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Abstract There is an inextricable link between attention and learning, yet AIED
systems in 2015 are largely blind to learners’ attentional states. We argue that next-
generation AIED systems should have the ability to monitor and dynamically (re)direct
attention in order to optimize allocation of sparse attentional resources. We present
some initial ideas towards achieving this goal, starting with a 2×2 (direction of
attention × content of thoughts) organizational framework that encapsulates a range
of attentional states including overt inattention, covert inattention, zone outs, tune outs,
and focused, alternating, and divided attention. We then sketch out a three component
attentional computing architecture consisting of: (1) devices to monitor where attention
appears to be directed; (2) mechanisms for real-time attentional state diagnosis; and (3)
interventions to dynamically (re)direct attention. We describe two closed-loop atten-
tion-aware AIED systems to serve as concrete renditions of these ideas. We conclude
by arguing that AIED can achieve the dual goals of advancing basic research on the
science of learning while simultaneously developing highly-effective AIED systems by
Battending to attention.^

Keywords Attentional computing . Attentional awareness . Attention-aware learning .

Eye tracking .Mindwandering

Introduction

It is 2030. You are learning about some new statistical technique while being
driven to school in your self-driving car. The medium is an interactive text (yes,
people still read in 2030) with a multimedia graphics panel projected on the car’s
display. The technique is confusing, so you really have to concentrate. But it’s
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hard to stay focused. You think, BDespite all of this technology, why can’t they figure
out a way to directly implant the knowledge into my brain—like in the Matrix movies
that were popular 25 years ago. Wouldn’t that be more useful than making a car that
drives and a robot that cooks? I used to like driving and cooking, but not learning…^
Suddenly, the system presents you with an interactive simulation of the statistical
technique and asks whether you would like to see it in action on some sample data.
You agree, and a simulation ensues. Now you are really getting into it and things start
going well. A bit later, you then try to replicate the analysis on your own data, but
something does not appear to be right. The system suggests that you review a certain part
of the simulation in slowmotion, and interactively highlights key aspects of the content.
Essentially, it directs your attention and you realize that you were missing one key step.
You close your eyes, lower your head, and deeply reflect on what you have just learned.
The system is silent. It knows you are thinking of the learning task and were not tuned
out, despite all outward appearances. In other words, the system was responsive to
thoughts and feelings in addition to your words, actions, and knowledge.

This hypothetical scenario might seem like science fiction today, but could be
routine in the next 25 years. Some components are already in place, as current
intelligent systems already model knowledge (knowledge tracing and item-response
theory), actions (educational data mining and learning analytics), words (natural
language processing and discourse analytics), and even feelings and emotions (affective
computing and semantic mining). Attention, however, has not been modeled to nearly
the same extent. This is a critical omission, because learning requires attention (Olney
et al. 2015). Cognitive processes, such as prior knowledge activation, maintenance and
elaborative rehearsal, inference generation, causal reasoning, and comprehension, all
demand attentional resources. A lack of attention counters these processes and leads to
radically different behaviors and outcomes. Learners who cannot sustain attentional
focus are more likely to partake in self-distracting and other unproductive behaviors
(Damrad-Frye and Laird 1989; Forbes-Riley and Litman 2011). Involuntary lapses in
attention (or mind wandering—Smallwood and Schooler (2015)) can occur even when
learners make a concentrated effort to sustain attention. A lack of attentional focus,
either in the form of overt off-task behaviors (Baker et al. 2004) or more covert
attentional lapses in the form of mind wandering, lead to superficial understanding
rather than deep comprehension.

Sustaining attentional focus is not sufficient in and of itself. Learners must also
effectively allocate limited attentional resources in a manner that aligns with changing
task demands, and with the dynamics of the learning environment. For example, learners
must effectively alternate attention between the text and diagram when learning from
illustrated texts (Hegarty and Just 1993; Schnotz 2005). When diagnosing problems with
complex systems, learners must allocate information to critical components to deeply
comprehend the mechanisms (Graesser et al. 2005). Processing animations requires
learners to allocate attention in a manner that aligns with changes in the animation and
in concert with any accompanying narration (van Gog and Scheiter 2010). Effective
problem solving also demands the appropriate allocation of attentional resources
(Knoblich et al. 2005; van Gog et al. 2009). The list goes on. The ability to sustain and
appropriately allocate limited attentional resources is critical for effective learning.

We argue that next-generation AIED technologies should include mechanisms to
model and respond to learners’ attention in real-time. This is not a new idea; the idea of
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attention-aware user interfaces was proposed almost a decade ago in a special issue by
Roda and Thomas (2006). There was even an article on futuristic applications of
attention-aware systems in educational application (Rapp 2006). Prior to this, Gluck
et al. (2000) discussed the use of eye tracking to increase the bandwidth of information
available to an intelligent tutoring system (ITS) in an aptly titled paper BBroader
Bandwidth in Student Modeling: What if ITS Were BEye^ TS?^ Similarly, Anderson
(2002) followed up on some of these ideas by demonstrating how particular beneficial
instructional strategies could only be launched via a real-time analysis of eye gaze.
Most of the recent work on leveraging eye gaze to increase the bandwidth of learner
models has been pioneered by Conati and colleagues (Bondareva et al. 2013; Conati et
al. 2013; Conati and Merten 2007; Jaques et al. 2014; Kardan and Conati 2012; Muir
and Conati 2012).

Conati et al. (2013) provide an excellent review of much of the existing work in this
area. We can group the research into three categories: (1) offline-analyses of eye gaze to
understand attentional processes, (2) modeling of attentional states, and (3) closed-loop
systems that respond to attention in real-time. Offline-analysis of eye movements has
enjoyed considerable attention in AIED, cognitive psychology, and educational psy-
chology for several decades (e.g. Graesser et al. 2005; Hegarty and Just 1993; Mathews
et al. 2012; Muir and Conati 2012; Ponce and Mayer 2014), so this area of research is
relatively healthy. Online models of learner attention are just beginning to emerge (e.g.,
Bixler and D’Mello 2014, 2015; Blanchard et al. 2014; Bondareva et al. 2013; Conati
and Merten 2007; Drummond and Litman 2010; Kardan and Conati 2012). Closed-
loop attention-aware are few and far between (for a more or less exhaustive list, see
D’Mello et al. 2012; Gluck et al. 2000; Sibert et al. 2000; Wang et al. 2006).

In summary, despite earlier calls for the importance of incorporating eye gaze in
AIED learning environments (henceforth referred to as learning environments), uptake
has been slow. We think that this is due to complexities in modeling an evasive
construct like attention, the prohibitive costs of research-grade eye tracking, and the
sheer number of other important problems that need to be solved. However, things are
looking up in 2015. Recent research highlighting the central role of attention in learning
coupled with advances in mental state estimation and low-cost eye tracking suggests
that AIED can finally Battend to attention.^ However, it may need a roadmap to get
there. Towards this end, we sketch out initial ideas towards attention-aware learning
environments within the near term (5–10 years). We also suggest a few speculative
long-term (10–25 years) ideas. Thus, this paper is part theoretical, part technical, and
part forward-looking.

Organizing Framework

Attention can be thought of as a filter in that it has an object or location of focus. It can
be driven by top-down goal-directed control or captured by bottom-up stimulus-driven
processing (Egeth and Yantis 1997; Kinchla 1992). However, the locus of attention is
not synonymous with where attention appears to be directed, because a person can be
looking at one thing but thinking about something else entirely. In line with this,
Table 1 outlines a 2×2 (direction of attention × content of thoughts) framework to
organize attentional states during learning with technology. At a very basic level, we
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can distinguish between attention that appears to be directed towards the learning
environment or elsewhere. Overt inattention occurs when the learner directs attention
elsewhere, as when the learner intentionally goes off-task or is distracted by external
stimuli. Inattention can also be covert, when attention drifts away from the learning task
to content-unrelated thoughts even though the learner may appear to be concentrating.
These content-unrelated thoughts can be directed towards external factors (e.g., Bthe
temperature in the room^), task-factors (e.g., Bthis tutor agent looks funny^), or
something else entirely (e.g., BI wonder what’s for dinner^) (Stawarczyk et al. 2011).
Mind wandering can occur both intentionally (e.g., tuning out) and unintentionally
(zoning out).

An interesting situation arises when attention appears to be directed away from the
learning environment, but the focus of thoughts is content-related; we refer to this as
covert attention. For example, a learner could talk to a peer about a particular problem
(on-task conversation), could engage in help seeking behaviors, or could close one’s
eyes and deeply reflect on the content. In contrast, overt attention occurs when attention
is both directed toward the learning environment and consists of content-related
thoughts. This is also referred to as sustained attention, which can take on different
forms. Focused attention occurs when attention is directed towards a particular com-
ponent of the learning environment. Alternating attention consists of rapidly switching
attention between different interface components; for example, reading a sentence from
the text, then looking at the image, back to the text, and so on. Finally, divided attention
is the highest level of attention and involves simultaneously attending to multiple
components of the environment (e.g., attending to the narration of a multimedia
presentation while simultaneously processing an accompanying animated image).

We can now begin to think of a series of questions on attention during learning:

1. Does attention appear to be directed towards the learning environment or is it
directed elsewhere?

2. If attention is directed elsewhere, are the thoughts content-unrelated (overt inat-
tention) or are they related to the learning task (covert attention)?

3. If attention appears to be directed to the learning environment, is the learner
actually attending to the learning task (overt attention), or is the learner focusing
on off-task thoughts (covert inattention)?

Table 1 Organizing framework to differentiate between various attentional states

Content of thoughts Direction of attention

Learning environment Elsewhere

Content-related Overt attention (sustained attention)
Focused attention
Alternating attention
Divided attention

Covert attention
On-task conversation
Help seeking
Concentrating with eyes closed
Others….

Content-unrelated Covert inattention (mind wandering)
Tune outs
Zone outs

Overt inattention
Off-task
Distracted
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4. In the case of covert inattention, is mind wandering intentional (tuning out) or
unintentional (zoning out)?

5. In the case of overt attention, is attention focused, alternating, divided, and what is
the object or location of focus at any given time?

6. Is the current attentional state beneficial with respect to task demands? If not, how
can attention be redirected?

Architecture

We define an attention-aware learning environment as one that Bdetects and (re)directs
the learner’s attention in near real-time in order to achieve some desired outcome.^ This
requires an attentional computing (computing involving attention) layer with the
following three basic components: (1) a mechanism to monitor where attention appears
to be directed, (2) a mechanism to diagnose the underlying attentional state, and (3)
strategies to (re)direct attention as needed. We now sketch out basic mechanisms to
implement these three components with respect to covert inattention, overt inattention,
and overt attention. Covert attention is discussed later on in the paper.

Monitoring Where Attention Appears to be Directed

Eye tracking is perhaps the most direct method to identify where visual attention
appears to be directed. Decades of scientific evidence has supported an eye-mind link
that suggests a tight coupling between external information, attention, and eye gaze
(Deubel and Schneider 1996; Hoffman and Subramaniam 1995; Rayner 1998). In the
case of reading, this link has been demonstrated when lexical and semantic properties
of words on a page predict, for example, which words will be fixated on and which will
be skipped (Engbert et al. 2005; Just and Carpenter 1980; Rayner 1998; Reichle et al.
2003). In the context of scene processing, similar predictions can be made regarding
which (and when) objects in a scene will be fixated on (Brockmole and Boot 2009;
Brockmole and Henderson 2005, 2008; Currie et al. 2000). Although there are other
indicators, such as physiology, gestures, and so on, these are all undifferentiated signals
that encode information other than attention (e.g., arousal, communicative intent). As
such, eye gaze is the best near-term indicator of where visual attention appears to be
directed. We suggests that it might be strategic for near-term attentional-aware AIED
systems to focus on eye gaze, and we do so in the remainder of this article. In the long-
term, it is likely that brain-computer interfaces (BCIs) will have progressed to a point to
complement or replace eye gaze.

We can broadly categorize eye movements as being gaze-stabilizing (fixations on an
object) or gaze-shifting. Gaze-shifting movements can be further subdivided into
saccades (quick jerky movements from one object to another) or smooth pursuits
(movements tracking an object over time). There are other types of eye movements,
such as vergence, vestibular, drifts, and microsaccades, but these are of less relevance to
information processing tasks (Rayner 1998). Eye movements can be further divided
into global vs. local movements. Global movements are independent of any specific
visual stimulus (e.g., number of fixations, mean fixation duration), while local eye
movements are stimulus-dependent (e.g., first pass fixations—the first time a word is

Int J Artif Intell Educ (2016) 26:645–659 649



fixated on during reading). We can consider content-specific eye movements, such as
the number of fixations on a particular content word, as being a special subset of local
movements.

An eye tracker is a device that yields a series of eye gaze positions relative to some
location on a display. We need fixation filtering algorithms to convert these raw eye
gaze positions into a time series of fixations, saccades, and smooth pursuits (if
applicable). Figure 1 displays fixations (circles) and saccades (lines connecting circles)
obtained with the EyeTribe (see below) overlaid on a screenshot of Guru, a learning
environment for high-school biology (Olney et al. 2012).

The high cost of eye trackers has traditionally relegated gaze tracking to the lab. This
has rapidly changed with the recent advent (as late as 2013) of consumer-grade eye
tracking devices that retail at a fraction of the cost of research-grade eye trackers (e.g.,
the EyeTribe for $99 and the Tobii EyeX for $150 compared to the thousands of dollars
for a research-grade eye tracker). These new technologies afford the exciting possibility
of applying decades of lab-based research on eye gaze, attention, and learning to
develop attention-aware learning technologies that can be scaled for real-world use.
This unprecedented technological trigger is yet another reason to focus on eye tracking
in the short-term.

Diagnosing the Underlying Attentional State

Our goal is to diagnose the learner’s attentional state from time series of fixations,
saccades, and smooth pursuits. We consider different strategies/methods for the three
main categories of attention—overt inattention, mind wandering, and sustained
attention.

Fig. 1 Eye gaze obtained via the EyeTribe eye tracker overlaid on Guru tutor. Fixations are shown in circles
and saccades are shown as lines connecting fixations

650 Int J Artif Intell Educ (2016) 26:645–659



Overt Inattention We can diagnose overt inattention if eye gaze cannot be tracked for
a certain period of time. This simple rule is based on three assumptions—the lack of
valid eye gaze data is not due to gaze tracking errors (e.g., poor eye tracker calibration),
the eyes are open, there is a need for visual attention. It does not take much imagination
to conjure up counter-examples to these assumptions. For example, a misdiagnosis
would occur if a learner is concentrating with his or her eyes closed, especially if there
were no visual attention demands (e.g., the action is in the auditory channel).
Nevertheless, this simple rule is likely to suffice in most (but not all) circumstances,
as most learning environments do require focused visual attention.

Mind Wandering Detecting mind wandering is challenging as it is a form of ‘looking
without seeing’ in that the eyes might be appropriately externally fixated but very little
is being processed because attention is directed internally. Eye tracking is attractive for
mind wandering detection because well-known relationships between eye movements
and the external stimulus tend to break down during mind wandering. For example,
participants are less likely to fixate, re-fixate, and regress (i.e., look backward through
previously read text) when mind wandering compared to normal reading (Reichle et al.
2010). Blink-rates are also higher during mind wandering while reading (Smilek et al.
2010), ostensibly due to a reduction in the processing of external information during
reading (because eyes are closed during blinks) (Bristow et al. 2005; Volkmann 1986).
In line with this, researchers have had some success is using supervised learning
approaches to detect mind wandering from eye gaze (Bixler and D’Mello 2014,
2015). Some of the other modalities considered include: peripheral physiology
(Blanchard et al. 2014), speech patterns (Drummond and Litman 2010), as well as
interaction and context cues (Franklin et al. 2011; Mills and D’Mello 2015). To date,
mind wandering has been treated as a binary outcome, but it might be useful to
distinguish between intentional (tune outs) versus unintentional (zone outs) mind
wandering, as they need to be addressed somewhat differently.

Sustained Attention How can we detect if sustained attention is focused, alternating,
or divided?We can discriminate between the first two types depending on whether gaze
is focused on one component of the interface, or alternates among multiple components
across a window of time. We would need to divide the visual display into multiple
regions of interest (ROIs), and study the distribution of eye gaze on the ROIs across
short time windows. Our selection of ROIs will depend on the level of granularity
desired. For example, considering Fig. 2, we could select coarse-grained ROIs like the
tutor vs. image vs. background or more fine-grained ones, such as the tutor’s head,
tutor’s arms (for gesturing), an image chunk corresponding to enzyme, molecule A, etc.
We can similarly ascertain if the learner is attending to the appropriate ROI or is
correctly alternating between multiple ROIs.

In contrast to alternating attention among items, divided attention involves attending
to multiple items at the same time. Humans have difficulty dividing attention within the
same modality (e.g., looking at two items at the same time or listening to two sounds at
once). Hence, divided attention is mostly cross-modal and typically is audio-visual in
learning environments. We can track divided attention by the extent to which attention
is synchronized across modalities. For example, in the case of the Guru interface shown
in Fig. 2, the learner must attend to the speech of the animated tutor agent (auditory) in
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tandem with the information displayed on the multimedia panel (visual). This would
require shifting eye gaze when the tutor verbally refers to an image component or
makes an explicit effort to redirect attention (Be.g., look at the enzyme on the far left^).
The learner does not need to direct attention to every auditory cue of the tutor, but
missing a large number of cues more than likely signals divided attention failures.

Attention (Re)direction Strategies

We must finally close the loop by (re)directing attention if we determine that the learner
is in a suboptimal attentional state. This begs the question of what is ‘suboptimal’ vs.
‘ideal’ or ‘optimal.’

Like everything in learning, the ideal attentional state varies as a function of the
learner, learning task, and learning environment; hence, strategies to (re)direct attention
are likely domain-dependent. However, there are also general group-level effects, so we
can prescribe some high-level domain-independent strategies.

Overt Inattention There are many reasons why a learner might be overtly inatten-
tive—they may be bored, disinterested, distracted, and so on. We can address momen-
tary cases of inattention with simple audio-visual cues, say by appealing to the auditory
channel if the visual channel appears to be distracted. For example, the use of the
learner’s first name (e.g., BMary, what do you think about this problem^) in spoken
dialog systems should be effective in capturing attention a la the cocktail-party effect
(Cherry 1953). Of course, triggering too many of these attentional reorientation cues in
too short a period of time is likely to be annoying and even disruptive, so we would
recommend a Bless is more^ strategy. If inattention is persistent, then the learning
environment can suspend the current activity and suggest a new activity, a new topic, or
even offer the learner a choice of what to do next. If all else fails, the system might even
suggest that the learner take a break.

Mind Wandering Numerous studies have linked mind wandering with reduced perfor-
mance as reported in a recent meta-analysis (Randall et al. 2014). One initial effect of
mindwandering is that the learner fails to attend to a piece of information or a salient event
in the learning environment. This knowledge deficiency can impair subsequent compre-
hension, so it should be corrected in the near-term. We can take a direct approach by
reasserting the missed information (e.g., BLet me repeat that…^), or by directing attention
to specific areas of the display. We could also ask a content-specific question (e.g., BWhat
happens to the chromosomes when they duplicate^ in the case of Guru), or ask the learner
to complete a mini-activity. This form of interleaved questions and embedded activities
can reduce mind wandering (Szpunar et al. 2013) as can asking learners to generate self-
explanations (Moss et al. 2013). In general, the strategies to combat mindwandering share
the common goals of: (a) capturing attention, (b) giving the learner an opportunity to
reflect on the content/activity, and (c) providing an opportunity to correct any compre-
hension deficits due to mind wandering.

Sustained Attention Attention is a limited resource, so it should be beneficial to
(re)direct the locus of attentional focus if suboptimal patterns are detected. For example,
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when asked to diagnose malfunctions from descriptions of everyday devices (e.g.,
toasters, door locks), knowledgeable learners are more apt to focus attention on critical
components compared to their less knowledgeable counterparts (Graesser et al. 2005).
In this case, we could (re)direct attention to critical ROIs if learners appear to be
focusing on tangential ones. Similarly, learners often ignore or only shallowly process
hints provided by the learning environment (Muir and Conati 2012). We could address
this by presenting the hint via a different modality (e.g., i.e., auditory) (Anderson 2002).

We can also (re)direct attentional patterns as they unfold over time. In particular, when
processing an illustrated text, learners must alternate attention between the text and
diagram in order to construct a coherent mental model that integrates the two represen-
tations (Hegarty and Just 1993). Their comprehension might suffer if they attend to one
component (text or image) at the expense of the other for an extended period of time.
Similarly, a breakdown in the temporal synchronization of auditory and visual attention
when processing animations with narration should negatively influence comprehension.
In either case, we can use simple cues to engender appropriate attentional patterns. For
example, we can explicitly link keywords in a text with corresponding areas in an image
in order to effectively cue alternate attention (Scheiter and Eitel 2010).

In general, if we can theoretically specify which eye gaze patterns correspond to ‘ideal’
or ‘desired’ attentional states, then deviations can be detected and corrected (Anderson
2002; Conati and Merten 2007). However, it is sometimes difficult to specify how
attention should be deployed, especially in complex interfaces or when there are strong
individual differences. In these situations, we can learn how attention should be deployed
by performing a post-hoc analysis of the attentional patterns of successful vs. unsuccessful
learners (Bondareva et al. 2013; Kardan and Conati 2012), presumably crossed with low
vs. high domain knowledge. We can subsequently use the learned model to detect and
address deviations from optimal paths when new learners use the system.

Case Studies

We now turn to two case studies that highlight key components of the attentional
computing layer in attention-aware learning environments. The first focuses on overt
inattention while the second addresses covert inattention or mind wandering.

Case Study 1: Addressing Momentary Episodes of Inattention

GazeTutor (D’Mello et al. 2012) is learning environment for biology. It has an animated
conversational agent that provides spoken explanations on biology topics which are
synchronized with annotated images (see Fig. 2a). The system uses a Tobii T60 eye
tracker to detect inattention, which is assumed to occur when gazewas not on the tutor or
image for at least five consecutive seconds. When this occurs, the system (a) interrupts
its speech mid utterance, (b) directs learners to reorient their attention (e.g., BI’m over
here you know^), and (c) repeats speaking from the start of the current utterance.

We conducted a small study to evaluate the effectiveness of GazeTutor. Forty eight
learners (undergraduate students) completed a learning session on four biology topics
with the attention-aware components enabled (experimental group) or disabled (control

Int J Artif Intell Educ (2016) 26:645–659 653



group). We found that GazeTutor was successful in dynamically reorienting learners’
attentional patterns towards the interface (see Fig. 2b). Importantly, learning gains for
deep reasoning questions were significantly higher for the experimental group com-
pared to the control group, but only for high aptitude learners. The results are important
because they suggest that even the most basic attention-aware system can be effective
in improving learning, at least for a subset of learners.

Case Study 2: Detecting and Responding to Mind Wandering

We recently developed an intelligent computerized reading interface that detects and
corrects mind wandering in real-time. We used a supervised learning approach to detect
mind wandering. Data used to train the detector was collected as 98 learners (Kopp et al.
2015) read a 57-page scientific text on surface tension in liquids (Boys 1895). Learners used
the arrow key to navigate forward. Their gaze was tracked with a Tobii TX 300 eye tracker.
Learners self-reportedwhen they realized theyweremindwandering throughout the reading
session. A support vector machine was used to discriminate between mind wandering
(pages with a self-report—32 %) and normal reading from eye-gaze using methods
discussed in Bixler and D’Mello (2015). Importantly, we designed the model to generalize
to new learners rather than optimizing to individual learners. The model had a precision of
69 % and a recall of 67 %, which we deemed to be sufficiently accurate for our purposes.

The mind wandering detector was then integrated into the computerized reading
interface so as to provide real-time page-by-page estimates of the likelihood of mind
wandering for new learners. The main strategy consisted on asking comprehension
questions on the page where mind wandering was detected and providing opportunities
to re-read if necessary. In line with this, twomultiple choice questions were created for each
of the 57 pages.Mindwandering detection occurred when the learner attempted to navigate
to the next page. Eye gaze data from the previous page (the one just read) was submitted to
the mind wandering detector, which provided an estimate of the likelihood that the learner
was mind wandering. If the likelihood was determined to be sufficiently high (based on a
probabilistic prediction), one of the questions (randomly selected) was presented to the
learner. If the learner answered the question correctly, feedback was provided, and the
learner could advance to the next page. If the learner answered incorrectly, the system
encouraged the learner to re-read the page. The learner was then provided with a second

Fig. 2 a Gaze-tutor. Screen shot of interface on left. b Gaze before and after intervention on right
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(randomly selected) question after re-reading. This second question could either be the
same question or the alternate question for that page. Regardless of whether or not the
learner answered the second question correctly, the system presented the learner with the
next page of text. The efficacy of the intervention is currently being tested in an experiment
that compares learners who received the intervention to a yoked-control condition.
Preliminary results suggest that the system is effective in correcting comprehension deficits
when the probability of mind wandering is high.

General Discussion

Attention is one of the core facets of human intelligence. The ability to monitor, share,
and direct attention is a hallmark of human-human communication. Communication
essentially breaks down when there is a lack of joint attention amongst communicators.
The importance of attention also extends beyond human-human communication into
the realm of human learning. Learners must have the ability to dynamically allocate
attentional resources throughout the learning process if they are to learn effectively
from 21st century learning environments, which are increasingly complex in a world
mired with distractors (e.g., Facebook, twitter, email). However, learners are notori-
ously inadequate at sustaining and allocating scarce attentional resources in a manner
that optimally meshes with the affordances of the learning environment and the
learning task. AIED systems have come a long way in delivering individually-
optimized instruction by modeling various aspects of the learner (e.g., knowledge,
affect, disengagement, persistence—see edited volume Sottilare et al. (2013)), but they
have yet to meaningfully model learner attention.

Building on the ideas of early visionaries (Anderson 2002; Gluck et al. 2000; Sibert et al.
2000), and on recent work on learner attentional modeling (Bondareva et al. 2013; Conati et
al. 2013;Kardan andConati 2012),we propose one foundational vision for the next 25 years
of AIED. This vision consists of attention-aware learning environments that monitors and
dynamically adapts to learner attention, thereby coordinating tacit (what the learner knows),
external (what the learner does), and internal (what the learner attends to) behaviors.
However, a futuristic vision without a plan to get there is not very useful. Therefore, we
offered the following two basic contributions to scaffold the field of attentional-aware
AIED: (1) we proposed a multicomponential organization of attention that integrates where
attention appears to be directed with the content of internal thoughts, and (2) we fleshed out
a three layer attentional-computing architecture consisting of eye tracking, in order to
monitor where attention appears to be directed, computational techniques for real-time
attentional state diagnosis, and interventions to (re)direct attentional focus.

We note two points of caution. The first is that the entire endeavor—from eye
tracking, to attentional diagnosis, to identifying the ideal attentional state for a given
situation, to prescribing the correct strategy—is fraught with ambiguity. Hence, atten-
tion (re)direction strategies should be used sparingly (i.e., when there is high confi-
dence that the attentional state diagnosis is correct), should be ‘fail-soft’ in that they are
not disruptive or harmful if delivered incorrectly, and should be implemented within
probabilistic frameworks that can make decisions under uncertainty. Second, there is a
temptation to hyper-optimize models to individual interfaces and tasks. This can lead to
highly accurate models in the short term, but very few generalizable insights.
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Therefore, generalizability and broad transferability of principles need to be key design
constraints, not casual afterthoughts.

The paper has only scratched the surface on what is possible in an attentional-aware
AIED systems. A small set of open questions and issues are listed below.

1. Can we further increase scalability by replacing already scalable consumer-grade
eye trackers with even more scalable web-cam based eye tracking (Sewell and
Komogortsev 2010)?

2. How do we integrate eye gaze, which provides information on where attention
might be focused, with measures of physiological arousal or alertness (e.g.,
electrodermal activity)?

3. Can we incorporate information on the external context (i.e., measured via
microphones and cameras) to discriminate between covert attention and overt
inattention? (e.g., can we use speech recognition to discriminate between off-task
vs. on task conversations?)

4. Can covert inattention be detected by directly monitoring brain signals? More
broadly, can brain signals be used to complement or even replace existing
modalities to track attention?

5. How do we integrate physiological sensing, context modeling, behavioral sens-
ing, action dynamics, language and discourse to obtain unified multicomponential
attentional models?

6. How can we make even finer-grained distinctions between the different forms of
mind wandering (e.g., zone outs vs. tune outs)?

7. What is the best way to integrate models of attention with models of knowledge,
affect, motivation, and metacognition?

8. How do we incorporate individual differences in Bideal^ attentional patterns to
increase adaptivity by tailoring attention (re)orientation strategies to the individual
or to groups of individuals? And can these individual differences be automatically
detected on the fly?

9. How do we design domain-independent attention diagnosis and (re)direction
strategies for integration into generalized AIED frameworks?

10. Instead of merely reacting to attentional states, how can we leverage lessons from
fields that are very successful at capturing, directing, and maintaining attention
(e.g., film, art, games, and literature)?

11. As the models become increasingly complex, they run the risk of regulating too
many aspects of learner behavior. What is the most effective way to balance the
trade-off between external regulation and self-regulation of learning?

12. What can be learned from attentional management strategies of expert teachers,
and how do we incorporate these insights into our models?

13. What is the best way to leverage recent advances in classroom learning analytics,
such as modeling attention of entire classes of students (Raca et al. 2015), or
automated analyses of teacher instruction (D’Mello et al. 2015), into attention-
aware AIED?

We believe that addressing these questions while implementing attention-aware
learning environments should yield fundamental insights on attentional processes
during learning. Thus, in addition to the practical goals of improving learning with
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innovative technologies, research on attention-aware AIED will also make foundational
theoretical contributions to the science of learning. Indeed many interesting discoveries
await discovery once we give eyesight (attentional computing) to the blind (current
learning environments).
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