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Abstract Efforts to improve instructional task design often make reference to the
mental structures, such as “schemas” (e.g., Gick & Holyoak, 1983) or “identical
elements” (Thorndike & Woodworth, 1901), that are common to both the instructional
and target tasks. This component based (e.g., Singley & Anderson, 1989) approach has
been employed in psychometrics (Tatsuoka, 1983), cognitive science (Koedinger &
MacLaren, 2002), and most recently in educational data mining (Cen, Koedinger, &
Junker, 2006). A typical assumption of these theory based models is that an itemization
of “knowledge components” shared between tasks is sufficient to predict transfer
between these tasks. In this paper we step back from these more cognitive theory based
models of transfer and suggest a psychometric measurement model that removes most
cognitive assumptions, thus allowing us to understand the data without the bias of a
theory of transfer or domain knowledge. The goal of this work is to help provide a
methodology that allows researchers to analyse complex data without the theoretical
assumptions clearly part of other methods. Our experimentally controlled examples
illustrate the non-intuitive nature of some transfer situations which motivates the
necessity of the unbiased analysis that our model provides. We explain how to use
this Contextual Performance Factors Analysis (CPFA) model to measure learning
progress of related skills at a fine granularity. This CPFA analysis then allows us to
answer questions regarding the best order of practice for related skills and the appro-
priate amount of repetition depending on whether students are succeeding or failing
with each individual practice problem. We conclude by describing how the model
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allows us to test theories, in which we discuss how well two different cognitive theories
agree with the qualitative results of the model.

Keywords Human learning - Pedagogical strategy - Transfer of learning - Student
modelling

Introduction

When considering the effects of education it is plausible to argue that transfer of
learning to new situations is the main underlying goal of education. Because of this
dependence of education on transfer, work by many prominent researchers has con-
centrated on transfer related phenomenon (e.g., Anderson and Fincham 1994;
Bransford and Schwartz 1999; Chen and Klahr 2008; Gentner et al. 2003; Gibson
1940; Gick and Holyoak 1980; Postman et al. 1968; Rickard and Bourne 1996; Rittle-
Johnson et al. 2008; Sloutsky et al. 2005; Son and Goldstone 2009; Sternberg 2008).
Transfer of knowledge learned during prior events to a new performance context can be
challenging for students, so better measurement of transfer that furthers our ability to
configure instruction to help students learn in ways that are transferable is paramount to
the goal of effective education. A long-standing open question is what is the nature of
the mental capacity that “carries” or transfers what is learned in the source instructional
context to the target performance context? Is it general faculties of the mind (Singley
and Anderson 1989), identical elements represented as stimulus—response bonds
(Thorndike and Woodworth 1901), more general elements represented as production
rules (Singley and Anderson 1989), or hierarchies of relational structures (Falkenhainer
et al. 1989; Hummel and Holyoak 2003). This question is of critical importance to
understanding human learning and engineering better educational systems, but it also
occludes the often more immediate problem of how an instructional designer should
diagnose and improve specific classes of learning objects (e.g., problem types) to
maximize their effects.

Toward that end, a simplified approach used frequently in the AIED community is to
identifying the carriers of transfer by enumerating the relevant components of knowl-
edge (cf., Koedinger et al. 2012) and map them to the tasks in source instruction and
target performance. This approach has been employed in psychometrics (e.g., Tatsuoka
1983), cognitive science (e.g., Koedinger and MacLaren 2002), and most recently in
educational data mining (e.g., Cen, et al. 2006). These newer psychometric models of
transfer, based on a question by skill matrix or “Q-matrix” that maps skills to tasks,
have proven useful to handle the massive and growing data streams coming from the
increasing use of educational software in the classroom and for homework. The Q-
matrix method is applied by assigning some number of skills to some number of item
classes, according to what skills are needed to do the performances for that class of
items. These latent skills or “knowledge components™ are often assumed to be many
fewer than the number of problem/item classes, so the Q-matrix is thought to be useful
in representing and tracking learning in a domain.

These models come from a growing field, educational data mining, which has been
developing methods to detect and summarize the meaning of educational data to
maximize its value to the educational research community (Romero and Ventura
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2007). While educational data mining has many methods, this paper focuses on model-
based discovery, a technique that uses mathematical models to create the summary
understandings that can then feed back into improvements in educational technology,
and hopefully education more generally. Model-based discovery is a new area of
educational data mining, and publications stress the importance of these methods
(e.g., Baker and Yacef 2009). More generally, educational data mining fuses the
concerns of several of the cognitive science related disciplines including educational
psychology, artificial intelligence, psychometrics, and cognitive psychology.

Our goal in this paper is to demonstrate the CPFA (Contextual Performance Factors
Analysis) model, a data-driven approach that provides a rich starting point in the
process of learning theory verification and in the development of better learning
objects. CPFA provides a numerical summary of data that would otherwise be difficult
to process, by starting with simple statistical assumptions and different classes of
learning objects. In specific, this paper addresses the question of how this approach
can be used to understand learning and transfer data from pre-algebra learning objects.
We employ model-based discovery to pinpoint instructional activities (i.e., contexts of
learning) that are unproductive for future performance. A key point about the results of
such CPFA models is that they can summarize complex patterns in a dataset within a
small table of numbers. In the discussion and conclusion, we show how this interpret-
ability leads to design decision making about the learning objects measured. We also
demonstrate the model’s flexibility by showing how it captures situations not repre-
sented by the more limited ‘Q-matrix’ formalism for representing transfer components.
Finally, we describe how analysing the patterns of parameters in a model facilitates
comparison of alternative theories about the extent of transfer across different kinds of
activities.

A distinctive feature of CPFA is that it models both asymmetric transfer and negative
transfer, unlike past Q matrix based approaches. Asymmetric transfer describes the
situation where practice of item A transfers to performance on item B, but where
similar practice on item B does not benefit performance on item A. Such asymmetries
in transfer are not uncommon, and specific results in the literature suggest a powerful
advantage for the transfer of general math abilities into more specialized applications of
math. For example, in Bassok and Holyoak (1989), there are advantages for the
students that practice problems in a math domain and transfer to physics problems as
compared to students who practice the same physics problems first and show less
transfer to the same math problems. CPFA also models negative transfer effects, where
practices of an item can actually reduce performance on later items, as might be caused
if one item type resulted in misconceptions about how to solve the other item type.

Our intuition about how to model such situations is similar to the resolution
provided by Singley and Anderson (1985), looking at how general and specific skill
generalized to different contexts of application. In their case they were looking at how
different amounts of practice transfers between the learning of different text editors.
They found that using 2 types of knowledge component (general and specific) it was
possible to predict the transfer results using a function that weighted the importance of
general and specific practice differently. So for instance, with the EDT editor, general
learning was almost 3 times as strong as specific learning, while for the EMACS editor
general learning was less strong, and specific learning was proportionally more impor-
tant. This model is similar to ours because unlike standard Q-matrix models we are also
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proposing that the amount of transfer is contextually dependent. In contrast, Q-matrix
models typically assume that knowledge components contribute to performance inde-
pendent of their context, in a discrete, all-or-nothing fashion. Unfortunately, the idea
that knowledge transfer depends on context is complex and it is not trivial to consider
how to use Singley and Anderson’s (1985) ideas to create a statistical model to
generally detect when transfer depends on context.

This paper summarizes our efforts toward a psychometric model of transfer that
makes no strong assumptions about the mechanism of transfer (it is not a theory of the
cognitive structures or processes), but rather measures the transfer between classes/
types of items after controlling for the random effects of item and subject and the fixed
effects of different item classes. We hope to facilitate learning scientists in measuring
and identifying which instructional activities lead to greater transfer of learning and in
understanding why. Because CPFA is independent of any particular theory of the
process of transfer, it can be applied more broadly and be used to quantitatively
summarize the key results that a process-based theory of transfer must satisfy. Because
this model is so flexible, it will tend to capture effects that many theory-based models
may exclude from consideration. We illustrate this flexibility in contrast to the Q-matrix
approach, which conforms with theories that are limited to only symmetric and positive
transfer. Similarly, we describe how the model can be used to support hypothesized
qualitative relationships (e.g., math problems transfer better to physics than the other
way around) by an analysis of whether the parameters in the model conform to the
patterns implied by the theory.

Pre-algebra was selected as a domain for this transfer research because it has good
affordances for experimentation to understand transfer and is an area in which real
students might benefit greatly from improved instruction. Pre-algebra has excellent
affordances for research for a few reasons. First, math generally has a componential
nature that makes it easier to identify why and how problems are related in terms of
their logically necessary solution procedures. Second, math problems can often be
made so that they are short and single step (or at least have a single unambiguous
answer), but nonetheless are conceptual since they involve categories of examples
having a coherent solution schema where people can form consistent misconceptions.
Third, math is rich with different problem contexts or situations (e.g., story problems
and number lines) and so allows us to understand how representational features and
relationships can block or enhance transfer of learning to future performance.

The data we analyse here were produced from two pre-algebra “warm-up lessons”
used within the context of the Carnegie Learning Inc. pre-algebra computerized
intelligent tutoring system (called Bridge to Algebra; http://www.carnegielearning.
com/). For each student, each warm-up lesson consisted of 16 single step problems
selected randomly without replacement from a set of 24 possible items. The 24 items
were themselves split into various related item-types, and our method investigates
learning and transfer effects during each warm-up.

Contextual Factors Approach

Our method for analysing transfer from instructional events is called a contextual
factors approach to highlight the notion that the interaction of the driving context of
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learning and the target context of performance determines transfer performance (Pavlik
Jr et al. 2011). The contextual factors approach uses categories that cross learning
contexts by future performance contexts, where by “context” here we mean a set of
similar tasks. These categories are used to determine what prior events need to be
considered when predicting future performance. More specifically, if A and B are types
of tasks (e.g., A might be word problems and B might be equations), we have four
categories of learning transition A—A, B—B, A—B, and B—A. The last two
categories are commonly called transfer to distinguish them from the first two, which
can be thought of as simple learning. The contextual factors approach postulates that
these pairwise learning and transfer categories capture the specific nature of the
relationship between the type of practice (procedural or declarative), concepts and
contexts underlying each task.

We label our most recent model within this approach “contextual performance
factors analysis” (CPFA, elaborated below). CPFA fuses an interest in both the
performance and transfer context. We contrast it with a simpler model called “perfor-
mance factors analysis” (PFA, described below). CPFA uses mixed-effect logistic
regression to estimate the strength of the effect of the contexts of practice and
performance on the performance result (correct or incorrect) subsequently observed.
Because CPFA involves fine grained event-by-event tracking of the developmental
change, CPFA allows the researcher to take a “microgenetic approach” (Siegler and
Crowley 1991). As described by Siegler and Crowley, microgenetic analysis 1) mea-
sures individuals throughout the period of change, 2) has a high observation rate
relative to the rate of change, and 3) involves intensive trial-by-trial analysis to infer
the process of change. In contrast, pre-post assessment designs to test interventions can
show macro level change, but without trial-by-trial analysis of effects, the source of the
change is typically more difficult to pinpoint.

An example helps clarify these ideas. In our first set of items, there were two kinds
(or item-types) of least common multiple (LCM) items. A first item-type was a simple
textual item that asked the student a question like, “What is the LCM of 3 and 5?” while
the other item-type were story items, “Sally visits her grandfather every 3 days and
Molly visits him every 5 days. If they are visiting him together today, in how many
days will they visit together again?” The item-types were matched by using the same
numeric content in the items for each item-type to counterbalance our design. The
student responds to such questions by typing in an answer and system provides
feedback. If the answer is correct (a “success”), the system gives correctness feedback
(a checkmark). If the answer is incorrect (a “failure”), the system provides the correct
response, and an icon indicating that the student should review the correct answer. Thus
the only instruction students received was the presentation of the correct answer, from
which they needed to infer how it answer was generated.

Given these two item-types, Table 1 shows the eight types of learning and transfer
that CPFA tracks. The model separates effects given prior success and failures, since
prior work shows that the benefit of learning is different from a success than it is from a
failure (Pavlik Jr et al. 2009). The model also separates the relationship between the
item-type for the source of learning or transfer and that for the target. When the source
and target are the same, the Story— Story effects and the Word— Word effects, we
refer to this as “learning” and we distinguish learning given prior successes and
learning given prior failures. When the source and target are different, the Story—
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Table 1 An example of the 8 possible learning and transfer relationships between two classes of items,
“Story” and “Word”

Source item-type Target item-type
Story Word
Story
Success learning given success transfer given success
Failure learning given failure transfer given failure
Word
Success transfer given success learning given success
Failure transfer given failure learning given failure

Word effects and the Word— Story effects, we refer to this as “transfer” and we
distinguish transfer given prior successes and transfer given prior failures.

History of the Method

Formally, the model we have created can be traced from the development of item
response theory (IRT) (Rasch 1966). IRT was developed to understand and evaluate
results from academic testing by allowing a modeler to fit parameters to characterize
performance on a set of items by a set of students. As a form of logistic regression IRT
predicts 0 or 1 (dichotomous) results like the results of individual items for students. In
the case of a 1 item parameter IRT model, this result is predicted as a function of
student ability minus item difficulty (x), which is scaled to a probability estimate by
looking up the probability from the logistic function cumulative distribution, in which
p=/(1+e™).

IRT has had a long developmental history. For example, around the time others were
exploring Bayesian models of students (R. C. Atkinson 1972), the Linear Logistic Test
model (LLTM) was developed, which introduces the idea that multiple discrete “cog-
nitive operations” may combine to determine an items difficulty (Fischer 1973). While
IRT might be called a behavioral description, since it does not have parameters
mapping to mental constructs, LLTM goes a step further by proposing a set of
knowledge components that combine to produce an item’s difficulty. This work maps
closely to work that describes “knowledge spaces” or what have come to be known as
Q-matrices, which is a means to lay out a tabular matrix to specify exactly what
knowledge components, misconceptions or cognitive operations are needed for each
practice or test item (Barnes 2005; Tatsuoka 1983).

But the LLTM model alone does not capture learning. On a path toward modeling
learning, we trace the development to work by Scheiblechner (1972) which uses the
LLTM model, but also examines changes in difficulty as people repeat knowledge
components. This work is well reviewed by Spada and McGaw (1985) who unpack the
history of these sorts of models, which have persisted (e.g., Draney et al. 1995) and
come to be known as the additive factors model (AFM, Cen et al. 2008) within the
AIED/EDM communities. AFM is relatively straightforward, and proposes that we
should add a term to these IRT type models that captures the prior quantity of practice
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for each knowledge component as a linear effect. These skill tracking models have been
combined with the Q-matrix knowledge component models in part perhaps because
while formally identical to the psychometric analysis in LLTM, Tatsuoka’s (Tatsuoka)
work more clearly explains this method from a less mathematical/ more pedagogical
way that has appealed to learning science researchers. A variant of this LLTM/AFM
model is built into the DataShop repository at Carnegie Mellon University and is
currently being used to do automated search for better Q-matrixes to represent the
skills in different educational systems (Stamper and Koedinger 2011).

It was into this arena that performance factors analysis (PFA) was introduced as a
way to improve the AFM model still further by noting the importance of using the prior
successes and failures as a powerful source of information for predicting future
performance. This change improves model fit considerably, making logistic regression
at least as accurate as Bayesian knowledge tracing (BKT) a Markov model that is used
to fit similar data (Corbett and Anderson 1992; Gong et al. 2010; Pavlik Jr. et al. 2009).
The PFA model assumes that there are two fundamental categories of practice, success
and failure. As the psychological literature suggests, successes (in contrast to review
after failing) may lead to more production-based learning and/or less forgetting (Carrier
and Pashler 1992; Karpicke and Roediger 2008; Pavlik Jr. 2007; Thompson et al. 1978)
and may lead to automaticity (Peterson 1965; Rickard 1997, 1999; Segalowitz and
Segalowitz 1993). In contrast, failure reveals a need for declarative learning of problem
structure and verbal rules for production compilation (Taatgen and Lee 2003). We
might expect learning after failure to depend most importantly on the feedback that
occurs after the task is complete.

While AFM and PFA have been forward developments, these models do not fit all
patterns in the data that may occur in nature (as we will show) and are based on
assumptions about the Q-matrixes (assumptions of the LLTM method) that, unless
satisfied, make the entire procedure subject to error. These problems may make it
difficult to use the result of the AFM and PFA analysis to improve instruction. These
problems with standard Q-matrices include begin unable to capture effects such as
asymmetric learning, negative transfer, and conjunctive skill situations that do not
involve the compensatory trade-off implied when we add the different concepts
strengths as the linear logistic model stipulates. For these cases we have been working
on the contextual factors approach, which looks for direct transfer effects between
empirically constrained problem-type equivalence classes.

As stated earlier, in its simplest form, CFA does not include the tracking of success
and failure, but merely tracks the effects of item classes on other item classes. While
this is useful by itself to see whether transfer is asymmetric, bidirectional, etc., CFA can
also be combined with tracking of success and failure in the model to create CPFA,
which tracks the 8 categories of prior practice results as described in the prior section.
Further, unlike methods that are based on a Q-matrix — the sparse structure assigning
latent skills to items or tutor steps, which then transfer symmetrically — (e.g., AFM and
PFA), CPFA explicitly assumes asymmetric (one-way) transfer may occur and does not
presume any latent factors exist (Pavlik Jr et al. 2011). Rather, in CPFA each item-type
causes different things to be learned, which may transfer either to future practice with
the same item category (learning effects), or future practice with items in other
categories (transfer effects, e.g., LCM items without stories— LCM items with stories).
While each of the transfer effects is somewhat like learning a skill in the knowledge

@ Springer



Int J Artif Intell Educ (2015) 25:346-379 353

space theory (Tatsuoka 1983), the model does not assume that any learning or transfer
necessarily generalizes to other item-types. While asymmetric transfer is not always the
case, there are cases where it occurs strongly (e.g., Anderson and Fincham 1994;
Bassok and Holyoak 1989) and it is useful to have a method to detect it.

In the simplest case CPFA can be used to analyse learning and transfer between 2
item-types A and B given randomly (with replacement) for 2 trials. Since the 2 trials are
given in a random order with replacement, the possible item orders of the 2 trials are
AA, AB, BA, and AA. Typically, in this sort of paradigm we assume each repetition of
an item-type is drawn from a population of items, so that while AA means 2 repetitions
from the same item-type, they are not verbatim identical repetitions, since there may be
variability within a population. In this simplest case we have 4 learning contexts (A or
B)x(success or failure) and 2 performance contexts (A or B). CPFA says that we cross
these categories to get the full transfer relationship matrix which specifies the relation-
ships in Table 2. This matrix lists how each of the eight situations is captured by a
different model coefficient (coefficient y’s are for success and p’s are for failures).
Having this example of an item-type A and an item-type B allows a more specific
explanation of the how source contexts influence subsequent target contexts in CPFA.
In CPFA there is a single coefficient capturing each possible sourceXoutcomeXtarget
combination. Therefore, because there are four categories of prior sourceXoutcome
practice — success on A, success on B, failure on A and failure on B — and because there
are two categories of future farget practice — A or B, the model has eight learning and
transfer parameters (four conditions of prior practice by two conditions of future
practice).

This model of the eight relationships is assumed to be additive, so multiple instances
of possibly different source item-types are added to determine the performance for a
target item-type. Such an additive model is easy to consider as a linear equation where
the performance is predicted by summing the number of practice events times the effect
of each event. However, since our predicted quantity is a probability, we model these
additive effects as a logistic regression, since logistic regression is the standard model
to convert a linear equation result to a probability. Table 3 shows the model’s linear
equation (Eq. 1) and logistic conversion function (Eq. 2). In addition to the 8 coeffi-
cients for the 8 predictive relationships in Table 2, the mixed-effect model also includes
fixed-effect parameters that captured the difficulty of each item type, and random-effect
distributions for student and item, capturing prior knowledge by student and individual
item difficulty level. Ultimately, due to the mixed-effect model form, the model is well
suited to including other hierarchical factors of the learning, such as the learning
context (e.g., working at home, working at school), experimental conditions, and

Table 2 Learning and transfer effects in the model (coefficient s are for success and p’s are for failures)

Success Failure
A— A (learning) Yaa Pas
B— A (transfer) VB4 PB4
B— B (learning) VBB PBB
A— B (transfer) V4B P4B
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Table 3 Mixed-effect logistic regression equation

m; = 33() + 5,4“"
YaaSadi + VapSasi + Vp4Spai + VppSeBit
PaaFaai + papFasi + ppaFpai + pppFapit
u; + e, u,-~N(0, Uf),epN(O, rfﬁ)
where:
Bo, s an overall fixed intercept,
(4, is an intercept for the item-type contrast level,
~sx, effects of counts of prior successes (S«) relevant to the item (across students),
p==, effects of counts of prior failures (Fx=) relevant to the item (across students),
u;, random effect intercept for each student i,
ey, random effect intercept for each item j

pi= # Equation 2

Equation 1

random school or classroom effects, but in this paper we have kept the scope limited to
item-types and performance categories.

See Eq. 1, Table 3. Our model includes fixed effect intercepts, which capture the
average difficulty of the 2 item-types. 3, is the intercept for a 1st type of items, and (G4
provides the difference for the 2nd type. The model also includes random effect
intercepts, characterizing the prior knowledge of individual students and the prior
difficulty of individual items. The use of the random effects encourages the gamma
and rho parameters for the effect of successes and failures to track changes in
performance due to learning and transfer, rather than track student or item differences.
If we did not use these random effects, the model  and p parameters would tend to find
values that mostly track prior learning and transfer rather than changes to prior learning.
In other words, if we do not account for prior knowledge, the models estimates of
learning and transfer will be confounded. For this reason it essential to use these
random student intercepts if we hope to trust the transfer implications of the model.

We fit these models with the Imer function in the Ime4 package from the R Project
for Statistical Computing. As a reviewer of this paper noted, a model distinguishing the
effects of better prior knowledge from the effects of current learning is desirable, but it
is in practice very difficult to separately fit parameters characterizing both the change in
the estimate of prior probability success and the learning effect of practice since they
cannot be measured independently. Because of this, it is important to note that the
model we have settled on emerged from intensive incremental model search accom-
panied by cross-validation tests. For each of the models a 5-fold cross validation over
20 randomized repetitions was computed. The computation was repeated twice. The
first time, cross-validation was user-stratified, namely 80 % of user data was used for
training and 20 % for testing. The second time, cross-validation was item stratified. For
the CPFA model we have described, the signs and magnitudes of model parameters we
discovered during model fitting were confirmed during cross-validation. Specifically,
our CPFA model cross-validated with a correlation of .567, despite the fact that in
validation folds we did not use any subject parameters, indicating that the .567
correlation came from the skill model alone. We have omitted these model validation
details from this paper due to their length and complexity, but some detailed examples
are given in prior work (Yudelson et al. 2011).

This model validation provided us assurance that our models were not just finding
idiosyncratic patterns in the data; rather they are finding patterns that generalize to
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unseen data. This validation helps answer a reviewer of the paper who was concerned
that our success and failure parameters might be confounded with the student ability.
While the reviewer was correct in principal, the cross-validation showed that using
random effects models compensates for the confounding of the success/failure param-
eters and the student parameters. Random effects have this effect because they prevent
the over-fitting of the subject variance that occurs with fixed effect student parameters
(overfitting that results in success and failure parameters that are degenerate) and
models with no subject effects (where under fitting results in success and failure
parameters that track subject ability rather than learning) (as shown in Yudelson,
et al. 2011).

Additionally, in the results below we report the simplified CFA model without this
confound, to further confirm that the overall transfer patterns match the averaged
transfer patterns in CPFA, thus establishing that the success and failure counting was
not disrupting the overall model structure. In sum however, it is hard to see how this
issue seriously troubles our desire to use the model for instructional optimization, since,
assuming most of the learning parameters in a particular model of data are positive,
showing that the model captures the overall positive slope of learning, negative
coefficients must either indicate that these categories of performance are especially
sensitive to student variability and tend to identify low prior knowledge or ability
students OR that the item causes poor learning. In either case there is a clear need to
improve the instruction in these practice contexts with near 0 or negative learning
coefficients, either to scaffold the low knowledge/ability students or to make the item
more instructional effective generally.

Methods

We gathered our data from the classroom but used randomization of item selection
and sequence for each student because we were concerned about problems with
modeling data containing various sources of bias (Shadish and Cook 2009). Often
this bias in educational data occurs as a “confound” caused by the adaptive deci-
sions. For example, in some systems using mastery based practice (Corbett and
Anderson 1992), good students are more quickly skipped to the next unit or concept,
which means that more data is collected from the poorest students for any particular
unit. Even more serious data bias in learning curves can be caused if item order is not
randomized. Similarly, systems that collect data while adjusting item difficulty to
scaffold individual students tend to bias data by providing more easy items for lower
performing students. These sorts of biases also affect inferences about transfer, for
example if the practice order is always A—B it is impossible to compare the
symmetry of transfer in the data.

Such data collection biases may limit causal inference from educational data mining
results. To alleviate such limitations, we used a classroom experimental method that, by
randomizing the order of problems more like a psychological experiment, allows un-
confounded analysis of sequences of practice from a set of pre-algebra problems using
a model taken from educational data mining. In general, methods to get more natural-
istic educational data combined with rigorous control have been called “in vivo
experimentation” for the way that they blend experimental method with an attention
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to the real life issues of classroom learning (Koedinger et al. 2009; Koedinger and
Corbett 2010), such as student attendance or the distractions that a classroom presents
compared to the lab.

Setting

Data on transfer was collected from a Florida charter school both from classroom work
on a computerized educational tutoring software program and from homework on the
same system. This natural setting varied between individuals, but because the study
used full random assignment of students to condition and items to student, the data can
be used for post facto analysis of putatively causal effects. While our ten sets of
intervention items were placed as part of the Bridge to Algebra product from Carnegie
Learning Inc., we are not examining the Carnegie Learning system, but rather using it
as a vehicle to deliver our intervention. Nevertheless, each of our intervention units did
fit in the curriculum sequence in the Carnegie Learning system, so our interventions
were appropriate for each student’s current progress in the Carnegie Learning system.

Population

Approximately 250 6th and 7th graders participated (ages ranged from approximately
1012 years). Participating classes included all levels at the school that used the Bridge
to Algebra tutor. The exact count of participating students for each warm-up is listed in
the results section.

Experimental Design

The experimental side of this project is best described as an experimental design in a
naturalistic context, but this paper focuses on post-hoc model-based discovery meth-
odology to analyse the implications of the student results. The research design used 10
sets of 24 individual pre-algebra single step questions on a variety of content. The 10
interventions we gave were split into item-types according to systematic analysis of
their features. For each of the 10 interventions students were each quizzed on 16
randomly selected items from these sets of 24 possible items. We analyse 2 of the 10
warm-ups for this paper. These 2 warm-ups allow 3 examples of the method, since the
first warm-up is analysed for 2 different item-type splits.

The students were randomized (by person) into 1 of 4 conditions for each warm-up.
This paper does not report on the condition effects, but we present the conditions for
completeness. In the standard condition, students were quizzed on the items (with a
10 min threshold to respond). If they responded correctly, there was a .75 s interval
where a correctness indicator (a check mark in green) appeared, and then the next
problem began. If they responded incorrectly, they were presented the correct response
for 18 s. In the direct instruction condition, the trials occurred just as in the standard
condition for problems 1-4 and 13—16, but during problems 512 a hint was presented
on the screen at the same time as the problem, and also presented during the feedback
with the answer to the problem. In the inference condition, once again problems 1-4
and 13—16 were presented as in the standard condition, but for problems 5-12, one of
the problems was presented as a worked example, and student needed to fill in a
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missing vocabulary word in a hint message text (cloze question). Both the worked
example and full hint were given as feedback (note, in this condition we did not model
trials 5—12, but rather modelled only the 8 trials with problems, assuming no effect of
these inference trials in our model as indicated by our initial analysis of conditions). In
the analogy condition, everything was the same as above for trials 1-4 and 13-16, but
for trials 5—12 we presented a worked example item (from the left out 8 items in the set)
for each of the trials in addition to the standard problem. This paper does not analyse
the effects of the 4 between-subjects conditions for each unit, because prior analysis
showed the main-effects of condition were non-significant.

Finally, students with 0 % correct or 100 % correct responding for the warm-ups
were filtered from analysis, because it seemed they should not be allowed to bias the
random effects subject distribution. In the case of 0 % performers, there was the
possibility that they were merely noncompliant and may have done better if they
engaged. In the case of 100 % performers, the possibility was that students could be
using an outside resource for the warm-ups, since some of the work was done at home.
In either case, there did not seem to be an advantage to retaining either group of
students, since they merely shift means rather than show any variance as a function of
learning and transfer conditions. We report the count of students in each case removed.

Results
Warm-Up 1 Example

Warm-up 1 contained items that addressed least common multiple (LCM) skills. These
items presented the student with two numbers and asked them to produce the least
common multiple. Problems were classified according to two factors. The first item-
type factor distinguishes whether the problem could be solved correctly by simply
multiplying the givens, for example, the least common multiple of 3 and 5 is 15. We
called these “partial strategy” problems “Product” problems. Problems that cannot be
correctly solved by multiplying the givens (e.g., least common multiple of 4 and 6 is 12
and not 24) will be referred to as “LCM” problems. The second item-type factor
addressed how the text of the problem is presented. There were longer “Story”
problems that place the problem in a context, and there were shorter “Word” problems
that posed the question without a context. Examples of problems, corresponding factor
labels, and number of problem items in each category are given in Table 4. While the
spit between Story and Word was a planned contrast, the split between Product and
LCM items was discovered in the analysis, and this accounts for the unequal number of
problems per category (7 vs. 5 rather than 6 vs. 6). Before building the CPFA model we
filtered the original warm-up 1 dataset of 3616 data points from 255 students down to
3520 data points from 247 students by removing students that demonstrated 0 %
performance (1 user) and 100 % performance (7 students).

Product vs. LCM Item-Types Data and Model First, we examined Product and LCM
item-types. Before describing the model fit details, we first describe learning and
transfer patterns in the data as they are often described in transfer experiments (e.g.,
Gick and Holyoak 1983) where there are just two stages of observation. Figure la
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Table 4 Item examples and corresponding factors for warm-up 1

Example item texts Factor | ~ Factor2  No. of items
What is the least common multiple 4 and 5? Word Product 7
What is the least common multiple 4 and 6? Word LCM 5
Sally visits her grandfather every 4 days and Story Product 7

Molly visits him every 5 days. If they are visiting
him together today, in how many days will
they visit together again?
Sally visits her grandfather every 4 days and Molly Story LCM 5
visits him every 6 days. If they are visiting him
together today, in how many days will they visit together again?

shows changes in students’ average success rates from trial 1 to trial 2 for the item-
types. At trial 1, two points are shown, each representing about half of the trial 1 data,
namely average success rates for students getting a Product or LCM problem first. At
trial 2, four points are shown, representing four different item-type combinations that
students saw, namely, Product-Product, Product-LCM, LCM-Product, and LCM-LCM
— each aggregating roughly one quarter of the trial 2 data. Solid lines connect attempts
for identical item-types, denoting learning. Dashed lines connect attempts for different
item-types and denote transfer. For example, for trial 2, the labels read “first type —
second-type” so the notation LCM-Product, indicates performance on a Product item
that was preceded by an LCM item. So, in Fig. 1a the top two lines show that students
performed better on Product problems on trial 2 than they did on trial 1 (there is a
learning gain) and more so, interestingly, when trial 1 practice was on an LCM item
rather than a product item.

The purpose of Fig. 1a is to show learning and transfer as students start each new
warm-up, since early gains in success probability are often greater and diminish as
success approaches the ceiling of 100 % correct. However, at this grain-size (only
averaging trial 1-2 performance), the values are noisier and as a result, the changes in

Warmup 1: Success rate growth from trial 1 to trial 2 Warmup 1: Success rate growth from trial 1 to trial 16
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Fig. 1 Success rate growth for “Product” and “LCM” problems in warm-up 1: a from trial 1 to trial 2, b from
trial 1 to trial i+1 averaged across all 16 trials. 1 SE error bars
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success rates attributed to learning and transfer effects between trials 1 and 2 might not
reflect general changes throughout practice. To get a more complete estimate of the
relative differences between changes in success rates attributed to transfer and learning
effects, we produced Fig. 1b. In Fig. 1b, the positions of six points are averaged across
15 trial pairs: 1 and 2, 2 and 3, 3 and 4, 15 and 16. Naturally, the positions of the points
go up as the number of trials grows due to learning. However, in this particular case, we
are more interested in the magnitudes of changes in the success rates — how far up or
down the lines go. Note that this averaging of consecutive pairs blunts rather than
exaggerates transfer effects because some AB sequences will occur in a context, such as
BBAB, where the prior learning effects might overwhelm subsequent transfer.

As shown in Fig. la, LCM success rate increases from .21 to .37, Product success
rate increases from .40 to .52 from trial 1 to 2. However, Product-to-LCM “transfer”
success rate increase by merely .04 (.21 to .25), while the LCM-to-Product “transfer”
success rate goes up by .30 (.40 to .70). The averaged view of learning and transfer in
Fig. 1b is less pronounced, but the pattern is the same: learning is positive for both
item-types, while transfer is asymmetrical. Table 5 presents a summary of the param-
eters for the Product vs. LCM CPFA model. Parameter values are on a logistic scale.

Product vs. LCM Item-Types Discussion Interpreting the logistic regression model
requires an understanding of how the parameter differences actually translate to student
change in percent correct (since odds ratios, the other alternative interpretation, are
arguably less clear for this purpose). In other words, what does a .1 parameter value
increment indicate in terms of percent correct? This can be exactly computed using
Eq. 2, which implies that the effect of the parameter varies with the sigmoidal slope of
the logistic cumulative distribution function. However, it is more useful to have a few
concrete examples to understand the function quantitatively. So, we note that if
probability is currently .5 (50 % correct) the .1 increment brings the learner to
approximately 52.500 % probability of success. This would indicate 10 practices result
in 25 % gain, except for the fact that the slope of the function decelerates as it
approaches 0 or 1. Again, concretely we see this means that if probability is .75 there

Table 5 Summary of the Product vs. LCM item-type CPFA model parameters for warm-up 1 (including the
full dataset shown in Fig. 1b)

Param. val. p-value Param. val. p-value Note
Bo -919 .000%** Overall intercept (LCM item-type)
B4 1.250 .000%** Intercept modifier for Product
item-type contrast level
Vaa 208 .000%** Pad .148 .040%* Learning from Product to Product
VB4 .094 .040* PB4 .083 .040* Transfer from LCM to Product
VBB 420 .000%** PBB 075 .030%* Learning from LCM to LCM
VB .020 .610 PaB -.013 .830 Transfer from Product to LCM
o, 424 Variance of student random effect intercept
o’ 408 Variance of item random effect intercept

T Significance codes: . p<.1, ¥-p<.05, ¥*p<.01, ***-p< 001
Success (y) and failure (p)
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is only a .0183 probability increase to 76.823 % from a .1 parameter change. This
decrease in the increase continues, so at 95 % there is only a .00454 increase in
probability to 95.454 %. The distribution is symmetric, so the same effect applies as
values approach 0.

Using these guidelines helps us evaluate the strength of the learning and transfer that
is captured by the model for this data set. We can see asymmetric transfer in the
parameter estimates, which are statistically significant for success and failure transfer
from LCM (.094 and .083, which implies a little less than 2.5 % transfer also given that
starting probability is bit more than .5 i.e., -.919+1.250). We do not see this for success
and failure transfer from Product (.020 and -.013). Again it is useful to note that these
parameters represent the cumulative effects of the count of prior practices for the 4
possible events on each of the 2 contexts of application. The pairwise comparisons of
the asymmetric transfer parameters (e.g., success transfer A—B, .020, compared to
B— A, .094) were not quite significant by themselves. But we can collapse the success-
failure distinction and examine asymmetry using a four-parameter model (for A— A,
B—B, A—B and B— A trials) rather than an eight-parameter model. In this aggregate
model (LCM—LCM=.237***" Product— Product=.196*** LCM — Prod-
uct=.099** and Product—LCM=.021) we find that overall transfer from LCM to
Product is significantly stronger than transfer from product to LCM (¢=2.3, df=247,
p<.05). Note that this simple contextual factors only model is extremely similar to the
averages of the average of success and fail parameters in the full CPFA model. This
shows how the addition of the performance tracking does not alter the overall transfer
predictions, but rather provides additional useful information about which types of
performance predict the need for improvements in instruction (either because the item
does not cause learning or because the item identifies students that need remediation).

To summarize, we see that the product items simply do not provide transfer
appropriate processing (Morris et al. 1977) for the LCM items. In contrast, the general
LCM strategy subsumes the Product strategy and therefore transfer of learning does
flow from LCM practice to product item performance. Similar asymmetric subsump-
tion relationships have been found for English grammar therapy in agrammatic apha-
sics learning sentence structure with three or two argument verbs. While three argument
verb training transferred to two argument verb performance, two argument verb
training caused learning, but not transfer to three argument performance (Thompson
et al. 1993).

In addition to asymmetry, we might also wonder if Product practice actually causes
some student misconceptions. However, transfer-from-Product parameters did not
indicate negative transfer overall (they are not significantly negative at .020 and
-.013), just no transfer. Despite this, there were consistent misconceptions in students’
incorrect responses. In 26 % of LCM error trials, a product of the two numbers was
produced as the incorrect response. Investigating this consistent error further, we
discovered that while there was no reduction or increase in the absolute number of
product type errors over the learning trials, there was a significant linear increase across
trials in the proportion of LCM error trials that showed this error, F=14.93, p=.002
(indicating the misconception was maintained despite an improvement in other error
types). To understand the size of this effect, note that LCM errors were 23.5 % product
misconceptions during the first 8 trials on average, increasing to 33.5 % product
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misconceptions during the second 8 trials. Some students produce the product error
with high frequency. In fact, 30 of the 255 students produced the error 3 or more times
despite the fact that they got immediate feedback of the correct answers after they made
these errors.

These results imply that Product items should be avoided (as we discuss in depth in
the discussion section), at least until the product misconception is no longer produced
for the LCM items. One possible reason for the failure to remediate the misconception
shown in our data is the tendency for Product items to reinforce the incorrect strategy
for true LCM problems, thereby failing to prepare students for solving these “true”
“LCM items. Of course, we could suggest that this misconception is due to students’
poor metacognitive analysis of their errors, but this explanation may also lead to us to
conclude that reducing the number of product problems would provide a clearer
message about errors, thus scaffolding these metacognitively underperforming students
more effectively. Similar misconceptions in student learning about negative signs and
equals signs have been shown to cause decrements in both performance and learning
when they are not specifically addressed by the instruction (Booth and Koedinger
2008).

We can also see that the model reveals a much lower LCM-to-LCM item-type
learning rate for failures as compared to the learning rate for successes (.420 vs. .075 as
shown in Table 5). The success learning parameter is more than five times the failure
learning parameter and this implies that students are only learning well if they already
have some initial proficiency. The low rate of learning from failures further indicates
that the feedback/review is only causing weak changes in future performance. As we
will discuss in the conclusion, such results suggest that these item-types need better
feedback support. It seems that merely providing the correct responses (the method
used in this instruction) is insufficient to allow students to infer how to solve the LCM
items. Note how the CPFA analysis method makes the need for better feedback
abundantly clear, and it differentiate cases where feedback is useful, e.g., Product
failure learning does much better relatively speaking than LCM failure learning,
presumably because the answer allows much clearer inference of the solution procedure
when that procedure is merely multiplication.

Because of the pronounced transfer effect for practices 1 to 2 compared to overall,
we also computed the model restricted to data from trials 3 to 16. This model still had
significant success transfer from LCM to Product at .106, p=.019. More interesting,
however, was that all of the failure learning and transfer parameters were not statisti-
cally different from 0 at p<.05. For example, failure transfer from LCM to Product was
.006, p=.88. Interestingly, failure transfer from Product to LCM was almost signifi-
cantly negative -.11, p=.057. It seems plausible that this result helps explain the
increased proportion of misconceptions produced (despite the strongly significant
learning) because in this case students using a shallow strategy could easily infer
(incorrectly) that all one needed to do was multiply to solve problems in the set.
Generally, the restricted model results suggest that the failure feedback we gave was
not cumulative and suggests that at the very least, variability of feedback may be
necessary if a student keeps failing. The data implies that repeating the same feedback
type does not provide sustained assistance for the student. This result shows how CPFA
can be used flexibly by applying the model across subsets of data to see how transfer
changes across time.
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Word vs. Story Item-Types Data and Model In the previous example, the harder LCM
item-type fostered a more general kind of learning. In contrast, in the case of
Word vs. Story item-type comparison, the easier Word item-type appeared to
better drive transfer (Fig. 2). While transfer given Word to Story item-types
(dashed line between Story and Word-Story) was significant, the Story item-
types did not show significant transfer to Word item-types. A summary of
parameters for the CPFA model fit on the Word and the Story item-types is
given in Table 6.

Word vs. Story Item-Types Discussion Transfer given Story item-type to Word item-
type is non-distinguishable from zero for both successes and failures. From Word item-
types to Story item-types, however, there are significant effects. Failure-driven transfer
given Word to Story items is almost twice as strong as success-driven transfer (.176 vs.
.083 respectively). While this difference was not significant, it may imply that in this
case, perhaps due to the simplicity of review for Word items, students were able to map
the analogous procedures to Story items more easily than when those same procedures
were simply practiced and not reviewed. As in the case of Product and LCM item-
types, transfer was asymmetric. We collapsed the success-failure distinction using a
four-parameter model (for A— A, B—B, A— B and B— A trials) rather than an eight-
parameter model. In this aggregate model (Story— Story=.166*** Word —
Word=.303*** Story— Word=—.001 and Word— Story=.115***), we see that the
pattern is very similar to the averaged parameters without success/failure categories,
which helps us to confirm the addition of the success/failure parameters is not causing
over-fitting.

Again we computed the model restricted to data from trials 3 to 16 because again we
saw that transfer was much reduced for the overall results in Fig. 2b. Again we saw that
significant transfer was maintained for success for the Word items, with a similar
magnitude, .084, p=.023, while failure transfer was not significant any longer,
p=.468. These results strengthen the argument that students need different/non redun-
dant forms of feedback for later failures if we wish to have continued learning from

Warmup 1: Success rate growth from trial 1 to trial 2 Warmup 1: Success rate growth from trial 1 to trial 16
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Fig. 2 Success rate growth for “Word” and “Story” items in warm-up 1: a from trial 1 to trial 2, b from trial 1
to trial 16 (averaged). 1 SE error bars
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Table 6 Summary of the Word vs. Story item-type CPFA model parameters for warm-up 1 (including the full
dataset shown in Fig. 2b)

Param. val002E ~ p-value’ Param. val.  p-value’ Note

B —.983 .000%** Overall intercept (Story item-type)

B4 1.118 .001** Intercept modifier for Word item-type contrast level
Vaa 387 .000%** p,, 160 .005**  Learning from Word to Word

YBA —.029 556 ppa  —011 811 Transfer from Story to Word

V8B 335 .000%**  ppp 017 .699 Learning from Story to Story
YaB .083 .026* pap 176 .001***  Transfer from Word to Story
oy 549 Variance of student random effect intercept

o, .569 Variance of item random effect intercept

T Significance codes: . -p<.1, *-p<.05, *¥*.p<.01, ***p<.001
Success () and failure (p)

failures. Interestingly, we do not see a similar pattern for success, which has more
sustained benefits just as we saw for the Product/LCM contrast.

The greater difficulty of the Story item-type than the Word item-type for this least-
common multiples context is consistent with a past finding (Koedinger 2002), but
inconsistent with other contexts (Koedinger 2002; Koedinger and Nathan 2004). Given
the greater difficulty of Story items in this context, we might speculate that this item-type
causes excessive cognitive load that prevents students from inferring how to arrive at the
correct answer upon review (Sweller et al. 1990). This argument is supported support
since we also see no learning following failures with the story items. A similar explanation
might be that the simplicity of the word problems allows an easier inference of a general
rule for the item-type (Son et al. 2008). This argument is supported by the fact that we do
see good success learning of Story items, which implies it is not a problem with learning
per se, but rather a problem with the process of inference after failure.

This analysis has implications for improving instruction with these items, since the
data show that the Story items are quite poor in their present state, since even when they
are answered correctly, they do not transfer. To the extent that noticing the opportunity
for transfer given a prior example is about noticing the analogy (cf., Singley and
Anderson 1989), we might suppose that a hint given during feedback that the LCM
procedure is applicable in the Story items might cause people to engage with the Story
item feedback in a way that was later transferable (e.g., by applying the LCM schema).
Using a hint in this fashion is similar to Gick and Holyoak’s (1983) work showing how
hinting about the relevance of the source analogy improves transfer performance, but in
this case the hint might foster “analogical abstraction” in the encoding, that, at least
hypothetically will provide benefits to improve future by allowing more general
features to be added to the representation learned (Gentner et al. 2009).

Warm-Up 6 Example

Warm-up 6 addressed fraction addition items. Each item presented two fractions and
students were asked to add the two fractions and, without simplifying, to produce either
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the numerator or the denominator of the result. We defined two item-type splits. The
first split, SameDen/DiffDen, distinguished whether the two fractions presented for
addition had either the same or different denominators. The second split, AskNum/
AskDen, is not analysed here because there was only non-significant symmetric
negative transfer between the items that asked the student to produce the numerator
of the sum and items that asked students to produce the denominator of the sum.
Table 7 has examples for each item-type category and the number of item instances for
it. Before building the CPFA model we filtered an original warm-up 1 dataset of 3208
data points from 225 students down to 3065 data points from 213 students by removing
students that demonstrated 0 % performance (6 students) and 100 % performance (6
students).

Figure 3a is a depiction of the success rates’ changes from trial 1 to trial 2 in the data
from warm-up 6 for SameDen and DiffDen item-types. DiffDen (different denomina-
tor) items are harder, starting with a .14 success rate on the first trial. SameDen (same
denominator) items are easier, starting with a .41 success rate. From trial 1 to 2 we see
that SameDen is benefitting DiffDen, more than the reverse, and when all of the trials
are averaged up to trial 16 (see Fig. 3b), the pattern is similar, but this suggestion of
early transfer from SameDen-DiffDen is much diminished. Table 8 provides a sum-
mary of the parameters for CPFA model of SameDen and DiffDen item-types.

SameDen vs. DiffDen Item-Types Discussion Both SameDen and DiffDen items show
strong success-learning coefficients of .407 and .420 respectively (see Table 8). Learn-
ing from failure in both cases is quite modest at best (coefficients .071 and .062), and
not significant. The transfer situation is interesting. Easier SameDen items do not
transfer to harder DiffDen items for either prior successes or failures (however, note
the anomalous early transfer in Fig. 3a. In contrast, prior practices of DiffDen items
have opposite effects on SameDen items, depending on success. Success with DiffDen
items results in significant transfer to SameDen (.146 coefficient), while failure transfer
from DiffDen is significantly negative with similar magnitudes (—.140). The result for
success seems somewhat sensible, at least in retrospect, because, similar to the LCM-
Product contrast in warm-up 1, DiffDen item solution passes through a context where

Table 7 Item examples and corresponding factors for warm-up 6

Example item texts Factor 1 Factor 2 No. of items

What is the denominator in the SameDen  AskDen 6
solution to 4/5+2/5? (do not reduce or
convert to a mixed number before answering)

What is the denominator in the solution to DiffDen AskDen 6

1/5+2/3? (do not reduce or convert to a
mixed number before answering)

What is the numerator in the solution to 4/5+2/5? SameDen  AskNum 6
(do not reduce or convert to a mixed number before answering)
What is the numerator in the solution to 1/5+2/3? DiffDen AskNum 6

(do not reduce or convert to a mixed number before answering)
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Warmup 6: Success rate growth from trial 1 to trial 2 Warmup 6: Success rate growth from trial 1 to trial 16
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Fig. 3 Success rate growth for “SameDen” and “DiffDen” items in warm-up 1: a from trial 1 to trial 2, b from
trial 1 to trial 16 (averaged). 1 SE error bars

the problem is set up as a SameDen item. However, failure with DiffDen does not
transfer to SameDen like LCM failure transferred to Product items.

This negative failure transfer for DiffDen items may be due to the extra steps
(in the case of a numerator response that requires conversion of numerators and
addition) or due to the increased amount of extraneous information (in the case of
denominator responses where the numerators were given but not needed to solve
the problem) that occurs during feedback. Both of these problems are overcome
(by definition) if the response is a success (explaining positive success transfer),
but both of these problems increase the cognitive load when trying to learn from
the failure (Sweller, et al. 1990). In contrast to DiffDen items, SameDen items do
not appear to cause any transfer at all, perhaps because SameDen items don’t
practice understanding within a DiffDen context, and so this learning isn’t cued by
DiffDen items. Unlike for transfer from DiffDen to SameDen, the model showed

Table 8 Summary of the SameDen vs. DiftDen item-type CPFA model parameters for warm-up 6 (including
the full dataset shown in Fig. 3b)

Param. val. p-value Param. val. p-value’ Note

Bo -1.304 .000%** Overall intercept (DiffDen item-type)

o 1.174 .004%* Intercept modifier for SameDen item-type
contrast level

Va4 407 .000%** Paa 071 166 Learning from SameDen to SameDen

VB4 .146 .013* PB4 —.140 .002%* Transfer from DiffDen to SameDen

VBB 420 .000%** PBB .062 .189 Learning from DiffDen to DiffDen

VB —-.020 .637 PaB .003 962 Transfer from SameDen to DiffDen

oy .569 Variance of student random effect intercept

o’ 814 Variance of item random effect intercept

T Significance codes: . -p<.1, *-p<.05, ¥*¥-p< 01, ***.p< 001
Success (y) and failure (p)
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that the SameDen practice was not applicable to DiffDen (with the exception of
the effect on early practice as shown in Fig. 3a).

Again we looked at the model restricted to trials 3 to 16, in part hoping to provide
some insight on why the data showed early transfer benefit of SameDen to DiffDen,
despite the model result. Again we saw that the restricted model showed no learning for
failure. For transfer we now found a -.11 failure transfer coefficient from SameDen to
Diff Den (p=.028) while DiffDen to SameDen was about the same as before for failure
at -.171, p=.0002. Again this result suggests failure learning was not sustained for our
feedback. This result also implies that first trial transfer benefits for SameDen items did
not get detected by the model because of the later negative failure transfer effects of
repetition of SameDen items. One explanation for the negative transfer in later practice
comes from our analysis of misconceived responses. Similar to the case of LCM errors
where students gave a Product response, there was also strong indication that some
students may not have been differentiating the problems, since 33 % of numerator
errors for DiffDen items were due to students producing the simple sum of the
numerators, which would be correct if the denominators were the same. This percent-
age did not change significantly as a linear function of trials. This complex pattern may
imply that some students are scaffolded by the SameDen problems, but that this occurs
quickly in the first couple trials, while other students may not recognize the differences
between the problems and so incorrectly transfer what they learn after failing SameDen
problems to their work DiffDen problems.

To check the model stability we collapsed the success-failure distinction using a
four-parameter model. In this aggregate model (SameDen— SameDen=.240%**,
DiffDen— DiffDen=.228***  SameDen— DiffDen=-.023 and DiffDen—
SameDen=-.024), we see that the pattern is very similar to the averaged parameters
without success/failure categories, which helps us to confirm the addition of the
success/failure parameters is not causing over-fitting. This result helps illustrate how
the performance tracking in CPFA provides an advantage. In this 4-parameter model
we see no transfer effects at all while the CPFA model provided a much richer story
suggesting that the problem is not with lack of transfer for DiffDen problems, but rather
a problem with feedback in particular. This is a very different conclusion with impor-
tant implications for improving the instructional design, which the model discovery
process with CPFA has revealed.

Discussion
Summary

Using data we collected in a randomized classroom experiment, we showed how the
contextual performance factors analysis (CPFA) model can be used to analyse how
effective individual tasks are at promoting learning or transfer. We described differ-
ences between pairs of item-types, but given enough data to accurately identify the
parameters, the method could be applied to situations where more than two item-types
are practiced in a continuous random sequence. These sorts of multi-item analyses can
be conducted by testing transfer between different A-B halves of the entire data set (as
we demonstrated for Warm-up 1), or it could be used to look at the pairwise interactions
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for multiple item-types crossed pairwise (e.g., A-B, B-C, A-C). The CPFA method
assumes only that prior instructional events the student participates in can be catego-
rized individually and the model uses these categories to determine the quantitative
effects of these prior events. In addition to categorizing based on the context of practice
(the item-type), the model categorizes whether prior events were correct or incorrect.
This logic of counting categories of prior events is well established (Beck and Mostow
2008; Scheiblechner 1972; Spada 1977), and recent work has looked at different
instructional manipulations (e.g., hints in problems vs. no hints) as categories of prior
practice in a similar way (Chi et al. 2011) as the current paper considers contextual
factors.

The CPFA model developed out of the data analysis, but we are certainly not the first
to model asymmetric and negative transfer effects. For example, in the ACT-R (Adap-
tive Character of Thought - Rational) (Anderson and Lebiere 1998) theory (Anderson
and Lebiere 1998), productions are capable of modelling such component transfer
effects because they distinguish between different contexts of application for each
production rule. A good elaboration of how production rules can capture such effects
is in Koedinger and MacLaren (2002) where they discuss transferability of productions.
In the case of negative transfer performance, they propose these behaviours are
acquired when a production rule is created that only produces correct behaviour in
specific contexts despite being cued in other contexts (i.e., the if-part or condition of the
production is overly general).

Overly general production rules are therefore sensibly acquired, but produce prob-
lems in future more specific contexts. For example, in the case of students producing
the product when the LCM was less than the product, we can suppose there are two
alternative production rules, but that for some students, the Product production rule has
an overly general context of application so that its fires even when the answer will be
wrong if the result is merely the product. Therefore, one task of instructional item
ordering is to determine when such overly general rules might be supported by a task
and fix, remove or reorder such tasks. In warm-up 6 we saw another possible example
of this issue. In this case, failure on the DiffDen problems might be causing learning
that is overly generalized from the DiffDen case to cause greater failure for SameDen
problems (i.e., people trying to convert numerators or denominators when the denom-
inator was already common). This over-generalization might be caused, in part, by the
minimal (correct answer only) feedback that was only given to the student for 18 s.
While DiffDen review caused borderline (non-significant) learning for DiffDen prob-
lems, the time and load limitations of this review may have resulted in the negative
effect on transfer to SameDen items observed (perhaps by causing students to think the
SameDen items required more complex procedures also).

In Depth: Using the Model to Optimize Learning Objects

The CPFA model provides information about learning and transfer that can be used to
make instructional design decisions by guiding item creation and selection according to
what transfers well. The CPFA mathematical model not only provides a way to test the
adequacy of item-types designed for transfer, but can also specifically pinpoint in what
cases (e.g., success or failure) the learning object items are lacking or providing
efficacy for learning or transfer. This specific understanding of what needs to be fixed
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may be quite helpful to differentiate, for example, when to build in better review after
failure or when to add self-explanation prompts to have students explain successes.
What we are arguing is an approach akin to discrimination analysis in item-response
theory. Discrimination analysis is the process of examining the discrimination param-
eters found for individual items in a set of items for a test. In such a case, some items
will essentially split the students into groups (positive discrimination is when the good
students get the item right, and poor students do not). In such an approach, the
discrimination parameter helps the test designer determine which items to remove
because they only increase the length of the test and do not improve accuracy of the
identification of student ability. Similarly, analysing the item difficulty parameters
allows the removal of items that are too hard and too easy and allows the designer to
ensure a good spread of items across the range of possible difficulty. Just so, CPFA
allows us to diagnose each item on a variety of learning-related indices that we might
think are relevant.

For example, the results of the CPFA analysis of warm-up 1 show several categories
of practice that lead to poor subsequent performance. We can see which and how many
of the various categories of practice need redesign according to the model. To begin
analysing this it makes sense to group categories, for example we note that Product to
LCM transfer is always weak (i.e., for both success and failure), and we can note that
Story to Word transfer is always weak (i.e., for both success and failure). Further, we
can note single category issues with learning, so we see that LCM learning from failure
is relatively low (for a learning parameter, which we might expect to be larger on
average than a transfer parameter) and Story learning from failure is near 0.

This analysis translates to recommendations for item improvement. Beginning with
the product items we must ask the controversial but warranted question, should they be
used at all? From the perspective of the model, and the high number of multiplicative
responses for items where the solution was less than the product, it seems these items
should not be shown to students early in the process of learning this skill. It seems that
these simple items, and the fact that they are easy to answer, biases people strongly to
think that the task of computing the LCM is merely multiplication. Using these product
items therefore may entrench the student in a misconception about the nature of the
general LCM operation. In contrast to Product shortcut problems, LCM problems may
begin with students computing the product, before they check to see if multiples less
than the product exist. Practicing the first step creates transfer, while the second step
does not cause overgeneralization, so transfer occurs. There seems no reason to use the
product items.

Other steps less radical than removing this basic item type might be taken. One
option would be to explicitly make the distinction between product and LCM types
clear to students by making the two steps explicit, so for both problem types, the
student would be asked 2 questions in succession, first, “what is the product?” and then
next for the item, “what is the LCM?”. This problem structure would not remove the
product problems, but would make quickly explicit the difference with LCM, since
students would be able to compare the results of the two problem types explicitly,
within a trial, rather than do the much more difficult cross trial inference about the
differences between the unlabelled trials.

A problem this change would not fix is the poor results for LCM item failures. While
the CPFA model shows how success quickly improves performance, failure has little
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effect, and so we must suppose the feedback is weak (the feedback only showed the
correct answer). In a case like this, the problem seems merely that the answer is left
unexplained for the student. So we might suppose we could improve results here by
simply making the feedback more informative, e.g., by saying, in the case of 4 and 6 for
instance, that 12 is the least common multiple because it is the LEAST number that you
can divide both 4 and 6 into without a remainder. Such feedback, which both explains
the reasoning and shows the procedure, should allow motivated students to succeed in
this category of practice.

Next we need to reflect on the Word-Story contrast differences, where the CPFA
model indicates the Story items are learned poorly, since in 3 of the 4 story practice
effect categories there is null benefit. Only when people understand the task and can
complete it do they improve, but that improvement seems very constrained to the Story
category of items. In this case, we argue that both improving success after failure and
improving transfer probably involve giving the student more information about the
problem structure so that upon failure they have an opportunity to see how they should
have broken the problem down. So, if they respond incorrectly, the feedback may be.
“No the answer is not X, for this kind of problem, think of the list of days each girl
visits her grandfather as a list of multiples, e.g., 2, 4, 6. Numbers that are shared in the
lists for each girl are common multiples, the least number in both lists is the least
common multiple.” This sort of detailed feedback seems like it should improve learning
and transfer in failure.

This still leaves the problem of near 0 transfer for success with the Story items that
the CPFA model detected. Here the issue may be that students who succeed on these
situated Story problems may often make up natural methods like counting, without
connecting those methods with the general problem type. It seems that if people saw
this connection the success learning would be more likely to transfer. With this in mind
we would need to add some intervention to make sure that the success is properly self-
explained, perhaps with a secondary question following the success, which would ask
for the same 2 numbers, “what is the LCM?” This secondary item seems trivial, but by
connecting up the ad hoc procedures the students may have applied to the Story items
with the terminology in the Word items it may be possible to help the students learn the
abstract problem structure contained within each successfully solved contextualized
problem.

Moving to warm-up 6, while it seems clear that overall this CPFA model of the data
revealed a need for more rich feedback for failures, perhaps using worked examples
(Atkinson et al. 2000), there was a particular problem with DiffDen items, which
resulted in negative transfer to SameDen items. In contrast, we might hope for transfer
in this case to be positive if students fully understood that the SameDen problems were
subsumed by the procedures needed for a DiffDen item. In other words, since a
DiftfDen item is solved by converting to a SameDen problem first, DiffDen problem
success should cause transfer to SameDen. However, if students do not learn that
SameDen problems are just a simpler subgoal of DiffDen problems, they may over-
generalize a more complex strategy to find a common denominator strategy (e.g., by
multiplying the denominators) from DiffDen to SameDen problems. This over-
generalized strategy will increase the error date on SameDen problems, yielding
negative transfer. Learning may be improved with more explicit instruction on this
relationship (Gick and Holyoak 1980). For example, failure feedback for DiffDen items
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could explicitly use a worked example to highlight the step that arrives at the SameDen
subgoal (Atkinson et al. 2009).

In general, we have shown CPFA’s ability to detect the asymmetry and the type of
learning interaction (success or failure) that drives the transfer is an important property,
powerful for diagnosis and shaping of math curriculum item design, especially when
the transfer or learning detected is weak, negative or asymmetric. Table 9 presents an
overview of the asymmetric transfer effects discovered by the CPFA model. These
values were computed by absolute value of the difference between the transfer param-
eters for each warm-up. The table shows that the asymmetry of warm-up 1 (LCM/
Product) was not individually significant for success or failure, despite the fact that
when the model was aggregated, the main effect of success and failure summed was
significantly asymmetric (t=2.3, df=247, p<.05), with transfer from the LCM item to
the Product items. Results for the warm-up 1 Story/Word factors were similar, but the
asymmetry was strong enough to be at least marginally significant for success and
significant for failure, with transfer best for the Word items. Results for warm-up 6
showed asymmetry both ways also, but for success, this transfer favoured the DiffDen
item, whereas for failure this transfer favoured the SameDen items (which did not cause
a negative effect like the DiffDen failure.)

These results are tempered by a general trend that was observed by fitting the model
to subsets of the data from trials 3 to 16. In these cases we found consistent evidence
that the failure transfer when it was positive was not sustained. While the significance
of success for learning was maintained in these tests, answer review following failure to
produce the correct answer only helped early on. In other words, multiple redundant
successes appear to be consistently associated with learning while similarly redundant
failures provide no help. This interesting result seems to strongly support the arguments
of both traditional advocates of drill who have proposed that such practice needs to be
error free (Skinner 1958), and at the same time, the result suggests that early in learning
when failure is frequent, it may be essential to provide rich and varied instruction (i.e.,
Ainsworth 1999) since our results show doing the same thing for each failure skill
repetition is clearly ineffective. This means that the results support the idea that deep
conceptual learning is a prerequisite for successful practice, since unless a skill is
innate, our results indicate it must pass through a stage of gradual learning with
frequent failures that require varied feedback to promote learning.

Despite the weak results for failure learning we can still illustrate the models utility
in making specific predictions once it has been tuned for a specific task. Let us consider
the case of our recommendation that simpler practice with Product LCM items should

Table 9 Summary of asymmetric transfer effects discovered in warm-ups 1 and 6

Warm-up Symmetry difference for Symmetry difference for
success transfer (CPFA) failure transfer (CPFA) 1

1 LCM/Product 074 (1=1.178, p=.239) .096 (1=1.292, p=.196)

1 Word/Story 112 (=1.690, p=.091%) 187 (1=2.513, p=.012*%*)

6 DiffDen/SameDen 165 (1=2.182, p=.029*%*) 143 (1=1.921, p=.055%)

T Absolute value of item-type A to item-type B transfer parameter minus magnitude for item-type B to item-
type A transfer. (** p<.05, * p<.10)
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be skipped or held for later due to the problems with transfer and misconceptions. In
this example, given LCM starts at a logit of -.919 the typical student will need about
logit (3—919=3.919/.42) 9.3 successful practices with LCM items for them to reach
about 95 % correct (a logit of 3). At this level the lack of frequent errors should make it
optimal to then introduce Product items, which would then start at logit 1.2 (—.919+
1.25+9.3*.094=1.2) and need to gain 1.8 (3—1.2) to reach the 95 % correct level for
product, which requires 8.65 (1.8/.208) more successful practices. In contrast, if we
practice product for (3-(—.919+1.25)=2.669/.208) 12.8 more practices to arrive at 95 %
correct, we must still follow it by the same 9.3 successful LCM practices. Thus, we
save roughly 4 Product practices if we follow the recommendation to first practice the
harder LCM items. In this example successes were assumed to simplify the math, but
similar analysis can be done for combinations of success and failures using Monte
Carlo simulation. In such a case there would be a very similar advantage, since the
model predicts asymmetric learning from failure as well. However, again, as the
preceding paragraph suggested, failure learning past trial 2 may provide little benefit
for our specific task given the shallow feedback.

Qualitative Comparisons with Q-matrix Method

Our quantitative model comparisons (not shown here, but see Pavlik Jr.et al. 2009)
suggest that the Q-matrix PFA skill model discussed earlier and the CPFA model are
quite similar in overall prediction accuracy given the data we have analysed. However,
this is not to say the models are similar qualitatively. To show these qualitative
differences we simulated from each of the models given the fixed effect parameters
estimated from the data (not including the random effect component). Despite the lack
of difference in quantitative fit with our data, this comparison is useful, since other
researchers (e.g., Bassok and Holyoak 1989) have established that in certain cases it
can be crucially important to have a model that captures asymmetry of transfer. An
example of these qualitative differences are shown in Fig. 4 below, which compares the
QPFA (dashed) and CPFA (solid) models for the warm-up 1 case with Story items or
Word items. The QPFA refers to the standard PFA model, which uses a Q-matrix to
specify the assignment of needed skills to item types (Pavlik Jr.et al. 2009). Unlike
CPFA, this QPFA model captures transfer to the extent that the two item types share a
needed skill. The key point to note is that QPFA lines in each figure (dashed) are
equivalent for the two directions and appear to merely average the different results from
the CPFA model. In other words, Fig. 4 shows how QPFA is unable to capture
asymmetric transfer in this situation. That CPFA model better models asymmetric
transfer can be seen in the contrast between the upper graph of Fig. 4, where Word
to Story transfer is upward sloping in the solid CPFA lines (positive transfer), and the
lower graph, where Story to Word transfer is flat (or trending downwards) in the solid
CPFA lines. QPFA is equivalent, appearing to merely average over the asymmetry.
Another example from warm-up 6, Fig. 5, shows an interesting situation where,
according to the CPFA model, we see almost no effect of the same denominator items
on solving of the different denominator items, but in the reverse we see a strong effect
of different denominator items on same denominator items. Success on the harder
different denominator items leads to practice that benefits the same denominator items.
On the other hand, failed different denominator items actually predicted a reduction in
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Fig. 4 Fixed effect model for trials 1 and 2 of warm-up 1 Story/Word comparison (uses Table 4 parameters).
Dashed lines use Q-matrix PFA, and solid lines show CPFA

performance for same denominator items (p=.002). Failure learning required a
challenging inference of how to compute the least common denominator and
additionally, how to compute the summed numerators in half the items (AskNum).
Students’ inductive learning from examples may cue into surface features (e.g.,
“all the numbers [numerators and denominators] change”) in a way that produces
errors (negative transfer) on same denominator items. Only CPFA detected such a
negative effect in this case.
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Fig. 5 Fixed effect model for trials 1 and 2 of warm-up 1 Same Denominator/ Different Denominator
comparison (uses Table 8 parameters). Dashed lines use Q-matrix PFA, and solid lines show CPFA
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Conclusions

CPFA (Contextual Performance Factors Analysis) is a data-driven, theory-independent
method that provides a rich starting point in the process of learning theory verification
and in the development of better learning objects. We demonstrated that the CPFA
method of analysis gave us a way of understanding the data that leads directly to design
decisions. By providing 8 event types to analyse and contrast we can quickly see five
main features of the learning:

D)

2)

3)

4

5)

The amount of learning. CPFA measures the amount of performance change as a
function of practicing the same item. The overall learning is clearly shown by how
positive the learning rate parameters (for both success and failure) are for an item.
2. The amount of transfer. The transfer measures are perhaps the most important,
since if these values are low, the item type is seen as a special case and any of the
learning that occurs may be bound to the context it was learned in. If these values
are negative, it implies the item type is likely related, but related in a way that
fosters a misconception in the other item-type.

The effect of successful practice. In addition to seeing the results of practice in
learning and transfer contexts, we can also evaluate the effect of successful practice
specifically by looking at learning and transfer parameters found for successful
interactions. If these values are low, it implies that performing the task by itself
doesn’t cause learning.

The effectiveness of feedback. When students get items wrong they see feedback in
most learning paradigms, and this is tracked by the failure learning parameters in
our model. Good items will need to result in improved performance even if the
student cannot perform the task. Further, passive review of this sort is not thought
to lead to deep learning. Because of this general weakness of feedback relative to
practice. These measures of feedback effectiveness are key to interpreting how the
task is affecting the neediest students, since they produce more errors and get more
feedback.

The amount of transfer relative to learning (e.g., yBA/vAA). Considering these
ratio is useful in indicating how general the leaming is. If these value are near 1, it
indicates transfer is as strong as learning. Certainly we would like to see this value
be high, but when the value is very high it may also be indicating that the
difference between the two item types is very minimal. Indeed, we might suppose
that for any target item-type we desire to transfer to that there is some optimal
amount of transfer relative to learning. We are looking for situations where transfer
is a large fraction of learning, but also where such transfer occurs between items
that are not nearly identical. In other words, design of systems should balance
transferability with novelty when new item-types or activities are introduced. Items
need to be similarly related enough to result in transfer, but different enough that
the new skill provides novel benefits.

While we have demonstrated CPFA in the context of single step problems, the

method could also be used for multistep problems by creating two or versions of
multistep problems where there was some question about the optimal ordering of two
steps. Thus, in a problem with steps A, B, C, and D, and one might test step orders A-
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B-C-D and A-C-B-A. This would give a quick and simple report for the 4 transfer
parameters, showing which of these conditions was producing better learning and
transfer. This analysis could reveal a number of issues, since even without the non-
transfer learning conditions the model can measure asymmetric transfer and determine
the effect of step success or step initial failure. Indeed, the applicability of CPFA may
be very broad due to its generality. Currently under investigation is the extent to which
a CPFA type model is a good representation of semantic learning as measured by cloze
sentences. Using a collection of sentences about statistics we may be able to measure
the extent to which related sentences potentiate learning of other sentences. So, for
instance the two sentences: “a distribution describes the likelihood that observations
will occur within any range of values,” and “the normal distribution has 68 % of its
observations in the range between —1 and 1 standard deviation,” are clearly related and
we might suppose that there is some transfer from reading one to support reading/
encoding of the other, which CPFA could measure. However, this reveals a limitation
of the method, since if there are more than 2 related items, even if they are not part of
the model, the other related items may add considerable noise to the effort to tease apart
a specific relationship.

CPFA is an analytic tool that supports instructional material improvement as well as
the development of process-oriented transfer theories by empirically measuring differ-
ent kinds of transfer between equivalence classes of stimuli. Unlike psychological or
cognitive science theories of transfer, it makes no attempt to explain the processes and
structures underlying practice. CPFA helps in interpreting empirical results that can be
used to test theories of transfer. For example, consider Ohlsson’s theory of transfer and
learning (Ohlsson 2011), which proposes mechanisms of transfer that involve the
specialization of general strategies. In this theory, for example in the LCM task, we
may have explained the failure of Product practice to transfer as due to a lack of
specialized version of the general skill of multiplication. The theory would probably
claim that the Product practice transferred poorly because it involved only the general
multiplication rules. In contrast, as a specialized version of Product skill, the LCM skill
practice results in Product learning since Product learning is just a more general version
of LCM learning. This hierarchy of strategies in the deep learning theory is similar to
the way some cognitive models describe the evolution of verbal learning, as proceeding
to more and more specific interpretations as the learner takes in more and more prior
exemplars to form specific concepts (Gobet 1998; Thiessen and Pavlik Jr. 2013). It may
be that practice tends to transfer best when it goes from more specific to more general.

Such theoretical approaches have strong utility, since they can narrow the space of
possible quantitative models by describing which effects do not need to be tracked or
attended to when modelling. For instance, if we could show that transfer tends to follow
the patterns described by Ohlsson’s deep learning theory for a domain of equivalence
classes of items, then we could assume a few things. For instance, deep learning might
say that the more specific LCM task is adapted from the more general product task, so
this tells us that the LCM task will be learned more slowly as a function of the Product
task knowledge. In other words, the LCM learning rate should be positively correlated
with the Product skill logit. Despite this, because the specialized LCM knowledge is
still weak, students may produce overgeneralizations where they apply the Product skill
to an LCM item as we observed in the data. Perhaps the lack of transfer we observed is
due to the balancing of these opposing effects. In contrast, LCM learning necessarily
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engages the specialized skill, which naturally includes practice of the more general skill
it was derived from.

Theories provide these richer explanations, and constrain modelling, but theories
also have exceptions and require that the investigated evidence be categorized and
quantified in a way that lacks theoretical presuppositions. So unless we know a theory
is correct for a domain, it is risky to build it into the analytic model ahead of time.
CPFA, since it is not a theory, but rather a statistical model, avoids this risk during
development of models and systems by making only one very weak assumption, that is,
that there exist different types of items that are related. This weak theoretical assump-
tion means that the patterns in the model may support some theories (e.g., deep
learning) or provide evidence against others (e.g., theories consistent with a simple
Q-matrix model), since these theories predict different patterns of parameters.

Future work with CPFA may concentrate on improving its integration with other
techniques for student learning such as IFA (Instructional Factors Analysis) to further
gain details about the transfer patterns in students (Chi, et al. 2011). By combining the
methods, it becomes possible to create a model that blends the mechanisms depending
on the learning object from which transfer needs to be measured. This may allow us to
discern important details of transfer, such as the relative effects of a hint when it appears
as feedback, compared to the same hint given prior to practice as instruction. Similarly,
such work will help us answer the question of whether logistic linear growth is useful to
characterize the effect of feedback (or declarative conceptual learning) generally.
Indeed, our results indicate that repeated feedback of the same sort behaves much
differently than repeated successes. While feedback helps for failure, we saw that this
effect only occurred for the initial failure trials.

Another interesting opportunity for future work involves how the methods may be
used for individualizing student instruction through task/item selection depending on a
CPFA model of the student. In the current paper, the problems were not adequate for
such individualized instruction, since the feedback effect was not sustained. However,
if we imagine that each problem had a menu of feedback statements depending on
student responses and was designed to give a new perspective on or means for solution
(i.e., rich hints or explanations of specific cases), it seems plausible that CPFA would be
useful to track students learning and select item according to what is optimal for
transfer. While it may become clear in future work how to control the parameter
explosion that comes with multiple item types using the CPFA method, such schedul-
ing would currently only be useful for units of content with only a few problem types.
Future work may be able overcome this limitation if there was a principled way to
triage all the possible relationships between the » skills being scheduled. Such future
work might use methods such as knowledge space theory to determine which pairs of
items are related (Desmarais et al. 1996; Falmagne et al. 2003), and then when a
relationship is determined that relationship could be fit with CPFA parameters to
understand the micro genetics of any transfer between the items. Of course this
presumes that the design of the system allows for some variability in order, since if
A always occurs before B, measuring B to A transfer is impossible.

Because CPFA does not require any in depth task analysis other than categorizing
items, and can be implemented as standard mixed effect logistic regression, it is
relatively easy to use and cost effective as a method of understanding how learning
objects are being received and processed by students. A CPFA model of data in a
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domain is primarily useful because of the implications of the model for designing,
comparing and sequencing items or other learning objects. For this usefulness to be
manifest, it is important that data input to the model fitting is unbiased in its sequence,
since the statistical method assumes this unbiased item ordering. Given this unbiased
item ordering the method is applicable in the very general situation where there are two
or more different item-types given in a sequence. The model itself supports three
possible transfer relationships between two item categories: no transfer, asymmetric
transfer, or symmetric transfer. Because the model captures negative transfer, it has the
potential to categorize item-types that cause or strengthen misconceptions. Because the
model reveals asymmetrical and symmetrical transfer, the model can be used to
diagnose whether a particular item-type teaches a more generalizable sort of knowledge
or a more situated type of knowledge.
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