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Abstract The ideas behind the constraint-based modeling (CBM) approach to the
design of intelligent tutoring systems (ITSs) grew out of attempts in the 1980’s to
clarify how declarative and procedural knowledge interact during skill acquisition. The
learning theory that underpins CBM was based on two conceptual innovations. The
first innovation was to represent declarative knowledge as constraints rather than
chunks, propositions, or schemas. The second innovation was a cognitive mechanism
that uses the information in constraint violations to revise and improve a partially
mastered skill. This learning theory implied that an ITS could be built around a set of
constraints that encode correct domain knowledge, without an explicit or generative
model of buggy versions of a skill. Tutoring systems based on CBM have proven
effective in multiple educational settings. CBM is limited in its focus on learning from
errors. A broader learning theory, the Multiple Modes Theory, is outlined, and its
implications for the design of more powerful ITSs are discussed.
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Introduction

The ideas behind the constraint-based modeling (CBM) approach to the design of
intelligent tutoring systems grew out of attempts in the 1980’s to clarify what it means
to learn and execute a cognitive skill with understanding, as opposed to ‘mechanically’
or by ‘rote’. School children who make nonsensical errors in mathematics are
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prototypical examples of the latter (Hiebert, 1986). The learning theory that underpins
CBM, constraint-based rule specialization, was invented to explain how declarative
knowledge can help a student learn from his or her errors in the course of skill
acquisition. Two key steps were to represent declarative knowledge in constraints
rather than chunks, propositions, or schemas, and to invent a cognitive mechanism
that uses constraints to detect and correct errors during skill practice (Ohlsson, 1993,
1996a, 1996b; Ohlsson & Rees, 1991a, 1991b). This learning theory implied that an
intelligent tutoring system (ITS) could be built around a knowledge base of constraints
that encode correct domain knowledge, without an explicit or generative model of
students' buggy skills and hence without the need for labor intensive empirical studies
to identify the latter (Ohlsson, 1992). The first CBM system was described in Mitrović
and Ohlsson (1999).

In the following, I describe how the problem of learning cognitive skills with
understanding was conceptualized twenty-five years ago, how it impacted the emerging
ITS technology via the concept of buggy student models, and how the constraint-based
approach filled two holes in the research literature. I refer the reader to Mitrović and
Ohlsson (1999) and Mitrović (2012) for the subsequent story of how the CBM
approach came to be implemented in tutoring systems that have benefited thousands
of students worldwide. In the last section, I identify the main limitations of the CBM
approach, sketch a new learning theory with a broader scope called the Nine Modes
Theory, and discuss its implications for the design of more powerful tutoring systems.

But…But…But 324 Minus 65 Cannot Be Equal to 341!

The constraint-based theory of learning from error was the product of a research
program at the Learning Research and Development Center (LRDC), an educational
research center associated with the University of Pittsburgh. In the 1970s and 1980s,
there was great enthusiasm in both psychology and education for applying the concepts
and techniques of cognitive science to problems of instruction.1 Pioneers like Richard
Anderson, Carl Bereiter, John Seely Brown, Allan Collins, Robert Glaser, James
Greeno, Walter Kintsch, Alan Lesgold, David Perkins, Lauren Resnick, Roger Schank,
Derek Sleeman, James Voss, and many others inspired younger, second-generation
cognitive scientists like myself to seek interesting research problems in the classroom,
as opposed to the psychological laboratory.

A key cause of frustration for educators and researchers alike was the prevalence of
errors in children’s arithmetic. (At the time, the ability to do arithmetic correctly with
paper and pencil was still considered a worthwhile pedagogical goal.) Teachers tore
their hair and researchers scratched their heads over the persistent, recurring errors of
commission. The fact that drove everyone to despair was that many of the errors
seemed utterly unnecessary. Even a rudimentary understanding of what it means to
subtract ought tell a child that the result of subtracting, for example, 65 from 324 cannot
possibly be 341. In the world of the natural numbers, to subtract is to decrease, so how
could a child believe that the result can be greater than the minuend?

1 For example, see Lesgold, Pellegrino, Fokkema, and Glaser (1978); Klahr (1976), and Dillon and Sternberg
(1986). Carver and Klahr (2001) provide retrospective reflections on the era.
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Common sense suggests that such errors occur because school children fail to pay
attention or lack the motivation to learn. But the dominant hypothesis among educators
was that bizarre errors occur because children do not understand the meaning and the
purpose of the arithmetic procedures they are asked to learn and execute, so they have
no basis for judging whether their arithmetic operations make sense. This is a long-
standing hypothesis. Brownell (1947) wrote that, BError studies, for example, [have]
disclosed faulty procedures which were [sic] explicable only as the results of blind
groping on the part of children.^ (p. 259). Forty years later, Silver (1986) wrote,
BSystematic bugs in procedures can often be traced to flaws in conceptual knowledge
or to the lack of conceptual/procedural knowledge linkages.^ (p. 187) However, the
despair of educators deepened when it was discovered that in some cases children could
accurately judge someone else’s arithmetic performance as correct or incorrect, indi-
cating conceptual understanding of the relevant arithmetic procedure, but they never-
theless made errors of their own when asked to perform the same arithmetic procedure
(e.g., Gelman & Meck, 1983). Why was the students' conceptual understanding
activated in one context but not in the other?

Errors in school mathematics seemed an ideal research topic for those who wanted to
apply cognitive concepts and techniques to education. Here was a central pedagogical
problem, rooted in ‘real life’ and of indubitable societal relevance and importance; clear
and circumscribed tasks requiring well-specified cognitive skills of varying complexity;
and unambiguous, agreed-upon tests of mastery. To identify the relevant cognitive
processes, explain the origin of errors, and develop instructional techniques that
allowed students to bring their conceptual understanding to bear on their own perfor-
mance and thus to avoid making bizarre errors seemed to be a research enterprise with a
high probability of success.

Cognitive scientists brought several conceptual tools to bear on the problem. The
distinction between declarative and procedural knowledge originally emerged in the
field of Artificial Intelligence, specifically in the discussion of Terry Winograd’s natural
language understanding system Shrdlu, in which the meanings of sentences were
represented in terms of the actions they implied, instead of the assertions they made
(Winograd, 1972). Once formulated, the distinction was rejected by Artificial Intelli-
gence researches themselves (Winograd, 1975), but it migrated into psychology (Chi &
Ohlsson, 2005; Ohlsson, 1994), in part because John R. Anderson incorporated it into
his soon-to-be-famous ACT model of cognition (Anderson, 1976, pp. 116–122). The
distinction was useful in the discussion of children’s mathematical errors because it
made the co-existence of correct explanations and incorrect answers less mysterious. If
there are two kinds of knowledge rather than one, then the two might grow at different
rates, so it becomes understandable that correct (declarative) knowledge can co-exist in
the learner’s head alongside (incorrect) procedural knowledge (Hiebert & Lefevre,
1986).

A second contribution from cognitive science was the notion of a buggy procedure,
a concept all-too-familiar to computer programmers. A piece of program code can
sometimes execute without crashing and without producing error messages even
though it contains some flaw or error that causes it to produce undesirable behaviors
or unintended results. The buggy procedure concept moved front and center because
empirical studies suggested that students' errors were not random. Instead, they ap-
peared to fall into types. This finding ruled out the hypotheses that the errors were due

Int J Artif Intell Educ (2016) 26:457–473 459



to failure to pay attention or lack of motivation, because those hypotheses implied
random responding or failure to respond. Instead, the empirical data indicated that the
majority of the errors were errors of commission. That is, the incorrect answers came
about, not by the careless or incomplete execution of correct arithmetic procedures, but
by the faithful execution of incomplete or misunderstood (Bbuggy^) procedures (Brown
& Burton, 1978; Sleeman, 1984).2

This observation was not entirely new. Teachers and educators already knew that
there were patterns in students' erroneous answers, but cognitive scientists pushed the
analysis further by modeling the buggy procedures that generated those answers. That
is, they wrote, in some computer language, incorrect mathematical procedures, which,
when executed, produced the same erroneous answers as children. The pioneers in this
enterprise included John Seely Brown, Richard Burton, and Kurt VanLehn in the U.S.
with respect to subtraction errors (Brown & Burton, 1978), and Derek Sleeman in the
UK with respect to high-school algebra (Sleeman, 1984; Sleeman, Kelly, Martinak,
Ward, & Moore, 1989). They published the first so-called bug libraries, repertoires of
cognitive models that deviated from the correct mathematical skills in such a way as to
generate the erroneous answers observed empirically (and no others; Brown &
VanLehn, 1980). Given the paradigmatic cases of subtraction and algebra, cognitive
scientists soon found buggy procedures up and down the mathematics curriculum, and
in other subject matter areas as well (e.g., Spohrer, Soloway, & Pope, 1985). The
occurrence of stable but senseless procedural errors was, and remains, a robust empir-
ical phenomenon.

The buggy model construct suggested that instruction could be improved by
finegrained tailoring of instruction to particular bugs. 3 Consider the so-called
SMALLER-FROM-LARGER error, that is, to subtract the smaller digit in a column
from the greater one, regardless of which is the minuend and which is the subtrahend,
that is, which is Bon top^ or Bon the bottom^ of a column. Contrast this with another
frequently observed subtraction bug, BORROW-NO-DECREMENT, in which the
student ‘borrows’ into a column without decrementing the column ‘borrowed’ from,
an error that violates the meaning of ‘borrowing’ (regrouping) in the context of
arithmetic. Both errors are common in children’s arithmetic (VanLehn, 1990). A student
suffering the former bug might benefit from being asked, for example, which number
are you subtracting from which number?, while a student suffering from the latter
might benefit more from being asked, when you borrow from a number, what happens
to it? A natural approach to building an intelligent tutoring system was therefore to turn
the buggy models into diagnostic devices that identify exactly which bug, or combi-
nation of bugs, is responsible for a student’s wrong answers, and then deliver tutoring
messages designed to help the student correct it.

2 This conclusion was undermined by later studies that indicated that bugs are not always stable within a
student population, and that bug libraries do not always transfer between student populations (Tatsuoka,
Birenbaum, & Arnold, 1989; Hennessy, 1994; Payne & Squibb, 1990). In yet another swing of the pendulum,
Ben-Zeev and Ronald (2002) have recently shown that the stability of bugs depends on the level of abstraction
at which they are described.
3 See Sleeman and Brown (1982) for a collection of early papers that developed on this idea, and Wenger
(1987) for a book-length review. Many of the models reported in these publications were explicit about the
bugs, but stopped short of implementing tutoring components.
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The implementation of this approach to building intelligent tutoring systems en-
countered multiple problems. Two of those problems directly shaped the development
of CBM.

Two Gaps in the Research Literature

To maximize the pedagogical power of a tutoring message (or some other type of
verbal instructional message), its content, formulation, and time of delivery need to be
based on a theory of the relevant learning processes (Ohlsson, 1986, 1991). Such a
theory should address two issues. First, what cognitive mechanism or mechanisms is
supposed to translate the content of a verbal tutoring message into the appropriate
change in the learner’s current representation of the target skill? Second, to address
educators' concerns about learning with understanding, the relevant learning theory
should explain the role and function conceptual knowledge in the construction of new
cognitive skills. The research literature of the 1980’s disappointed on both accounts.

A Gap Between Learning and Verbal Instruction

By what cognitive mechanisms are buggy skills transformed into correct skills? In
particular, by what cognitive mechanisms are verbal tutoring messages translated into
improvements in a not-yet-mastered skill? In the early 1980s this was a timely question,
because cognitive scientists had just began exploring computational models of learning.
Anzai and Simon (1979) published the first computer simulation of skill acquisition
through practice. Their model learned to perform the Tower of Hanoi puzzle in the
course of four practice trials. It consisted of a problem solving component plus a set of
learning mechanisms, cognitive processes that take a skill plus some additional infor-
mation as inputs, and deliver a revised (improved) version of that skill as output. The
particular learning mechanisms included in the Anzai and Simon model were not
sufficient to explain the acquisition of a wide variety of cognitive skills, nor was it
capable of taking instruction as input. It learned solely from its own experience in
attempting the target task. But the model was important because it demonstrated that
computer simulation of cognition had evolved to the point where it was possible to
simulate changes in behavior over time, and not merely steady state performance. This
paradigmatic achievement triggered an unprecedented flowering of the theoretical
imagination: In the two decades that followed, more mechanisms for skill acquisition
were proposed than during the prior history of cognitive research (Ohlsson, 2008).

Some of the processes programmed into the first computational models of skill
acquisition were old favorites that were studied by scholars long before cognitive
science, but they were transformed by being implemented as running computational
mechanisms. For example, generalization (a.k.a. induction) had been discussed since
Aristotle, but took a new form when applied to rules rather than categories or
principles. Such a mechanism was incorporated into an early version of the ACT
model of cognition (Anderson, 1982, 1983). Another mechanism with a long history
is analogy, advocated, by among others, the American mathematician Polya (1945/
1957, pp. 37–46), before being given a computational form by, among others,
Falkenhainer, Forbus, and Gentner (1989). Some modelers focused on subgoaling, that
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is, the process of breaking down a task into subtasks that could be mastered one at a
time, and, once again, its computational incarnation (Rosenbloom &Newell, 1986) was
rather different than the subgoaling concept that had been introduced into the study of
problem solving by Duncker (1935/1974). Other mechanisms with a shorter pedigree
were proposed as well. The effects of automaticity were modeled through processes
that contracted unvarying sequences of steps into single steps (Neves & Anderson,
1981). Skills were also hypothesized to improve via the elimination of redundant or
unnecessary steps (Neches, 1987; Ruiz & Newell, 1993; Shrager & Siegler, 1998). All
implemented cognitive skill mechanisms described in the literature up to 2008 were
reviewed in Ohlsson (2008).

These modes of learning shared two characteristics that are especially relevant for
the present purposes. First, they emphasize learning from experience. For example, one
type of model began solving an unfamiliar type of problem by using heuristic search or
some other weak method, and then compiled information about the problem space
discovered in the course of searching into more selective, task-specific heuristics (e.g.,
Langley, 1983, 1985). Another influential type of model attacked unfamiliar problems
by searching for an analogy with some already mastered task (e.g., Falkenhainer et al.,
1989). These and other types of experiential learning models did not take verbal
instructional messages as inputs, and hence did not explain how such a message might
engender an improvement in a not-yet-mastered cognitive skill. That is, they did not
explain how tutoring works (nor were any claims to that effect made by the researchers
proposing them).

A second shared feature of the first wave of cognitive learning mechanisms is that
they capitalized on positive outcomes: correct answers, productive analogies, satisfied
subgoals, useful shortcuts, and so on. What, after all, would be the point of generalizing
an erroneous step? If a skill, or a component of a skill, generates incorrect steps, then
nothing good can come of making that skill or skill component apply more broadly!
Likewise with analogy: There is little to be gained by basing a new skill on an analogy
with a previously learned, incorrect skill. Subgoals are only helpful if they truly slice
the relevant task into independent and easily achievable subtasks; unreachable subgoals
are unlikely to help. With the exception of learning by discrimination (Langley, 1983,
1985, 1987), the learning mechanisms that were explored in computational models of
skill acquisition were mechanisms that cache successful steps for future use.

The focus on experiential learning from positive outcomes made cognitive models
of learning and intelligent tutoring systems awkward dance partners, the frequent
claims that tutoring systems were ‘based on’ this or that cognitive model notwithstand-
ing. As long as the models did not take verbal tutoring messages as inputs, they had few
implications for how tutoring messages should be written, and for when they should be
delivered. In addition, teaching to errors is a natural way to tutor: After all, why
interrupt the student and instruct when he or she is on the right track? It makes more
intuitive sense to step in when the student shows sign of needing help. But theories and
models that focus on the use of positive outcomes have few implications for how
students can learn from their errors.

In short, the ambition to base the design of intelligent tutoring systems on theories of
learning encountered a gap in the research literature: Most computational theories of
learning proposed in the 1980s were built around cognitive mechanisms for experiential
learning that primarily capitalize on positive outcomes, while what was needed to base
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tutoring technology on a theoretical basis were hypotheses about how verbal tutoring
messages about errors and other negative outcomes can be utilized by a student to
improve a not-yet-mastered skill. To overcome this mismatch between mode of
learning and mode of tutoring, the field needed a theory of learning from tutoring
messages about errors.

A Gap Between Declarative and Procedural Knowledge

Although mathematics educators worried about the lack of conceptual understanding
on the part of students, the educational research literature of the 1980s did not provide
precise statements and hypotheses about what it means to understand a mathematical
procedure or skill. There were no attempts by educational researchers to formalize
conceptual knowledge, or to pose precise hypotheses about how it functions and by
which cognitive processes conceptual knowledge might guide the acquisition of new
mathematical skills. There was no rigorous educational theory about how understand-
ing and performance interact, only a strong sense that they ought to interact (Hiebert &
Lefevre, 1986). In particular, there was no theory of how understanding (declarative
knowledge) guides the acquisition of a skill (procedural knowledge).

Within cognitive science, the dominant model of declarative knowledge was
inherited from formal logic: Declarative knowledge consists of propositions. The latter
serve as premises for inference rules that warrant the derivation of new propositions. If
the inference rules are valid and the premises are true, then the conclusion is true as
well. In this model, reasoning starts with declarative knowledge, the premises, and ends
with new declarative knowledge, the conclusion. The process never breaks out of the
declarative realm. It is all about truth, not action or goal attainment. However, the
educators' concept of learning and performing with understanding required a bridge
from thought to action such that declarative knowledge guides the acquisition and
execution of procedural knowledge.

There were snippets of relevant theory spread out here and there across the cognitive
landscape like flowers in a meadow, each pretty in its own way but very different from
each other. Philosophers had developed practical logic, a theory of inferences that end
with an action instead of conclusion, but they applied it primarily to questions about
ethics. Simon (1972) published a brief semi-formal calculus of the concept Bcan^, as in
Bcan do X.^ Hayes-Roth, Klahr, and Mostow (1981) and Mostow (1983), building on a
theoretical analysis of John McCarthy, created an Artificial Intelligence system that
could translate a high-level piece of advice into a specific action. The most extensively
analyzed example was the transformation of the advice avoid taking points into the
action play a low card in the context of playing bridge. The transformation required a
hundred special-purpose inference rules. Neves and Anderson (1981) analyzed an
example of how a geometry theorem can be transformed into a proof strategy by
gradual and piecemeal transformation into production rules. This transformation was
achieved by a set of special-purpose interpretative production rules.4 Greeno, Riley, and
Gelman (1984) and Smith, Greeno, and Vitolo (1989) described a computational model
of children’s transfer of counting skills to a non-standard counting task. Their proposed
process looked very much like means-ends analysis, and the children’s hypothesized

4 See Anderson (1982), Table 2, p. 376, and Anderson (1983), Table 6.1, pp. 222–223.
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conceptual knowledge looked more like problem solving operators than like concepts
or principles.

None of these efforts, interesting though they were, seemed a satisfactory account of
how the mind translates thought into action. The cognitive mechanisms described by
Hayes-Roth, Klahr, and Mostow, Neves and Anderson, and Greeno and co-workers
were complicated and in some cases required hundreds of cognitive steps. It seemed
doubtful that school children who understand mathematics undergo some process that
is even remotely similar to the processes envisioned in these models, and even less
plausible that prompting the envisioned processes would help unsuccessful children
acquire mathematical skills with understanding. I began to think that the very idea of
deriving procedural knowledge from declarative knowledge was fundamentally flawed.
As a theoretical exercise, I derived the standard multi-column routine for subtraction
with regrouping from its algebraic premises. The derivation turned out to require
twenty-five pages of formulas.5 This exercise settled my mind that this was a dead-
end path. The interaction between declarative and procedural knowledge cannot be
conceived as a derivation of the correct performance from its conceptual rationale. The
relation between thought and action in mathematics and elsewhere had to be under-
stood differently.

To summarize, the goal to base the detailed design of tutoring systems on learning
theory posed two theoretical problems. First, to the extent that a tutoring system is
programmed to intervene and teach when students need help, the relevant learning
theory should explain how, by which cognitive processes, students learn from their
errors. Second, because the desired pedagogical goal is that students should understand
what they learn, the relevant learning theory should specify the role and function of
declarative knowledge in the acquisition of cognitive skills. The research literature of
the 1980s provided no solution to either problem. The invention of CBM was a
response to this situation.

Two Gaps, One Bridge

The exact moment of invention is lost in the fog of memory, but it produced a novel
learning mechanism that explained both how a person can learn from his or her errors
and how declarative knowledge guides that process. The implications of this theory for
tutoring became the CBM approach to ITS design. The following rational reconstruc-
tion breaks the development process down into three successive steps.

Step 1: From Propositions to Constraints

The first step was to go beyond the ancient idea that declarative knowledge consists
of propositions. The key insight was that discourse about errors and error correction is
normative in character. During skill practice, the question for the learner is which action
he or she ought to take next, and what the solution to his or her current practice problem
ought to look like.

5 The derivation is available in an unpublished technical report that does not exist electronically. I will gladly
mail it to anyone who is interested in owning a copy of this cognitive curiosity.
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This observation suggested that the function of declarative knowledge is not to
enable a learner to derive the action to be taken next, but to evaluate the outcomes of
tentative actions, that is, actions taken in the absence of sufficient reasons. From this
point of view, the units of declarative knowledge are best thought of as constraints,
knowledge elements that encode prescriptive rather than descriptive knowledge. The
type of constraint used in CBM has the general form, Bwhen such-and-such conditions
are the case, then such-and-such other conditions ought to be the case as well^ (or else
something has gone wrong). For example, when driving a car in New Zealand, the
driver had better be driving on the left side of the road (or else he or she violates the
traffic laws of that country). Clearly, a speed limit is not a description of actual
behavior, but a prescription. Formally, constraints of this sort take the form of ordered
pairs of patterns, <Cr, Cs>, where each pattern is a conjunction of conditions. Cr is a
relevance criterion that circumscribes the set of situations for which the constraint
applies (when driving in New Zealand), and Cs is a satisfaction criterion that deter-
mines whether the constraint is satisfied (drive on the left side of the road). The set of
constraints that apply to a problem type or in a particular task environment is called a
constraint base.

Given a constraint-base, the detection and identification of errors can be reduced to
pattern matching: Match the relevance conditions of all available constraints against the
current situation or problem state; for each relevant constraint, match the satisfaction
patterns as well. If the relevance condition does not match, or if both conditions are
satisfied, there is no evidence of error. If a relevance condition is satisfied but the
associated satisfaction condition is not, then some error was made on the way to the
current problem state. The content of the violated constraint (or constraints) specifies
the nature of the error. Examples of constraints and learning events of this sort are
available in the original papers (Ohlsson, 1993, 1996a, 1996b, Ohlsson & Rees, 1991a,
1991b).

Step 2: From Error Detection to Error Correction

The next question was how errors, once detected, can be corrected, and how the
correction can be guided by the content of the constraints. Given the constraint
formalism, the computational problem to be solved can be stated as follows: Given
(a) a learning scenario in which the learner is practicing a not-yet-mastered cognitive
skill; (b) the learner’s current mental representation of that skill; (c) a particular
situation or problem state; (d) an (incorrect) action performed in that situation; and
(e) an undesirable outcome, that is, a violation of some constraint, how can the learner’s
cognitive system compute the warranted revision of his or her current representation of
the target skill?

Working with Ernest (BTed^) Rees, a brilliant programmer at LRDC in Pittsburgh, I
invented a learning mechanism that we came to call constraint-based rule specializa-
tion. This learning mechanism is based on the idea of constraining a rule-being-learned
to situations in which it does not generate errors. The binary structure of constraints
affords two revisions of an error-producing rule. First, a rule can be specialized so as to
not apply in situations in which the constraint is relevant. If the constraint is not
relevant, it cannot be violated. Glossing over a mountain of technical details, this type
of specialization can be accomplished by adding the negation of the relevance
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condition of the violated constraint, Cr, to the applicability condition for the skill
element. A second revision of the erroneous rule is to specialize the rule to situations
in which the constraint is guaranteed to be satisfied. Once again glossing over the
technicalities, this can be done by adding the satisfaction condition to the applicability
condition of the relevant rule. Together, these two revisions produce two new rules,
each more specific than the original, erroneous rule. Both are added to the learner’s rule
base. The old, overly general rule remains in the rule base, but with lower priority than
its more specific descendants. The augmented rule set will not produce the type of error
that triggered the revision. The reader is referred to the relevant publications for formal
details and multiple examples (Ohlsson, 1993, 1996a, 1996b; Ohlsson & Rees, 1991a,
1991b).

We implemented constraint-based rule specialization within a home grown rule
based architecture called HS, and verified that it affords successful learning from errors
in multiple task domains, including children’s counting, subtraction with regrouping,
and college chemistry. We also verified that it generates negatively accelerated learning
curves like those observed in human learning (Ohlsson, 1993, 1996b; Ohlsson &
Jewett, 1997). In a later application, Choi and Ohlsson (2011) re-implemented
this mechanism in Icarus, a cognitive architecture developed by Patrick Langley
and co-workers (Langley & Choi, 2006). Icarus is not a rule-based system, but
the learning mechanism worked well in multiple application domains that
included landscape navigation and the Blocks World domain frequently used
in Artificial Intelligence research. The constraint-based specialization is a gen-
eral, versatile learning mechanism.

The most novel feature of constraint-based specialization is that it claims that skills
start out overly general, and are gradually specialized to a particular task environment
by incorporating the knowledge encoded in the constraints (the declarative knowledge)
into the rules (the procedural knowledge). This principle explains the correction of both
errors of omission and errors of commission. This seemed then, and seems to me still, a
plausible view of how conceptual knowledge guides action during skill practice. The
elements of the skill-to-be-learned are operating within the context of the universe of
solution paths circumscribed by the relevant constraint base.

Step 3: From Learning to Tutoring

If constraint-based specialization corresponds at least approximately to the compu-
tations performed by a learner’s brain when confronted with a negative outcome, how
can a tutor (human or machine) facilitate learning? What is the role and function of the
tutor in this scenario? If the tutor has a larger constraint base than the student, then the
tutor can create learning opportunities by catching constraint violations that the student
does not heed because he or she does not know the relevant constraint. The tutor
can signal the constraint violation and instruct the learner by communicating the
relevant constraint and highlight how it was violated by the action the learner
took. The constraint-based specialization process in the learner’s head can then
revise his or her current representation of the target skill in the way described in
the previous section.

We simulated this scenario in collaboration with Andreas Ernst, a graduate student
from Freiburg University in Germany who visited LRDC for a year. We tutored our HS
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model in subtraction with regrouping. The model was given basic capabilities such as
single-digit subtraction, moving attention from column to column, and writing a digit in
a column. It was then presented with multi-column subtraction problems but no
procedural knowledge of how to solve them. The model initially made nonsensical
errors, just like human students. For each error, we interrupted the model and typed in a
‘tutoring message’ in the form of a constraint, and triggered the constraint-based
learning mechanism. Eventually, the model performed subtraction correctly. Depending
on which constraints we gave it, the model would learn either the regrouping or the
augmentation algorithms for multi-column subtraction(Ohlsson, Ernst, & Rees, 1992).

The obvious next step was to let the student and the machine switch roles. The
implications for ITS design were, in principle, obvious (Ohlsson, 1992): A constraint-
based ITS was to be built around a set of constraints that define the correct subject
matter for a particular domain or subject matter topic. Such an ITS would apply the
constraints to each new problem state and flag violated constraints. Pre-formulated
instructional messages would be associated with the constraints, and presented to the
student when one or more constraints are violated. This is the core of the constraint-
based approach. One notable advantage is that the constraint-based approach does not
require empirical studies of students' errors or the compilation of bug libraries, because
constraints encode correct domain knowledge. This seemed to me then, and seems to
me still, a simpler and more elegant design for an ITS than to organize it round either a
bug library or an expert model of the target skill.

Nevertheless, the’92 paper that proposed the constraint-based approach almost did
not happen. It was an afterthought, written with the expectation that it would round out
the multi-year research program on learning from error. That line of research had
reached a natural end point. It was not obvious where to take the work next, and the
Zeitgeist in the field of cognition and education had moved away from procedural skills
by the end of the 1980s. Being able to do multi-column arithmetic with paper and
pencil appeared less and less important in the age of calculators and computers.
Cognitive researchers executed a pivot from a concern with the understanding of
procedural skills in mathematics to a focus on conceptual change in science learning.

The constraint-based approach might thus have languished as an interesting but
unproven idea. However, geopolitics and personal history intervened. The’92 concept
paper was read by someone who knew what to do with the ideas expressed in it. In the
spring of 1998, Antonija (BTanja^) Mitrović came by my office at the University of
Illinois at Chicago. She was in the process of re-locating herself and her family
from the disintegrating country of Yugoslavia to their new home in New Zealand.
We discussed the CBM approach, how it might be used to build a tutoring system
to teach the skills involved in using a common database query language, SQL, and
how one might go about empirically verifying its pedagogical effectiveness. The
story of the first CBM tutoring system, SQL-Tutor, is her story; see the companion
paper in this issue. Her research group has since designed, implemented, de-
ployed, and evaluated multiple CBM systems. Their hard work has proven beyond
doubt that CBM is a practical, elegant, and versatile design theory for intelligent
tutoring (Mitrović, 2003, 2006, 2012; Mitrović, Martin, & Mayo, 2002; Mitrović,
Martin, & Suraweera, 2007; Mitrović & Ohlsson, 1999, 2006; Mitrović,
Suraweera, Martin, & Weerasinghe, 2004; Suraweera & Mitrović, 2004;
Weerasinghe & Mitrović, 2005).
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Beyond CBM

Looking back, the rationale for the constraint-based approach still appears valid. People
do learn from their errors, and the specialization of the applicability conditions of skill
elements is still a plausible hypothesis about the underlying cognitive process. I know
of no subsequent research that calls this hypothesis into question. Similarly, the CBM
design for ITS has proven its value over and over again in the success of the constraint-
based systems coming out of various research grouips, primarily Mitrović’s group at
Canterbury University, but also our team in Chicago (Fossati et al., 2009) as well as
others (Menzel, 2006; Roll, Aleven, & Koedinger, 2010). The experience of
implementing and deploying these systems has not revealed fundamental flaws in the
approach that limit its application or usefulness.

There are, of course, open issues that might benefit from future research, including
how the system developer can decide whether a constraint base is complete and how
complete a constraint base has to be to support effective tutoring. Another open issue is
how a constraint-based ITS should select practice problems for maximal learning gains.
Such issues are probably best resolved in the practice of implementing CBM systems
for particular task domains, as opposed to deriving detailed prescriptions in a top down
manner.

An open question of deep theoretical interest is where the constraints come from.
The theory of learning from error explains how they function, not how they are
acquired. In some cases, they originate in the task environment. For example, in the
HS chemistry model (Ohlsson, 1993, 1996b), the constraints encoded the principles of
the co-valent bond, which are explicitly stated in any college chemistry text. In the
counting application (Ohlsson, 2006; Ohlsson & Rees, 1991a), we relied on the
hypothesis, advanced by developmental psychologists, that the constraints that define
one-to-one mapping are innate, or at least emerge in the first few months of life
(Gelman & Meck, 1983). In puzzle tasks like Tower of Hanoi and the Nine-Dot
Problem (Choi & Ohlsson, 2011), the constraints are built into the task instructions
(do not put a larger disc on a smaller one; only use four lines). In other cases, the origin
of the relevant constraints is obscure. This does not affect the role and function of
constraints in tutoring: The point of CBM is that the tutoring system has a larger
constraint-base than the learner, and hence can create learning opportunities by iden-
tifying constraint violations that the learner overlooks. A hypothesis about the origin of
constraints would be theoretically interesting but it may or may not have implications
for the implementation of constraint-based tutoring systems.

Another broad issue with greater potential impact on the implementation of
tutoring is that skills are acquired in other ways than through the correction of
errors. With hindsight, it is obvious that the excitement generated by buggy
models led myself and perhaps others as well to overemphasize error correction
as the main mode of learning during skill practice, and hence to regard the
teaching to errors as the main mode of tutoring. But empirical studies of human
tutors have since shown that error correction is only one type of tutoring move
(Cade, Copeland, Person, & D’Mello, 2008; Graesser, Person, & Magliana, 1995;
Lu, Eugenio, Kershaw, Ohlsson, & Corrigan-Halpern, 2007; Ohlsson et al., 2007;
Person, Graesser, Kreutz, & Pomeroy, 2003), indicating that tutors intuitively
recognize the existence of multiple modes of learning.
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How many modes of learning might there be? In 2008, I reviewed all published
cognitive simulation models of skill acquisition (Ohlsson, 2008). It turns out that there
are fewer learning mechanisms than there are models, so if we slice the models into
their component mechanisms and sort the latter by similarity, we are left with a small
repertoire of distinct modes of learning. These modes claim that people learn (a) by
proceduralizing direct verbal instructions (when the green light comes on, press the
XYZ button); (b) via practical reasoning from declarative knowledge; (c) through
transfer from previously mastered skills; (d) by observing a demonstration or studying
a worked example; (e) by decomposing the top goal of the target skill into subgoals; (f)
by caching positive outcomes for future use; (g) by detecting and correcting errors; (h)
by eliminating redundant and unnecessary steps; and (i) by accumulating implicit
knowledge of the statistical regularities of the task environment and using those
regularities to optimize the target skill. In short, the repertoire of skill acquisition
models implemented to date implicitly claims that there are nine distinct modes of
cognitive change during skill practice.

Each learning mechanism, each mode of learning, implies a distinct mode of
instruction. Consider learning from positive feedback. What capabilities are required
to support this mode of learning? The paradox is that in order to receive positive
feedback, the learner has to do the right thing. But if he or she knows enough to do the
right thing, what is there for him or her to learn? The answer is presumably that learners
take tentative steps during skill practice. The learner does not know with certainty that
the step just taken was the right one. Positive feedback (yes, that’s right; go on) reduces
the uncertainty by confirming that the tentative step was indeed correct. However, if
this type of feedback is delivered every time the learner does something correctly, the
output from the tutor would be tedious and repetitive, and the learner would soon stop
paying attention. The main issue in implementing this mode of instruction is to identify
the exact conditions under which positive feedback is likely to be helpful. Mitrović,
Ohlsson, and Barrow (2013) suggested a set of such conditions.

As a second example, consider learning through transfer from a previously acquired
skill, or from a previously solved practice problem. What are the capabilities a tutoring
system would need to teach to this learning mode? First, the system has to be able to
determine which practice problems in its problem base are analogous to the problem the
learner is working on. This can be done most simply by creating a pre-determined set of
practice problems (which is the case in many, perhaps most, ITSs) and pre-storing
transfer links among them. If an ITS generates practice problems dynamically, then the
issue of how to establish or predict transfer from previously solved practice problems
becomes more complicated. The ITS might need to implement something akin to the
Structure Mapping Engine developed by Falkenhainer et al. (1989). Second, an ITS
that is to tutor by encouraging transfer would need some metric for assessing the
probability of transfer or the amount of transfer to be expected. One again, this
assessment can be pre-computed if the practice problems are pre-determined. Finally,
the ITS would need some criteria for identifying situations in which appeal to prior
solutions is likely to be more productive than alternative tutoring modes. In such
situations, the ITS might say something like, Can you think of a similar problem?
(Polya, 1945/1957, p. 98). A key issue is how to assess what the student does in
response. If the student recalls a promising transfer problem but nevertheless remains
stuck, what is the appropriate tutor response?
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As a final example, consider optimization in the asymptotic part of the learning
curve (Neches, 1987; Ruiz & Newel, 1993; Shrager & Siegler, 1998; Siegler & Araya,
2005). How can an ITS support this mode of learning? If there exists a shortcut, an ITS
could simply show it to the learner (That’s correct but there is a quicker way to get the
same result…). One possible way to show a shortcut is to present an example problem
that is solved twice, once in the way the student has mastered and once with the
shortcut. If possible, both solution paths could be displayed side by side on the same
screen. After the presentation, the learner should be presented with practice problems in
which the shortcut applies. The existence of short cuts in problems of a particular type
could be predetermined or computed dynamically by a problem solving module.

All nine modes of learning identified in Ohlsson (2008) can be supported by
instruction, but as the three examples above illustrate, the computational capabilities
needed are unique for each mode. Implementing an ITS that can teach to all nine modes
of learning is therefore considerably more labor intensive than building systems that
only teach to one or a small handful of learning modes. But it is plausible that if a
tutoring system could teach to all nine modes, it would increase the students' learning
gains. If a tutoring system only supports learning in modes A, B, and C, then any
situation that affords learning through mode D is a missed learning opportunity. Adding
modes of instruction increases the proportion of learning opportunities that the learner
can benefit from. Empirical studies of tutoring dialogues support the idea that human
tutors engage in a wide variety of tutoring moves (Graesser et al., 1995; Lu et al., 2002;
Ohlsson et al., 2007; Person et al., 2003). In a few cases, there is direct empirical
support for the idea that the pedagogical power of a tutoring system increases when the
system is augmented to teach to additional modes of learning. Mitrović et al. (2013)
added the capability of teaching through positive feedback to SQL-Tutor, and saw the
time to mastery cut in half. Similarly, Salden, Aleven, Schwonke, and Renkl (2010) and
Schwonke et al. (2009) have demonstrated that a tutoring system becomes more
effective when it is extended with the capability to teach through worked examples.
The natural extrapolation of such findings is that to be maximally effective, a tutoring
system needs to teach to all nine modes of learning.

Twenty-five years ago, the constraint-based specialization theory of learning from
error led to CBM, a novel and useful approach to ITS design. The fact that CBM
derived from a theory of learning suggests that a better learning theory might generate
an even better tutoring technology (Ohlsson, 1991). In the next twenty-five years, the
Nine Modes Theory of learning might lead to a Multiple Modes Theory of Instruction
(MMTI), a design for ITSs that are maximally effective because they teach to all modes
of learning and hence can help the student capitalize on every learning opportunity.
Perhaps we are still in the early stages of the development of a tutoring technology that
enables tutoring systems to outperform human tutors.
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