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Abstract Ask-Elle is a tutor for learning the higher-order, strongly-typed functional
programming language Haskell. It supports the stepwise development of Haskell
programs by verifying the correctness of incomplete programs, and by providing hints.
Programming exercises are added to Ask-Elle by providing a task description for the
exercise, one or more model solutions, and properties that a solution should satisfy. The
properties and model solutions can be annotated with feedback messages, and the
amount of flexibility that is allowed in student solutions can be adjusted. The main
contribution of our work is the design of a tutor that combines (1) the incremental
development of different solutions in various forms to a programming exercise with (2)
automated feedback and (3) teacher-specified programming exercises, solutions, and
properties. The main functionality is obtained by means of strategy-based model tracing
and property-based testing. We have tested the feasibility of our approach in several
experiments, in which we analyse both intermediate and final student solutions to
programming exercises, amongst others.
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Introduction

Haskell is a lazy, purely functional programming language (Peyton Jones 2003). It is
taught at universities all over the world: just the English Haskell beginners’ books (Bird
1998; Hutton 2007; Hudak 2000; Thompson 2011) together sold more than 50, 000
copies, and there are lecture notes and books available in Spanish, Dutch, German,
Portuguese, Russian, Japanese, etc.

Ask-Elle1 is a tutor that supports the stepwise development of simple functional
programs in Haskell. Using this tutor, students learning functional programming
develop their programs incrementally, receive feedback about whether or not they are
on the right track, can ask for a hint when they are stuck, and can have a look at a
worked-out solution. Ask-Elle is an example of an intelligent tutoring system (VanLehn
2006) for the domain of functional programming.

Why would a teacher or a student use such an intelligent tutoring system? Evalu-
ation studies have indicated that

– using an intelligent tutor that supports the stepwise development of solutions to
problems is almost as effective as a human tutor (VanLehn 2011),

– working with an intelligent tutor supporting the construction of programs is more
effective when learning how to program than doing the same exercise “on your
own” using only a compiler, or just pen-and-paper (Corbett et al. 1988),

– using intelligent tutors requires less help from a teacher while showing the same
performance on tests (Odekirk-Hash and Zachary 2001),

– using such tutors increases the self-confidence of female students (Kumar 2008),
and

– the immediate feedback given by many of the tutors is to be preferred over the
delayed feedback common in classroom settings (Mory 2003).

The type of exercises that a learning environment supports determines to a large
extent how difficult it is to generate feedback. For example, it is much easier to specify
feedback for a multiple-choice exercise, than for an essay. Le and Pinkwart (2014)
propose a classification of programming exercises supported in learning environments.
They base their classification on the degree of ill-definedness of a programming
problem. Class 1 exercises have a single correct solution. Examples are quiz-like
questions with a single solution, or slots in a program that need to be filled in to
complete some task. Class 2 exercises can be solved by different implementation
variants. Usually a program skeleton or other information that suggests the solution
strategy is provided, but variations in the implementation are allowed. Finally, class 3
exercises can be solved by applying alternative solution strategies. Independently
developing a program solving a class 3 exercise, is an important learning objective
for learning programming (Joint Task Force on Computing Curricula Association for

1 http://ideas.cs.uu.nl/FPTutor/
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Computing Machinery (ACM) and IEEE Computer Society 2013). Ask-Elle offers
class 3 exercises.

Teachers need control over the learning environment they use: adaptability of
learning environments is important (Anderson et al. 1995; Bokhove and Drijvers
2010). Ask-Elle offers a teacher a lot of flexibility in adding new programming
exercises to the tutor, and in adapting or specialising the feedback. The feedback and
hints provided by Ask-Elle are calculated automatically from teacher-specified, anno-
tated solutions and properties for a programming exercise.

Programming tutors have been built since the 1970s, for programming languages
such as Lisp (Anderson et al. 1986), Prolog (Hong 2004), Java (Holland et al. 2009),
Pascal (Johnson and Soloway 1985), C (Wang et al. 2011), and many more. None of
these tutors supports automatic feedback on the incremental development of programs
for class 3 exercises, in which teachers can easily add programming exercises and adapt
feedback. For example, the Lisp tutor (Anderson et al. 1986) does give feedback on the
steps a student takes towards a solution to a programming exercise, and allows students
to solve a program flexibly in that students do not have to follow a strict top to bottom,
left to right order (Corbett et al. 1988), but it offers class 2 exercises. Also, adding an
exercise to the Lisp tutor is non-trivial. Successors of the Lisp tutor, such as ELM-ART
(Brusilovsky et al. 1996), still offer class 2 exercises. As another example, the Prolog
tutor (Hong 2004) does offer class 3 programming exercises, but forces a student to first
select the kind of solution she wants to write, and only then allows the development of
a program. As a final example, AutoLEP (Wang et al. 2011), which is an program
assessment system rather than a programming tutor, offers class 3 exercises, but cannot
deal with intermediate, incomplete programs.

The main contribution of this paper is the design of a programming tutor that offers
class 3 programming exercises, supports the incremental development of solutions to
such exercises, and automatically calculates feedback and hints. These feedback and
hints are derived automatically from teacher-specified annotated solutions for a prob-
lem. The main functionality of the tutor is obtained by means of strategy-based model
tracing (Heeren et al. 2010), and property-based testing (Claessen and Hughes 2000).
Furthermore, we use quite a bit of compiler technology for functional programming
languages to offer as much flexibility as possible. We test the feasibility of our approach
in several experiments, in which we analyse both intermediate and final student
solutions to programming exercises to find out how well our tutor deals with possibly
incomplete student programs, amongst others.

This paper is organised as follows. The “An example session” section introduces
Ask-Elle by means of an example session of a student interacting with Ask-Elle, and
shows what a teacher has to do to add a programming exercise to the tutor. This section
exemplifies our research contributions. The “Design of Ask-Elle” section shows the
design of Ask-Elle, and contains our main research contribution: it gives the architec-
ture of Ask-Elle, and briefly discusses the technologies we use for diagnosing student
programs. After the sections that introduce Ask-Elle, we describe three experiments we
have performed with Ask-Elle. The “Experiment 1: assessing student programs”
section shows an experiment in which we use Ask-Elle for assessing a lab exercise,
and the “Experiment 2: questionnaire” section describes a class experiment in which we
use a questionnaire to find out how students experience the use of Ask-Elle. After
performing these experiments we decided on a classification of student programs,
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which we describe in sixth section. Using this classification, the “Experiment 3: student
program analysis” section describes an experiment in which we analyse the quality of
the feedback given by Ask-Elle. We discuss related work in the “Related work” section.
The “Conclusions and future work” section discusses future work and concludes the
paper.

This paper combines and revises results described in several earlier workshop and
conference papers and demonstrations (Gerdes et al. 2010, 2012a, b; Jeuring et al.
2012, 2014).

An Example Session

This section introduces Ask-Elle by means of an example session, in which a student
develops a program in Ask-Elle and uses several of its features. Then it shows how a
teacher can add an exercise to Ask-Elle and adapt the feedback and behaviour of Ask-
Elle.

An Example Student Session in Ask-Elle

We demonstrate Ask-Elle by showing some interactions of a hypothetical student with
the functional programming tutor. A screenshot of Ask-Elle is shown in Fig. 1. Ask-
Elle sets small functional programming tasks, and gives feedback in interactions with
the student. We assume that the student has attended lectures on how to write simple
functional programs on lists.

At the start of a tutoring session the tutor gives a problem description. Here the
student has to write a program for converting a list of binary numbers to its decimal
representation.

Fig. 1 The web-based functional programming tutor
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The tutor displays the following starting point:
•

The task of a student is to refine the holes, denoted by •, of the program. The starting point of
an exercise is a single hole. After each refinement, a student can ask the tutor whether or not
the refinement is bringing her closer to a correct solution. If a student does not know how to
proceed, she can ask the tutor for a hint. A student can also introduce new declarations,
function bindings, and alternatives.

Suppose the student has no idea where to start and asks the tutor for help. The tutor
offers several ways to help. For example, it can list all possible ways to proceed solving
an exercise. In this case, the tutor responds with:

We assume that a student has already been exposed to the functions and concepts
mentioned in the feedback, for example via lectures, a teaching assistant, or lecture
notes. However, the prelude functions in the feedback are linked to external web pages
with detailed information, such as their type signature and example usages.

The tutor can make a choice between the different possibilities, so if the student does
not want to choose, and just wants a single hint, she gets:

Here we assume that the teacher has set up the tutor to prefer the solution
that uses foldl, defined by:

Let us briefly explain this function before we continue with the session. The higher-
order function foldl processes a list using an operator that associates to the left (Hutton
2007). Its definition covers two cases: one for the empty list [], and the case of one
element (x) in front of the rest of the list (xs). Consider the list of bits from the session’s
example: [1, 0, 1, 0, 1, 0]. Given some binary operator⊕and a start value e, foldl turns
this list into the expression:

2 The prelude is the standard library for Haskell containing many useful functions.
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Now if we let n ] b=2 ∗ n+b and e=0, we can indeed calculate the expected result
(42) from the above expression.

The student starts by introducing the function name as asked by the exercise,
but postpones the definition of the function body by introducing another hole:

The student can ask for more detailed information at this point about the body
of the function, and the tutor responds with giving increasing detail:

At this point, the student can refine the function at two positions.We do not impose an order
on the sequence of refinements. Moreover, a student can refine multiple holes at once:

In the above step the student has made two refinements: she refined the operator hole to
the variable op, and introduced a function binding for that variable in a where-clause.
The student continues with the operator and introduces two pattern variables:

which is accepted by the tutor. She continues with the definition of the operator:

If the student now asks for a hint, the tutor responds with:

She continues with:
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This is a syntax-error message generated by the Helium compiler (Heeren et al. 2003),
which we use in our tutor. Helium gives excellent syntax-error and typeerror messages,
and reports dependency analysis problems in a clear way. The student corrects the
syntax-error and continues with:

which results in the following feedback message from the tutor:

The definition does not match any of the model solutions, and by means of random
testing the tutor can find an example where the result of the student program invalidates
a teacher-specified property or differs from a model solution. We use this example to
generate the detailed feedback message. Correcting the error, the student enters:

which completes the exercise.
These interactions show that our tutor can give hints about which step to take next,

in various levels of detail, list all possible ways in which to proceed, point out errors
and pinpoint where the error appears to be, and show a complete worked-out example.
This subsection exemplifies our main research contribution: a programming tutor that
offers class 3 programming exercises, supports the incremental development of solu-
tions to such exercises, and automatically calculates feedback and hints.

Teacher

This subsection demonstrates how a teacher adds a programming exercise to the tutor,
and adapts the feedback given by the tutor. An exercise is specified by a set of model
solutions to the programming problem and a configuration file, grouped together in a
directory. A configuration file is a Haskell source file that contains a task description
together with a list of QuickCheck (Claessen and Hughes 2000) properties for the
exercise. Each model solution is specified in a separate file. The interactions of the tutor
are based on these model solutions and properties.

A teacher can group exercises together, for example for practising list problems,
collecting exercises of the same difficulty, or exercises from a particular textbook.

Model Solutions

A model solution is a program that an expert writes, using good programming
practices. We have specified three model solutions for fromBin (see Fig. 2). We
already explained the first model solution that is based on foldl.
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The second model solution reverses the input list, and then computes the inner
product of this list and a list of powers of two. The definition consist of three parts,
which are combined using function composition (-). Function composition takes two
functions as argument and applies the left-hand side function to the output of the right-
hand side function. The first part of this solution reverses the input list, which turns the
list in least significant bit first order. The second part creates an infinite list of powers of
two by using the iterate function:

The powers of two are multiplied element-wise with the reversed list using
zipWith. The third and final step is to add all elements using the sum function.
Note that this solution relies on lazy evaluation for dealing with the infinite list.
The zipWith function discards excess elements if one list is longer than the
other.

The final model solution uses a helper function fromBin′, which takes as
extra parameter the length of the input list (n) for calculating the correct power
of two. The value of n is decremented by one at every recursive call. The
advantage of this extra parameter is that we only have to calculate the length of
the list once, instead of at each recursive call. Passing around extra,
intermediate results is a well-known programming technique called tupling.

The tutor uses these model solutions to generate feedback. It recognises
many variants of a model solution. For example, the following solution:

is recognised from the first model solution. To achieve this, we not only
recognise the usage of a prelude function, such as foldl, but also its definition.
Furthermore, we apply a number of program transformations to transform a
program to a normal form.

Fig. 2 Three model solutions for the fromBin programming exercise
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Adapting Feedback

A teacher adapts the feedback given to a student by annotating model solutions. An
annotation is done via a pragma, which is a special kind of source code comment.
Using the following construction a teacher adds a description to a model solution:

The first hint in the “An Example Student Session in Ask-Elle” section gives the
descriptions for the three model solutions for the fromBin exercise. The appearances of
prelude functions in a hint are hyperlinked to web pages with detailed information.
These links are generated automatically. More fine-grained and location specific
feedback can be added to a model solution using the FB feedback annotation:

Thus we can give a detailed explanation of how to construct the operator op. These
feedback messages are organised in a hierarchy based on the abstract syntax tree of the
model solution. This enables the teacher to configure the tutor to give feedback
messages with an increasing level of detail.

The DESC and FB annotations can be used to steer the textual feedback
given by Ask-Elle to a student. In addition to these textual feedback annota-
tions, Ask-Elle offers two annotations that a teacher can use to control the
variation of accepted solutions. We mentioned before that we not only recog-
nise the usage of a library function, such as foldl, but also the definition of that
function. When a student is not aware of a particular library function and
defines such a function herself, we can recognise and approve it. Sometimes,
however, a teacher wants a student to use a library function instead of her own
definition. To enforce the usage of a library function, in this case iterate, a
teacher can annotate the function with the MUSTUSE annotation:

The MUSTUSE annotation limits the variation of allowed implementations. A teacher
can also introduce an alternative implementation for a library function to allow more
implementations by means of the ALT annotation, of which we give an example in the
“Automated Assessment with Programming Strategies” section.

Configuration File

A teacher needs to create a configuration file (besides model solutions) to
define an exercise. This configuration file is a Haskell source file that contains
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a global description of the exercise and a list of QuickCheck properties. We
reuse the DESC annotation for the global description that introduces the pro-
gramming problem. For example:

This description is shown when a student starts the exercise.
The configuration file also contains a list of QuickCheck properties.

QuickCheck (Claessen and Hughes 2000) is a library for property-based testing
in Haskell. The list of QuickCheck properties can be viewed as a semi-formal
specification of the program. QuickCheck automatically tests properties on a
large number of randomly generated test cases.

The following property is responsible for the feedback of the counterexample
in the example session from the previous subsection:

The property propModel takes a student program ( f ) as argument and checks
that for every list of bits the output of the student program is equal to the
output of a model solution (model). A teacher can use the feedback function to
attach a feedback message to a property. This message will be shown when the
property has been falsified.

Another property we check is that removing the most significant bit from a
(non-empty) list is the same as dividing the corresponding decimal value by
two. The following QuickCheck property expresses this characteristic:

The expression before the implication (⇒) makes sure we only test with
nonempty binary lists.

The third and last property tests the so-called round-trip property: if we convert a list of bits
to a decimal value and back to a list of bits again, then we should end up with the same list.
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The elements in the properties list are functions that take a student program as parameter and
return a QuickCheck property. Using the QuickCheck forAll function we let the properties
use a special-purpose binary number generator (genBin).

If a teacher does not want to specify any properties, she can leave the list empty. This
does not mean that Ask-Elle will skip testing a student program. It is always possible to
construct a property that compares a student program against one of the model
solutions. However, if a teacher wants to attach a specific feedback message to the
property that validates against a model solution, she needs to define it herself, like we
showed above.

Thus to add a programming exercise to Ask-Elle, a teacher specifies the
exercise text, model solutions for the exercise, and possibly extra feedback and
properties that a solution should satisfy. A teacher does not need to have any
knowledge of the internals of Ask-Elle. This exemplifies our contribution that
feedback and hints are derived automatically from teacher-specified annotated
solutions for a problem.

The Design of Ask-Elle

The previous section illustrated how Ask-Elle can be used for class 3 programming
exercises by students and teachers. Teachers can add programming exercises to Ask-
Elle by providing a task description for the exercise, one or more model solutions, and
properties that a solution should satisfy. A teacher can annotate properties and model
solutions with feedback messages, and can specify how much flexibility is allowed in
student solutions. This section shows the design of Ask-Elle, and contains our main
research contribution. It gives the architecture of Ask-Elle, and briefly discusses the
technologies we use for diagnosing student programs.

Ask-Elle is a programming tutor

– that targets first year computer science students,
– in which a student incrementally develops a program that is equivalent (modulo

syntactic variability) to one of the teacher-specified model solutions for a program-
ming problem,

– that gives feedback and hints on intermediate, incomplete, and possibly buggy
programs, based on teacher-specified annotations in model solutions,
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– that reports counterexamples when properties for an exercise are not satisfied,
– to which teachers can easily add their own programming exercises, and in which

teachers can adapt feedback,
– and in which a student can use her preferred step-size in developing a program: from

making a minor modification to submitting a complete program in a single step.

Using our programming tutor students develop programs by making small, incremental,
changes to a previous version of the program. Other common scenarios in teaching
programming are to give a student an incomplete program, and ask her to complete the
program, or to give a student a program, and ask her to change the program at a particular
point. In such assignments, a student refines or rewrites a program. Both rewriting and
refining preserve the semantics of a program; refining possibly makes a program more
precise.

The feedback that we offer, such as giving a hint, is derived from a strategy. Strategies
play a central role in our approach. We use strategies to capture the procedure of how to
solve an exercise. A strategy describes which basic steps have to be taken, and how these
steps are combined to arrive at a solution. In case of a functional programming exercise, the
strategy describes how to incrementally construct a program. We reuse an embedded
domain-specific language (EDSL) for defining strategies for programming (Heeren et al.
2010).

We will first present Ask-Elle’s web-based architecture, and then discuss the tech-
nology behind the tutor’s model tracing capabilities. We conclude this section with
property checking for finding and reporting counterexamples.

Ask-Elle’s Web-Based Architecture

Our tutor can be accessed via a web browser. On themain page, a student selects an exercise
to work on. While developing a program, a student can check that she is still on a path to a
correct solution, ask for a single hint or all possible choices on how to proceed at a particular
stage, or ask for a worked-out solution.

The programming tutor consists of a front-end and back-end. The front-end handles
the interaction with the student, such as displaying feedback messages. The back-end
takes care of the feedback generation. Figure 3 shows a schematic overview of our
programming tutor architecture: we explain each of the steps in this figure.

The front-end of the tutor is implemented as a web application, using Ajax technology to
call services. Each time a student clicks a button such as Check or Hint, our web application
sends a service request (1) to the functional programming domain reasoner (the back-end).
This request contains all information about where the student is in solving the exercise,
including the current program. Requests are encoded in a simple JSON format.

The back-end of our tutor is a domain reasoner, also called the expert knowledge
module in the traditional four-component ITS architecture described by Nwana (1990),
for the domain of functional programming exercises in Haskell. The domain reasoner is
built using a generic software framework for specifying domain reasoners (Heeren and
Jeuring 2014).3 This framework offers feedbackservices to external learning environ-
ments. The feedback services handle particular requests, and are based on the stateless
3 http://ideas.cs.uu.nl/www/
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client–server architecture. For example, the diagnose feedback service is used to
analyse a student step, i.e., an intermediate program that is submitted by the student.
Another example of a feedback service is derivation, which generates a complete
worked-out example showing all steps a student can take to solve an exercise.

The domain reasoner starts with reading themodel solutions and configuration file (2) for
an exercise. These files are turned into a programming strategy (for model tracing),
properties (for property-based testing), and feedback scripts (for generating feedback mes-
sages). We then compile (3) the student program with the Helium compiler, which is a
Haskell compiler designed for reporting good error messages and warnings targeted at
students learning the language. We extended the compiler to deal with the incomplete
programs that can be submitted with our tutor. Compilation either produces an error
message, which is reported to the student, or delivers an abstract syntax tree (AST). This
AST is compared against the model solutions (4) using the programming strategy (details in
the Model Tracing section). If the submitted program cannot be recognized, we check the
properties (5) to search for counterexamples (details in the Property-Based Testing section).

At this point we use the results of steps 3–5 and the feedback script to produce a
reply that is returned to the front-end (7). The request-reply pair, together with some
meta-information, is stored in a database (6) for later analysis.

Model Tracing

A programming strategy is derived from the set of model solutions of an exercise. We use
this strategy to track the progress of a student, and to calculate semantically rich feedback.
The programming strategies are expressed in the strategy language (Heeren et al. 2010) that
is supported by the general software framework on which Ask-Elle is built. The strategy
language offers combinators for choice, sequence, repetition, labels, and many more. Such
a strategy can be interpreted by the framework as a context-free grammar, i.e., a set of
sentences consisting of basic steps, which turns model tracing into a parsing problem.

In the case of Ask-Elle, the basic steps are refinement rules to make an intermediate
program more defined. We have defined refinement rules for most language constructs, for

Fig. 3 Ask-Elle’s web-based architecture
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example, to replace a hole • by the conditional expression if • then • else • with three new
holes. We use the strategy language to control the order in which the refinement rules are
applied (e.g., the condition before the two branches, but without further restrictions —
refinement steps in the two branches can even be interleaved). In the process of generating
the programming strategy, we also take care of the annotations that have been specified by a
teacher in the model solutions.

Programming languages typically offer all kinds of syntactical variations to write
(essentially) the same program, and Haskell is no exception in this. For instance, λx→
λy→x and λx y→x have a different representation, but should often be treated the same
during model tracing and feedback generation. Before we compare a student (intermediate)
program to the programs generated by the strategy, we normalise all programs using various
program transformations. All transformations preserve the semantics of a program. For
example, Ask-Elle has a transformation for renaming variables (a transformation that is
known as alphaconversion in the lambda calculus (Barendregt 1984)), removing syntactic
sugar (desugaring), and algebraic properties such as n+1=1+n.

Property-Based Testing

In 2013 we added property-based testing to Ask-Elle. Properties of an exercise,
such as that sort returns a permutation of the input list that is non-descending,
are specified in its configuration file and are tested on a student program when
none of the model solutions can be recognised. We use the QuickCheck library
(Claessen and Hughes 2000) for testing, which supports specifying and testing
properties, and defining customized random input generators. If QuickCheck
finds a counter-example, we report it to the student. Thus we use both static
(matching against model solutions) and dynamic (testing against properties)
techniques to analyse a student program.

We use GHC,4 the default compiler for Haskell, to test properties and to evaluate a
student program. Again, special care is needed to deal with holes that appear in
incomplete programs. When QuickCheck runs into a hole, we discard the test case
and continue with the next, instead of reporting the hole as a counter-example. Because
of Haskell’s lazy evaluation, we can find counterexamples early on for programs with
holes.

To summarize this section: we have presented Ask-Elle’s web-based design that com-
bines model tracing with property checking. We generate programming strategies from
model solutions and configuration files, and these strategies are used by a generic software
framework to trace the refinement steps that a student takes. We use QuickCheck for
property checking, even for student programs that contain holes. With this design we can
automatically calculate feedback and hints, which teachers can further adapt to their needs.

Experiment 1: Assessing Student Programs

Traditionally, a teacher or a teaching assistant assesses a student’s abilities and
progress. However, providing timely feedback is not always possible with large

4 https://www.haskell.org/ghc/
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class sizes. Repeatedly assessing student exercises is tedious, time consuming, and
error prone. It is difficult to keep judgements consistent and fair. To assist teachers in
assessing programming assignments, many assessment tools have been developed.

In the first experiment, conducted in 2009, we use Ask-Elle as an assessment
tool for student programs. The assessment tool uses programming strategies and
programming transformations to classify programs based on model solutions for
the assignment. Using programming strategies we can guarantee that a student
program is equivalent to a model solution, and we can report which solution
strategy has been used to solve a programming problem. The assessment tool
only assesses fully defined programs, i.e., there are no holes present in the
program. The normalisation procedure exploits this fact and performs a number
of program transformations that are not allowed on intermediate programs, such
as removing program code that is not used in the main functionality (dead-code
elimination), and inlining.

Automated Assessment with Programming Strategies

Many programming exercise assessment tools are based on some form of
testing (Ala-Mutka 2005). Test-based assessment tools try to determine correct-
ness by comparing the output of a student program to the expected results on
test data. Using testing for assessment has a number of problems. First, an
inherent problem of testing is coverage: how do you know you have tested
enough? Testing does not ensure that the student program is correct. Second,
assessing design features, such as the use of good programming techniques or
the absence of imperfections, is hard if not impossible with testing. This is
unfortunate, because teachers want students to adopt good programming tech-
niques. Consider the following function that solves the problem of converting a
list of binary numbers to its decimal representation from the example session:

This function returns correct results, hence test-based assessment tools will most likely
accept this as a good solution. However, the length calculation is unusual, because an
element is added to the list and then the length of the list is subtracted by one. We found
this imperfection frequently in a set of student solutions. Third, testing cannot reveal
which algorithm has been used. For instance, when asked to implement quicksort, it is
difficult to discriminate between bubblesort and quicksort. Fourth, testing is a dynamic
process and is therefore vulnerable to bugs, and even malicious features, that may be
present in solutions.

We use programming strategies, derived from teacher annotated model solu-
tions, and our normalisation procedure to assess functional programming exer-
cises in Haskell. Our approach is rather different from testing: we can guarantee
that the submitted student program is equivalent to a model program. We can
recognise many different equivalent solutions from a model solution. For
example, the following student solution:
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is recognised from the foldl model solution (see Fig. 2). Despite the fact that the student
solution appears very different from the model solution, they will be recognised as
equivalent. The two solutions use a similar recursion pattern and are essentially the
same. In fact, the explicit recursive definition of fromBaseN ′ is recognised as an
instance of the foldr function. In contrast to foldl, foldr combines the list elements
from right to left. For example:

The foldl function can be defined as a foldr by reversing the list and flipping the
operator’s arguments. We specify this as an ALT annotation:

With this annotation, the student solution (with explicit recursion) and the model
solution (with foldl) are normalized to the same program.

In the remainder of this section we show how programming strategies and program
transformations can be used to assess functional programming exercises. Using strat-
egies for assessing student programs solves the four problems of using testing for
assessment described above:

1. if a program is determined to be equivalent, it is guaranteed to be correct
2. we can recognise and report imperfections
3. we can determine which algorithm has been implemented
4. strategy-based assessment is carried out statically.

In contrast with our strategy-based assessment approach, test-based assessment tools
can give a judgement of all programs including incorrect ones. Test-based assessment
tools can prove a program to be incorrect by providing a counter-example. By adding
testing with QuickCheck to our assessment tool we get around this disadvantage. With
this addition, however, we do not solve the fourth problem we mentioned, and become
vulnerable to bugs and malicious software as well.

Programming Exercise and Model Solutions

We have applied our assessment tool to student solutions that were obtained from a lab
assignment in a first-year functional programming course at Utrecht University (2008).
We were not involved in any aspect of the assignment, and received the solutions after
they had been graded ‘by hand’ by the teaching assistants. In total we received 94
student solutions.
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The students had to implement the fromBin function. This is a typical beginner’s
exercise in Haskell. The fromBin exercise can be solved in various ways, using different
kinds of higher-order functions. We use the model solutions in Fig. 2. All three model
solutions are elegant, efficient, and use recommended programming techniques. We
added a fourth model solution that is simple, but inefficient:

This definition is similar to model solution 3 with tupling, except that the length of the
list is calculated in each recursive call. Hence, it takes time quadratic in the size of the
input list to calculate its result. The other model solutions are all linear. It is up to the
teacher to decide to either accept or reject solutions based on this model. This flexibility
is one of the advantages of our approach. The teacher can accept the solution and add
feedback, which is given to the student after she completes the exercise, explaining the
inefficiency.

Classification of Student Solutions

The most important features we want to assess in a student program are:

– Correctness: does the program implement the requirements?
– Design: has the program been implemented following good programming

practices?

We have partitioned the set of student programs into four categories by hand:

Good. A good program is a proper solution with respect to the features we assess
(correctness and design). It should ideally be recognised as equivalent to one of the
model solutions.
Good with modifications. Some students have augmented their solution with sanity
checks. For example, they check that the input is a list of zeroes and ones. Since
the exercise assumes the input has the correct form, we have not incorporated such
checks in the model solutions. The transformation machinery cannot yet remove
such checks: we have removed them by hand.
Imperfect. We reject programs containing imperfections. The solution to fromBin
given at the beginning of the “Automated Assessment with Programming Strate-
gies” section is an example of an imperfect solution.

Another common imperfection we found is the use of a superfluous case:

In this example, the second case is unnecessary.

Incorrect. A few student programs were incorrect. They all contained the same
error: no definition of fromBin on the empty list.
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Results

From the 94 student programs, 64 programs fall into the good category and 8
fall into the good with modifications category. From these 72 programs, our
assessment tool recognises 62 programs (86%). Another, and perhaps better,
way of looking at these numbers is that 62 student solutions are accepted based
on just four model solutions. All of the incorrect and imperfect programs were
not recognised by our tool in the experiment, that is, we did not have any false
positives. Some of these incorrect programs were not noticed by the teaching
assistants that corrected these programs.

Using our tool a teacher only needs to assess the remaining student solu-
tions. If our tool cannot recognise a program as an instance of a model
solution, we can use testing to find a counterexample, such as the empty list
for the incorrect student programs.

It may happen that a correct student solution does not correspond to a model
solution. If such a solution is elegant and efficient, a teacher could add it to the set of
model solutions. In the case it does not meet the requirements for a model solution, it is
up to the teacher to take a decision. For example, the following student solution uses
the tupling technique:

Instead of using a tuple or an extra argument, this solution ‘misuses’ the head of the list
to store the result. The teacher needs to decide whether or not this misuse is an
imperfection or not.

By checking all model solutions independently, we can tell which model
solution, or strategy, a student has used to solve the exercise. Our test showed
that 18 students used the foldl model solution, 2 used tupling, 2 the inner
product solution, and 40 solutions were based on the extra model solution with
explicit recursion.

It is unlikely that a solution is accepted by more than one model solution. In our test
all solutions were accepted by a single model solution. If model solutions are very
similar, it might be possible to use an ALT annotation to recognise both from a single
model solution.

Related Work on Assessment

The survey of automated programming assessment by Ala-Mutka (2005) shows that
many assessment tools are based on dynamic testing. In contrast, our assessment tool
statically checks for correctness. The survey provides many pointers to related work.
We describe the three closest approaches.

The PASS system, developed by Thorburn and Rowe (1997), assesses C programs
by evaluating whether a student program conforms to a predefined solution plan. A
drawback of the system is that it needs testing for this evaluation. Moreover, a solution
plan is much more strict compared to a strategy. For example, the system considers the
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definition of any helper function incorrect. Our approach allows a higher degree of
freedom by means of standard strategies and program transformations.

The approach of Truong et al. (2004) is also based on model solutions and abstract
syntax tree inspections. However, their primary use is to assess software quality and not
so much correctness. In addition to similarity checks, their system also calculates
software metrics, which are used to give feedback to a student. A drawback of their
approach is that it does not take the different syntactic forms of a model solution into
account. Moreover, the similarity check considers only the outline of a solution and not
its details.

Xu and Chee (2003) show how to diagnose Smalltalk programs using
program transformations. Their approach is rather similar to our approach.
The set of transformations for a functional programming language is much
smaller and simpler. We would like to implement their advanced method for
locating errors in student programs.

Program verification tools are used to prove programs correct with respect to some
specification (Mol et al. 2002). Automatic program verification tools provide as much
support as possible in constructing this proof. However, users always need to give hints
or proof steps to complete proofs for non-trivial programs, such as fromBin.

Experiment 2: Questionnaire

We have used our functional programming tutor in a course on functional
programming for bachelor students at Utrecht University in September 2011.
The course attracted more than 200 students. Around a hundred of these
students have used our tutor in two sessions in the second week of the course
after three lectures. Forty students filled out a questionnaire about the tutor, and
we collected remarks during the lab sessions. Table 1 shows the questions and
the average score on a Likert scale from 1 to 5. The first seven questions are
related and indicate how satisfied students are with the tutor. The last question
addresses how students value the difficulty of the offered exercises.

At the time of this experiment, there was no support for property-based testing in the
Ask-Elle tutor. The goal of this experiment was to analyse if students appreciate our
incremental approach, such as giving feedback on intermediate answers, and to dis-
cover which parts of the tutor need further improvements.

Reflection on the Scores

The scores show that the students particularly like the worked-out solution
feedback. A worked-out solution presents a complete, step-wise, construction
of a program. Furthermore, the kind of exercises are as expected by the
students. The results also show that the step-size used by the tutor does not
correspond to the intuition of the student. We also noticed this during the
experiment. The students often took larger steps than that the tutor was able
to handle.

The average of the first seven question gives an overall score of the tutor of 3.4 out
of 5. This is sufficient, but there is clearly room for improvement.
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Evaluation of Open Questions

In addition to questions about the usage of the tutor, the questionnaire also contained
some general questions, including:

1. We offer the feedback services: strategy hint, step hint, step, all steps, solution, and
we check the program submitted by the student. Do you think we should offer
more or different feedback services?

2. Do you have any other remarks, concerns, or ideas about our programming tutor?

The answers from the students to the first question indicate that the feedback
services are adequate. We received some interesting suggestions on how to
improve our tutor in response to the second open question. The remarks that
appear most are:

– Some solutions are not recognised by the tutor
– The response of the tutor is sometimes too slow

The first remark may indicate that a student believes her own solution is
correct, where in fact it is not. It could be that the program is incorrect or
contains imperfections, such as being inefficient, and hence is rejected by the
tutor. This remark addresses the fact that we cannot give feedback on student
programs that deviate from a path towards one of the model solutions. When a
student program deviates from a path towards a model solution there are three
possibilities:

– The student program is incorrect, and we should be able to detect this and give a
counterexample. This observation has resulted in adding property-based testing to
Ask-Elle (see the “Property-Based Testing” section).

– The student program is correct and uses desirable programming techniques, but our
tutor rejects it. In this case the set of model solutions should be extended with this
solution.

Table 1 Questionnaire: questions and scores

# Question Score

1 The tutor helped me to understand how to write simple functional programs 3.15

2 I found the high-level hints about how to solve a programming problem useful 3.43

3 I found the hints about the next step to take useful 3.05

4 The step-size of the tutor corresponded to my intuition 2.85

5 I found the possibility to see the complete solution useful 4.25

6 The worked-out solutions helped me to understand how to construct programs 3.55

7 The feedback texts are easy to understand 3.25

8 The kind of exercises offered are suitable for a first functional programming
course

3.90
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– The student program is functionally correct but contains some imperfections, such
as length (x : xs)−1 which should be simplified to length xs. In general, the tutor
cannot conclude that a student program contains imperfections when it passes the
tests but deviates from the strategy, and therefore it cannot give a definitive
judgement. However, after using an exercise in the tutor for a while, and updating
the tutor whenever we find an improvement, it is likely that the set of model
solutions is complete, and therefore unlikely that a student comes up with a new
model solution (see experiment 1 on the assessment of student programs). There-
fore, in this particular case we can give feedback that a student program probably
has some undesired properties.

The second remark is related to the step-size supported by the tutor. When a
student takes a large step, the tutor has to check many possibilities, due to the
flexibility that our tutor offers. We have addressed this problem by constraining
the search space and by introducing a special search mode that is used for
recognising steps. The technical details can be found in (Gerdes et al. 2012a)
and its accompanying technical report.

In addition to the described experiment, we also asked a number of functional
programming experts from the IFIP WG 2.1 group5 and student participants of the
Central European Functional Programming (CEFP 2011) summer school to fill out a
questionnaire. We asked for input about some of the design choices we made in our
tutor, such as giving hints in three levels of increasing specificity. Both the experts as
well as the students support most of the choices we made. The main suggestion we got
for adding extra services/functionality was to give concrete counterexamples using
testing for semantically incorrect solutions.

Classification for Student Programs

Based on the observations from the two experiments, we can now present a detailed
classification for student programs that takes correctness and design into account. A full
program is classified as correct if it has the expected input–output behaviour. A partial
program (with holes) is considered to be correct if replacing the holes with expressions
can lead to a correct program. We use the following categories for classifying submitted
student programs:

Compiler error (Error). Ask-Elle uses Helium and GHC to compile student
programs. Both compilers report syntax and type errors, which the student first
has to repair.
Matches model solution (Model). Ask-Elle can match the student program with a
model solution. The student is on the right track solving the exercise, or finished
with the exercise (if there are no more holes).
Counterexample (Counter). Based on one of the properties QuickCheck finds a
counterexample and reports a specialised message explaining to the student why
her program is incorrect.

5 http://foswiki.cs.uu.nl/foswiki/IFIP21/
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Undecided. Programs that cannot be matched with a model solution, and
without a counterexample, cannot be diagnosed as correct or incorrect by
Ask-Elle. Later we will separate this category into Tests passed, for pro-
grams for which all tests pass, and Discarded, for programs for which most
test cases are discarded, in almost all cases because the program is unde-
fined at too many places.

The first three categories correspond to steps 3–5 in Fig. 3. Ideally, the number of
programs in the Undecided category is small. Programs for which correctness is
undecided raise some interesting questions related to the quality of feedback reported
by the tutor:

– How many programs are classified as undecided?
– How often would adding a program transformation help with matching against

model solutions?
– How often would adding a model solution help?
– How often do students add irrelevant, with respect to the exercise, parts to a

program with the correct input–output behaviour?
– How many of the programs with correct input–output behaviour contain imper-

fections, such as redundant case-clauses, which are perhaps impossible to remove
automatically.

– How often does QuickCheck not find a counterexample, although the student
program is incorrect?

In the following subsections we take a closer look at why correct programs
cannot always be matched with a model solution, and why testing with
QuickCheck sometimes cannot find counterexamples for incorrect programs.
We give answers to the above questions at the end of the “Classification for
Student Programs” section.

Correct (but no Match)

The student program is correct. It is not matched against one of the model solutions
because:

1. The student has come up with a way to solve the exercise that significantly differs
from the model solutions.

2. Ask-Elle misses some transformations to transform the student program and a
model solution into the same program.

3. The student has solved more than just the programming exercise. For example, she
has added checks on the input, or elaborate error messages.

4. The student implementation does not use good programming practices or contains
imperfections.

Case (1) leads to adding the student solution as a new model solution to Ask-Elle.
This of course raises the question when a solution is a new model solution, and when
can a solution be transformed into an existing model solution. In general, it is
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impossible to develop a transformation system that can transform any two semantically
equal programs into each other (Voeten 2001). Our basic approach in Ask-Elle has been
to only add transformations to Ask-Elle about which we never want to give feedback to
students. Existing transformations are mainly related to style issues: the use of names,
explicitly specifying arguments, using local definitions, etc. This implies we do not
check such style issues in Ask-Elle, although we might use a tool such as HLint6 for
this purpose. In case (2) we should add the transformation to Ask-Elle or improve
existing transformations. In case (3) we probably want to report the fact that the student
has done too much, provided this can be recognised. Finally, the solutions in case (4)
can be regarded as residuals about which Ask-Elle cannot give a precise judgement.

We briefly reflect on categorising the 94 student programs from the assessment
experiment described in the “Experiment 1: Assessing Student Programs” section. The
62 recognized student solutions are classified as Model. However, the sanity checks in
the 8 good with modifications programs cannot be removed automatically, and are thus
classified as Tests passed; this is an example of case (3). The imperfect student
programs also end up in Tests passed and illustrate case (4). A counterexample is
found for all the incorrect programs. Because we only collected final programs for this
experiment, none of the programs is classified as Error or Discarded.

Incorrect (but no Counterexample)

QuickCheck will not always be able to report a counterexample for incorrect programs.
Besides finding a counterexample, the outcome of checking the properties can be:

– Tests passed. All test cases passed. By default, 100 test cases are run with random
values for each property.

– Discarded. Too many test cases are discarded. By default, more than 90% is
considered to be too many.

In case Tests passed, full programs that pass all test cases are likely to be correct; it is
very unlikely that programs with incorrect input–output behaviour pass all properties
without finding a counterexample. For partial programs (with holes) we have to be a bit
more careful since test cases that run into holes are discarded, and this may influence
the distribution of random values that are considered. Case Discarded is a clear
indication that the program is not yet defined enough. Whenever a hole is encountered
during evaluation, the test case will be discarded. The outcome is Discarded if less than
10% of the test cases can be used. In this case, the other at least 90% of the test cases
need parts of the program that have not been defined yet.

Experiment 3: Student Program Analysis

In the third experiment we analysed the log files of Ask-Elle, with 5950 log
entries from students attending a second-year university class at Utrecht

6 http://community.haskell.org/~ndm/hlint/
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University on functional programming in September 2013. Each of these log
entries consists of:

– An IP address
– A user name
– A requested service: a hint, a list of exercises, or the diagnosis of a submitted

student program

We are particularly interested in the diagnosis requests. 3466 log entries request to
diagnose a student program. We will call these log entries interactions. Besides the
above components and some more administrative information, such as the version of
Ask-Elle used, these interactions consist of:

– A name of a programming exercise (such as fromBin, dupli or repli)
– A student program
– The result of the diagnosis of the student program. The diagnose service

reports that there is a syntax or a type error, that the student program can
be completed into a model solution, that the student has finished the
exercise, that there is a counterexample for the student program, or that it
cannot diagnose the student program.

The 3466 interactions with Ask-Elle come from 116 out of the 285 students
registered for the course. Students seem to have worked top-down through the list of
exercises: the exercises dupli, range, and repli have been tried a lot; exercises that
appear at the bottom of the exercise list have been tried much less. In total, the students
worked on 26 different programming exercises. The log entries have been grouped into
exercise attempts: sequences of interactions resulting in either a solution to the exercise,
or the student giving up on the exercise. On average, students worked on 5.62 exercise
attempts (standard deviation 6.57). An exercise attempt consists on average of 5.29
interactions (standard deviation 6.12). We have divided the entire set of interactions and
exercise attempts into the categories given in the previous section. To classify an
attempt we use its last interaction. The overall results are shown in Table 2. The results
for the functions for which we received the most interactions (dupli, repli, and
compress) are shown in Table 3.

Table 2 Categorising student
programs

Category Attempts Interactions

Compiler error 142 (21.8%) 1920 (55.4%)

Model 221 (33.9%) 754 (21.8%)

Counter 33 (5.1%) 201 (5.8%)

Tests passed 235 (36.0%) 436 (12.6%)

Discarded 21 (3.2%) 155 (4.5%)

total 652 3466

recognised 221/477 (46.3%) 754/1345 (56.1%)

classified 396/652 (60.7%) 2875/3466 (82.9%)
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We want to recognise as many correct programs as possible with the model
solutions. We define the ratio of recognised model solutions by Ask-Elle:

Note that this ratio is a lower bound: there may be undetected incorrect
solutions in the Tests passed and Discarded classes. Programs with a compiler
error or for which a counterexample is found are incorrect and thus excluded in
this ratio. Currently, 56.1% of the interactions (and 46.3% of the attempts) are
recognised to be correct.

Similarly, we define the ratio of classified correct or incorrect programs by:

Table 3 Categorising student programs for dupli, repli, and compress

Exercise Category Attempts Interactions

dupli Compiler error 44 (31.2%) 508 (63.8%)

Model 65 (46.1%) 184 (23.1%)

Counter 4 (2.8%) 27 (3.4%)

Tests passed 27 (19.1%) 68 (8.5%)

Discarded 1 (0.7%) 9 (1.1%)

total 141 796

recognised 65/93 (69.9%) 184/261 (70.5%)

classified 113/141 (80.1%) 719/796 (90.3%)

repli Compiler error 12 (18.5%) 275 (67.2%)

Model 12 (18.5%) 40 (9.8%)

Counter 6 (9.2%) 15 (3.7%)

Tests passed 31 (47.7%) 62 (15.1%)

Discarded 4 (6.2%) 17 (4.2%)

total 65 409

recognised 12/47 (25.5%) 40/119 (33.6%)

classified 30/65 (46.2%) 330/409 (80.7%)

compress Compiler error 19 (31.2%) 270 (56.4%)

Model 11 (18.0%) 104 (21.7%)

Counter 4 (6.6%) 26 (5.4%)

Tests passed 24 (39.3%) 47 (9.8%)

Discarded 3 (4.9%) 32 (6.7%)

total 61 479

recognised 11/38 (28.9%) 104/183 (56.8%)

classified 34/61 (55.7%) 400/479 (83.5%)
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Of all interactions, 82.9% are classified as correct or incorrect. Of all attempts, 60.7%
are classified as correct or incorrect.

Some observations about the data:

– The number of syntax and type errors is high, even in completed exercise attempts.
In 21.8% of the exercise attempts, a student gave up on the exercise with a
compiler error in her last submission.

– Ask-Elle scores better on individual interactions. However, many of the recognised
inputs are relatively small and largely incomplete: input such as dupli • = • is
classified as Model.

– A possible reason for why the results for dupli are better than the results for the
other two exercises is that there was a bug in the renaming of variables, which was
found during and repaired after the experiment. This bug would fire sooner in
definitions with two parameters instead of one. Another reason can be that the
number of specified model solutions for dupli is higher than for repli (6 versus 4).

To increase the recognised and classified ratios, we analysed the set of programs in Tests
passed and Discarded to discover which program transformations or model solutions we
should add. The results are discussed in the “Correct (but no Match)” section. The
recognised ratio can also be increased by improving the properties that are used to find
counterexamples. During the analysis we found that some properties needed adjustments.
For example, changing the test case generators can result in discarding fewer test cases and
finding more counterexamples. This would decrease the number of programs in the Tests
passed and Discarded categories.

Program Transformation for Student Programs

For all 436 student programs of all exercises in the Tests passed category, we deter-
mined by hand whether or not they can be recognised if we would add or improve Ask-
Elle’s program transformations. We collected a list of program transformations that
could help to recognise student programs. Besides program transformations, we have
also investigated which programs require a new model solution, which programs
contain imperfections, and whether or not programs have the correct input–output
behaviour.

Adding model solutions to the tutor is very simple and requires no programming:
this can always be done for solutions that are not recognized. Improving the tutor’s
program transformations, however, takes a lot of effort. Semantic equality of programs
is undecidable, and there does not exist a normal form for programs.

This implies that there is no complete set of transformations to use when
transforming student programs and model solutions. In our analysis we have been
conservative with marking programs as new model solutions, because the goals is to
improve Ask-Elle’s matching capabilities. Admittedly, the distinction between a new
solution and a program that can be recognized from an existing solution is not sharp
and requires judgement from a teacher or expert.

Below we list the program transformations that have to be added or improved to
match a student program to a model solution. These program transformations are
standard techniques for normalising and optimising functional programs that are often
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found in compilers. These transformations are general and not specific for the exercises
we used. Note that one student program might require multiple transformations, require
a new model solution, and contain multiple imperfections.

1. Many students include type signatures in their programs. Although this is of course
good practice, our tutor does not recognise type signatures when matching against
a model solution. This is problematic for 94 student programs, many of which are
also unrecognised for other reasons.

2. Recognising more functions from the prelude and adding alternative definitions for
prelude functions helps in 37 cases. Using function definitions to perform a beta-
reduction step (performing the application of a function to an argument
(Barendregt 1984)), helps in 39 cases.

3. Dealing with function parameters uniformly. For example, the student program
palindrome = (λx → x == reverse x) with a lambda-expression is not matched
against the model solution palindrome x = x == reverse x, although these defini-
tions are equivalent. Not using function composition (-) is another example, e.g.,
dupli x=concatMap (replicate 2) x versus model solution dupli = concatMap -
replicate 2. Often, some form of eta-conversion (abstracting from an argument,
removing a lambda, or, the other way around, introducing a lambda (Barendregt
1984)), for example, replacing (λx → (+) 1 x) by (+) 1, is sufficient to match more
solutions. There are 8+54+13=75 occurrences of these transformations. We
expect such programs can be recognised by introducing eta-conversion, and by
normalising definitions with parameters to lambda-expressions (such as for the
palindrome example).

4. The alpha-conversion normalisation step contained a bug. This problem appears in
48 programs. An additional 19 programs are not recognised due to the use of a
wildcard pattern in either the student program or in the model solution (similar to
the student program).

5. Inlining a value defined in a where-clause, a let-clause, or a separate top-level
definition helps in 26 cases.

6. If an expression is guarded by an equality such as a⩵ b, we can replace all occurrences
of a by b (or b by a) in the expression. In 26 cases this transformation helps.

7. In 22 cases, removing syntactic sugar from the program would help, such as
converting the Haskell list-notation [1, 2, 3] to constructor application 1:2:3:[].

8. One program requires removing an unused (helper) definition. We cannot remove
an unused helper function in an incomplete program with holes, because such a
definition may still be used when a hole is further refined. The same problem holds
for inlining helper definitions.

9. Many more types of required transformations appear very infrequently, such as:
removing infix-notation, changing the order of arguments of a helper function,
changing the order of function bindings, transforming between guards, patterns,
and if-then-else conditionals, etc.

Besides these transformations, we also found that it is sometimes worthwhile to
introduce a more abstract version of a model solution to increase the number of student
programs that are recognised. We give an example in the “Abstract Model Solutions”
section.
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Results

We return to the questions posed in the “Classification for Student Programs” section.

– How many programs are classified as undecided? 17.1% of all interactions and
39.3% of all attempts end in Undecided. These results are better for smaller
assignments with many model solutions, such as dupli.

– How often would improving or adding a program transformation help with
matching against model solutions? Consider the 436 programs (interactions) that
were in the Tests passed category. By adding new transformations, Ask-Elle now
recognises 161 of these programs as model solutions. By fixing the alpha-
conversion transformation and improving other transformations Ask-Elle can
recognise an additional 96 programs.

– How often would adding a model solution help? Of the remaining 436–161−96=
179 programs in the Tests passed category, we expect to recognise 84 programs by
adding more model solutions. Note that to recognise some of these programs, we
need the improved or new program transformations from the previous point. For 16
of the 26 exercises on which students worked we need one or more new model
solutions. Three of these were used in ten or more student programs.

– How often do students add irrelevant, with respect to the exercise, parts to a
program with the correct input–output behaviour? In 3 programs a student deals
with cases that are excluded in the definition of the exercise, for example a case for
negative numbers in an exercise that states that the input number is at least zero.

– How many of the programs with correct input–output behaviour contain imper-
fections, such as redundant case-clauses, or an inefficient implementation? We
have found 86 such programs, including the 3 from the previous point. These
programs contain superfluous patterns or cases (20), for example for the empty list,
the singleton list, and a cons pattern, where the singleton pattern is covered by the
cons pattern and the empty pattern, or a helper function that directly (18) or
indirectly (4) corresponds to a prelude function, such as an instance ofmap without
a function argument that applies a particular function to each value in a list. Some
students delay pattern-matching (25), for example instead of pattern matching
directly on a list, to get access to the first element and the rest of the list, they
use the prelude functions head and tail.

– How often does QuickCheck not find a counterexample, although the student
program is incorrect? The remaining 179−84−86=9 programs are incorrect, but
QuickCheck does not find a counterexample. For the incorrect programs that
contain holes (3) there is no way to fill the holes to obtain a correct program, but
QuickCheck will not find counter-examples to these programs. Since most of the
tests are discarded, these programs end up in the Discarded category. An example
of such a program is dupli xs=map • xs. This definition is correct for the input [],
but will be incorrect for any non-empty input. However, all tests with non-empty
inputs are discarded. This error may be caught by considering additional properties
about the length of a duplicated list.

We give the version of Table 2 for interactions, taking the new and improved
program transformations and new model solutions into account, in Table 4. We move
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161+96+84=341 from Test passed to Model and move the 3 incorrect programs with
holes toDiscarded and the 5 incorrect programs without holes for which we can update
the properties of the exercise to Counter.

Thus the recognised ratio of interactions increases to 81.7% (was: 56.1%), and the
classified ratio to 92.9% (was: 82.9%).

Abstract Model Solutions

It is sometimes worthwhile to introduce a more abstract version of a model
solution to increase the number of student programs that are recognised. For
example, a number of our exercises require recursing over integers until a stop
condition is met. Consider the range exercise, in which a student should define
a function that enumerates all numbers in a given range. For instance, range 2
5 gives [2, 3, 4, 5]. We may assume the second integer to be larger than the
first. Here are some correct and equivalent definitions:

The first definition can be transformed in the second definition by means of program
transformation 6 (from the Program Transformation for Student Programs section). The
other definitions show various ways in which the arguments a and b can be used to
steer the recursion: going up from a to b, or down from b to a. The use of = =, >, or ≤ in
guards increases the number of variants, and there are many other constructs that
introduce variants. Just as foldr can be used to recognise uses of both foldr

Table 4 Categorising student
programs with improved program
transformations and new model
solutions

Category Interactions

Compiler error 1920 (55.4%)

Model 1095 (31.6%)

Counter 206 (5.9%)

Tests passed 87 (2.5%)

Discarded 158 (4.6%)

total 3466

recognised 1095/1340 (81.7%)

classified 3221/3466 (92.9%)
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itself as well as its explicitly recursive variants, we expect that many of the
variants of the range function can be inferred from a sufficiently abstract
definition for this exercise, such as:

We have yet to investigate laws for abstract functions such as condIterate, and the
kind of program transformations necessary to use this approach.

Related Work

This section describes the related work in the area of intelligent tutoring for learning
programming: related work on assessment has been discussed in the “Experiment 1:
Assessing Student Programs” section on the assessment experiment we performed.
Through the years several hundreds of papers on intelligent tutoring systems and learning
environments for learning programming have been published. This section can only
discuss a fraction of those. We provide references to review papers in which interested
readers can find more information about various aspects of tutoring systems for learning
programming.

Tools that support students in learning programming have been developed since the
1960s (Ulloa 1980; Douce et al. 2005). Some of these tools analyse incremental steps a
student takes (Anderson et al. 1986), and/or support the development of programming
plans (Soloway 1985; Johnson and Soloway 1985). The early work in this area
primarily targeted the programming languages Lisp and Pascal (including Pascal-like
imperative languages); a nice overview is given by Vanneste et al. (1996).

Our work is probably closest to the Lisp tutor and its successors (Anderson et al.
1986; Brusilovsky et al. 1996; Corbett and Anderson 2001). The main difference with
these tutors is that Ask-Elle offers class 3 exercises, and that adding a programming
exercise to Ask-Elle is relatively easy, and only requires authors to provide annotated
model solutions and properties in Haskell.

The next wave of programming tutors primarily targeted Java (Kölling et al. 2003;
Sykes and Franek 2004; Holland et al. 2009) and Prolog (Sison et al. 2000; Hong 2004;
Le et al. 2009), but tutors for other programming languages have been developed as
well, of course. A recent overview by Le et al. (2013) describes the various AI-
supported approaches that have been used in programming tutors.

Striewe and Goedicke (2014) review one such approach in detail: static analysis for
diagnosing student programs.

A current trend in the intelligent tutoring systems world is to use data-driven
techniques to give feedback and hints to users of intelligent tutoring systems and
other learning environments (Rivers and Koedinger 2014; Jin et al. 2012; Price
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and Barnes 2015). Feedback and hints are now generated from previous student
solutions to a programming exercise, and possibly a seeding expert solution, instead
of from a complete collection of model solutions for a program. The techniques used by
Rivers and Koedinger (2013) are close to some of the techniques we use: student
solutions to a programming exercise are represented in a solution space obtained by
applying program transformations to student programs to obtain programs in some
normal form. This approach is particularly useful when it is hard to come up with a
more or less complete set of model solutions. A possible disadvantage is the reduced
teacher control over feedback and hints.

Many of the techniques we use have been used in earlier tutors, but none of
these early or more recent tools combines strategy-based model tracing and
property-based testing to construct a programming tutor for class 3 exercises, in
which students get automatic feedback and hints on intermediate steps, and in
which teachers can easily add exercises and adapt feedback.

As far as we are aware, the kind of analysis performed in the “Experiment 3:
Student Program Analysis” section has not been performed before. Designers of
tutoring systems for learning Prolog (Johnson 1990; Looi 1991; Hong 2004; Le
and Menzel 2009) have analysed complete student programs in a similar
fashion, but we think also analysing intermediate diagnoses of student programs
is essential for determining the quality of an intelligent tutoring system. There
has been quite some work on semantic-preserving variations (Xu and Chee
2003; Wang et al. 2007), used to equate student programs with model solutions.
These variations correspond to our program transformations. The kind of
program transformations we apply differ significantly from earlier work, be-
cause we have a Haskell tutor instead of a tutor for imperative programming.

Conclusions and Future Work

We have shown the design of Ask-Elle, a tutor for the lazy, typed, higher-order
functional programming language Haskell. We have performed several experiments
with the tutor, and have shown how these experiments influenced the design of the
tutor. Ask-Elle supports the incremental development of programs for class 3 program-
ming exercises, offering feedback and hints while a student is developing a program.
The feedback and hints are automatically calculated from teacherspecified annotated
model solutions and from properties that a solution to the exercise should satisfy. The
main technologies we use to provide feedback and hints are strategy-based model
tracing and property-based testing.

Our experiments focus on determining the quality of the diagnoses of Ask-Elle.
Before we can use Ask-Elle to measure learning effects or learning efficiency, we first
need to make sure that the feedback is accurate and perceived as useful. We performed
several experiments in which we tested the accuracy and the perceived usefulness of the
analyses. We expect that with the implementation of the improvements obtained from
the analysis in our last experiment, the feedback of Ask-Elle is good enough to use it in
the daily practice of a course. Taking the improvements found in the last experiment
into account, we are able to recognise nearly 82% and classify nearly 93% of all
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interactions. We will use this version of Ask-Elle to measure learning effects and
effectiveness.

The second experiment shows that students highly value the worked-out examples
from Ask-Elle. This is in line with three decades of experimental research on learning
by observing and imitating examples in which an expert demonstrates how to solve a
problem versus learning by doing. For novices, who lack prior knowledge of a task,
observing examples or alternating example-study and problem solving is more effective
and efficient (leads to better learning outcomes in less time and with less effort)
compared to practising problem solving (Sweller et al. 2011). We advise teachers to
use Ask-Elle first to study the incremental development of programs for some example
exercises.

Ask-Elle is particularly useful for beginner’s exercises in Haskell, such as exercises
in which a student has to fill out a missing component, or develop a small program
performing a particular task. For such exercises, it usually suffices to construct about
five model solutions that cover the range of solutions students submit. We expect that
the hints of Ask-Elle help beginners realise that there are different ways to solve a
single problem. Ask-Elle is less suited for larger projects, or for programs that involve
I/O, since for these kinds of exercises the amount of possible solutions gets very large,
and specifying all possible model solutions becomes impractical. This is not a problem:
we think the kind of feedback and hints provided by Ask-Elle are very useful for a
beginner, and less useful for a more advanced Haskell programmer. For example, a
teacher might use Ask-Elle in the first part of a course, say the first 50–100 hours spent
by a student, and then use the standard compiler for Haskell, and provide feedback and
hints in a different way, or on a different level. To promote deep learning, we think
debriefing sessions after using Ask-Elle during a session or some period of time are
essential for student learning.

In this paper we described a tutor for learning the functional programming language
Haskell. We believe, however, that our approach based on programming strategies is
also applicable to other programming languages and programming paradigms, because
the concepts on which our approach is based, such as strategies, refinement rules, and
program transformations, are applicable to every programming language. A prototype
of a tutor for introductory imperative programming problems that is based on the same
technologies was recently presented by Keuning et al. (2014).

Ask-Elle shows that to extend a programming tutor with a new exercise, to which a
teacher wants to add a particular kind of feedback, a teacher only needs to construct
model solutions with feedback annotations, and does not need to know anything about
the internals of a tutoring system. This significantly reduces the burden to use such a
tutor.

Future Work

Ask-Elle diagnoses a student program to be correct (transformable to a model solution),
or incorrect (together with a counterexample). A teacher sometimes also gives more
subtle feedback such as: this is a good solution, but it is better to…We want to draw up
a feedback benchmark, in which we collect the kind of feedback that is usually given
by teachers on the kind of functional programs that are offered in Ask-Elle. We want to
study if we can incorporate this kind of feedback in Ask-Elle, for example by
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specifying undesirable transformations we may perform on a student program to
transform it to a model solution, and reporting these.

If a student program is syntactically incorrect, or if it contains a type error, we cannot
give any hints or feedback based on model solutions. Instead, in these situations we rely
on the Helium compiler for error messages. We want to investigate if we can use error-
correcting parsing and other compiler techniques to also give strategy-based model
tracing hints and feedback on syntactically incorrect or type-incorrect programs. We
expect that with a good error-correcting parser (Swierstra and Alcocer 1999) we can
deal with quite a few syntax errors, and we might be able to provide more feedback and
hints for a significant amount of the 55% of student programs that contain compiler
errors. We are less sure if a similar approach would work for programs with type errors.

If a student program is incorrect, we report a counterexample. A counterexample
does not tell a student where the error occurs in the program. We want to make use of
contracts (Meyer 1992) and types to propagate properties of solutions to the compo-
nents of a student program, to more precisely point to the part of a program that violates
a desired property.

We want to investigate if we can specify model solutions to programming exercises
as much as possible with abstract functions such as condIterate (see the Abstract Model
Solutions section) and variants of folds, and if we can use laws for these functions and
program transformations to reduce the number of model solutions, and to increase the
number of recognised programs.

We are also currently performing a systematic literature review on what kind of
feedback is generated in learning environments for programming, what kind of tech-
niques are used to generate feedback, and how adaptable feedback is. We hope to use
the results of this review to further develop Ask-Elle.
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