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Abstract
Intelligent tutoring systems (ITSs) may augment military training systems and miti-
gate existing limitations in training personnel and resources. A study was conducted 
to investigate the effectiveness of an embedded rifle marksmanship ITS for Moving 
Targets (MT-ITS). MT-ITS has two main components: (1) a Smart Sight System 
that provides a perceptual cue to help trainees adjust their point of aim to account 
for a target’s speed, direction of movement, and distance, and (2) a performance-
based algorithm that delivers shooting performance feedback to trainees.

The MT-ITS was tested in an experiment where participants engaged mov-
ing targets in a virtual shooting range. Moving targets were presented at different 
speeds, direction of movement, and distances. Two types of marksmanship training 
were compared: with ITS and without ITS (a standard training). The ITS training 
group produced better hit rate and aiming accuracy scores than the standard training 
group, requiring less practice to achieve asymptotic results. Implications for the de-
sign of embedded trainers with ITS for marksmanship specifically and for training 
motor skills in general are discussed in the context of future research directions.
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Introduction

Defence Research and Development Canada (DRDC) provides science and technol-
ogy advice to the Canadian Armed Forces (CAF) including the evaluation of embed-
ded computer-based technologies to improve training effectiveness. This study aims 
to develop a proof-of-concept embedded Intelligent Tutoring System (ITS) that assists 
marksmanship skills training. An ITS is commonly defined as a computer-based sys-
tem that provides customized and immediate feedback to trainees (e.g., Nwana,1990; 
Psotka et al., 1988; Sleeman & Brown, 1982). ITS incorporates some form of artifi-
cial intelligence (AI) and it requires minimal to no support from a human instructor. 
It usually includes four major components (Sottilare et al., 2014): (a) a domain model 
that contains expert knowledge and some typical errors and deficiencies that students 
typically experience; (b) a learner model that represents the current state of knowl-
edge of the user, letting ITS know who it is teaching; (c) a tutor model that enables 
ITS to know how to teach by taking inputs from domain and learner models; and (d) 
a user interface that registers and converts student’s inputs from one form (texting, 
clicking, voice) to another (text, graphs, videos).

A training system is embedded when its components constitute an integral part of 
a device or piece of equipment. Witmer & Knerr (1996) defined Embedded Training 
(ET) as “a training concept … built into or added to a weapon system.” The two main 
benefits of embedded trainers are that they are (1) embedded into operational hard-
ware so the training they provide is an accurate representation of their equipment, and 
(2) they are more accessible than formal, instructor-lead training, which increases the 
amount of training time students can realistically receive.

Depending on the structure and methods of AI, an ITS can be classified into four 
types: simple reflex, goal-based, model-based, and learning systems (Russell & Nor-
vig, 2016). The simple reflex type includes the basic response systems that can react 
directly to the current environment. Such systems can be built using simple if-then 
rules and do not usually require the use of elaborate task representations or cogni-
tive architectures. The other three types of models usually require cognitive architec-
tures or task representations. Goal-based systems contain formal descriptions of their 
intended final states and selection mechanisms that reduce the discrepancy between 
their current states and their goal states. Learning system type ITS includes mecha-
nisms that allow them to autonomously gather information and update their internal 
states. The ITS presented in this paper is a training system that combines elements 
of a simple reflex system with some more advanced mechanisms of a goal-based AI 
system. The following section provides a background in the field of motor-cognitive 
training systems, thus helping to place our ITS in the context of other similar sys-
tems, show its advantages and limitations, and discuss how our system can updated 
to become a learning system.
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Intelligent Tutoring Systems for Motor-Cognitive Skills

Intelligent Tutoring Systems have been successfully used in multiple academic, 
industrial, and military settings (for reviews, see Kulik & Fletcher 2016; Nkambou et 
al., 2010; Nwana, 1990; VanLehn, 2011). Nevertheless, the majority were designed 
to train knowledge-based subjects—such as mathematics, economics, or computer 
science (e.g., Steenbergen-Hu & Cooper 2014). The use of an ITS to train cognitive-
motor skills has remained limited up until last few years.

Cognitive-motor skills are hard to train and evaluate outside of a controlled envi-
ronment, requiring portable training tools to record and track body movements and 
assess trainees’ motor performance in real time (Goldberg et al., 2018; Hodaie et 
al., 2018). However, recent advances in portable technologies, large data process-
ing, and sensor development lead to the emergence of new ITSs in such diverse 
fields as medicine (Almiyad et al., 2017; Alvarez et al., 2015; Skinner et al., 2018), 
sport (Lee & Kim, 2010), driving (Ropelato et al., 2018), and industry (Hodaie et 
al., 2018; Marinescu-Muster et al., 2021; Westerfield et al., 2015). Despite the wide 
proliferation of these applications, limited amount of them was tested and reported 
in the research field of AI in education (Santos, 2016), the observation shared by 
another recent review of psychomotor intelligent tutoring systems for training motor-
cognitive skills (Neagu et al., 2020).

In military, Mulgund and colleagues (1995) developed an Intelligent Flight 
Trainer (IFT) aimed at training pilots for helicopter flight proficiency. The tutor 
in this instance provided coaching and performance monitoring functions through 
a synthetic voice generator. The testing of the IFT in a training simulator showed 
that the system was successful in helping to improve skills related to maneuvering a 
helicopter. Rickel & Johnson (1999) investigated a virtual agent-based system that 
can be used as both a synthetic instructor and a virtual team member. Their training 
system, “STEVE” (Soar Training Expert for Virtual Environments), was designed for 
training procedural tasks related to mechanical maintenance and repair of naval ship 
equipment. The synthetic agents guide the trainees in a shared virtual environment, 
interacting through a voice processing module. STEVE proved to be a useful addi-
tion to naval operating procedures training despite its limited speech production and 
a somewhat narrow selection of tasks.

More directly related to the current study is work examining deployment and 
testing of ITSs to improve motor-cognitive marksmanship skills. Goldberg and col-
leagues (2018) developed an embedded, portable ITS using the Generalized Intel-
ligent Framework for Tutoring (GIFT) architecture. The framework allows a quick 
authoring and developing of training applications (Sottilare et al., 2012). Goldberg 
and colleagues analyzed marksmanship performance in a shooting simulator, col-
lecting data from multiple sensors embedded into an instrumented weapon (e.g., butt 
pressure, respiration rate, barrel movement, trigger squeeze pressure). While the sys-
tem is still being validated experimentally (including user-interface testing), it is one 
of a few training systems that can assist with teaching a cognitive-motor skill.

Another ITS-based marksmanship tool was developed by Yeh & Ritter (2012). 
Their Declarative to Procedural Moving Target Tutor (D2P/MTT) helps trainees to 
learn to engage moving targets. D2P/MTT uses a step-by-step introduction to the 
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basics of shooting moving targets, such as estimating the distance to the target, the 
speed of the target, and the angle of approach. Each of these elements is introduced 
individually to trainees, allowing to transform factual knowledge that later become 
part of their procedural knowledge. Later in training, these elements are combined, 
and the process repeats until the trainees achieve a target level of performance in 
adjusting a point of aim for distance and speed of the target. In experiments, the 
D2P/MTT training tool was tested with both college students and active-duty Marine 
instructors. The D2P/MTT-based training was compared with typical in-class instruc-
tions and showed an advantage in boosting participants’ procedural knowledge of 
adjusting a point of aim (Yeh & Ritter, 2012).

Even though the development of ITSs for training motor-cognitive skills is 
increasing, most of training systems described above were not tested experimentally. 
The tutor presented in this paper attempts to fill this gap by evaluating and compar-
ing an ITS-based training with a standard training technique modelled after currently 
used by CAF marksmanship training.

The Moving Target ITS

The tutoring system presented in this paper helps shooters to improve marksmanship 
skills required to engage moving targets. The task includes several motor-cognitive 
skills and drills that are part of standard marksmanship training: estimating distance 
to the target, estimating the speed of the moving target, adjusting point of aim (POA) 
for a moving target, analyzing a missed shot, and learning tracking techniques. (for 
review, see Schendel & Johnston 1983). Below, we describe the MT-ITS, includ-
ing the functional components and mechanisms, and how they interact in a training 
context.

Moving-Target ITS (MT-ITS) is a software-based tutor embedded into the digi-
tal sight of an instrumented rifle. The components of the tutor are shown in Fig.1. 
The system is positioned into Virtual Immersive Soldier Simulator, a test bed that 
provides the virtual setting for the tutor (VISS; Fig.1, top panel). The tutor includes 
an instrumented rifle with a digital sight and a top-mounted tracking system (Fig.1, 
bottom-left panel), and the Smart Sight System that assists trainee to properly aim 
moving targets (Fig.1, bottom-right panel). The VISS environment allows a track-
ing system to pinpoint the orientation of the rifle and the shot location. When a shot 
is fired at a moving target, the target continues to move during the time of flight of 
the bullet. Thus, it is necessary to aim in front of the target, otherwise shots will fall 
behind it. This aiming in front, to anticipate the movement of the target, is known as 
lead. The amount of lead depends on the speed and distance to the moving target; the 
Smart Sight System is responsible for processing and delivering this information to 
trainees.

MT-ITS’s two feedback mechanisms—a real-time correction of aiming (deliv-
ered by the Smart Sight system) and an after-action feedback—comprise the main 
software components of MT-ITS, representing the “intelligence” of the system. The 
former guides trainees to adjust their target-tracking behaviour in real time and the 
latter provides a customized feedback after each target engagement. Both mecha-
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nisms were developed using Application Scripting Interface of Virtual Battle Space 
2 (VBS2) simulation package (bisimulations.com). The VBS2 scripting language is 
capable of a wide range of functions available through hundreds of script commands, 
which satisfy the requirements of the feedback that MT-ITS provides.

For the real-time correction, the Smart Sight System calculates the optimal point 
of aim and presents it to a trainee in a form of red rectangle superimposed on the 
target, as shown on the bottom-right panel of Fig.1. The small red square shows the 
qued aiming location adjusted for speed and distance to the target. MT-ITS presents 
the same type of moving target (generated as a combination of distances, directions 
of movement, and speed) with and without the aiming point sequentially, repeating 
this combination of qued and unqued presentation for all types of targets. The pro-
cess assumes that multiple instances of targets and corresponding aiming points are 
transferred into memory, serving to improve and automate trainee’s performance. 

Fig. 1  Components of MT-ITS: VISS (top image), instrumented rifle (bottom left), and Smart Sight 
(bottom right). (Note: The bottom-right panel shows Smart Sight System aiming reticle with full target 
telemetry (range, speed, Military Grid Reference System location), shown as a vertical arrow and a 
calculated point-of-aim indicator to hit the target’s center of mass shown as a red box.)
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This training mechanism is based on both theoretical grounds and practical consid-
erations. The method of repeated presentation of multiple cued instances is based on 
the Instance Theory of Automatization (Logan, 1988), which assumes that practice 
leads to storing of multiple instances of trained material in memory, thus increas-
ing the speed of retrieval and contributing to effortless performance. On a practi-
cal side, MT-ITS incorporated features that were added on advice and suggestion 
of experienced combat arms soldiers of the CAF. These soldiers were recruited to 
provide feedback and advice regarding the design of MT-ITS and its consistency with 
CAF marksmanship training requirements. The feedback prompted a comprehensive 
design modification addressing nearly all aspects the MT-ITS (e.g., target parameters, 
settings of virtual environment, feedback form, and many others).

For the after-action feedback, MT-ITS records a trainee’s performance for each 
target engagement, including hits, misses, position of shots, shot spread (grouping), 
and the locations of the points of impact. This after-action feedback is delivered in 
two ways: (a) a sequential presentation of each shots fired (Fig.2, left panel) and 
(b) a statistical summary of all shots fired in the same trial (Fig.2, right panel). The 
literature shows that blocked feedback (summarized by 5, 10, or 15 trials) improves 
the retention of skills in transfer studies (Schmidt et al., 1989). Moreover, presenting 
feedback on only the immediately preceding trial might be detrimental to training 
effectiveness (Lavery & Sudden, 1962); one possible explanation is that immediate 
feedback might overwhelm trainees with information and foster heavy reliance and 
dependence on this form of feedback. For the same reason, the cued trials were com-
bined with non-cued ones.

The feedback that MT-ITS provides are of two types: Knowledge of Results (KR), 
which provides information about the outcomes of the action or the movement, and 
Knowledge of Performance (KP), which provides information about the nature of the 
action or movement (for further details see Schmidt et al., 2018). Both types of aug-
mented feedback are important for learning a motor skill effectively, but most studies 
up until last twenty years employed KR due to difficulties of capturing and analyzing 

Fig. 2  A training session feedback screens in MT-ITS training condition. The left panel shows a feed-
back screen generated after each shot and the right panel shows a summary of all shots fired at the 
same target
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body motions (Santos, 2016). While MT-ITS was envisioned as a training tool incor-
porating both types of feedback, its current implementation principally presents KR 
feedback in the form of shot statistics. KP feedback is partially supplied through the 
Smart Sight, where trainees adjust the aiming point. The possibility of enhancing KP 
feedback in MT-ITS is reviewed in the Future Works section.

In terms of standard ITS component described in Introduction, MT-ITS incorpo-
rates aspects of the domain and tutor models of ITS, as well as a user interface. The 
learner model is largely undeveloped in this iteration of the system.

The MT-ITS’s domain module includes some key metrics of optimal marksman-
ship performance, as considered by expert marksmanship instructors: group size1 
(the distance between the two most distant shot locations), distance between the 
mean point of impact and the target’s centre of mass, and hit rate. These metrics 
are compared with observed shooting performance and then incorporated into after-
action feedback.

The learner model requires details of each trainees’ knowledge states and, as such, 
it is not well-elaborated in MT-ITS. We limited the applicability of our training tool 
to a novice shooter. Consequently, the selection of the training settings was tuned for 
this specific group. With a future plan to include a detailed evaluation of trainees’ 
marksmanship level, MT-ITS can be modified to customize its training difficulty, 
depending on the trainee’s skill and knowledge level.

The tutor model takes input from the domain and the learner’s models in order 
to customize its feedback to trainees. MT-ITS incorporates this information in both 
forms of feedback it gives to trainees: as a guide to adjust point-of-aim in real time 
and as a detailed performance feedback in after-action review. In its previous ver-
sion, MT-ITS provided some tips and corrections as an after-action feedback (Zotov 
et al., 2017). The content of tips was based on the discrepancy between observed 
performance and expected optimal performance. For example, if most of the shots 
were lagging the target, the tip would be “Your aim is generally lagging behind the 
ideal aimpoint – increase lead significantly”. The tips were not included in the pres-
ent version due to their limited training value (the issue is addressed in the General 
Discussion section).

The goal of the user interface is to convert the formats of trainee’s inputs from one 
form to another. MT-ITS records trainee performance as data in VBS2 script format 
and converts it to texts, images, and diagrams presented to trainees in the two forms 
of feedback outlined above.

Overall, MT-ITS aims to improve a standard training Small Arms Training (SAT) 
simulation ranges used by Canadian Armed Forces for marksmanship training. The 
differences between two training settings are in using Smart Sight System and the 
amount of feedback that participants receive. What follows is our empirical efforts to 
compare training that includes MT-ITS with training that does not. The objective was 

1  It should be noted that the metric of group size should only be used as a measure of good or poor per-
formance when the shooting task requires repeated, precise fire, as when asking to fire repeatedly at a 
stationary target. Many tasks such as engaging moving targets, snap shooting or Close Quarters Battle 
do not require small groupings to be effective but instead quick, accurate shots at various points of aim.
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to test these two training methods using the same virtual environment and the same 
amount of training.

Experiment

Two training methods were tested in the experiment: an ITS-enabled training that 
used MT-ITS tool and a Standard training that replicated a typical training that sol-
diers of Canadian Armed Forces would receive in a SAT setting. The differences 
in these two training conditions were the types of feedback. For Standard training, 
trainees received no feedback during target engagement and limited feedback after 
engagement, which consisted of showing target sheet with points of impact marked. 
For the ITS-enabled training, trainees received aiming feedback in the form of the 
Smart Sight and a detailed after-action feedback, described above. The experimental 
design includes two control sessions (pre-training and post-training) and a training 
session between them, thus the difference between the methods can be tested in the 
analysis of pre- and post-training sessions. The analysis of the training session adds 
some details of the learning dynamics.

Method

The experiment included three sessions: (1) a pre-experimental session (reading and 
signing information forms, engaging in a warm-up exercise), (2) an experimental ses-
sion consisting of pre-training (shooting different types of moving targets), training, 
and post-training blocks (similar to pre-training) and (3) a post-experimental ses-
sion, in which participants filled out training evaluation questionnaires. Table1 shows 
the duration of each part; more detail will be provided below. Experienced combat 
arms soldiers of the Canadian Armed Forces were recruited to provide feedback and 
advice regarding the design and features of ITS-enabled training and Standard train-
ing conditions.

Participants Twenty-eight participants were recruited for this experiment. All 
participants were from Reserve Canadian Army units. The participants were split 
equally into two groups corresponding to the two training conditions (Standard and 
MT-ITS) with fourteen participants in each group. The participants had little to no 
experience with firearms and had served less than two years in the Canadian Armed 
Forces2. Defence Research and Development Canada (DRDC) Human Research Eth-
ics Board reviewed and approved the study protocol.

Apparatus and Stimuli The study was conducted in the VISS – a DRDC-built 
research testbed used to examine marksmanship performance and small arms-related 
technologies. The simulation is based on Bohemia Interactive Simulations’ Virtual 

2  By absolute numbers most CAF soldiers are not considered “Combat Arms”. Combat Arms trades in the 
CAF only include Infantry, Combat Engineer, Armoured and Artillery. The majority of people that wear an 
army uniform are support trades. Units rotate through “High Readiness” or “Pre-Deployment Training” as 
needed and weapons training is increased during these periods. In the case of the Reservist soldiers used 
for this experiment it is not uncommon for soldiers with less than 2 years of service to have little experi-
ence with firearms.
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BattleSpace 2 (VBS2) software, with custom modifications that allow a fully motion-
tracked mock weapon to aim at and engage virtual targets in a CAVE-like back-
ground environment (Fig.1, top panel) spanning roughly 150 degrees of the shooter’s 
field of view, projected across three 3m screens. An OLED micro-display fitted into 
a Trijicon Advanced Combat Optical Gunsight housing acted as a simulated weapon 
sight and was mounted on a modified airsoft rifle made by WETech, patterned after 
a short-barrelled 10.3” M4 variant. Though the mock rifle did not physically recoil 
when rounds were fired, virtual software recoil was added to the simulation to pre-
vent participants from rapidly firing multiple rounds without having to re-acquire the 
target. Reflective markers on the weapon allowed it to be tracked by a NaturalPoint 
OptiTrack infrared camera system. The shooter was centred in the simulator, roughly 
three meters away from the background screens, in a seated-supported position to 
reduce discomfort and fatigue-induced aiming instability over the course of long trial 
sessions.

The virtual environment consisted of an outdoor field scene with a long wall per-
pendicular to the shooter located either 100 or 250m away, with two gaps cut into it 
(Fig.3). A human target appeared in one of the two gaps and attempted to run across 
it at one of two speeds. The participant’s task was to hit the target as quickly and as 
accurately as possible before it reached the end of the gap. To equalize exposure time 
between slower-moving and faster-moving targets, gaps were 22 and 40m wide. The 

Sessions Blocks Dura-
tion 
(min)

Notes

Pre-experimental Pre-training 15 Reading Infor-
mation forms, 
signing consent, 
watching Pre-
training videos

Experimental Warm-up 5 Shooting targets
Pre-Training 25 Calibration 

followed by 4 
blocks of 24 
targets

Break 5
Training, Part 1 20 Calibration 

followed by 64 
training trials

Break 5
Training, Part 2 20 Calibration 

followed by 64 
training trials

Break 10
Post-Training 25 Calibration 

followed by 4 
blocks of 24 
targets

Post-experimental Questionnaires 5 Paper and 
pencil forms

Table 1  Sequence and duration 
of experimental blocks
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arrangement of the gaps and the distance to the walls was randomized and counter-
balanced across trials.

Depending on the session and condition, two types of moving targets were used: 
an animated target (Fig.2) and a simulated NATO E-Type silhouette target, 1m tall, 
50cm wide (Fig.4). The surface areas of the silhouette of the E-type target and the 
animated character were approximately equal.

Procedure During the pre-experimental session, participants read information 
materials, signed consent forms, watched training videos, and engaged in a shooting 
warming-up exercise (Table1). The printed information materials explained the pro-
cedure and provided some basic principles for engaging moving targets. The training 
videos demonstrated the principles of shooting moving targets and presented infor-
mation of how to adjust POA depending on the speed and the distance to target. For 
the MT-ITS condition, the video contained additional information on how to use 
the Smart Sight feature of the MT-ITS. The videos were designed and developed 
specifically for this study using selected military marksmanship training materials 
and advice from an Advanced Small Arms and Urban Operations qualified instructor. 

Fig. 4  A training session hit feedback screen in the Standard condition, with a NATO E-Type silhouette 
target

 

Fig. 3  A three-walls, two gaps layout for the pre- and post-training sessions
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The Advanced Small Arms course is the Canadian Armed Forces infantry qualifica-
tion prerequisite for the rank of Sergeant. Its focus is to standardize and evaluate the 
instructional and coaching methods used by candidates when teaching the use of 
small arms to new and experienced soldiers. The Urban Operations Instructor course 
is an advanced course that focuses on training soldiers of all experience levels to suc-
cessfully engage the enemy at close ranges.

After completing the pre-experimental session, participants continued with the 
experimental session, consisting of warm-up, pre-training, training, and post-training 
blocks (Table1). Warm-up trials served to familiarize participants with the VISS, the 
airsoft rifle, and the task by engaging 20 moving targets of varying speeds and dis-
tances. It was followed by the pre-training block, which was conducted to establish 
baseline shooting performance for each participant. After a short break, the pre-train-
ing block was followed by the training block, in which participants were engaged 
in a condition-specific coaching. After a break, participants started the post-training 
block, which had a similar content to the pre-training block and served to test the 
effectiveness of training. Prior to each block, the instrumented rifle was digitally 
zeroed (calibrated), ensuring that the weapon sights aligned with the tracking system.

At the end of the experimental session, participants answered a questionnaire 
about the quality of the training tools. The questions solicited information related 
to the utility and training benefits of the training tools, asking participants’ opinions 
about the structure of the training program, the number of targets presented, and their 
opinions about the usefulness of the information presented in the training. Partici-
pants were also asked whether they felt they learned something new, and whether 
the training methods could become a useful addition to marksmanship training. The 
responses were rated on a five-point scale starting from “Strongly Disagree” (cor-
responding to 1 point) to “Strongly Agree” (5 points). The scale of the “Number of 
Targets” question varied on a three-point scale (“Too few targets” - “About right 
amount” - “Too many targets”, corresponding to -1, 0, 1 rates).

Sessions and Conditions The pre- and post-training sessions consisted of 96 tri-
als each. On each trial, one of eight possible combinations of three target parameters 
was presented: (1) two distances (100 and 250m), (2) two speeds (8km/h and 15km/h, 
about the speed of a jog, and a fast run, respectively), and (3) two directions of move-
ment (left-to-right and right-to-left) in all possible triplets. Pre- and post-training ses-
sions were partitioned into four 24 trials chunks, with a short, participant-controlled 
break between them (Table1). For each trial, participants were given up to eight shots 
to successfully engage the target. In pre- and post-training sessions, after a target was 
hit, it dropped, and a new trial was initiated. The pre- and post-training sessions were 
identical and did not differ between two conditions.

There was a rest break halfway through the session. For each part of the train-
ing session, participant engaged 64 targets. These targets were obtained in the same 
way as in the pre- and post-training sessions by combining all possible combinations 
of distance, speed, and direction of movement. The training session used a pre-set 
sequence of target presentations: participants in both conditions started with easy-
to-hit targets (100m, slow, either direction), continued with more challenging targets 
(100m fast, 250m slow, either direction), concluding with the hardest to hit targets 
(250m, fast, either direction). Considering that participants’ performance for easy-to-
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hit targets was close to ceiling in the previous experiment (Zotov et al., 2017), the 
proportion of these targets was lower: Table2 shows how many trials for each target 
type were given to participants during the training session. The moving target’s expo-
sure time was approximately 12s. As in pre- and post-training session, participant 
could use up to eight shots.

The two training conditions differed on the type of instructions that participants 
received: a standard training (Standard) and an ITS-based training (MT-ITS) with 
partial KP feedback. The conditions differed in terms of the shape of target, the type 
of feedback, and whether a point-of-aim cue was presented. In the Standard training 
condition, the participants engaged an E-type silhouette target, moving either left-
to-right or right-to-left between two barriers. Table3 summarizes the differences in 
Standard and MT-ITS conditions. On each trial, participants could use up to eight 
shots to hit the target. Even when a target was hit, it would not drop to allow partici-
pants to engage as many shots per targets as they could. After a target completed its 
movement, participants received visual feedback in the form of a target diagram with 
the location of all hits marked on it (Fig.2). The visual feedback was presented on an 
auxiliary monitor (Fig.1, top-left corner) and in the digital sight; participants could 
use either one depending on their preference.

For the MT-ITS training condition, participants were shown an animated target 
moving across the range. Presentation of each target type was repeated, alternating 
between showing and withholding a target cue. On the cued trial, participants were 
shown the correct POA in the form of a small red square joined to the centre of mass 
of the target by a red line (Fig.2). As in the Standard condition, participants could use 
up to eight shots to hit the target. Whenever a hit was registered, the heads-up dis-

Conditions
Standard MT-ITS
Pre-Training
A video introducing principles 
of shooting moving targets

A video introducing principles of 
shooting moving targets, including 
instruction on using Smart Sight

Training, Immediate feedback
No immediate feedback Smart Sight
Training, After-Action feedback
• A target diagram that shows 
all points of impact in the 
same trial

• Engagement diagrams that 
shows an aiming point and a point 
of impact for each shot
• A summary slide that shows all 
points of impact, aiming points, 
the target’s centre of mass, and a 
number of hits
• In the second training session, a 
target drops after three hits

Table 3  Training sessions 
details of MT-ITS and Standard 
conditions

 

Speed Slow Fast
Distance 100 250 100 250
Trials 20 20 40 48

Table 2  Number of training 
trials as a function of speed and 
distance
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play flashed a red bracket around the reticle to provide additional real-time feedback. 
After a target completed its movement (each target’s exposure was approximately 
12s), participants received visual feedback in the form of sequential presentation of 
a diagram for each shot taken in a trial with the point of impact and the optimal POA 
of the target marked on it.

Like in the Standard condition, the visual feedback was presented on both an aux-
iliary computer monitor and on the digital aiming sight. Participants were able to 
advance the feedback slides at their own pace using a button on the mock rifle. After 
reviewing each shot, participants were shown a summary slide that showed the loca-
tion of all hits and near misses for that trial. The MT-ITS training session consisted 
of two parts that differed on the focus of the feedback: the first block emphasized 
accuracy by indicating hit percentages, while the second block emphasized engage-
ment speed by indicating “time-to-kill”, which was the timing lapsed between the 
onset of the target’s movement and the moment when the target was hit. To encourage 
participants to be more efficient and engage the target faster in this second block, the 
target would drop after it was hit three times on the same trial.

Results

The data analyzed in this section are from the pre-training, training, and post-train-
ing sessions. The dependent measures were accuracy of shooting and lead distance. 
Accuracy of shooting is the hit rate for each target type calculated as the ratio of hits 
for each target, multiplied by 100. The number of shots to hit a target could vary 
(up to eight shots per target), but this measure was not reported, considering that its 
value depended on the different shooting styles of participants: some preferred to 
use as few shots as possible and some would use multiple shots. The lead distance 
(referred to hereafter as “lead”) is the horizontal difference between the observed and 
the optimal POA in cm; with lead lagging behind optimal POA coded negative and 
lead ahead of the optimal POA coded positive. The lead analysis tested if there were 
any systematic biases in tracking moving targets. Considering that the recorded lead 
is an instantaneous value at the moment of shot release, it does not provide any track-
ing behaviour over the course of the entire engagement.

The independent variables were training condition, distance to target, speed of 
target movement, and training (Pre- versus Post-training). The results were analyzed 
separately for testing sessions (comparing performance before and after training) and 
for a training session. The final part of this section explores the results of the post-
experimental questionnaires.

Pre- and Post-Training Sessions

The results of pre- and post-training sessions were analyzed in a mixed factor 
ANOVA with three within-subject factors (distance × 2, speed × 2, training × 2) and 
one between-subject factor (training condition × 2). We used an alpha level of 0.05 
for all statistical tests. The direction of target movement has no effect on participants’ 
performance, therefore the left-to-right and the right-to-left data was collapsed. 
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Table4 presents the results of the ANOVA for both accuracy of shooting and lead 
measures. Considering a small sample size, the ANOVA was tested for homogeneity 
using Levene’s test for equality of variances, which returned no significant value for 
all tested pairs.

There was a strong effect of training (for accuracy, F(1, 26) = 48.41, p < .001), indi-
cating that in the post-training session participants’ performance had improved. There 
was also a significant interaction of training with condition, F(1, 26) = 4.99, p < .05, 
indicating that the performance gain in MT-ITS training condition—for both shoot-
ing accuracy boost and a reduction in aiming lead—was significantly stronger than in 
the Standard condition. That is, the MT-ITS training had produced significantly better 
shooting accuracy and shorter discrepancy between optimal and observed lead dis-
tances than the standard training. The significant interaction of Condition x Distance 
x Training shows that MT-ITS was especially effective for distant targets (250m). The 
effect of Condition was not significant, confirming that performance in two training 
groups differed only in post-training sessions. The effect of training was significant 
on its own and in combination with a distance (Training x Distance and Training).

Table5 shows a summary of performance for average hit rates and lead as a func-
tion of distance, speed, training, and condition. Shooting accuracy was inversely 
related to the distance to the target and the speed of the target; that is closer and 
slower targets were hit with higher accuracy. Shooting accuracy for the easiest targets 
(100m, slow) was at the ceiling, approaching 100%. As expected, the hardest targets 
to hit were fast-moving distant targets (250m, fast): even with eight rounds at par-
ticipants’ disposal, the targets were hit only around 60%. The effect of distance and 
speed on performance were significant, confirming that it was harder to hit distant, 
faster moving targets. What also worth mentioning is that the training was especially 

Table 4  Effects of distance and speed of targets as function of training and condition
Measures Accuracy Lead

F p η2 F p η2
Distance 218.83 0.001 0.89 13.64 0.001 0.34
Distance x Condition 1.16 0.29 0.04 1.32 0.26 0.05
Distance x Speed 18.01 0.001 0.41 6.361 0.018 0.20
Distance x Speed x Condition 0.61 0.44 0.02 0.01 0.96 0.00
Distance x Training 11.96 0.001 0.31 4.66 0.05 0.15
Distance x Training x Condition 1.74 0.19 0.06 1.69 0.21 0.06
Distance x Training x Speed 7.76 0.05 0.23 0.25 0.62 0.01
Distance x Training x Speed x Condition 0.12 0.73 0.00 0.82 0.37 0.03
Speed 104.92 0.001 0.80 0.82 0.37 0.31
Speed x Condition 0.05 0.82 0.00 0.26 0.61 0.01
Speed x Training 0.15 0.70 0.00 0.25 0.62 0.01
Speed x Training x Condition 0.08 0.78 0.00 4.07 0.06 0.13
Training 48.41 0.001 0.65 7.17 0.01 0.22
Training x Condition 4.99 0.034 0.16 4.89 0.05 0.16
Condition 0.67 0.42 0.03 1.66 0.21 0.06
Notes. Bolded are significant effects. For p-values, we rounded significant results to 0.001 if p < .001; 
0.01 if p < .01, and to 0.05 if p < .05. η2 is a partial eta squared. The corresponding effect sizes are small 
for η2 = 0.1, medium η2 = 0.25, and large η2 = 0.40 (Cohen, 1988)
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effective for distant targets; in both training conditions the average gain in hit rates 
was around 15% (unlike 3–4% for easy-to-hit 100m targets).

The lead measure fell into a bimodal pattern: for 100m targets participants were 
leading too far ahead (leading too much), but for 250m targets participants were not 
leading enough (lagging behind). One possible explanation to this finding is that 
simultaneous change in distance and target speed result in a non-linear change in the 
lead distance, leading to the underestimation of the lead—a well-documented human 
bias of estimation of non-linear trends (e.g., Kwantes & Neal 2006).

Training Trials

The objective of the analysis was to test whether performance increments during 
training trials follow a growth function and to analyze the shape of the function. 
While the evidence of a training effect can be revealed through an increase in a linear, 
power or exponential function (Anderson, 1982; Heathcote et al., 2000), the linear 
function is the simplest function to test the observed data fit increasing, decreasing or 
a flat trend (Pedhazur & Kerlinger, 1982). If there is a positive practice effect, then 
the training data would fit an increasing function.

The linear function takes two parameters: b, which is a slope of the function, and a, 
which is an intercept. The slope indicates whether the best fitting line follows increas-
ing (positive value) or decreasing (negative value) function. The value of intercept 
parameter is not important for analysis of training trials as it simply a translation 
parameter that places the curve on the Y-axis without changing the shape of the linear 
function.

The trial-to-trial data from the training trials were pulled for each type of target 
and then fit to a linear function. Recall that participants in the MT-ITS condition 
were trained with cued trials (presenting the location of the optimal POA for each 
target). These cued targets were easier to hit; as a result, the hit rate for these trials 
was higher. Thus, these trials were excluded from the sequence analysis to avoid con-
tamination of the training performance by these boosted trials. The analysis included 
128 training trials per participant for the Standard condition and 64 training trials per 
participant for the MT-ITS condition. The number of the same type target types is 
presented in Table2.

To avoid obscuring individual training trends by averaging, each participant’s 
training data for each type of target (100m, 250m, separately for fast and slow tar-

Table 5  Mean values of performance measures as a function of speed, distance, and training
Independent Variables Speed SLOW FAST

Distance 100 250 100 250
Sessions PRE POST PRE POST PRE POST PRE POST
TOTAL Hits 96.1 98.9 71.7 87.6 86.9 94.7 60.6 70.3

Lead 13.9 13.3 -22.7 -12. 14.5 11.0 -27.0 -16.6
Conditions STANDARD Hits 97.3 98.1 75.5 86.6 87.8 94.0 64.8 70.8

Lead 14.5 15.1 -24.0 -17.1 12.6 13.2 -23.3 -24.6
MT-ITS Hits 94.9 99.1 67.8 88.6 86.0 95.5 56.4 69.9

Lead 13.3 11.5 -21.4 -7.2 16.4 8.8 -30.7 -8.5
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gets) was fitted to a linear function3.  using SPSS’ CURVEFIT method, which reports 
significance of the fit and a and b parameters of the fit. The slope values of each par-
ticipants’ fit to training data (b parameter) are shown in Table6. The positive values 
indicate an increasing function (or a positive training trend) and the negative values 
indicate decreasing function (or a negative training trend). As the table shows, indi-
vidual results are quite diverse: there are cases of increasing, flat, and decreasing 
trends. Nevertheless, most of the training curves in the MT-ITS condition show sig-
nificant increasing function while most of the curves in the Standard condition show 
flat curves. The training trials in the MT-ITS condition showed a consistent increas-
ing function for all types of targets; participant performance was improving from 
trial to trial. The training trials in the Standard condition showed a less consistent 
pattern; the growing function was evident for some participants. Figure5 shows the 
collapsed curves (averaged for each condition) for training trials in both conditions. 
To show the training curves on the same scale, Fig.5 shows average gains in hit rates, 
thus the scales’ range (-10 to 10) reflects a relative gain in performance expressed as 
percentage. The figure demonstrates the overall trend in practice: the training trials in 
the MT-ITS condition (top row) show a gradual improvement of shooting accuracy 
with practice, whereas the training trials in the Standard condition (bottom row) do 
not show a similar trend.

Post-Experimental Questionnaires

The post-experimental questionnaires asked participants about the quality of the 
training tools: the structure of the training program, the number of targets presented, 
the usefulness of the information presented in training, the novelty of the training 
method, and the potential of the training methods become a useful addition to marks-
manship training. Table7 presents the average values of the participants’ ratings for 
each group. Overall, the participants in the MT-ITS condition gave more favourable 
ratings than those in the Standard condition, but the differences were not significant.

Summary

The results of the experiment demonstrated that the MT-ITS training surpassed Stan-
dard training, helping to improve shooting accuracy and increased the precision of 
aiming at the moving targets. The analysis of training trials revealed that that train-
ing rates with MT-ITS were more consistent in terms of producing steady gains in 
performance with training; the same trend was not observed in the Standard condi-
tion. While the effect size corresponding to the advantage of MT-ITS training over 
the Standard CAF training was small, it was impressive considering that the training 
lasted less than an hour, our sample size was relatively small, and the participants rate 
of improving was very diverse.

3  The lead measures were not included in the analysis due to technical issues involved in calculating 
amount of lead for the Standard condition: the use of E-type1 targets instead of animated targets restricted 
calculations of point of impact to only those that were on target; for off-target shots it was impossible to 
calculate amount of deviation outside of target’s borders.
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The advantages achieved by the MT-ITS marksmanship training against the “holes 
in paper” approach used in the Standard condition might reflect the ability of the 
MT-ITS to overcome the limitations inherent in the existing live-range procedures. 
Unlike the conventional training, MT-ITS supplies trainees with a detailed informa-
tion on their performance. For example, it supplies trainees with the locations of the 
missed shots, which give an opportunity for participants to adjust their aiming points 
for speed and distance. It shows each engaged target sequentially, allowing trainees 
to link certain techniques or strategy to good or poor performance and make the 
necessary adjustments. Finally, it helps to adjust point of aim with the help of cue 
delivered by the Smart Sight system, thus helping trainees to perceiving intuitively 
the correct point of aim. The advantage of Smart Sight system was especially obvi-
ous during training: the majority of our participants in MT-ITS condition steadily 
progressed, unlike CAF participants, whose progress was not as steady. Possibly, in 
the absence of cued trials in the Standard condition, participants used a trial-and-error 
approach in estimating the proper POA.

Other results were consistent with a typical performance at marksmanship train-
ing: all participants performed well shooting slow targets at close range (100m). 
Performance was noticeably worse for shooting fast targets at longer ranges where 
accuracy dropped significantly. The study was consistent with a trend often observed 
by marksmanship instructors: the accuracy of shooting was inversely related to the 
distance and speed of the moving target. The direction of the target movement had no 
effect on performance.

General Discussion

MT-ITS Modifications

The version of MT-ITS presented in this paper includes modifications that helped it to 
overcome some of the shortcomings of the previous version (Zotov et al., 2017). That 
version included text-based tips that informed participants of any systematic errors 
they were making while engaging moving targets. The feedback in the previous ver-
sion also included detailed statistics, such as the standard deviation of all shots and 
the coordinates of each point of impact. While it sounds like a useful feature, partici-
pants in the previous study stopped paying attention to this feedback after only a few 
trials. In the absence of behavioral and physiological responses collected (e.g., trig-
ger squeeze pressure, barrel movement, respiration), the content of these tips became 
repetitive and redundant; some participants reported that the detail of the provided 
statistics was overwhelming.

Tips enhanced by rich sensory information can be re-introduced in the next itera-
tion of MT-ITS (discussed in the Future Work section), but the most beneficial form 
might not include verbal tips. Considering that at the cognitive/associative stage, 
(which presumably trainees reach during the training sessions), the learners benefit 
the most from brief, non-verbal corrections, preferably presented in graphical forms 
(Singer et al., 1994). The sequential presentation of each engagement including 
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observed and optimal POA for each shot, was added to help trainees pinpoint each 
shot they fired in terms of aiming accuracy.

The experimental design underwent several changes too. In the previous study, 
only one training session was used, whereas this version included two blocks. The 
first part was focused on accuracy, while the second added a speed component, thus 
mirroring cognitive and associative stages of skill acquisition theory (Fitts & Posner, 
1967). The bulk of recruited participants were novices identified by their short dura-
tion of service (up to two years) and little to no experience shooting moving targets. 
This was done to maximize the benefits of training. Participants were provided with 
the post-experimental questionnaires to find out how useful the training tools were.

MT-ITS Limitations

Despite its benefits, MT-ITS does have several limitations related to poverty of sen-
sor inputs, restrictions of the simulation environment, and deficiencies of instrumen-
tation, placing the system in a category of an advanced feedback training system with 
some AI elements rather than a fully-fledged ITS. A coaching system, such as MT-
ITS, would benefit from adding a number of sensors to enhance quality of feedback, 
as the work of Goldberg et al., (2018) showed (e.g., sensors for barrel movement, 
trigger squeeze, recoil, and respiration).

The experimental sessions were conducted in the VISS, a synthetic environment 
lacking certain features of the real world. One obvious way to improve on the “real-

Condition Structure Number 
of Targets

Usefulness Learned 
New

Train-
ing 
Merit

MT-ITS 5.00 0.20 4.73 4.53 4.73
Standard 4.67 0.01 4.52 4.44 4.52

Table 7  Mean values of par-
ticipants ratings of the training 
tools

 

Fig. 5  Hit rates for training trials for both conditions. (Notes: For MT-ITS Condition, only non-que 
trials are presented to avoid contamination by the higher accuracy cued trials)

 

1 3

835



International Journal of Artificial Intelligence in Education (2023) 33:817–842

ism” of the VISS is to update both the instruments used in the simulation and the 
software. The experimental weapon used in the study was an airsoft rifle; although it 
shares many similarities with the real weapon upon which it is based (an M4 CQBR), 
some characteristics, such as recoil and especially trigger weight, pull, break and 
reset are notably different. A more realistic weapon would bring the simulated train-
ing closer to live training. A better ballistic model4 than the one used in the simulation 
would improve fidelity and accuracy of firing. The resolution of the simulation can be 
further enhanced to allow higher, more accurate representation of the shooting envi-
ronment. Nevertheless, it is worth mentioning that even the most “immersive “setting 
may not yield any increase in training effectiveness and may create a less effective 
training environment, as Smallman and colleagues (2007) noted.

Unlike a true embedded training system, which is installed in the actual opera-
tion hardware (in this case, a soldier’s issued weapon and sight system), the VISS 
is a large external simulator which cannot be deployed with the trainee or provide a 
100% accurate representation of the hardware’s features and handling characteristics. 
While this study examined the content that might be featured in an embedded training 
system, the benefits of physically embedded systems were not tested. In particular, 
the greatly increased access and training time afforded by being installed in their own 
weapon, ready to use at any time, was a factor that was actively avoided to maintain 
an even comparison against the standard training content.

The MT-ITS condition used the same animated target types for all sessions, whereas 
the Standard condition mixed animated targets in pre- and post-training sessions, and 
“E-type” targets in the training session. The main reason for using “E-type” targets in 
the Standard condition was to replicate the typical marksmanship training as closely 
as possible, but this change added an artifact of switching types of targets. Possibly, 
this change has no effect on performance: in our 2017 study, a standard condition 
with “E-type” used as training targets (and animated targets for pre- and post-training 
sessions) still showed significant advantage against a control, no-training condition 
(Zotov et al., 2017), but in order to confirm that the process of switching targets 
had not affected the performance in the Standard condition, the same target type 
should be used in both conditions. Further, it is not clear what feature of MT-ITS was 
responsible for training effectiveness. Was it the Smart Sight, the enhanced feedback, 
or some other factors (or their combination) that contributed the most to the training 
gains? This study can only confirm that MT-ITS has been a more effective training 
system than a typical training that soldiers are trained with, but more research would 
be required to reveal individual contributions of each of the MT-ITS training features. 
By adding two new experimental conditions, the effect of individual contributions of 
the Smart Sight system and the enhanced feedback (and their possible interaction) 
can be identified and measured.

Considering that the participants were tested right after the training, it is important 
to investigate the retention of the skill learned by ITS-based training. Re-testing par-
ticipants in several intervals (e.g., after 1 month and 6 months) is necessary to find out 
whether their initial training gain persists over time and by how much. In the previous 

4  VISS used VBS2 as its underlying platform; a version with more advanced ballistics was added with 
VBS3 module, as documented in Fügenschuh et al., 2016.
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study (Zotov et al., 2017), six participants were re-tested six months after they com-
pleted their first experiment. The performance level of the re-tested participants was 
on par with performance in their post-training session six months earlier and the dif-
ference between pre-training and re-test sessions was approaching significance. Nev-
ertheless, with only six returning participants, the sample size was very small, and the 
analysis lacked enough statistical power to detect significant differences on the order 
of those observed; a larger sample size to obtain a definite answer is required. To bet-
ter evaluate which of the training systems participants valued more, the two training 
tools need to be provided to the same participants so they can compare them directly, 
so that the post-experimental questionnaires can reflect which of two training condi-
tions participants prefer and why. Finally, the effectiveness of MT-ITS must be tested 
in a transfer of training trial, where two groups of participants would be trained with 
either MT-ITS or live ranges and then tested in a live fire exercise. We hope that the 
MT-ITS training would be as effective as the live range training, considering that 
other marksmanship simulators showed their effectiveness in the transfer of training 
studies (e.g., Grant 2013; Jensen & Woodson, 2012; Yates, 2004).

Future Work

As we pointed out, the main weakness of MT-ITS lays in its “low intelligence”. This 
deficiency imposes considerable limits on its ability to provide a feedback custom-
ized for individual trainee’s needs. To improve training effectiveness of MT-ITS, we 
propose several enhancements related to the type of feedback it provides and to the 
system interface mechanism it uses. These enhancements are consistent with those 
that Santos (2016) outlined and suggested for any future motor-cognitive ITS, such 
as adding sensing movement and designing and delivering new forms of feedback.

To enhance the quality of real-time feedback we propose addition of a number of 
sensors to monitor: a butt pressure, a barrel movement, a trigger squeeze, and a heart 
rate and respiration monitors. A butt pressure sensor measures the force with which 
a rifle’s butt is pressed against a trainee’s shoulder, optimally constant and within 
a specific range. Too much or not enough pressure can negatively affect tracking 
behaviour. A barrel movements sensor detects excessive barrel movements, which 
can correlate with excessive butt pressure or ineffective breathing. A trigger squeeze 
sensor detects amount of finger pressure on a trigger, possible revealing unproductive 
trigger pressure during a target engagement. A respiration monitor can detect some 
inefficient breathing prior to a target engagement (e.g., not holding a breath). Taken 
together, information from these sensors can be incorporated into a real-time feed-
back and guide trainees to adjust their aiming behaviour. The feedback format can be 
visual (as a diagram showing optimal and observed values of the sensor readings), 
auditory (as a pitch that changes depending on the readings along with some verbal 
feedback), and haptic (as vibrations triggered by too much butt pressure or excessive 
barrel movements). This form of KP feedback might greatly enhance the quality of 
information that a trainee gets in a real time. Finally, a hear rate monitor can supply 
trainees with a way to estimate their stress level (detected by to elevated heart rate 
and decreased heart rate variability, for more information see Thayer, 2012). Inte-
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grated feedback could improve these techniques with such techniques as Tactical 
Breathing (Bouchard et al., 2012).

The after-action feedback can be enhanced by applying a tracking algorithm to 
analyze performance on a number of previous trials. This memory system would 
receive input from the sensors that we described above, allowing some ineffective 
patterns of engagement to be identified, shared with the trainees, and corrected. 
These ineffective patters can be detected by comparing observed and optimal shoot-
ing behaviours, but the implementation of such mechanism requires advanced expert 
model. Goldberg et al., (2018) presented a case of such a model for marksmanship 
training, which was obtained by collecting performance and behaviour metrics of 
shooting experts and then inputting these data into a regression analysis to obtain the 
weight values for each metric to evaluate shooting behaviour. The form of feedback 
could be a combination of text, visualization, and synthetic speech. Considering the 
amount of customized information such a feedback would include, it might overcome 
the problem of being too repetitive and redundant, as we observed in the verbal feed-
back that we included in our early versions of MT-ITS.

The system interface could be customized depending on skills and knowledge 
level of a given trainee assessed during baseline evaluation and training sessions. As 
we noticed, the baseline shooting performance of some of our participants was high 
and the gains in hit rates were relatively low (and even were reduced by the end of 
training session). With ability to customize training session, MT-ITS would adjust the 
difficulty levels, including detecting plateaus in performance for some target types. 
The system would sample performance data from a number of previous trials and 
calculate slopes for different types of targets; as the slope values flatten, the training 
algorithm will stop presenting this type of target. Another customization enhance-
ment can be achieved by a performance tracking method that would allow to quickly 
evaluate a trainees’ progress and to identify the most effective training intervention. 
One of the ways to implement such method was demonstrated in Fenza, Orciuoli, and 
Sampson study (2017), which presented a concept of ITS that uses a reinforcement 
learning with artificial neural network to observe a trainee’s actions at different states 
of the learning process. The selection mechanism of the tutor relies on a Next Task 
Selection algorithm that evaluates a trainee’s performance and selects a new task to 
keep a trainee in her zone of proximal development, which is an optimal level of task 
difficulties most conducive to training improvements.

The effects of psychological stressors have been extensively investigated in recent 
years (for review, see Vartanian, Boscarino, Jarmasz, & Zotov,2022). With added 
ability to measure the level of stress, the future testing environment of MT-ITS might 
include a number of stressors to bring the training condition closer to a live training 
or even to a combat setting. The stress level during marksmanship training can be 
induced by presenting multiple targets simultaneously, adding weapon malfunctions, 
including hostile fire, and placing trainees in a competitive environment. Monitor-
ing stress level will allow to place a trainee in the optimal task difficulty zone to 
achieve the highest training benefits (Guadagnoli & Lee, 2002). Overall, the pro-
posed enhancements that we listed above will substantially increase the autonomy 
and the level of customization of MT-ITS, placing it in a category of learning AI 
systems
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Conclusion

Despite its limitations, MT-ITS is one of the first AI-based systems for coaching 
motor-cognitive skills that has undergone extended testing against other training 
methods. The GIFT-based marksmanship training system (Goldberg et al., 2018) is 
another example of AI-based system that has undergone extensive testing against 
both simple instruction and human instructor and might provide a good comparative 
system to evaluate training effectiveness (personal interaction with the first author). 
Marksmanship training with MTT/DP2 was extensively tested, but the MT/DP2 tutor 
aims to teach only the cognitive aspect of the marksmanship skill (specifically, how 
to adjust for target characteristics). Unlike MTT/DP2, MT-ITS helps master actual 
skill rather than part of it.

MT-ITS may eventually be able to overcome known limitation of human instruc-
tion in the teaching of discrete cognitive-motor skills such as marksmanship. Rauter 
and colleagues (Rauter et al., 2011) characterized these as inability to hold attention 
and concentration over a longer period of time, no access to important physiological 
and biomechanical variables that characterize movements, and considerable limita-
tions in providing augmented concurrent feedback. As any other motor-cognitive 
ITS, our tutoring system would be vigilant through the entire training session, have 
a great potential to access numerous biomechanical and physiological variables, and 
could give a real-time feedback that includes multiple streams of collected informa-
tion. The results of this study show that an embedded training system can provide 
substantial training augmentation —if not a partial substitution for live training—that 
might be efficient, economical, and flexible in its ability to create a wide range of 
scenarios. There are considerable potential benefits of delivering and practicing the 
skill through an ITS that is embedded in the training tools. An autonomous ET sys-
tem that requires little to no human support might become a practical alternative to 
teach motor-cognitive skills, providing useful automated coaching in the absence of 
a qualified instructor.
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