distribution for interpretable vs. non-interpretable subsets. Proportion of
subset total in parentheses

All questions Explain Identify

interpretable non-interp. interpretable non-interp. interpretable non-interp.

correct 4480 (0.67) 334 (0.25) 1303 (0.52) 246 (0.24) 853 (0.69) 27 (0.30)

pc incomplete 806 (0.12) 291 (0.22) 540 (0.22) 264 (0.26) 145 (0.12) 4 (0.04)

contradictory 1155 (0.17) 500 (0.38) 424 (0.17) 364 (0.35) 221 (0.18) 42 (0.47)

irrelevant 85 (0.01) 55 (0.04) 74 (0.03) 44 (0.04) 8 (0.007) 7 (0.08)

non domain 159 (0.02) 139 (0.10) 144 (0.06) 107 (0.10) 3 (0.002) 9 (0.10)

• wrong-input-form: the student is submitting a circuit when the system is
expecting them to type, or else are submitting an unexpected answer, e.g. typing
a long sentence in response to a question requiring them to name a circuit or
component, phrased in a way that leaves the answer ambiguous. The system then
tells the student what answer format it is expecting to see, e.g. “Sorry, this isn’t
the form of answer that I expected. I’m looking for the name of an object”.

• restriction-failure: student input violated knowledge base expecta-
tions. They are told what expectation is violated, with an example of a correct
phrasing, e.g. “I don’t understand when you say that circuits are lit. Bulbs can be
lit, but not circuits”.

The frequency of different problem types is shown in Table 10. When a prob-
lem occurs, the system attempts to provide a targeted help message that indicates the
specific portion of the student input causing the problem. This can be done for all
cases except no-semantic-analysis-possible, where there is insufficient
information about the underlying cause. In addition, for wrong-input-form
and restriction-failure the system is able to provide some guidance with
respect to acceptable inputs.

A correlational analysis revealed that these four types of errors pattern differently
with respect to learning gain and user satisfaction. The results of the correla-
tional analyses are presented in Table 11. Students clearly found the situations
where the system could give no help frustrating: there was a significant
negative correlation between the frequency of no-semantic-analysis errors
and Tutor and Overall satisfaction (Tutor: r = −0.48, p = 0.004; Overall: r =
−0.36, p = 0.04). However, the frequency of such problems was not related to
learning gain (r = −0.29, p = 0.09). In the two situations where the system was
able to give help and clearly articulate its expectations, there was no significant
correlation with user satisfaction. However, the frequency of such errors was nega-
tively correlated with learning gain (wrong input form: r = −0.38, p = 0.02;
restriction failure: r = −0.39, p = 0.02), indicating that students who
repeatedly failed to phrase their answers in a way that the system could process also
tended to learn less.
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Table 10 Frequencies of
different interpretation problems
in the corpus

Error category Count

no-semantic-analysis-possible 328

identifiable-failure-point 572

wrong-input-form 100

restriction-failure 325

These results suggest that different factors may be influencing our two
primary outcome metrics, learning gain and user satisfaction. To improve user
satisfaction with the system, it may be best to concentrate on reducing the number
of cases where the system is unable to give any help. This is best achieved by
improving overall system robustness. However, in order to improve learning
gain, the focus should be placed on the wrong input form and restriction
failure cases. There are two possibilities for what is going wrong here. First,
it may be that the feedback currently produced is ineffective and needs to
be improved. A second possibility is that such cases indicate students who
are confused (perhaps struggling with domain terminology), or simply
inattentive, and therefore unable to modify their answer even when they are
given clear guidance about how to do so (this problem has previously been
reported in tutorial dialogue Glass and Evens 2008). With such students, it may
be counterproductive for the system to take responsibility for “interpretation
failures”; instead, it may be helpful to devise strategies to recapture the student’s
attention. Determining which of these two hypotheses is correct is planned as part of
our future work.

This analysis also suggests that in developing and evaluating interpretation
modules for tutorial dialogue systems, different metrics may be important depend-
ing on the desired target outcomes. Most current systems place the emphasis on
improving learning gain. However, improving user satisfaction is important for keep-
ing students engaged long-term. Thus, in evaluating interpretation quality, system
developers may benefit from more fine-grained analyses such as the one described
in this section, in order to better target the error types related to the desired outcome
metric.

Table 11 Correlations between individual interpretation failure types and learning outcomes

no-semantic- identifiable- wrong- restriction-

analysis-possible failure-point input-form failure

Learning gain −0.29 −0.03 −0.38 −0.48

Overall satisfaction −0.36 −0.25 −0.02 −0.11

Tutor satisfaction −0.48 −0.21 −0.30 −0.23
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Discussion

We began this paper with the argument that a cyclical process of experimentation
followed by explanation is an effective method for teaching conceptual material
in STEM domains, but that it poses a significant challenge for the development
of an NLP-enabled Intelligent Tutoring System. Our primary results have certainly
borne out both pieces of this argument. Our curriculum, embedded in both versions
of the system (TELL and ELICIT), yielded impressive effect sizes of close to
two sigma when compared to a no-training control condition. Still, analyses of
interpretation quality showed that there is significant room for improvement in
processing student answers.

The next logical step is to carefully consider the evaluation data and identify those
areas that appear most promising and most important for further development. First,
however, we will briefly revisit our hypothesis that the NLP capability is an impor-
tant component of this system and see what, if anything, our results to date have to
say on this point. Recall that the second stage of the conceptual change approach
uses a tutorial dialogue with the student to elicit reflection on the observed phe-
nomena and to guide the student to generate an accurate conceptualization of the
underlying principles in the domain. One of our control groups (the TELL system)
was designed explicitly to test our hypothesis that the effectiveness of our system
would be improved by the use of an NLP component, and our results did not yield
statistically significant support for that hypothesis.

Obviously, we would have been delighted if this first version of a system
using our adaptive NLP feedback (ELICIT) had proven to yield a significantly
larger learning gain than the TELL system. While that was not the case, we
believe that it would be premature to draw any conclusions about the potential
value added by an NLP capability. First, we would argue that the results of the
evaluation of the interpretation module demonstrate that the current instantiation
of NLP in our system is not yet robust enough to provide a fair test of the
hypothesis that incorporating NLP capabilities will improve the effectiveness of a
training system using the conceptual change approach embedded in the exercise
sequence.

Next, recall from the introduction that the importance of student reflection and
generation is integral to several different learning theories that have been supported
with multiple bodies of empirical evidence. While it is possible that properties of our
domain and curriculum limit the benefits of natural language interaction, no single
study would ever be sufficient to justify abandoning that component of the instruc-
tional process. Thus, improving the system’s NLP capabilities remains relevant in
the context of supporting research into ways of implementing effective instructional
approaches in STEM.

Finally, while we did see substantial learning taking place, our students did
not reach ceiling. Mean gain scores were 61 % and 65 % in ELICIT and TELL

respectively—indicating that there is still room for improvement. While it is cer-
tainly possible to make changes to the static content of the TELL system, the ELICIT

system affords a larger variety of manipulations. Basic principles of system develop-
ment, such as the law of diminishing returns, suggest that gains are more likely to be
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achieved by focusing on improving weak system components and adding new capa-
bilities than they are by fine tuning those aspects of a system that are already well
developed.

Our evaluation points at a set of issues and limitations within the natural
language processing module that can be addressed and evaluated in the future
as part of improving the NLP components, which we discuss in the next
section.

Future Work

One of the key outcomes of our evaluation is a rich data set which can be used
for system improvement. The system design and implementation was informed by
the analysis of dialogues from a human-human study; however, the full richness
of human interaction is beyond the reach of current NLP technology, and thus we
inevitably had to choose a subset of tutoring tactics that the system can use. Moreover,
there are phenomena in human-computer dialogue that are not present in human-
human dialogue. These include the need to deal with interpretation failures from the
ITS and also negative metacognitive and social utterances from the students which
may be suppressed in human-human communication because of politeness effects
(Dzikovska et al. 2010; Steinhauser et al. 2010). We therefore cannot rely on human-
human data collection as a guide for system behavior in those situations. Now that the
system architecture and initial versions of system modules have been implemented
and evaluated with a sufficient number of participants, we can use the collected data
to improve the system.

The BEETLE II system uses symbolic NLP to dynamically generate feedback
adapted to the problem, the state of the simulation environment and the previous dia-
logue history, based on a library of generic tutoring tactics. In our first evaluation, we
have shown that the system is effective, but have not been able to demonstrate that
the adaptive feedback in ELICIT leads to better outcomes than the TELL control con-
dition in which the students are always shown the correct answer, without adaptive
feedback.

Our evaluation focused on natural language interpretation, since it is the first stage
of student input processing, and thus interpretation problems are likely to cause prob-
lems in feedback generation as well. However, there are at least four sources of
potential problems in the system’s behavior, and correspondingly four main areas for
improvement:

• Interpretation quality
• The appropriateness of the feedback automatically generated by the system
• The choice and implementation of the generic tutoring tactics included in the

library
• The tutoring policy employed in choosing the best possible tactic

While our evaluation demonstrates that interpretation quality is correlated both
with learning gain and user satisfaction, it does not account for the impact of the
automatically generated feedback. Two aspects of feedback quality need to be taken
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into account: the appropriateness of the feedback produced by the tactics already
implemented in the system, and the choice of the implemented tactics. To evaluate
the appropriateness of the feedback already produced by the system, tutor utterances
need to be annotated for appropriateness by human raters. Similar studies have pre-
viously been carried out in tutorial dialogue (Aleven et al. 2004) and task-oriented
spoken dialogue systems (Mller et al. 2007). We plan to develop an annotation
scheme to enable us to annotate and evaluate feedback quality as part of our future
work.

In addition, the number and variety of tutoring tactics available can affect
the quality of instruction offered by the system. In devising our library of tactics,
we examined the tactics that our human tutors used in the pilot study and
selected the subset that were most frequently employed with successful
outcomes. Our architecture is capable of supporting a larger range of tactics than
is currently used by the system. For example, early on we implemented the
tactic of pointing out a counter-example to a student’s flawed answer based on the
circuits visible in the simulation environment. We did not use this tactic in our
final system because it was not part of the most frequently successful remedia-
tion sequences; however, this and other additional tactics can be implemented and
evaluated in the future.

The challenge with implementing a large number of tactics is deciding which
to apply if more than one tactic is applicable at a given time, as is usually the
case. We chose to use a fixed policy for applying the tactics, based on common
suggestions in the literature and on what we saw our human tutors do: start with
contentless prompts, progress on to more specific hints, and finally give away
the answer if the student is struggling. Recent work suggests that significant
improvements in learning outcomes can be achieved by using statistical data
analysis, either to detect common situations in the data where the current
remediation policy is failing and additional tutoring can be beneficial (Forbes-Riley
and Litman 2011), or by using reinforcement learning to learn the best policy
(Chi et al. 2011). Our system is particularly well-placed for applying reinforce-
ment learning techniques. Reinforcement learning methods typically require a
set of actions (i.e. tutoring tactics) to be available at each point of the interaction
and optimize the expected outcome by repeatedly trying different actions in
similar situations in order to learn the best action to take. Since our system
can dynamically generate different feedback messages in every situation, this makes
it an excellent platform for reinforcement learning, which we plan to undertake in
future work.

With respect to interpretation quality, the data we have collected
can help in improving system performance. We recently carried out
encouraging experiments showing that our symbolic interpreter can be
combined with a statistical classifier to improve robustness while retaining
the benefits of dynamically generated feedback in most cases. The resulting
system performs significantly better on our evaluation data set than either
the interpreter or the stand-alone statistical classifier (Dzikovska et al. 2013a,
b). In addition, approaches have been developed to data-mine automatically
parsed data sets in order to identify frequent word sequences that lead to
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parse failures and thus to rapidly improve coverage of grammar-based systems
(Sagot and de La Clergerie 2006; van Noord 2004). These techniques can be
adapted for our symbolic interpreter, thus using the collected data to efficiently
improve the symbolic interpretation.

We are currently working on improving both the interpretation and the
feedback generation, as discussed above, to develop and evaluate an
improved version of the system, in order to investigate whether improvements
in intrinsic evaluation scores will translate into improved learning gain and user
satisfaction.

In addition, recall from the “Instructional Approach” section that the two key
components of our approach are careful curriculum and exercise design intended
to address common misconceptions, and the capability to conduct tutorial dialogue
to support reflection and generation of correct explanations. Our TELL control
condition does not separate out the first component. We therefore developed another
“stripped-down” baseline that provides students with the same reading material and
has them build the same circuits, but does not require them to make predictions or
generate any explanations. We plan to evaluate this system with human participants
and compare it to the system versions described in this paper, in order to separate
out the contribution made by instructional design to the overall effectiveness of the
BEETLE II system.

Improving the effectiveness of STEM-based Intelligent Tutoring Systems is
both a high priority goal and a significant challenge for researchers and system
developers. While there is clearly still much work to be done, we believe that the
BEETLE II system advances the state of the art by providing natural language inter-
pretation and generation components which integrate a simulation environment with
dynamic, adaptive tutorial feedback generation, in the context of an instructional
approach that requires understanding natural language input as part of reflective
dialogue.
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Appendix

Sample Dialogues

The sample dialogues below were all collected during system evaluation. They illus-
trate interaction patterns between the students and the system. For student utterances,
we show the automatically annotated correctness label as described in Table 1, to
give an indication of how the student answer was interpreted by the system. For tutor
utterances, we provide a set of labels corresponding to tutoring tactics used. Labels
are described in the next subsection.
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Participant 34

A dialogue early in the process demonstrates the student making an incorrect pre-
diction accompanied by an incorrect self-explanation. The system understands the
student’s answer and, when they fail to notice the discrepancy between their pre-
diction and the actual circuit behavior, brings it to their attention. The incorrect
explanation is corrected during the reflection dialogue.

MsgId Agent Text System code

msg40 Tutor: In which diagram(s) do you think that
the bulbs will light up?

msg41 Student: 1, 2, and 3 contradictory
msg42 Tutor: OK, we’ll check your prediction in a Fdbk-Accept-

moment. Prediction, Move-On
msg42 Tutor: Explain your reasoning.
msg43 Student: The bulbs are in closed circuits Non-Interpretable

(restriction-failure)
msg44 Tutor: I’m sorry, I’m having a problem Fdbk-Negative-

understanding. I don’t understand Meta-computation,
when you say that circuits are closed. Ack-Bad-Bits,
Switches or paths can be closed, but GBFM-Try-Again
not circuits. Please try again.

msg45 Student: The paths are closed for the bulbs pc incomplete
msg46 Tutor: OK, you will see what happens Fdbk-Accept-

in a moment. When you are ready, Prediction, Move-On
go on to the next slide.

msg48 Tutor: Build circuit 1 to test your prediction.
Press the submit button when you
are done. [ Student builds circuit 1,
and then circuits 2–5 as requested by
the tutor – omitted for brevity ]

msg70 Tutor: Did the circuit behavior match
your predictions?

msg71 Student: Yes contradictory
msg72 Tutor: Actually, there was a difference. You said Fdbk-Negative,

circuit 1 and circuit 3 correctly, but you Ack-Bad-Bits,
guessed circuit 2 incorrectly. When you Call-Out-
are ready, go on to the next slide. Prediction-Errors

Student [ Presses next slide button. The slide
topic changes to “Discussion” ]

msg74 Tutor: What are the conditions that are
required to make a bulb light up?

msg75 Student: A closed path with a battery and bulb correct
msg76 Tutor: Very good. When you are ready, Fdbk-Positive,

go on to the next slide. Move-On
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Participant 12

A fragment of reflective dialogue focusing on the same question as Participant 34
above, but where the student needs help formulating the correct answer. The system
attempts two tactics (restatement and a contentless prompt in msg78 and hinting at
missing object in msg80). The system keeps track of the context, and the hint in
msg80 suggests a battery, which is the only object in the expected answer not yet
mentioned in either of the previous turns. At the end of the dialogue, all the relevant
concepts (bulb, battery, closed path) have been mentioned, but the student answer
has not pulled them together into a single explicit statement. The system decides that
further remediation will not be effective and instead restates the complete and correct
answer at the end of the dialogue (msg82).

MsgId Agent Text System code

msg76 Tutor: What are the conditions that are
required to make a bulb light up?

msg77 Student: There must be a closed path. pc incomplete
msg78 Tutor: Yes.There must be a closed path. And then? Fdbk-Positive,

Ack-Good-Bits,
GBFM-Keep-Going

msg79 Student: There must be a bulb. pc incomplete
msg80 Tutor: Hmmmm... Here’s a hint. Your answer Fdbk-Hedged,

should also mention a battery. GBFM-Hint-Object
msg81 Student: There must be a closed path and a battery. pc incomplete
msg82 Tutor: Goodsofar.Here’stheanswer. The bulb and the Fdbk-Hedged,

battery must be contained in the same closed Bottom-Out
path.Whenyouareready,goontothenextslide.

Participant 24

Demonstrates a hint (msg255) followed by an acceptance of a reasonable, but not
ideal, answer and a restatement (msg258), which we observed in human-human
tutoring (Dzikovska et al. 2008)

MsgId Agent Text System Code

msg254 Tutor: How does a damaged bulb compare
to an open switch?

msg255 Student: both dont allow for a closed path irrelevant
msg256 Tutor: Hmmmm... Here’s a hint. Fdbk-Hedged,

Your answer should mention a gap. GBFM-Hint-Object
msg257 Student: both create a gap correct
msg258 Tutor: Very good. Both a damaged bulb Fdbk-Positive,

and an open switch create a gap and Reinforce-ModelBetter
they cause bulbs to turn off. When you
are ready, go on to the next slide.
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Participant 9

Demonstrates an incorrect prediction (all predictions in msg399, msg401 and msg402
are incorrect). The student notices the discrepancy, but needs help in formulating
the correct explanation for their results. In the reflective dialogue, the system uses a
different hint, hinting at a relationship instead of the object (msg418), which helps
the student arrive at the correct explanation.

MsgId Agent Text System Code

msg398 Tutor: What voltage reading do you think
you would get if you compared bulb
terminal 2 to bulb terminal 1?

msg399 Student: 1.5 V contradictory
msg400 Tutor: OK, we’ll check your prediction Fdbk-Accept-

in a moment. Prediction,
Move-On

msg400 Tutor: What voltage reading do you think
you would get if you compared bulb
terminal 4 to bulb terminal 1?

msg401 Student: 1.5 V contradictory
msg402 Tutor: OK, we’ll check your prediction Fdbk-Accept-

in a moment. Prediction,
Move-On

msg402 Tutor: What voltage reading do you think
you would get if you compared bulb
terminal 6 to bulb terminal 1?

msg403 Student: 0.0 V contradictory
msg404 Tutor: OK, we’ll check your prediction Fdbk-Accept-

in a moment. When you are ready, Prediction,
go on to the next slide. Move-On

msg406 Tutor: Measure the voltage between bulb
terminal 1 and bulb terminal 2. [ Student
makes measurements for terminals that
they predicted–omitted for brevity ]

msg414 Tutor: Are those the voltage readings
you expected?

msg415 Student: No correct
msg416 Tutor: Correct. In your first prediction, you said Fdbk-Positive,

that the voltage would be 1.5 volts. But Ack-Bad-Bits,
the voltage was 0.0 volts. In your second Call-Out-
prediction, you said that the voltage would Prediction-
be 1.5 volts. But the voltage was 0.0 volts. Errors
In your third prediction, you said that the
voltage would be zero volts. But the
voltage was 1.5 volts.
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msg416 Tutor: Explain why you got a voltage reading
of 0 for terminal 1 and terminal 2.

msg417 Student: Because there was no difference irrelevant
msg418 Tutor: Hmmmm... Here’s a hint. A terminal is Fdbk-Hedged,

connected to something. GBFM-Hint-
Relation

msg419 Student: Because the terminals are connected correct
msg420 Tutor: Very good. Fdbk-Positive,

MoveOn
msg420 Tutor: Explain why you got a voltage reading

of 0 for terminal 1 and terminal 4.
msg421 Student: the terminals are connected correct
msg422 Tutor: Perfect. Fdbk-Positive,

MoveOn

List of Tutoring Tactics

The table below lists high-level tutoring tactics used by the system. The tactics are
typically combined – for example, most system utterances will use one Feedback
tactic and either a Reinforce or Remediate tactic depending on the evaluation of the
student answer.

Group Tactic label Description

Remediate Tactics used after the student made a
mistake.

GBFM-Keep-Going Go Back For More information, with a
context-free prompt implying that they
are on the right track but need to amend
their answer.

GBFM-Try-Again Go Back For More information, with a
context-free prompt implying that the
student answer needs to be completely
rephrased.

GBFM-Hint-Object Go Back For More information, giving
a hint about an object that needs to
be mentioned in the answer.

GBFM-Hint-Relation Go Back For More information, giving
a hint about a relationship between
objects that needs to be mentioned in
the answer.

GBFM-Hint-Badbits Go Back For More information, hinting
at the problematic part of the answer
(but without explicitly pointing out the
error).
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GBFM-Activity Suggest that the student conduct an activity
which will help them answer the question
(currently,readadditionalinstructionalmaterial).

Call-Out- Point out correct and incorrect
Prediction-Errors predictions that the student made earlier.
Bottom-Out Give the correct answer to the student, after

telling them that their answer is not fully
acceptable.

Reinforce Accept the student’s answer as correct
and choose either to move on or to
follow-up with content-laden utterances.

Move-On Accept the answer without any other follow-up.
Model-Better Accept the answer, but repeat it, it in some way,

e.g. by using better terminology.
Feedback Explicit evaluation of correctness of
(Fdbk) student answer.

Positive Indicate that the answer is correct.
Negative Indicate that the answer is wrong.
Accept-Prediction Accept the answer (a prediction) without giving

direct positive or negative feedback.
Hedged Indicate that the student is partially correct or

partially incorrect, but not explicitly, e.g.
saying “pretty much”.

Negative- Explicitly inform the student that the system
Metacomputation doesn’t understand what they said.

Acknowledge Explicitly point out a specific aspect of the
(Ack) student’s answer as being correct or incorrect.

Good-bits Call out the correct aspect of a student’s answer.
Bad-bits Call out the part of the answer that is incorrect.
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J.C., Vicari, R.M., Paraguaçu, F. (Eds.) Proceedings of the intelligent tutoring systems conference
(Vol. 3220, pp. 423–431). Berlin: Springer.

Vosniadou, S., & Brewer, W.F. (1987). Theories of knowledge restructuring in development. Review of
Educational Research, 57(1), 51–67.

Walker, M.A., Kamm, C.A., Litman., D.J. (2000). Towards developing general models of usability with
PARADISE. Natural Language Engineering, 6(3).

Ward, A., & Litman, D. (2006). Cohesion and learning in a tutorial spoken dialog system. In Proceedings
of 19th International FLAIRS (Florida Artificial Intelligence Research Society) Conference.

Yeh, A. (2000). More accurate tests for the statistical significance of result differences. In Proceedings
of the 18th International Conference on Computational Linguistics (COLING 2000) (pp. 947–953).
Association for Computational Linguistics.


	BEETLE II: Deep Natural Language Understanding and Automatic Feedback Generation for Intelligent Tutoring in Basic Electricity and Electronics
	Abstract
	Introduction
	Previous Work
	Curriculum Development
	Instructional Content and Approach
	Tutoring Tactics
	Assessment

	System Implementation
	Architecture
	Curriculum Planning and Exercises
	Dialogue Management
	Interpretation Components
	Domain Reasoning and Diagnosis
	Tutorial Planner and Natural Language Generation

	Evaluation
	Setup
	Procedure
	Corpus

	Results
	Overall System Effectiveness

	Evaluating NLP Performance
	Creating The Gold Standard
	Evaluation Data Set
	Evaluation Metrics
	Evaluation Results
	Impact of Interpretation Quality
	Impact of Non-interpretable Utterances


	Discussion
	Future Work
	Acknowledgments
	Appendix
	Sample Dialogues
	Participant 34
	Participant 12
	Participant 24
	Participant 9


	List of Tutoring Tactics
	References


