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Value function computation in fuzzy models by
di¤erential evolution

Maria Letizia Guerra�, Laerte Sorini and Luciano Stefaniniy

Abstract
In this paper we show that the possibilistic mean values produce com-

putation results that may di¤er in a non trivial may from those obtained
with the fuzzy extension principle. The evidence is carried out by compar-
ing some examples derived from several models in �nance and economics.

1 Introduction

Many models in social sciences are obtained with a strong probabilistic theo-
retical basis but they can not solve all the uncertainty sources. We believe that
an e¢ cient way to treat uncertainty is the use of fuzzy numbers because they
are a family of graduated intervals of possibilities and they can so represent the
imprecision about some parameters or variables of the model. The correct way
to obtain the fuzzy version of a model, preserving its probabilistic nature, is the
extension principle.
In particular, in many economic applications, the computation of the pos-

sibilistic mean value is a central issue of the problem and its congruent use
is based on the fuzzy extension principle that avoids problems of lackness of
congruence and feasibility of the solutions.
In order to show the primary importance of a correct use of the extension

principle we consider some examples as the research of the value function of an
option. We compare the results with those obtained in [2] where a formula for
fuzzy option values that involves the possibilistic mean value and variance of
fuzzy numbers (introduced in [1]) is applied. A second analysis is carried out
with the model presented in [14].
The paper is organized as follows: in second section we approach the critical

aspects connected with the application of the extension principle and we describe
the di¤erential evolution optimization method. Before the last section devoted
to conclusions, in the third section we study some computational experiments in
order to prove the relevance of the correct application of the extension priciple
in some economic models.
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2 Di¤erential Evolution algorithms for fuzzy arith-
metic

In many applications the computation of fuzzy-valued functions is the central
issue. A rigorous methodology is required in order to avoid problems of lackness
of congruence and feasibility of the solutions.
If f : R! R is a continuous function and we are interested in its fuzzy

extension f : F!F , it can be obtained through the extension principle:

[f (u)]� = [min ff(x) j x 2 [u]�g ;max ff(x) j x 2 [u]�g] (1)

and in general it follows that:

E (f (u)) 6= f (E (u)) � (f (u)) 6= f (� (u))

and
M (f (u)) 6= f

�
M (u)

�
where the equalities hold only when the function f is a¢ ne or linear but in

most part of applications based on the introduction of the extension principle
it is not true.
The error can be not negligeable on the computed values but also on the

core interval.
Some sempli�cations can avoid the massive computation of min and max but

the critical aspect is about the shape of the fuzzy number. In fact, when the
information about the shape of the fuzzy numbers is lost before the application
of the extension principle, the consequence is the lackness of one of the most
relevant factor in the uncertainty propagation from the parameters to the value
function.
If uk = (u�k;i; �u

�
k;i; u

+
k;i; �u

+
k;i)i=0;1;:::;N are the LU-fuzzy representations of

the n input quantities and v = (v�i ; �v
�
i ; v

+
i ; �v

+
i )i=0;1;:::;N , the ��cuts of v are

obtained by solving (1).
For each � = �i, i = 0; 1; :::; N the minfg and the maxfg can occur either

at a point whose components xk;i are internal to the corresponding intervals
[u�k;i; u

+
k;i] or are coincident with one of the extremal values; denote by bx�i =

(bx�1;i; :::; bx�n;i) and bx+i = (bx+1;i; :::; bx+n;i) the points where the min and the max
take place; then v�i = f(bx�1;i; :::; bx�n;i) and v+i = f(bx+1;i; :::; bx+n;i) and the slopes
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�v�i , �v
+
i are computed (as f is di¤erentiable) by

�v�i =
nX
k=1bx�k;i=u�k;i

@f(bx�1;i; :::; bx�n;i)
@xk

�u�k;i (2)

+
nX
k=1bx�k;i=u+k;i

@f(bx�1;i; :::; bx�n;i)
@xk

�u+k;i

�v+i =
nX
k=1bx+k;i=u�k;i

@f(bx+1;i; :::; bx+n;i)
@xk

�u�k;i

+
nX
k=1bx+k;i=u+k;i

@f(bx+1;i; :::; bx+n;i)
@xk

�u+k;i:

We adopt an algorithmic approach to describe the application of di¤erential
evolution methods to calculate the fuzzy extension of multivariable function,
associated to the LU representation.
Let v = f(u1; u2; :::; un) denote the fuzzy extension of a continuous function

f in n variables; it is well known that the fuzzy extension of f to normal upper
semicontinuous fuzzy intervals (with compact support) has the level-cutting
commutative property, i.e. the ��cuts [v�� ; v+� ] of v are the images of the ��cuts
of (u1; u2; :::; un) and are obtained by solving the box-constrained optimization
problems

(EP)� :

8<: v�� = min
n
f(x1; x2; :::; xn)jxk 2 [u�k;�; u

+
k;�]; k = 1; 2; :::; n

o
v+� = max

n
f(x1; x2; :::; xn)jxk 2 [u�k;�; u

+
k;�]; k = 1; 2; :::; n

o
:

(3)
Except for simple elementary cases for which the optimization problems above
can be solved analytically, the direct application of (EP) is di¢ cult and com-
putationally expensive.
The main and possibly critical steps in the algorithm above is the solution

of the optimization problems (1), depending on the dimension n of the solution
space and on the possibility of many local optimal points (if the min and the
max points are not located with su¢ cient precision, an underestimation of the
fuzziness may be produced and the propagation of the errors may grow without
control).
A careful exploitation of the min and max problems can produce e¢ cient

solution methods, all existing general methods (in cases where the structure of
the min and max subproblems do not suggest speci�c e¢ cient procedures) try
to take advantage of the nested structure of the box-constraints for di¤erent
values of �.
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We suggest here a relatively simple procedure, based on the di¤erential evo-
lution (DE) method of Storn and Price (detailed in [12]) adapted in order to
take into account both the nested property of � � cuts and the min and max
problems over the same domains.
The general idea ofDE to �ndmin ormax of ff(x1; :::; xn)j(x1; :::; xn)2A � Rng

is simple. Start with an initial "population" (x1; :::; xn)(1); :::; (x1; :::; xn)(p)2A
of p feasible points; at each iteration obtain a new set of points by recombining
randomly the individuals of the current population and by selecting the best
generated elements to continue in the next generation.
If the extension algorithm is used in combinations with the LU-fuzzy repre-

sentation for di¤erentiable membership functions (and di¤erentiable extended
functions), then the number N+1 of ��cuts (and correspondingly of min/max
optimizations) can be su¢ ciently small. Many experiments suggest that N = 10
is in general quite su¢ cient to obtain good approximations.
The idea of DE to �nd min or max of ff(x1; :::; xn)j(x1; :::; xn)2A � Rng

is simple: start with an initial "population" x(1) = (x1; :::; xn)
(1); :::; x(p) =

(x1; :::; xn)
(p)2A of p feasible points for each generation (i.e. for each iteration)

to obtain a new set of points by recombining randomly the individuals of the
current population and by selecting the best generated elements to continue in
the next generation. The initial population is chosen randomly and should try
to cover uniformly the entire parameter space.
Denote by x(k;g) the k�th vector of the population at iteration (generation)

g and by x(k;g)j its j�th component (j = 1; :::; n).
At each iteration, the method generates a set of candidate points y(k;g) to

substitute the elements x(k;g) of the current population, if y(k;g) is better.
To generate y(k;g) two operations are applied: recombination and crossover.
A typical recombination operates on a single component j 2 f1; :::; ng and

generates a new perturbed vector of the form v
(k;g)
j = x

(r;g)
j + 
[x

(s;g)
j � x(t;g)j ],

where r; s; t 2 f1; 2; :::; pg are chosen randomly and 
 2]0; 2] is a constant (even-
tually chosen randomly for the current iteration) that controls the ampli�cation
of the variation.
The potential diversity of the population is controlled by a crossover oper-

ator, that construct the candidate y(k;g) by crossing randomly the components
of the perturbed vector v(k;g)j and the old vector x(k;g)j :

y
(k;g)
j =

(
v
(k;g)
j if j 2 fj1; j2; :::; jhg
x
(k;g)
j if j =2 fj1; j2; :::; jhg

where h is a random integer between 0 and n (it is 0 with probability q) and
j1; j2; :::; jh are random components if h is not 0; so, the components of each
individual of the current population are modi�ed to y(k;g)j by a given probability
q. Typical values are 
 2 [0:2; 0:95], q 2 [0:7; 1:0] and p � 5n (the higher p, the
lower 
).
The candidate y(k;g) is then compared to the existing x(k;g) by evaluating

the objective function at y(k;g) : if f(y(k;g)) is better than f(x(k;g)) then y(k;g)
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substitutes x(k;g) in the new generation g + 1, otherwise x(k;g) is retained.
To take into account the particular nature of our problem, we modify the

basic procedure and examine two di¤erent strategies.
Let [u�k;i; u

+
k;i]; k = 1; 2; :::; n and f : Rn ! R be given; we have to �nd v�i

and v+i according to (1) for i = 0; 1; :::; N . The slope parameters �v
�
i , �v

+
i are

computed by (2)and (??).
The �rst strategy is implemented in algorithm 1. Function ran(0; 1) gener-

ates a random uniform number in [0,1].
SPDE (Single Population DE procedure): start with the (� = 1) � cut

back to the (� = 0) � cut so that the optimal solutions at a given level can
be inserted into the "starting" populations of lower levels; use two distinct
populations and perform the recombinations such that, during generations, one
of the populations specializes to �nd the minimum and the other to �nd the
maximum.
Algorithm 1: (Frame of SPDE).
Choose p � 10n, gmax � 500, q and 
.
Select (x

(l)
1 ; :::; x

(l)
n ); x

(l)
k 2 [u�k;N ; u

+
k;N ]

8k; l = 1; :::; 2p evaluate y(l) = f(x(l)1 ; :::; x
(l)
n )

for i = N;N � 1; :::; 0
for g = 1; 2; :::; gmax
(up to gmax generations or other stopping rule)
for l = 1; 2; :::; 2p
select (randomly) r; s; t 2 f1; 2; :::; 2pg
and j� 2 f1; 2; :::; ng
for j = 1; 2; :::; n
if (j = j� or ran(0; 1) < q)

then x0j = x
(r)
j + 
[x

(s)
j � x(t)j ]

else x0j = x
(l)
j

ensure that u�j;i � x0j � u
+
j;i

end
evaluate y = f(x01; :::; x

0
n)

if l � p and y < y(l) then
substitute (x1; :::; xn)(l) with (x01; :::; x

0
n)

if l > p and y > y(l) then
substitute (x1; :::; xn)(l) with (x01; :::; x

0
n)

end
end
v�i = y

(l�) = min
�
y(l)jl = 1; 2; :::; p

	
(bx�1;i; :::; bx�n;i) = (x1; :::; xn)(l�)
v+i = y

(l��) = max
�
y(p+l)jl = 1; 2; :::; p

	
(bx+1;i; :::; bx+n;i) = (x1; :::; xn)(l��)
if i < N
select (x

(l)
1 ; :::; x

(l)
n ); x

(l)
k 2 [u�k;i�1; u

+
k;i�1]

8k; l = 1; :::; 2p
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including (bx�1;i; :::;bx�n;i) and (bx+1;i; :::;bx+n;i)
endif

end

The second strategy is implemented in algorithm 2.
MPDE (Multi Populations DE procedure): use 2(N + 1) populations to

solve simultaneously all the box-constrained problems (1); N + 1 populations
specialize for the min and the others for the max and the current best solution
for level �i is valid also for levels �0; :::; �i�1:
Algorithm 2: (Frame of MPDE).
Choose p � 5n, gmax � 500, q and 
.
Select (x(l;i)1 ; :::; x

(l;i)
n ); x

(l;i)
k 2 [u�k;i; u

+
k;i]

8k; l = 1; :::; 2p; i = 0; 1; :::; N
let y(l;i) = f(x(l;i)1 ; :::; x

(l;i)
n )

let v�i = min
�
y(l;j)jj = 0; :::; i;8l

	
let v+i = max

�
y(l;j)jj = 0; :::; i;8l

	
let bx�i ; bx+i 2 Rn the points where v�i ; v+i are taken
for g = 1; 2; :::; gmax
(up to gmax generations or other stopping rule)
for i = N;N � 1; :::; 0
for l = 1; 2; :::; p
select (randomly) r; s; t 2 f1; 2; :::; pg
and k� 2 f1; 2; :::; ng
for k = 1; 2; :::; n
if (k = k� or ran(0; 1) < q) then
x0k = x

(r;i)
k + 
[x

(s;i)
k � x(t;i)k ]

x00k = x
(p+r;i)
k + 
[x

(p+s;i)
k � x(p+t;i)k ]

ensure u�k;i � x0k; x00k � u
+
k;i

else
x0k = x

(l;i)
k , x00k = x

(p+l;i)
k

endif
end
let y0 = f(x01; :::; x

0
n) and y00 = f(x001 ; :::; x

00
n);

if y0 < y(l;i) (population for min)
substitute (x1; :::; xn)(l;i) with (x01; :::; x

0
n)

if y00 > y(p+l;i) (population for max)
substitute (x1; :::; xn)(p+l;i) with (x001 ; :::; x

00
n)

if y0 or y00 are better
update values fv�j ; v

+
j ; bx�j ; bx+j jj = 0; :::; ig

endif
end

end
end
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In our case, as we have simple box-constraints, it is easy to produce feasible
starting populations, as we have to generate random numbers x(k;0)j between
the lower u�j;i and the upper u

+
j;i values.

During the iterations, we use a variant of the method above, where the y(k;g)

are progressively forced to be feasible or with small infeasibilities and a penalty
is assigned to infeasible values:
(i) modify y(k;g)j to �t [u�j;i � "

g2 ; u
+
j;i +

"
g2 ]; j = 1; 2; :::; n with small " �

10�2(u+j;i � u
�
j;i); so that the eventual infeasibilities decrease rapidly during the

generation process;
(ii) if the candidate point y(k;g) is infeasible and has a value f(y(k;g)) better

than the current best feasible value f(x(best;g)) then a penalty is added and the
value of y(k;g) is elevated to f(x(best;g))+"0 (for the min problems) or reduced to
f(x(best;g))�"0 (for the max problem), being "0 � 10�3 a small positive number.
To decide that a solution is found, we use the following simple rule: choose

a �xed tolerance tol � 10�3; 10�4 and a number bg � 20; 30 of generations; if
for bg subsequent iterations all the values v�i and v+i are changed less than tol;
then the procedure stops and the found solution is assumed to be optimal. In
any case, no more than 500 iterations are performed (but this limit was never
reached during the computations). More details can be found in [12].

3 Evidence from fuzzy valued functions

The Black and Scholes formula for a call option C0(S; r; �;X; T ) = S0N (d1)�
Xe�rTN (d2) is expressed as a function of the underlying stock price process
fStgt�0 satisfying

dSt = rStdt+ �StdWt

and of the constant risk-free interest rate r, the constant volatility �, the
constant strike price X and the constant time to maturity T , and where

d1 =
ln
�
S0
X

�
+
�
r + �2

2

�
T

�
p
T

and d2 = d1 � �
p
T

and N(x) is the cumulated normal distribution function

N (x) =

xZ
�1

� (t) dt with � (t) =
1p
2�
e�

t2

2 :

The Black-Scholes option pricing formula was extended by Merton to the
case of dividends-paying stocks as:

C0(S; r; �;X; T ) = S0e
��TN (d1)�Xe�rTN (d2)

where

d1 =
ln
�
S0
X

�
+
�
r � � + �2

2

�
T

�
p
T

and d2 = d1 � �
p
T
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We now turn our attention to the determination of the fuzzy version of the
Black and Scholes formula that can be obtained by the direct application of the
extension principle.
We search for a fuzzy version of the call option price by modelling the under-

lying stock price, the volatility and the risk-free interest rate as fuzzy numbers,
incorporating uncertainity in the Black and Scholes model. The fuzzy variables
become:

S =
�
S�i ; �S

�
i ; S

+
i ; �S

+
i

�
i=0;1;:::;N

� =
�
��i ; ��

�
i ; �

+
i ; ��

+
i

�
i=0;1;:::;N

r =
�
r�i ; �r

�
i ; r

+
i ; �r

+
i

�
i=0;1;:::;N

and the fuzzy call option price takes the form:

C =
�
C�i ; �C

�
i ; C

+
i ; �C

+
i

�
i=0;1;:::;N

It then follows that
C�i = C

�
S�i ; �

�
i ; r

�
i ; X; T

�
(4)

C+i = C
�
S+i ; �

+
i ; r

+
i ; X; T

�
(5)

The fact that the function f(x1; x2; :::; xn) in (1) has the su¢ ciently simpler
form, implies that the analytical expressions for v�i , �v

�
i , v

+
i and �v+i can be

explicitly obtained. The preliminary studies about the fuzzy option pricing are
in [?] and [?], a deeper investigation can be found in [8].
Yoshida in [17] introduces fuzzy logic for the Black and Scholes stochastic

model by deriving the expected prices of European options for triangle-type
shape function. He calls fuzzy factor of the model, the fuzziness c of the volatility
� because it is recognized as the most di¢ cult variable to estimate.
Yoshida computes the expected price (equal to 0:774283) for a European

call option with time to maturity T = 0:5; strike price K = 35, interest rate
r = 5%, volatility � = 25% with c = 0:05 and underlying stock price S = 30:
The LU methodology in the same case produces a crisp call option price equal to
0:7694 with � = 0 support [0:4459; 1:1298] (Yoshida does not report his value).
When we introduce uncertainty also in the interest rate and in the underlying
we obtain a crisp value equal to 0:7655 and a fuzzy call price that has a nonlinear
and asymmetric shape assuming a deep meaning.
In fuzzy calculus, as it is well known, the linear shape of fuzzy numbers

looses when also simple arithmetic operations are applied.
Zmeskal in [20] formulates a fuzzy-stochastic model that can not be solved

analytically but as a non-linear programming problem with the input data that
are linear fuzzy numbers. The empirical application in his work is devoted to
the �nding of the fuzzy �rm value.
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Thiagarajah et al. in [14] assume that the expiry date and excercise price
are always known and are nonfuzzy. They model the uncertainty of interest
rate, volatility, and stock price using adaptive fuzzy numbers. They replace the
fuzzy interest rate, the fuzzy stock price and the fuzzy volatility by possibilistic
mean value in the fuzzy Black�Scholes formula. The price S is an adaptive fuzzy
number of the form S0 = (S1, S2, S3, S4)n. In a similar manner r = (r1, r2,
r3, r4)n for the interest rate and of the form = ( 1, 2, 3, 4)n for the volatility
can also be modeled. We consider the following Black�Scholes formula for a
dividend paying stock with exercise price K.

Wu in [15] and [16] fully justi�es the use of fuzzy numbers to model uncer-
tainty in option pricing and he applies the Black and Scholes formula to �nd the
fuzzy call option price when three key variables are triangular fuzzy numbers.
At �rst, we test the LU-representation in the same simulated example as

in [15]: the valuation of a call option with a three months time to maturity
T = 0:25, a strike price K = 30 and the interest rate r; the underlying stock
price S and the volatility � are modelled as triangular fuzzy numbers having
respectively supports [4:8%; 5:2%], [32; 34], [8%; 12%].
Consequently, we price a call option that cannot be out of the money (so

that will be always exercised) because the crisp strike price is always smaller
than the smallest value of the fuzzy underlying stock price.
The �rst consideration attains the fact that the LU approach is computa-

tionally simpler and does not overestimate the fuzziness as it is shown in the
next table:

WU Lower Upper

� = 0:98 [3:3092; 3:4534] [3:3611; 3:4016]

� = 0:99 [3:3453; 3:4174] [3:3712; 3:3914]

where the level cut intervals 0:98 and 0:99 are signi�cantly smaller than
intervals estimated in [15]. The same behavior is even more evident for level cut
intervals with a higher degree of uncertainty.

4 Conclusions

The paper shows that the congruent use of possibilistic mean values with the
fuzzy extension principle must be pursued in order to obtain results that can well
highlight the positive aspects of uncertainty modeling through fuzzy numbers.
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