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Abstract Although the Andes project produced many results over its 18 years of
activity, this commentary focuses on its contributions to understanding how a goal-
free user interface impacts the overall design and performance of a step-based tutoring
system. Whereas a goal-aligned user interface displays relevant goals as blank boxes or
empty locations that the student needs to fill with specific content, a goal-free user
interface is essentially a blank canvas, with no visual indications of the goals that
should be attempted next. This commentary also briefly mentions work that occurred
after the “final” report on Andes appeared in this journal in 2005. The newer work
focused on getting students to ask for hints when they need them.

Keywords Intelligent tutoring system - Physics education research - Intelligent user
interfaces

It is a privilege to be asked to comment retrospectively on the Andes physics tutoring
system project (VanLehn et al. 2005). When the Andes project began in 1996, it was
strongly influenced by the CMU tutoring systems, which were already quite mature
(Anderson et al. 1995). The original vision for Andes kept some of the main design
elements of the CMU tutoring systems: immediate feedback, hint sequences, model-
tracing and embedded assessment (student modeling) at the granularity of individual
rules. Like the CMU tutors, it supported a whole year of instruction and was aligned
with common physics curricula. However, all the CMU tutors employed user interfaces
that could be called goal-aligned forms. At any point in time, the set of possible user
actions were strongly constrained, such as picking from a fairly short menu or entering
fairly constrained text into a blank. These actions were aligned with problem solving
goals, in accord with Principle 2 of Anderson et al. (1995) which advocated commu-
nicating the goal structure of the problem via the user interface. Although goal-aligned
forms seemed like appropriate scaffolding for novices, they also seemed too inflexible
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because the scaffolding could not be easily faded as the student’s competence grew.
According to Singley and Anderson (1989), fading (i.e., gradually removing) the goal
scaffolding should increase transfer to solving problems without the tutor.

In contrast, Andes was intended to be like paper in that the user could write anything
anywhere on the page. Unlike paper, Andes would recognize both the user’s intended goal
and the user’s success at achieving that intent. Thus, what set Andes apart from other
tutoring systems of the mid-1990s was its commitment to a goal-free user interface.

The switch from goal-aligned forms to a goal-free user interface seemed simple
technically, but it turned out to have surprising repercussions. As tutoring system
designers today can even more easily create goal-free interfaces on tablets and
touchscreens, it is worth reviewing what was learned from Andes’ experiment with a
goal-free interface. However, before discussing the lessons learned, it is worth a brief
review of the relevant features of Andes.

The Goal-Free User Interface of Andes

Andes tutored physics problem solving as done in introductory college and advanced
high school courses. When solving a physics problem on paper, the student does two
main types of steps: writing an equation and defining a variable. When a vector variable
is defined, the user may or may not draw the vector. Occasionally students make other
inscriptions, such as drawing an ideal body, drawing coordinate axes or drawing arrows
for defining the current direction in a circuit. However, the majority of the steps in
physics problem solving are writing equations and defining variables. When working
on paper, students are encouraged to enter their steps in a logical sequence, but a
solution that has steps strewn about the page or missing is not really wrong if all the
steps are true statements about the situation. Andes was intended to allow the same
freedom, so users could enter steps anywhere and in any order.

The initial user interface for Andes only partially implemented a goal-free interface.
Students could enter any equation in any location, but when they defined a variable,
they had to use a goal-aligned form (see Fig. 1 of VanLehn et al. 2005). It wasn’t until
Andes3 was released around 2010 that the goal-free interface was finally finished and
all forms were banished. The final user interface (see Fig. 1) was designed to look and
act like MS PowerPoint, with tools for entering text, equations, arrows, coordinate
axes, and other glyphs (Ranganathan et al. 2014). To define a variable, the user opened
a text box at any location on the screen and typed text such as, “Let i2 be the current
through R2.” Andes matched the text dynamically to a large set of expected definitions,
offering auto-completions when it could. For instance, after the user typed “Let i2 b”
Andes would add letters to make it “Let i2 be the”. If the user then typed a “c” then
Andes would add letter to make it “Let i2 be the current through” and so on.

Lesson 1: Providing Goal Scaffolding in the Context of a Goal-Free User
Interface

The first major issue raised by using a goal-free user interface was how to provide the
goal scaffolding that goal-aligned forms provided. Instead of providing the scaffolding
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Fig. 1 Andes3 screenshot. The student’s steps are in green and red. The student has just typed “d=5" in a text
box, pressed the Enter key, and received an unsolicited hint

permanently, Andes provided goal scaffolding only when the user asked for it or
seemed to need it. In particular, Andes provided two hint buttons. The “next step” hint
delivered the goal scaffolding as a sequence of hints. The “what’s wrong” hint also
generated a sequence of hints, but the first hint tried to indicate what was wrong with
the selected step. Subsequent hints produced the same goal scaffolding as the next-step
hint.

At the time the Andes project began, an unquestioned assumption of step-based
tutoring systems was that when the user asked for goal scaffolding, the system should
recognize what goal the user was trying to achieve and provide hints about that goal.
This meant that the system had to do plan recognition, which meant parsing the user’s
past activity in terms of plans and goals in order to figure out which plans were
incomplete and thus which goals were active for the user. Andesl implemented plan
recognition by generating a plan in advance using a rule-based expert model of how to
solve physics problems. The plan was an acyclic directed graph of goals and rule
applications. This was converted to a Bayesian network. Past actions taken by the user
were interpreted by clamping the corresponding nodes in the Bayesian network and
updating the network. A node’s posterior probability represented the chance that the
user was trying to achieve the goal represented by that node when the user asked for
help. Note that goal-aligned forms do not do such plan recognition, because the
location where the user is trying to make an entry or menu selection indicates the goal
the user needs help on.

The first big surprise was how poorly this Bayesian plan recognition worked for
physics problem solving with real students. Performance was measured by taking 40
snapshots of students” work at a point where they asked for help and asking physics
instructors to indicate what goal they thought the students needed help on. Instructors
disagree on 19 snapshots, but in 21 snapshots where they did agree, Andes agreed with
the instructors on only 3 (VanLehn et al. 2005). The problem wasn’t in the Bayesian
plan recognition technique, but in the assumption that students were following a plan.
The instructors completely agreed that in most of the 40 cases, the students appeared to
have no recognizable plan. Their advice in most cases was to ignore the students’ work
and simply start walking the student through a correct plan. So that’s what Andes2 did.
The Bayesian network that made Andes] unique was abandoned.
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Lesson 2: Interpreting Equations is Hard When Students Can Write Any
Combination of Equations

The second big surprise was how difficult it was to interpret equations. Physics
problem solving involves both mathematics and physics. A physics rule application
generates a single equation, perhaps with some variable definitions as well.
Mathematical rules combine equations and simplify them. In order to keep Andes’
job tractable, it only provided advice and assessment on physics rules. However,
students rarely entered just the primitive equations generated directly by physics rule
applications. They almost always wrote equations that were combinations of several
equations. Thus, the problem was to analyze a student equation such as Fg=a*5 kg into
its constituent equations, Fnet y=m*a_ y, —Fg y=Fnet, a y=—a, and m=5 kg.
Andes] tried to solve this problem by pre-generating all algebraic combinations of
primitive equations. This exploded combinatorially.

Fortunately, a sabbatical visitor and physicist, Joel Shapiro, found an elegant
mathematical algorithm that could decompose almost any composite equation into its
primitive constituents (Shapiro 2005). The algorithm searched for a set of primitive
equations such that a linear combination of their gradients at the solution point equaled
the gradient of the student’s equation at the solution point. This algorithm is one of the
small treasures of ITS research and it should be more widely used.

Lesson 3: Goal-Free Interfaces Make Embedded Assessment Much
Harder

The third big surprise was that the goal-free interface made it much more difficult to
obtain accurate embedded assessments (also called student modeling). With its roots in
the Olae assessment engine (Martin and VanLehn 1995; VanLehn and Martin 1998),
the early phase of the Andes project was rather obsessed with embedded assessment
(Conati et al. 2002; A. Gertner et al. 1998; A. S. Gertner and VanLehn 2000; Schulze
et al. 2000a; Schulze et al. 2000b). Along with the CMU tutors, Andes assumed that
mastery learning would cause large gains in either effectiveness or efficiency, so it was
worth determining which rules a student had mastered. This would allow Andes to
choose problems adaptively and to move the student on to the next unit only when the
student was ready.

We mounted a large study using synthetic students in order to evaluate the Andesl
approach to embedded assessment (VanLehn and Zhendong 2001). This was probably
one of the best papers to come out of the project, but it is seldom cited, so it is worth
reviewing its main conclusions, which apply to doing embedded assessment of multi-
step problem solving even without a Bayesian network.

1. Even though the system is an assessment system, it should give immediate
feedback on steps so that students will stay on a recognizable solution path. If
student errors are not corrected, it becomes difficult or impossible to recognize
subsequent correct reasoning and assign the appropriate credit.

2. When a student makes a mistake, the system must infer what goals and rules the
student was trying to apply. This allows it to assign the appropriate blame to the
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rules that should have applied. Without such evidence against mastery, it is difficult
to identify rules that need more practice.

3. The smaller the steps, in terms of the number of rule applications between adjacent
steps, the higher the accuracy of the assessment given a fixed number of problems
solved. For interpreting incorrect steps, step size always matters because the more
rules that share the blame for the error, the more evidence it takes to narrow in on the
weak rule(s). For interpreting correct steps, step size is only important when the task
domain often affords multiple derivations of the correct steps; this was not the case
with physics, so step size did not matter for interpretation of correct steps on Andes.

Andes] provided immediate feedback (finding 1 above), but it could seldom infer
the goals and rules behind an incorrect step (finding 2). In short, Andesl was seldom
able to assign blame to the rules that caused incorrect steps.

Although embedded assessments were an important research topic for the Andes
group, our collaborators at the US Naval Academy were unable to use them. The
assessments were intended to be used for selecting homework problems that would
match a particular student’s needs. However, the Naval Academy students would have
objected strongly if different students were given different homework exercises. This
would have been perceived as “unfair.” Thus, mastery learning and other forms of
adaptive problem selection could not be used. Moreover, because homework was done
in unsupervised settings (e.g., at home), it could not be used for grading, advancement
or placement in the competitive environment of the Naval Academy. Thus, the next
version of Andes, Andes2, included no student modeling. Nonetheless, the learning
gains reported in (VanLehn et al. 2005) were positive and impressive, especially given
that they were done in real-world classrooms.

In order to support educational data mining, Adaeze Nwaigwe developed a heuristic
solution to the assignment of blame problem. She studied several heuristics, and found
that the best one agreed well (kappa=0.78) with human coders (Nwaigwe et al. 2007).
Andes3 adopted this heuristic (Van de Sande 2013), which is:

1. First apply specific, well-defined small edits (e.g., changing + to —) to the students’
incorrect step. If an edit creates a correct step, then blame the rule associated with
the edit.

2. If that fails, then see if the user subsequently edited the incorrect step and made it
correct. If so, then blame the rules that generated the correct step. One of them was
probably weak and caused the error.

3. When users do not correct an incorrect step, it is typically because they deleted it—
they almost never leave an incorrect step (which is red in Andes) on the screen.
However, when they subsequently enter a correct step that is the same type of user
interface element (equation, vector, etc.), then blame the rules that generated the
correct step.

Lesson 4: Students do not Ask for Hints Often Enough

In work completed after the 2005 report, we discovered that Andes’ students did not
use hints often enough. Muldner et al. (2011) found that when students received
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negative feedback (their entry turned red), they were four times more likely to make an
another attempt at the entry than to ask for a hint. When verbal protocols of students
using Andes were analyzed (Ranganathan et al. 2014), and an episode was defined as
beginning when Andes turned the student’s entry red (incorrect) and ending when the
student either corrected the entry or deleted it, then it turned out that in 38 % of the
episodes, the student never asked for help; in 52 % of the episodes, the students asked
for help from Andes alone; and in the remaining 12 % of the episodes, the students
asked for help from the experimenter and Andes. Although the episodes where the
students asked for help often ended well, with the student either learning something
new or remembering a relevant piece of knowledge they had forgotten, the episodes
where students did not ask for help usually ended poorly, with students guessing
repeatedly until they stumbled onto a correction without understanding it or gave up
and deleted the entry.

This underuse of hints is not a property of Andes’ goal-free user interface, because
similar student behavior has been noted with goal-aligned forms and many other
systems (Aleven et al. 2003). For instance, Aleven and Koedinger (2000) found that
when students made a mistake entering an explanation into the Geometry Tutor, they
were about ten times more likely to edit their explanation than to ask for a hint; for
mistakes on numerical steps, they were twice as likely to try again than to ask for help.
This underuse of hints suggests that giving learners total control over when they get
hints may not always be the best policy, regardless of the user interface.

The most recent version of Andes (Ranganathan et al., unpublished) alleviated this
problem by judiciously providing unsolicited hints (see Fig. 1) and unsolicited meta-
hints. Unlike the meta-tutoring of the Help Tutor (Roll et al. 2011), Andes’ meta-hints
always addressed the same issue and used the same wording (“You should ask for a
hint.”). This raised the frequency of getting a step right on the first attempt by d=0.682
and raised the problem completion rate by d=0.727.

Summary

With these modifications, Andes finally achieved the vision of a goal-free user interface
that provided almost all the functionality of a goal-aligned form. If anyone wants to
build a goal-free user interface for their tutoring system (as the FACT project is doing;
see fact.engineering.asu.edu), here are the lessons from Andes to keep in mind:

* Because a goal-free user interface doesn’t impose a goal structure/plan on the users,
they often do not have one when they ask for help. It is perhaps better to advise
them to follow the next open step in an expert’s plan rather than the next open step
of a plan that some plan recognition algorithm thinks that the student is following,
where a step is “open” if the student has not yet taken it.

*  When a step is incorrect, and the system cannot recognize how the step was derived
and yet it is important for assessment to blame some rule(s) for the incorrect step,
then a goal-free user interface makes assignment of blame harder because the
location of an incorrect step provides no information about the user’s intended
goal. Thus, it is perhaps best to encourage the user to edit the entry and make it
correct, providing hints if asked. Analysis of the correct entry allows the system to
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determine what the user was trying to do, which then allows the assessment system
to blame the rules that initially prevented the user from achieving that goal.

* Unlike a goal-aligned form, a goal-free user interface does not control the size of
steps, where the “size” of a step refers to the number of inferences undertaken
between the preceding step and this one. Goal-free users often enter large steps, so
the tutoring system must be equipped to decompose such large steps into their
primitives.

* Regardless of whether the user interface is goal-free or a goal-aligned form, giving
unsolicited meta-hints and hints may improve students’ use of the tutoring system.

Future Work

Although much has been learned about goal-free user interfaces for tutoring systems,
there are still several unanswered questions.

Perhaps the main unanswered question is whether a goal-free user interface increases
transfer from a goal-aligned user interface to paper. Given that novices often have no
plans and that students often do not ask for help when they should, it seems prudent to
require novices to use a goal-aligned form initially. However, as they internalize the
plans and become more competent, would it be better to keep them practicing on a
goal-aligned form or to give them a goal-free user interface like Andes’? Removing the
goal-aligned form probably removes many of the contextual cues that are incorporated
in the students’ knowledge, so memory theory suggests that goal-free user interfaces
would increase transfer (Singley and Anderson 1989). However, this hypothesis
remains untested.

Another unanswered question involves the use of natural language dialogues instead
of goal-aligned forms for communicating the goal scaffolding. When Andes users
asked for help and Andes decided to walk them through the expert’s plan, it used a
scripted dialogue. This violates a principle of educational user interface design that one
high school teacher and researcher expressed as: “Kids like to click; they don’t like to
read.” (C. Chase, personal communication, 2013). When such students use a goal-free
interface and ask for a hint, it may be better to provide a goal-aligned form than a
dialogue. This would be consistent with the repeated findings of null effects in
comparing hint dialogues to text that has exactly the same content (Dzikovska et al.
2014; Evens and Michael 2006; Siler et al. 2002; VanLehn et al. 2007; Weerasinghe
and Mitrovic 2006). VanLehn (2011) discusses this finding further.

Yet another unanswered question is whether goal-free user interfaces might facilitate
routine production of step-based tutoring systems. CTAT (Aleven et al. 2009) and
similar authoring tools can be used to create goal-aligned user interfaces, but they are
not easily used for creating a goal-free user interface. The Andes3 user interface is a
lightweight web app that doesn’t know it is part of a physics tutoring system; it could
be used with other task domains and systems. This suggests the technical possibility of
having exactly the same user interface with a wide variety of tutoring systems—they all
use the same client but the server code is different for different tutoring system. A
general-purpose client would provide only syntactic support, such as parsing mathe-
matical expressions and giving feedback if the typed input is ill-formed, or completing
typed text by matching it against a set of expected strings.
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The reader may wonder what happened to Andes. The server side of Andes3 is
written in Lisp, and the client side is written in JavaScript using the Dojo library. The
subset of the languages used by Andes code is so stable that the system has continued
to run with almost no maintenance for several years. Until October, 2014, Brett van de
Sande kept Andes3 running on a server at Arizona State University and responded to
the occasional email from users. When he left to take another position, the server was
turned off. Andes3 is open source, so it would in principle be easy to bring it up again.
Please contact the author if you are interested.
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