
Modeling and Selection of Interdependent Software
Requirements using Fuzzy Graphs

Davoud Mougouei, David M. W. Powers

This is a post-peer-review, pre-copyedit version of an article published in International Journal of Fuzzy Systems. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s40815-017-0364-4.

Abstract Software requirement selection is to find an
optimal set of requirements that gives the highest value
for a release of software while keeping the cost within
the budget. However, value-related dependencies among
software requirements may impact the value of an opti-
mal set. Moreover, value-related dependencies can be
of varying strengths. Hence, it is important to con-
sider both the existence and the strengths of value-
related dependencies during a requirement selection.
The existing selection models however, either assume
that software requirements are independent or they ig-
nore strengths of requirement dependencies. This paper
presents a cost-value optimization model that considers
the impacts of value-related requirement dependencies
on the value of selected requirements (optimal set). We
have exploited algebraic structure of fuzzy graphs for
modeling value-related requirement dependencies and
their strengths. Validity and practicality of the work
are verified through carrying out several simulations
and studying a real world software project.

1 Introduction

Owing to budget constraints, it is hardly if ever feasi-
ble to fully implement the requirements of a software
release [1]. Therefore, requirement selection is needed
to find an optimal set of requirements with the highest
value while keeping the cost within the budget [2,3,4,5,
6,7,8,9]. This problem, also known as the Next Release
Problem (NRP) [1], is mathematically formulated as a

School of Computer Science, Engineering and Mathematics
Flinders University, Adelaide, Australia
Tel.: +61 8 82012841
E-mail: {davoud.mougouei,david.powers}@flinders.edu.au

Binary Knapsack Problem (BKP) [10,11,12,13,14,15,
16,17].

Based on the BKP formula, the existing selection
models aim to maximize the Accumulated Value (AV)
of an optimal set on the assumption that the value of an
optimal is derived by accumulating the Estimated Val-
ues (EVs) of selected software requirement [11]. How-
ever, several studies have argued that this assumption
does not hold when interdependencies exist among re-
quirements [14,18,11,19]. The reason is that software
requirements affect each other’s values due to the value-
related dependencies among them [20,21,22,23,24,25,
14,26]. As a result, excluded requirements may impact
the values of selected requirements that depend on them.
Hence the actual value i.e. Customer Value (CV) of
a selected requirement might differ from its estimated
value (EV).

On the other hand, value-related requirement de-
pendencies can be of various strengths in the context
of real world projects [4,27,28]. In other words, values
of requirements can weakly, moderately, or strongly de-
pend on each other [29]. Therefore, it is important to
consider both the existence and the strengths of value-
related requirement dependencies [30,11] while consid-
ering the impacts of requirements on each other’s values
during a requirement selection.

However, the existing requirement selection models
either assume that requirements are independent [16,
17,13,31,32] or they formulate requirement dependen-
cies as precedence constraints of BKP formula without
considering the strengths of those dependencies [1,33,
34,35,36,37,38,39,40,41,42,43,44]. In the latter case,
dependencies are considered as binary (0/1) relations.

As such, by excluding a requirement from an opti-
mal set, all of its dependent requirements also have to

ar
X

iv
:2

00
3.

01
48

3v
1

 [
cs

.S
E

]
 3

 M
ar

 2
02

0

http://dx.doi.org/10.1007/s40815-017-0364-4

2 Davoud Mougouei, David M. W. Powers

be excluded even if the budget allows for their imple-
mentation [45]. This problem is referred to as Selection
Deficiency Problem (SDP) [19]. As a result of the SDP,
any small increase in the number of dependencies would
dramatically depreciate the accumulated value of an op-
timal set [45]. Hence, the SDP can severely impact the
efficiency of selection models that formulate all require-
ment dependencies as precedence relations.

This paper has focused on considering the impacts
of value-related requirement dependencies on the value
of an optimal set during a selection process. We have
achieved this through considering both the existence
and the strengths of value-related requirement depen-
dencies during software requirement selection. In doing
so, we have specially made three main contributions.

First, we have demonstrated using algebraic struc-
ture of fuzzy graphs [46,47,48,49] to modeling value-
related requirement dependencies and their strengths.

Second, we have proposed a new measure of value
of an optimal set referred to as Overall Value (OV)
that considers the impacts of value-related requirement
dependencies on the value of an optimal set (selected
requirements). In this regard, we have introduced the
following definitions of value.

– Estimated Value (EV): Value of a software require-
ment estimated by the stakeholders.

– Customer Value (CV): Value of a software require-
ment derived by considering the impacts of value-
related dependencies on the estimated value of that
requirement.

– Accumulated Value (AV): a measure of value of an
optimal set that is derived by accumulating the esti-
mated values of selected requirements without con-
sidering value-related dependencies.

– Overall Value (OV): a measure of value of an op-
timal set that is derived by accumulating the cus-
tomer values of selected requirements with the con-
sideration of the impacts of value-related require-
ment dependencies on the value of the selected re-
quirements.

Finally, we have presented a novel requirement selec-
tion model referred to as the GORS (Graph Oriented
Requirement Selection), which maximizes the overall
value of an optimal set while mitigating the SDP. The
proposed model not only considers value-related depen-
dencies among requirements but more importantly ex-
plicitly factors in the strengths of those dependencies.

Validity and practicality of the work are verified
through a) carrying out several simulations and b) study-
ing a real world software project. The results of our sim-
ulations as well as a case study of a real world software
project have consistently shown that: (a) the GORS

model can properly capture the strengths of value-related
dependencies among requirements during a selection
process while mitigating the selection deficiency prob-
lem (SDP), (b) the GORS model always maximizes the
overall value of an optimal set, and (c) maximizing the
overall and the accumulated values of an optimal set
can be conflicting objectives [50] as maximizing one
may depreciate the other.

The remainder of this paper is organized as follows.
We first discuss related works in Section 2. Then, Sec-
tion 3 gives the details of modeling value-related re-
quirement dependencies by fuzzy graphs. After that,
Section 4 introduces our proposed formulation of over-
all value of an optimal set as well as our proposed
graph oriented requirement selection (GORS) model.
The results of our simulations and a case study of a real
world software project are discussed in Section 5. Sec-
tion 6 then, discusses automated identification of value-
related dependencies among requirements. Finally, Sec-
tion 7 concludes the paper with a summary of major
contributions and future work.

2 Related Work

As discussed earlier, it is important to consider the im-
pact of value-related dependencies during a requirement
selection process [51,14,25]. On this basis, the existing
requirement selection models can be categorized into
two distinct groups.

The first group of selection models [16,17,13,31,32]
referred to as BKP models are solely based on the basic
formulation of binary knapsack problem [11,13,14,15]
as given in (1).

Given a set of requirements R = {r1, ..., rn}, for
each ri ∈ R, vi and ci in (1) denote the estimated value
and the cost of ri respectively. Also, b denotes the avail-
able budget of the release. A binary variable xi specifies
whether the requirement ri is selected (xi = 1) or oth-
erwise (xi = 0). As given by (1), BKP models find a
subset of R that maximizes the accumulated value of
selected requirements (

∑n
i=1 vixi) without considering

dependencies among them [52,16,17,13].

Maximize
n∑

i=1

vixi

Subject to
n∑

i=1

cixi ≤ b

xi ∈ {0, 1}

(1)

To consider dependencies, the second group of selec-
tion models [1,33,34,35,36,37,38,39,40,41,42,43,44] re-
ferred to as BKP-PC models formulate dependencies

Modeling and Selection of Interdependent Software Requirements using Fuzzy Graphs 3

as precedence constraints of the BKP formula as given
by (2). For instance, consider the set of requirements
R = {r1, r2, r3, r4} for which we have the dependency
set of D = {(r1, r2), (r2, r3)}.

The explicit dependency (r1, r2) ∈ D (when formu-
lated as a precedence relation) means that requirement
r2 cannot be included in the optimal set unless r3 is also
selected. Equation (2) formulates these dependencies as
precedence constraints set PCS = {x2 ≤ x3, x1 ≤ x2}.
Moreover, the explicit dependencies (r1, r2) and (r2, r3)

can also imply an implicit dependency from r1 to r3.

Maximize
n∑

i=1

vixi

Subject to
n∑

i=1

cixi ≤ b

xi ∈ {0, 1}
xi ≤ xj , if ri depends on rj

(2)

However, BKP-PC models merely captures the ex-
istence of dependencies while ignoring their strengths.
As such, all dependencies are treated as binary (0/1)
relations and consequently a requirement cannot be se-
lected even in the presence of sufficient budget unless
all of its dependent requirements are also selected. This
makes BKP-PC models prone to the selection deficiency
problem (SDP) [19] as discussed earlier.

As a result of the SDP, any increase in the number of
dependencies would dramatically depreciate the accu-
mulated value of selected requirements [45]. Therefore
the SDP can severely impact the efficiency of BKP-PC
models. In one study, Chen et al. [45] demonstrated that
a 2% increase in the number of dependencies (when for-
mulated as precedence relations) would lead to almost
10% decrease in the accumulated value of the optimal
set.

The SDP occurs if the condition of (3) holds. The
dependency set D in (3) specifies the explicit dependen-
cies among a set of requirements R = {r1, ..., rn} where
R is partitioned into two distinct subsets: an optimal
set O ⊆ R (selected requirements) and an excluded set
Õ ⊆ R (ignored requirements) such that O ∩ Õ = ∅.

∃ ri, rj ∈ Õ : (ri, rj) ∈ D,(
∑
rk∈O

ck) + ci ≤ b (3)

(
∑
rk∈O

ck) + ci + cj > b

Akker et al. [18] took a different approach toward
requirement selection by first partitioning requirements
into a set of m ≥ 1 distinct collections S = {s1, ..., sm}

and then assigning a value to each individual collection.
As given by (4), for each realized collection sj ∈ S, the
difference between value of collection (wj) and its corre-
sponding accumulated value

∑
rk∈sj vk is added to the

accumulated value of selected requirements (
∑n

i=1 vi)
to derive the value of the optimal set. yj in (4) specifies
whether collection sj is fully realized (yj = 1) or oth-
erwise (yj = 0). However, this model does not specify
how to find the values of collections. Furthermore, es-
timating the values of the collections can become com-
putationally as complex as O(2n) for n requirements.

Some of the existing works [45,53,54] have addressed
the latter problem by only estimating the values of col-
lections of size 2 using pairwise comparisons. Pairwise
comparisons however, cannot capture implicit value de-
pendencies among requirements. Furthermore, estimat-
ing the values of collections (pairs) still remains subjec-
tive.

Maximize
n∑

i=1

vixi +

m∑
j=1

(wj −
∑
rk∈sj

vk)yj

Subject to
n∑

i=1

cixi ≤ b

xi, yj ∈ {0, 1}

(4)

3 Modeling Value-related Requirement
Dependencies using Fuzzy Graphs

This section highlights our reasons for choosing fuzzy
graphs and then gives the details of employing fuzzy
graphs for modeling value-related requirement depen-
dencies.

3.1 Why Fuzzy Graphs?

Requirement dependencies in general and value-related
requirement dependencies in particular are fuzzy rela-
tions [51] in the sense that strengths of those depen-
dencies vary from large to insignificant in the context
of real world software projects [51,55,29].

Fuzzy graphs on the other hand, have demonstrated
to contribute to more accurate models in computer sci-
ence and engineering [56,57] by considering uncertainty [58,
59,60] in real world problems [61,62].

Hence, fuzzy graphs can properly capture the fuzzi-
ness associated with value-related dependencies among
software requirements and contribute to more accurate
models for software requirement selection.

It is also worth mentioning that value-related re-
quirement dependencies are directed relations. In other

4 Davoud Mougouei, David M. W. Powers

words, (ri, rj) 6⇒ (rj , ri). That is customer value of a
requirement ri depends on a requirement rj , does not
imply that the customer value of rj also depends on ri.
As such, we adopt directed fuzzy graphs [47] for mod-
eling value-related requirement dependencies.

3.2 Fuzzy Requirement Interdependency Graphs

Based on the definition of fuzzy graphs [48], a Fuzzy Re-
quirement Interdependency Graph (FRIG) is defined as
a directed fuzzy graph G = (R,D, µ, ρ) in which a non-
empty set of identified requirements R = {r1, ..., rn}
constitute the graph nodes and a set of (explicit) de-
pendencies among the requirements D = R × R form
the edges of the graph.

A dependency (ri, rj) ∈ D means that the customer
value of ri explicitly depends on selection of rj . The
membership function ρ : R × R → [0, 1] denotes the
strengths of explicit value-related dependencies (mem-
bership degrees of edges) in D. ρ(x, y) = 0 denotes the
absence of an explicit dependency from x to y.

The fuzzy membership function µ specifies the mem-
bership degree of requirements in R. Requirements of
a software are either identified and listed in its require-
ment set R or they are unidentified. Hence, we have
∀ri ∈ R : µ(ri) = 1. Therefore, G = (R,D, µ, ρ) can be
abbreviated as G = (R,D, ρ).

On the other hand, forG = (R,D, µ, ρ) to be a fuzzy
graph, the following condition must hold at all times.
∀(x, y) ∈ D : ρ(x, y) ≤ µ(x) ∧ µ(y), where ∧ denotes
fuzzy AND operator (taking infimum). In other words,
for ρ(x, y) to denote a fuzzy relation, the membership
degree of a relation, also referred to as the strength of
the relation (dependence) must not exceed the member-
ship degree of either of the two elements. Theorem (1)
shows that a FRIG always satisfies the condition of
fuzzy graphs.

Proposition 1. If G = (R,D, ρ) is a FRIG, (∀ri ∈
R : µ(ri) = 1) then G always satisfies the condition
∀(ri, rj) ∈ D : ρ(ri, rj) ≤ µ(ri) ∧ µ(rj).

Proof. G = (R,D, ρ) is a FRIG ⇒
a) ∀ri ∈ R : µ(ri) = 1⇒ ∀(ri, rj) ∈ D : µ(ri) ∧ µ(rj) =

infimum(µ(ri), µ(rj)) = 1,

b) ρ : R×R→ [0, 1]⇒ ∀ri, rj ∈ R, ρ(ri, rj) ≤ 1.
Therefore, ∀(ri, rj) ∈ D : ρ(ri, rj) ≤ µ(ri) ∧ µ(rj).

Example 1. Let E1 = (R,D, ρ) be a FRIG with R =

{r1, r2, r3, r4}, D = {(r1, r2),(r2, r3),(r3, r4), (r4, r2)} as
in Figure 1. The membership function ρ specifies the
strengths of explicit dependencies in D as ρ(r1, r2)=

0.6, ρ(r2, r3) = 0.4, ρ(r3, r4) = 0.8, ρ(r4, r2) = 0.2. The

dependency (r1, r2) specifies that customer value of r1
explicitly depends on r2 and ρ(r1, r2) gives the strength
of the dependency (0.6).

r1

r2

r3

r4

ρ(
r1
, r

2
)
=
0.
6

ρ(r
2 , r

3)
=
0.4 ρ(

r3
, r

4
)
=
0.
8

ρ(r4, r2) = 0.2

Fig. 1: FRIG of Example 1

Value-related dependencies in a FRIG can be either
explicit or implicit. Explicit dependencies are identified
by the edges of the graph whereas implicit dependencies
are inferred from explicit dependencies. For instance,
an implicit dependency (r1, r2, r3) from r1 to r3 in Fig-
ure 1 is inferred from explicit dependencies (r1, r2) and
(r2, r3).
Definition 1. Value-related Dependencies, and their
Strengths. Let P = {p1, p2, ..., pm} be the set of all
value-related dependencies from node r0 to node rn in a
FRIG G = (R,D, ρ). A value-related dependency pi ∈
P is defined as a sequence of distinct nodes (r0, ..., rn)
such that ρ(ri−1, ri) > 0, where 1 ≤ i ≤ n and n ≥ 1 is
the length of the dependency.

The strength of a value-related dependency pi ∈ P
is derived by (5) that is the strength of the pi equals
to the strength of the weakest explicit value-related de-
pendency (edge) in pi.

∀pi = (r0, ..., rn) ∈ P, ρ(pi) =

n∧
j=1

ρ(rj−1, rj) (5)

In a FRIG G = (R,D, ρ) with m dependencies from
a requirement r0 to rn, the overall strength of all de-
pendencies from r0 to rn is denoted as ρ∞(r0, rn) and
calculated by (6). Based on (6), the overall strength of
all dependencies from r0 to rn equals to the strength of
the strongest dependency among all the m dependen-
cies from r0 to rn. It is clear that ρ∞(r0, rn) = ρ(r0, rn)

when there is no implicit value-related dependency from
r0 to rn.

ρ∞(r0, rn) =

m∨
i=1

ρ(pi) (6)

Modeling and Selection of Interdependent Software Requirements using Fuzzy Graphs 5

To measure the level of value-related dependencies
in a FRIG G = (R,D, ρ) with n requirements (|R| = n)
and k explicit value-related dependencies among those
requirements (|D| = k), we define Level Of Interdepen-
dency (LOI) as given in (7).

LOI(G) =
k

nP2
, nP2 =

n!

(n− 2)!
(7)

Example 2. For the FRIG E1 in Example 1, with n =

4, k = 4 we have LOI(E1) =
4

4P2
=

4

12
= 0.33.

It is also worth mentioning that requirements of
software projects may negatively influence the customer
values of each other. For instance, a negative depen-
dency from a requirement ri to a requirement rj means
that the customer value of ri will be depreciated if rj
is selected with ri in an optimal set. Such negative de-
pendency nonetheless, can be modeled as a positive de-
pendency from ri to r̄j where r̄j denotes ignoring rj
(excluding rj from an optimal set). Hence, FRIGs can
capture both positive and negative value-related depen-
dencies. Nevertheless, in this paper we only focus on
positive dependencies for the sake of simplicity.

4 Optimizing the Overall Value of an Optimal
Set using the GORS Model

This section gives the details of considering value-related
requirement dependencies in calculating the overall value
of an optimal set. We then present our proposed graph
oriented requirement selection model referred to as the
GORS model that optimizes the overall value an opti-
mal.

4.1 Overall Value of an Optimal Set

During a selection process some of the requirements of
a software may be excluded from the optimal set. Due
to the value-related dependencies among requirements
however, excluded requirements may impact the values
of selected requirements that depend on them. Equation
(8) captures these impacts. For a FRIG G = (R,D, ρ),
O = {o1, ..., om} and Õ = {õ1, ..., õk} denote selected
and excluded requirements respectively such that O ⊆
R, Õ ⊆ R : O ∩ Õ = ∅, O ∪ Õ = R.

For ∀oi ∈ O, Ii indicates the impact of excluded
requirements on oi’s value. This impact is calculated
by taking supremum (fuzzy OR operator ∨) over the
strengths of all dependencies from oi to the excluded
requirements in Õ. For an excluded requirement rj ∈ Õ
then, the overall strength of all dependencies from oi to

õj is denoted by ρ∞(oi, õj) which specifies the extent
to which oi’s value relies on selection of õj (through all
dependencies from oi to oj) as derived by (6).

∀ri ∈ R : Ii =

k∨

j=1

(ρ∞(ri, õj)) if ri ∈ O

0 if ri /∈ O
(8)

As discussed earlier, accumulated value (AV) of an
optimal set O is derived by accumulating the estimated
values of selected requirements (

∑
ri∈O vi). The over-

all value (OV) of O in contrast, is derived by accu-
mulating the customer values of selected requirements
as computed by (10). Overall value of O (

∑
ri∈O CVi)

captures the impacts of value-related dependencies as
customer value of each requirement ri ∈ O (CVi) cap-
tures the impacts of value-related dependencies on the
value of ri as given by (9).

CVi = vi × (1− Ii) (9)

OV =
∑
ri∈O

CVi =
∑
ri∈O

vi × (1− Ii) (10)

4.2 The GORS Selection Model

In contrast to BKP and BKP-PC models that aim to
maximize the accumulated value of an optimal set, the
proposed GORS model, maximizes the overall value of
an optimal set by factoring in the impacts of excluded
requirements on the values of selected requirements as
given by (11).

Maximize
n∑

i=1

vixi(1− Ii)

Subject to
n∑

i=1

cixi < b

xi = {0, 1}

(11)

4.3 Examples of Requirement Selection

This section provides examples of requirement selection
using BKP, BKP-PC, and GORS models.

Example 3. Let Gp = (R,D, ρ) be a FRIG of a soft-
ware (Figure 2) with requirement setR = {r1, r2, r3, r4}
and explicit value-related dependencies D as in Fig-
ure 2 with strengths of ρ(r1, r2) = 0.4, ρ(r1, r3) =

0.8, ρ(r2, r4) = 0.3, ρ(r3, r1) = 0.8, ρ(r3, r2) = 0.6,

6 Davoud Mougouei, David M. W. Powers

ρ(r3, r4) = 0.8, and ρ(r4, r3) = 0.2. The costs and val-
ues of the requirements are specified by C = {c1 =

10, c2 = 10, c3 = 15, c4 = 10} and V = {v1 = 20, v2 =

10, v3 = 50, v4 = 10} respectively.

r1

r2

r3

r4

ρ(r3, r1) = 0.8

ρ(r
3 , r

2)
=
0.6

ρ(r3, r4) = 0.8

ρ(
r1
, r
2
)
=
0.
4

ρ(r1, r3) = 0.8

ρ(r2, r4) = 0.3

ρ(
r4
, r
3
)
=
0.
2

Fig. 2: FRIG of Example 3

Table 1: Overall strengths of the value-related dependencies
among requirements of Example 3

ρ∞(x, y) r1 r2 r3 r4

r1 1.0 0.6 0.8 0.8

r2 0.2 1.0 0.2 0.3

r3 0.8 0.6 1.0 0.8

r4 0.2 0.2 0.2 1.0

Example 4. Consider finding the optimal set of re-
quirements by the BKP model. Among all subsets of R
in Table 2, the BKP model recommends s6 = {r1, r3}
as the optimal set with the highest accumulated value
of AV = 70 and the accumulated cost of AC = 25.
Therefore we have O = {r1, r3}, Õ = {r2, r4}. In order
to compute the overall value of the optimal set, we first
calculate impacts of excluded requirements on the val-
ues of selected requirements based on (8). Impacts are
calculated based on overall strengths of value-related
dependencies in Table 1.

Overall strengths of dependencies are calculated by
(6) as explained earlier. For instance, to compute the
overall strength of the dependency from r4 to r2, de-
pendencies p1 = (r4, r3, r2) and p2 = (r4, r3, r1, r2)

need to be considered. Based on (6), supremum is taken
over the strengths of the two dependencies to calculate
the overall strength of the dependency: ρ∞(r4, r2) =

∨((ρ(r4, r3)∧ρ(r3, r2)), (ρ(r4, r3)∧ρ(r3, r1)∧ρ(r1, r2))) =

∨((0.2 ∧ 0.6), (0.2 ∧ 0.8 ∧ 0.4)) = ∨(0.2, 0.2) = 0.2.

Table 2: Accumulated values, overall values, and accumulated
costs of the requirement subsets of Example 3

Subset AC AV OV

s0 = {} 0 0 0

s1 = {r1} 10 20 4

s2 = {r2} 10 10 7

s3 = {r3} 15 50 10

s4 = {r4} 10 10 8

s5 = {r1, r2} 20 30 11

s6 = {r1, r3} 25 70 14

s7 = {r1, r4} 20 30 12

s8 = {r2, r3} 25 60 17

s9 = {r2, r4} 20 20 16

s10 = {r3, r4} 25 60 18

s11 = {r1, r2, r3} 35 80 21

s12 = {r1, r2, r4} 30 40 20

s13 = {r1, r3, r4} 35 80 36

s14 = {r2, r3, r4} 35 70 26

s15 = {r1, r2, r3, r4} 45 90 90

Impacts then can be computed as I1 = ∨(ρ∞(r1, r2),
ρ∞(r1, r4)) = 0.8, I3 = ∨(ρ∞(r3, r2), ρ∞(r3, r4)) = 0.8.
Finally, overall value of the optimal set O = {r1, r3} is
calculated as OV = v1× (1− I1) + v3× (1− I3) = 20×
0.2 + 50× 0.2 = 14 which is less than the overall value
of s10. Therefore, the BKP model does not necessarily
maximize the overall value of an optimal set.

Example 5. Consider finding the optimal set of re-
quirements in Example 4 using the BKP-PC model,
which finds a subset of requirements with the highest
AV respecting the budget (AC ≤ 25) and the prece-
dence constraints among the requirements. We can de-
rive a precedence constraints set PCS = {x1 ≤ x2,
x1 ≤ x3, x2 ≤ x4, x3 ≤ x1, x3 ≤ x2, x3 ≤ x4,
x4 ≤ x3} from the dependency set D of Gp. Obvi-
ously there is only one case that simultaneously sat-
isfies both PCS and AC ≤ 25, which is the empty set
s0 = {} (x1 = x2 = x3 = x4 = 0) in Table 2 with
AV = OV = 0. Hence, none of the requirements can
be implemented even though the budget is available for
implementing some of them. This is due to the selection
deficiency problem (SDP) as discussed before.

Example 6. Consider finding the optimal set of re-
quirements in Example 4 using the GORS model, which
finds a subset of requirements with the highest OV re-
specting AC ≤ 25. To do so, we first calculate the OV of
all subsets of R (steps of calculation was demonstrated
for s6 in Example 4) as listed in Table 2. Among all sub-
sets of the requirements, s10 = {r3, r4} gives the highest

Modeling and Selection of Interdependent Software Requirements using Fuzzy Graphs 7

overall value of OV = 18 while the accumulated cost
is within the budget, that is (AC = 25 ≤ 25). There-
fore, s10 = {r3, r4} will be selected as the optimal set.
s10 however, is not giving the maximum accumulated
value. s6 for instance, provides a higher AV.

5 Validation

Validity and practicality of our work are verified through
carrying out several simulations and studying a real
world software project.

5.1 Simulations

5.1.1 Simulation Design

We compared performance of the GORS model against
those of the BKP and BKP-PC models through car-
rying out simulations on requirements from two clas-
sic requirement sets [63,16,17] from real world projects
of Ericssons Radio Access Network (RAN) and Perfor-
mance Management Traffic Recording (PMR) with 14

and 11 requirements respectively. Estimated values and
costs of the requirements of the RAN and PMR projects
are listed in Table 3.

Table 3: Estimated values and costs of requirements for the
RAN and PMR projects

Requirements RAN PMR
Value Cost Value Cost

r1 12 1 0 6

r2 6 2 6 5

r3 5 3 3 6

r4 7 4 11 19

r5 12 6 32 28

r6 16 11 20 4

r7 3 4 9 5

r8 3 6 4 7

r9 4 7 25 10

r10 5 12 9 3

r11 1 4 3 8

r12 1 6 − −
r13 21 23 − −
r14 3 10 − −

Simulation has been widely used for the purpose of
evaluation in system analysis [64] as well as the studies
concerning requirement dependencies [29,45]. Chen et
al. [45] for instance, proposed simulating requirement

dependencies for analyzing the performance of require-
ment selection models.

However, to the best of our knowledge there is no
work in the existing literature to study distribution
of strengths of dependencies among software require-
ments. Hence, we simulate the strengths of explicit value-
related requirement dependencies with uniformly dis-
tributed random numbers in [0, 1] generated by the
nextDouble() Method of the Class Random in Java [65].
Our aim is to allow for evaluating the performance of se-
lection models for various levels of dependencies among
requirements.

Our simulation process starts with construction of a
fuzzy requirement interdependency graph (FRIG) with
randomly generated strengths of explicit value-related
dependencies (edges of the graph) for a given level of
interdependency (LOI ∈ [0, 1]). A range of budgets
(Budget = {1, 2, ..., 120}) then will be specified to ex-
amine the performance of the selection models in the
presence of various budget constraints.

At the end of each simulation, an optimal set of re-
quirements will be generated by each of the selection
models. Then, the accumulated value and the overall
value of each optimal set will be calculated and com-
pared against those of the other selection models. The
simulation will be repeated for different levels of inter-
dependency (LOIs) among requirements.

5.1.2 Simulation Results

Figure 3 shows the results of our simulations. The x and
y axes show the available budget (Budget ∈ {1, ..., 120})
and the level of interdependency (LOI ∈ {0, 0.1, ..., 1})
respectively. The z axis shows the percentage of the
accumulated value (overall value) of the optimal set,
which is the ratio of AV (OV) to the total estimated
value of the requirements multiplied by 100.

Our simulation results consistently showed that the
BKP model maximized the accumulated value (AV)
while the GORS model maximized the overall value
(OV) of optimal sets. Nevertheless, none of these mod-
els simultaneously maximized both AV and OV for an
optimal set. In other words, maximizing AV and OV
demonstrated to be conflicting objectives.

The results of our simulations also showed (Figure
3) that the efficiency of the BKP-PC model was severely
impacted by the selection deficiency problem (SDP). In
other words, the BKP-PC model generated the lowest
AV/OV unless in the presence of a sufficient budget
(Budget → 120) and/or a negligible level of interde-
pendency (LOI → 0).

For LOI > 0.25 in both RAN and PMR requirement
sets, almost no AV/OV was achieved by the BKP-PC

8 Davoud Mougouei, David M. W. Powers

0

0.5

1
0 20 40 60 80 100 120

0

20

40

60

80

100

LOI

Budget (relative)

A
V

 (
pe

rc
en

t)

(a) Accumulated value of RAN

0

0.5

1
0 20 40 60 80 100 120

0

20

40

60

80

100

LOI

Budget (relative)

A
V

 (
pe

rc
en

t)

(b) Accumulated value of PMR

0

0.5

1

0
20

40
60

80
100

120
0

20

40

60

80

100

LOI
Budget (relative)

O
V

 (
pe

rc
en

t)

(c) Overall Value of RAN

0

0.5

1

0
20

40
60

80
100

120
0

20

40

60

80

100

LOI
Budget (relative)

O
V

 (
pe

rc
en

t)

BKP−PC

BKP

GORS

(d) Overall value of PMR

Fig. 3: Accumulated and overall values of RAN and PMR achieved from Simulations

model unless budget was available for all of the require-
ments (b =

∑14
i=1 ci = 99 for the RAN). It was more-

over, observed (Figure 3) that the GORS model miti-
gated the impact of the SDP through considering the
strengths of value-related dependencies.

The BKP model however was not subject to the
SDP as it completely ignored dependencies among re-
quirements.

We further observed (Figure 3) that all the of the
selection models performed similar when budget was
available for all of the requirements to be implemented
(Budget ≥ 99 for RAN and Budget ≥ 101 for PMR)
or requirements were mutually independent.

Figure 4 and Figure 5 compare AV/OV achieved by
the simulated selection models for various levels of in-
terdependencies among requirements of the RAN and
PMR respectively. A dependency level of LOI = 0.8

implies that 80% of the explicit value-related dependen-
cies have non-zero strengths. The horizontal axis shows
the available budget and the vertical axis shows the
percentage of the achieved AV/OV .

In almost every simulation, it was observed that for
a given optimal set O, AV of O was smaller or equal to
the OV of O. This is due to the fact that the overall
value of an optimal set considers the impacts of value-
related dependencies among requirements whereas the
accumulated value of an optimal set accumulates the
estimated values of selected requirements without con-
sidering their value-related dependencies.

It was further observed that the gap between overall
value of an optimal set and its corresponding accumu-
lated value (|AV−OV |) increased as the level of interde-
pendency (LOI) grew. The reason is that increasing the
LOI increases the chances that selected requirements
explicitly depend on the excluded requirements which
generally results in decreasing the of overall value of the
optimal set.

The BKP-PC model however always avoids choosing
a requirement without its dependencies being selected.
In other words, the BKP-PCmodel avoids dependencies
from the optimal set to the excluded set and as such
AV = OV always holds for the BKP-PC models.

Modeling and Selection of Interdependent Software Requirements using Fuzzy Graphs 9

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

(a) LOI = 0.8

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

(b) LOI = 0.4

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

(c) LOI = 0.2

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

AV (BKP)

OV (BKP)

AV/OV (BKP−PC)

AV (GORS)

OV (GORS)

(d) LOI = 0.05

Fig. 4: Sample simulation results for RAN requirements

5.2 Case Study

To demonstrate practicality of the GORS model, we
performed selection for 23 requirements of a messaging
software referred to as the Precious Messaging System
(PMS). We employed 5 stakeholders to estimate [35]
the costs and values of requirements of the PMS. Each
requirement ri was assigned an estimated cost of ci ∈
[1, 20] and an estimated value of vi ∈ [1, 20] by different
stakeholders.

Stakeholders then, performed pairwise comparisons
among requirements [51] to identify explicit value-related
dependencies and estimate the strengths of those de-
pendencies. A dependency (ri, rj) was assigned an strength
of ρ(ri, rj) ∈ [0, 1] where ρ(ri, rj) = 0 and ρ(ri, rj) = 1

denoted no dependency and a full dependency from ri
to rj respectively.

The median of 5 estimated costs/values for each re-
quirement ri then was computed to account for different
opinions of stakeholders. In a similar way, for each ex-
plicit value-related dependency (ri, rj) the median of
the 5 estimated strengths of that dependency was com-
puted to specify the strength of (ri, rj). Median was

taken as the measure of central tendency as it is less af-
fected by (potentially) extreme opinions of stakeholders
compared to the arithmetic mean.

Table 4 lists the estimated costs and values of the
requirement of the PMS as well as the strengths of ex-
plicit value-related dependencies among those require-
ments. The Dependency Vector of a requirement ri in
Table 4 denotes the strengths of explicit value-related
dependencies from ri to other requirements of the PMS.
Based on Table 4 and (7), level of interdependency is
calculated for the requirements of the PMS as follows.
LOI(PMS) = 113

23P2
u 0.22.

Based on the estimations provided by the stakehold-
ers, FRIG of the PMS was constructed (Figure 6) and
selections were performed using the GORS model as
well as the BKP and BKP-PC models. Requirement
selections were performed for various ranges of budgets
(Budget ∈ {1, ..., 260}) to examine the performance of
the selection models.

Figure 7 summarizes the results of our experiments
by comparing the accumulated values (AV) and/or over-
all values (OV) achieved by the selection models. The

10 Davoud Mougouei, David M. W. Powers

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

(a) LOI = 0.8

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

(b) LOI = 0.4

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

(c) LOI = 0.2

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

AV (BKP)
OV (BKP)
AV/OV (BKP−PC)
AV (GORS)
OV (GORS)

(d) LOI = 0.05

Fig. 5: Sample simulation results for PMR requirements

Table 4: Estimated values, costs, and strengths of explicit value-related dependencies (based on stakeholder’s estimations).

ID Value Cost Dependency Vector {r1, ..., r23}

r1 20 10 {0.0, 0.0, 0.0, 0.5, 0.3, 0.0, 0.6, 0.4, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.3}
r2 20 7 {1.0, 0.0, 0.0, 0.6, 0.6, 0.0, 0.6, 0.6, 0.0, 0.3, 0.3, 0.7, 0.0, 0.3, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.8}
r3 6 1 {1.0, 0.0, 0.0, 0.5, 0.3, 0.0, 0.6, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
r4 17 10 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9, 0.0, 0.0, 0.4, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0}
r5 3 12 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
r6 20 20 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 0.3, 0.3, 0.4, 0.0, 0.0, 0.0, 0.0, 0.7, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8}
r7 15 6 {0.0, 0.0}
r8 8 14 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
r9 20 15 {0.0, 0.7, 0.0, 0.0, 0.0, 0.7, 0.0, 0.3, 0.0, 0.0, 0.8, 0.2, 0.4, 0.0, 0.2, 0.7, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0}
r10 16 10 {0.0, 0.7, 0.0, 0.0, 0.3, 0.7, 0.0, 0.3, 0.0, 0.0, 0.0, 0.3, 0.4, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.2, 0.6, 0.0}
r11 20 4 {0.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0}
r12 10 6 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.8, 0.0, 0.0, 0.0, 0.1, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0}
r13 8 5 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.1, 0.4, 0.0, 0.0, 0.0, 0.0, 0.1, 0.6, 0.0}
r14 5 12 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0}
r15 8 15 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}
r16 10 3 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
r17 15 12 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0}
r18 10 3 {0.0, 0.0}
r19 20 20 {1.0, 0.3, 0.0, 0.7, 0.5, 1.0, 0.6, 0.5, 1.0, 0.6, 0.4, 0.0, 0.0, 0.1, 0.8, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8}
r20 20 20 {1.0, 0.3, 0.0, 0.7, 0.5, 1.0, 0.6, 0.5, 1.0, 0.6, 0.4, 0.0, 0.0, 0.1, 0.8, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8}
r21 15 12 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.1, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0}
r22 20 15 {0.0, 0.0}
r23 20 10 {0.0, 0.0}

Modeling and Selection of Interdependent Software Requirements using Fuzzy Graphs 11

Table 5: Solution vectors and their corresponding overall value (OV) provided by the experimented selection models in the
presence of various budget constraints. A selection variable xi denotes whether requirement ri is selected (xi = 1) or otherwise
(xi = 0)

Budget Selection Model Overall Value (percent) Solution Vector {x1, ..., x23}

16
BKP 5.21 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}
BKP-PC 10.74 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
GORS 12.88 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0}

46
BKP 23.25 {1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1}
BKP-PC 19.94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}
GORS 26.63 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1}

71
BKP 31.07 {1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1}
BKP-PC 19.94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}
GORS 34.60 {1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1}

76
BKP 32.06 {1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1}
BKP-PC 19.94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}
GORS 35.74 {1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1}

81
BKP 31.90 {1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1}
BKP-PC 19.94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}
GORS 37.98 {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1}

141
BKP 44.11 {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 59.45 {1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

146
BKP 45.40 {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 60.43 {1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

151
BKP 46.87 {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 62.27 {1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

156
BKP 46.87 {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 62.27 {1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

161
BKP 50.12 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 64.23 {1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

166
BKP 51.41 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 64.72 {1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

171
BKP 52.88 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 64.72 {1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

176
BKP 52.88 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 66.69 {1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

181
BKP 51.35 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 67.18 {1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

186
BKP 52.64 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 73.83 {1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1}

191
BKP 54.11 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 75.31 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1}

196
BKP 54.11 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
BKP-PC 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
GORS 75.31 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1}

246
BKP 100.00 {1, 1}
BKP-PC 100.00 {1, 1}
GORS 100.00 {1, 1}

12 Davoud Mougouei, David M. W. Powers

horizontal axis shows the available budget (Budget =

{1, ..., 260}) and the vertical axis shows the percentages
of AV/OV . Table 5 lists some of the optimal sets pro-
vided by the employed selection models in the presence
of various budget constraints.

Consistent with the simulations, the results of our
case study demonstrated (Figure 7 and Table 5) that
the BKPmodel always maximized the accumulated value
of the selected requirements (optimal set) while the
GORS model maximized the overall value of selected
requirements. Moreover, maximizing accumulated value
and overall value of an optimal set demonstrated to be
conflicting objectives.

r2
r3

r4

r5

r6

r7

r8

r9
r21

r10
r20

r12
r23 r11

r22

r14

r13

r16

r15

r18

r17

r19

r1

Fig. 6: FRIG of the PMS (Strengths of dependencies are not
represented for the sake of readability)

Furthermore, the results of our experiments showed
(Figure 7 and Table 5) that the GORS model miti-
gated the adverse impact of the selection deficiency
problem (SDP) through considering the strengths of
value-related requirement dependencies while the effi-
ciency of the BKP-PC model was negatively impacted
by the SDP. For instance, we observed (Table 5) that
for Budget = 81, overall value of the optimal set pro-
vided by the GORS model was almost twice as higher
as the overall value provided by the BKP-PC model.
The BKP model on the contrary, was not vulnerable to
the SDP as it totally ignores dependencies.

6 Automated Identification of Explicit
Value-related Requirement Dependencies

Automated identification of value-related requirement
dependencies and their strengths has not been discussed
in the existing literature. Nonetheless, various techniques

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

V
al

ue
 (

pe
rc

en
t)

AV (BKP)
OV (BKP)
AV/OV (BKP−PC)
AV (GORS)
OV (GORS)

Fig. 7: Selection results for the PMS (LOI u 22%)

from information retrieval and data mining domain [66]
can be borrowed to assist such automation.

This section discusses one of the several possible
approaches to automate identification of value-related
requirement dependencies. Our proposed approach is
based on mining preferences of (potential) users of a
software [67] to identify both the existence and the
strengths of explicit value-related dependencies among
requirements of a software.

It has been widely recognize in the literature that
users’ preferences (customers’ preferences) of software
requirements can determine their customer values [67,
68] as highly preferred software requirements are more
likely to be purchased and used by the (potential) users.
On the other hand, users preferring a requirement rj
may also prefer a requirement ri (with the probability
p(ri|rj)). This is known as Market Basket Analysis or
Association Rule Mining in data mining domain [66].

An association from a requirement rj to ri (users
preferring rj will also prefer ri) can also be interpreted
as a causal relation [69] from rj to ri meaning that
preference (selection) of rj may cause preference of ri
by the users and therefore give the value of ri. As such,
it is clear that a causal relation from rj to ri also can be
interpreted as a value-related dependency from ri to rj
(value of ri depends on preference of rj by the users).

Hence, association rule mining of users’ preference
of requirements can be used for identification of value-
related requirement dependencies and the strengths of
those dependencies. In this context, measures of causal
strength can be used to estimate the strengths of value-
related dependencies.

One of the most commonly adopted measures of
causal strength is Pearl’s Measure of Causal Strength [69,
66,70,71,72] which is denoted by ηi,j in (12) and de-
rived by p(ri|rj). That is the chances that users prefer-

Modeling and Selection of Interdependent Software Requirements using Fuzzy Graphs 13

ring rj will also prefer ri. This can be used to estimate
the strength of an explicit value-related dependency
from ri to rj . Pearl’s measure then can be mapped into
a desired fuzzy membership function ρ(ri, rj) (which
gives the strengths of value-related dependencies in FRIGs)
as demonstrated in Figure 8.

Various membership functions could be explored for
this mapping based on the preference of the analyst.
For instance, the membership function of Figure 8(b)
treats dependencies with casual strengths below 0.16

(ηi,j < 0.16) as not worth considering while dependen-
cies with ηi,j ≥ 0.83 are treated as full dependencies of
strength 1. Such membership function might be suit-
able for selection models that formulate dependencies
as precedence constraints (BKP-PC models).

In such models, it might be reasonable to consider a
strong causal dependency (say ηi,j ≥ 0.95) as a prece-
dence relation rather than ignoring it (BKP-PC models
only capture precedence relations). Figure 8(c) and Fig-
ure 8(d) depict other alternative membership functions
which unlike membership functions of Figure 8(a) and
Figure 8(b) do not assume linearity for mapping ηi,j to
ρ(ri, rj).

ηi,j = p(ri|rj) =
p(ri, rj)

p(rj)
, ηi,j ∈ [0, 1] (12)

ηi,j

ρ(ri, rj)

0

1

1

(a)

ηi,j

ρ(ri, rj)

0

1

1

(b)

ηi,j

ρ(ri, rj)

0

1

1

(c)

ηi,j

ρ(ri, rj)

0

1

1

(d)

Fig. 8: Sample mappings from ηi,j to its corresponding mem-
bership functions ρ(ri, rj)

Finally, users’ preferences of software requirements
can be gathered in different ways [73,74,75] depending
on the nature of a software release and the current state

of a software. For the first release of a software, users’
preferences could be gathered by conventional market
research approaches such as conducting surveys or re-
ferring to the users’ feedbacks or sales records of the
similar software products in the market. For the fu-
ture releases of a software, or when re-engineering of
a software is of interest (e.g. for legacy systems) users’
feedbacks and sales records of the previous releases of
the software might be used in combination with market
research approaches to find users’ preferences.

It is also worth mentioning that in cases where col-
lecting users’ preferences in large quantities is difficult
to achieve, re-sampling methods [76] could be used to
automatically generate larger samples of users’ prefer-
ences from a relatively small sample while maintaining
the characteristics of the initial sample [77].

1 1 1 1 1 1 0 0 1 1

1 1 0 1 0 0 1 1 0 0

0 0 1 0 0 0 0 1 1 0

1 0 1 1 0 1 1 1 0 1

M4×20 =

r1

r2

r3

r4

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

Fig. 9: A sample preference matrix M4×10

Example 7. Consider the preference matrix M4×10 of
Figure 9.M4×10 contains 4 rows and 10 columns denot-
ing 4 requirements (R = {r1, r2, r3, r4}) and 10 users
(U = {u1, ..., u10}) respectively. Each element mi,j of
M4×10 specifies whether a user uj prefers a require-
ment ri (mi,j = 1) or otherwise (mi,j = 0). For in-
stance, m4,2 = 0 specifies that the requirement r4 is
not preferred by the user u2.

Matrix E4×4 (Figure 10) gives Pearl’s measure of
causal strength computed for pairs of requirements in
the preference matrix M4×10 of Figure 9 based on (12).
An element ηi,j of matrix E4×4 denotes the causal strength
of an explicit value-related dependence from ri to rj .
For instance, we have η1,3 = p(r1|r3) = p(r1,r3)

p(r3)
= 0.2

0.3 =

0.6667.

7 Conclusions and Future Work

In this paper we focused on considering the impacts of
requirement dependencies on the value of selected re-
quirements (optimal set) during a requirement selection
process. To achieve this, we made three main contribu-
tions as follows.

14 Davoud Mougouei, David M. W. Powers

1.0000 0.6000 0.6667 0.7143

0.3750 1.0000 0.3333 0.5714

0.2500 0.2000 1.0000 0.2857

0.6250 0.8000 0.6667 1.0000

E4×4 =

r1

r2

r3

r4

r1 r2 r3 r4

Fig. 10: Pearl’s measure of causal strength computed for pref-
erence matrix M4×10 of Figure 9

First, we demonstrated using fuzzy graphs for mod-
eling value-related dependencies among software require-
ments and capturing the strengths of those dependen-
cies. Second, we presented a new measure of value re-
ferred to as the overall value that factors in the impacts
of value-related requirement dependencies on the value
of selected requirements (optimal set).

Finally, we contributed a new requirement selection
model referred to as the graph oriented requirement se-
lection (GORS) model that maximizes the overall value
of an optimal set by considering the impacts of value-
related dependencies on the values of selected require-
ments. The GORS model not only considers the ex-
istence of value-related dependencies but more impor-
tantly factors in the strengths of those dependences dur-
ing a selection process.

Validity and practicality of our work are verified
through a) carrying out several simulations and b) study-
ing a real world software project. The results of our
experiments show that: (a) the GORS model can prop-
erly capture the strengths of value-related dependencies
during a requirement selection while mitigating the se-
lection deficiency problem (SDP), (b) the GORS model
always maximizes the overall value of selected require-
ments, and (c) maximizing the overall and the accumu-
lated values of selected requirements can be conflicting
objectives as maximizing one may depreciate the other.

One of the several avenues for extending the present
work is to explore various techniques of dependency
identification and measures of strength in order to im-
prove the efficiency of automated identification of value-
related requirement dependencies and capture various
aspects of those dependencies in a software requirement
selection process.

Another possible extension is to also consider cost-
related dependencies alongside value-related dependen-
cies among requirements during a selection process. Fi-
nally, requirement selection is a NP-hard problem and
considering value-related dependencies will add to this
complexity. Hence, techniques to enhance scalability of
requirement selection models while considering value-

related dependencies would be beneficial to the software
companies.

References

1. A. J. Bagnall, V. J. RaywardSmith, and I. M. Whittley,
“The next release problem,” Information and Software
Technology, vol. 43, no. 14, pp. 883–890, Dec. 2001.

2. D. Mougouei, D. M. Powers, and E. Mougouei, “A fuzzy
framework for prioritization and partial selection of se-
curity requirements in software projects,” Journal of In-
telligent & Fuzzy Systems, no. Preprint, pp. 1–17, 2019.

3. D. Mougouei, H. Shen, and M. A. Babar, “Partial selec-
tion of agile software requirements,” International Jour-
nal of Software Engineering and Its Applications, vol. 9,
no. 01, pp. 113–126, 2015.

4. A. G. Dahlstedt and A. Persson, “Requirements interde-
pendencies - moulding the state of research into a re-
search agenda,” in Ninth International Workshop on Re-
quirements Engineering: Foundation for Software Qual-
ity (REFSQ 2003), 2003, pp. 71–80.

5. S. Barney, A. Aurum, and C. Wohlin, “A product
management challenge: Creating software product value
through requirements selection,” Journal of Systems Ar-
chitecture, vol. 54, no. 6, pp. 576–593, Jun. 2008.

6. G. Ruhe, Product Release Planning: Methods, Tools and
Applications. Taylor & Francis, Jun. 2010.

7. P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin,
“A systematic literature review of software requirements
prioritization research,” Information and Software Tech-
nology, vol. 56, no. 6, pp. 568–585, Jun. 2014.

8. N. Kukreja, S. S. Payyavula, B. Boehm, and S. Padman-
abhuni, “Value-based requirements prioritization: Usage
experiences,” Procedia Computer Science, vol. 16, pp.
806–813, 2013.

9. N. D. Fogelström, E. Numminen, and S. Barney, “Using
portfolio theory to support requirements selection deci-
sions,” in 2010 Fourth International Workshop on Soft-
ware Product Management. IEEE, 2010, pp. 49–52.

10. D. Mougouei, D. M. W. Powers, and A. Moeini, “An
integer linear programming model for binary knapsack
problem with dependent item values,” in AI 2017: Ad-
vances in Artificial Intelligence: 30th Australasian Joint
Conference, Melbourne, VIC, Australia, August 19–20,
2017, Proceedings, vol. 10400. Springer International
Publishing, 2017, pp. 144–154.

11. M. Harman, J. Krinke, I. MedinaBulo, F. PalomoLozano,
J. Ren, and S. Yoo, “Exact scalable sensitivity analysis
for the next release problem,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 2, p. 19:1âĂŞ19:31, Apr. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2537853

12. ÃĄkos SzÅŚke, “Conceptual scheduling model and op-
timized release scheduling for agile environments,” In-
formation and Software Technology, vol. 53, no. 6, pp.
574–591, Jun. 2011.

13. Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-
objective next release problem,” in Proceedings of the
9th Annual Conference on Genetic and Evolutionary
Computation. New York, NY, USA: ACM, 2007, p.
1129âĂŞ1137.

14. P. Carlshamre, “Release planning in market-driven soft-
ware product development: Provoking an understand-
ing,” Requirements Engineering, vol. 7, no. 3, pp. 139–
151, Sep. 2002.

http://doi.acm.org/10.1145/2537853

Modeling and Selection of Interdependent Software Requirements using Fuzzy Graphs 15

15. T. Lust and J. Teghem, “The multiobjective multidi-
mensional knapsack problem: a survey and a new ap-
proach,” International Transactions in Operational Re-
search, vol. 19, no. 4, p. 495âĂŞ520, 2012.

16. J. Karlsson and K. Ryan, “A costvalue approach for pri-
oritizing requirements,” IEEE Software, vol. 14, no. 5,
pp. 67–74, Sep. 1997.

17. H.-W. Jung, “Optimizing value and cost in requirements
analysis,” IEEE Software, vol. 15, no. 4, pp. 74–78, Jul.
1998.

18. M. van den Akker, S. Brinkkemper, G. van Diepen, and
J. Versendaal, “Flexible release planning using integer lin-
ear programming,” REFSQ’05, 2005.

19. D. Mougouei, “Factoring requirement dependencies in
software requirement selection using graphs and integer
programming,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engi-
neering. ACM, 2016, pp. 884–887.

20. D. Mougouei and D. M. Powers, “Dependency-aware soft-
ware release planning through mining user preferences,”
Soft Computing, 2020.

21. ——, “Dependency-aware release planning for software
projects using fuzzy graphs and integer programming,”
Journal of Intelligent & Fuzzy Systems, pp. 1–15, 2019.

22. D. Mougouei, “A mathematical programming approach to
considering value dependencies in software requirement
selection (thesis),” Ph.D. dissertation, Flinders Univer-
sity, School of Computer Science, Engineering and Math-
ematics., 2018.

23. D. Mougouei, D. M. Powers, and A. Moeini,
“Dependency-aware software release planning,” in
2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 198–200.

24. D. Mougouei and D. M. Powers, “Modeling and selec-
tion of interdependent software requirements using fuzzy
graphs,” International Journal of Fuzzy Systems, pp. 1–
17, 2017.

25. Å. G. Dahlstedt and A. Persson, “Requirements inter-
dependencies: state of the art and future challenges,”
in Engineering and managing software requirements.
Springer, 2005, pp. 95–116.

26. J. Karlsson, S. Olsson, and K. Ryan, “Improved practical
support for largescale requirements prioritising,” Require-
ments Engineering, vol. 2, no. 1, pp. 51–60, Mar. 1997.

27. W. N. Robinson, S. D. Pawlowski, and V. Volkov,
“Requirements interaction management,” ACM Comput.
Surv., vol. 35, no. 2, pp. 132-190, Jun. 2003.

28. B. Ramesh and M. Jarke, “Toward reference models for
requirements traceability,” IEEE Transactions on Soft-
ware Engineering, vol. 27, no. 1, pp. 58–93, Jan. 2001.

29. J. Wang, J. Li, Q. Wang, H. Zhang, and H. Wang,
“A simulation approach for impact analysis of require-
ment volatility considering dependency change,” in Re-
quirements Engineering: Foundation for Software Qual-
ity, B. Regnell and D. Damian, Eds. Springer Berlin
Heidelberg, Jan. 2012, no. 7195, pp. 59–76.

30. M. M. A. Brasil, T. G. N. d. Silva, F. G. d. Freitas, J. T. d.
Souza, and M. I. CortÃľs, “A multiobjective optimization
approach to the software release planning with undefined
number of releases and interdependent requirements,” in
Enterprise Information Systems, R. Zhang, J. Zhang,
Z. Zhang, J. Filipe, and J. Cordeiro, Eds. Springer Berlin
Heidelberg, Jan. 2012, no. 102, pp. 300–314.

31. A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and
Y. Zhang, “A search based approach to fairness analysis
in requirement assignments to aid negotiation, mediation

and decision making,” Requirements Engineering, vol. 14,
no. 4, pp. 231–245, 2009.

32. J. del Sagrado, I. M. del Aguila, and F. J. Orellana,
“Ant colony optimization for the next release problem: A
comparative study,” in Search Based Software Engineer-
ing (SSBSE), 2010 Second International Symposium on.
IEEE, 2010, pp. 67–76.

33. L. Li, M. Harman, F. Wu, and Y. Zhang, “The value of
exact analysis in requirements selection,” IEEE Transac-
tions on Software Engineering, 2016.

34. N. Veerapen, G. Ochoa, M. Harman, and E. K. Burke,
“An integer linear programming approach to the single
and bi-objective next release problem,” Information and
Software Technology, vol. 65, pp. 1–13, 2015.

35. D. Greer and G. Ruhe, “Software release planning: an
evolutionary and iterative approach,” vol. 46, no. 4, pp.
243–253, 2004.

36. G. Ruhe and D. Greer, “Quantitative studies in software
release planning under risk and resource constraints,”
in Proceedings of the 2003 International Symposium on
Empirical Software Engineering, Sept 2003, pp. 262–270.

37. G. van Valkenhoef, T. Tervonen, B. de Brock, and
D. Postmus, “Quantitative release planning in extreme
programming,” Information and software technology,
vol. 53, no. 11, pp. 1227–1235, 2011.

38. Y. Zhang and M. Harman, “Search based optimization of
requirements interaction management,” in Search Based
Software Engineering (SSBSE), 2010 Second Interna-
tional Symposium on. IEEE, 2010, pp. 47–56.

39. M. O. Saliu and G. Ruhe, “Bi-objective release planning
for evolving software systems,” in Proceedings of the the
6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2007, pp.
105–114.

40. M. van den Akker, S. Brinkkemper, G. Diepen, and
J. Versendaal, “Determination of the next release of a
software product: an approach using integer linear pro-
gramming.” in CAiSE Short Paper Proceedings, 2005.

41. A. Ngo-The and G. Ruhe, “Optimized resource alloca-
tion for software release planning,” IEEE Transactions
on Software Engineering, vol. 35, no. 1, pp. 109–123,
2009.

42. W.-N. Chen and J. Zhang, “Ant colony optimization for
software project scheduling and staffing with an event-
based scheduler,” IEEE Transactions on Software Engi-
neering, vol. 39, no. 1, pp. 1–17, 2013.

43. J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the large
scale next release problem with a backbone-based multi-
level algorithm,” IEEE Transactions on Software Engi-
neering, vol. 38, no. 5, pp. 1195–1212, 2012.

44. M. van den Akker, S. Brinkkemper, G. Diepen,
and J. Versendaal, “Software product release planning
through optimization and what-if analysis,” Information
and Software Technology, vol. 50, no. 1, pp. 101–111,
2008.

45. C. Li, M. v. d. Akker, S. Brinkkemper, and G. Diepen,
“An integrated approach for requirement selection and
scheduling in software release planning,” Requirements
Engineering, vol. 15, no. 4, pp. 375–396, Nov. 2010.

46. A. Kalampakas, S. Spartalis, L. Iliadis, and E. Pimenidis,
“Fuzzy graphs: algebraic structure and syntactic recogni-
tion,” Artificial Intelligence Review, pp. 1–12, Jul. 2013.

47. H.-J. Zimmermann, “Fuzzy relations and fuzzy graphs,”
in Fuzzy Set Theory and Its Applications. Springer
Netherlands, Jan. 1996, pp. 69–89.

16

48. A. Rosenfeld, “Fuzzy graphs,” Fuzzy Sets and Their Ap-
plications, vol. 77, p. 95, 1975.

49. J. N. Mordeson, “Fuzzy mathematics,” in Foundations of
Image Understanding, L. S. Davis, Ed. Springer US,
Jan. 2001, no. 628, pp. 95–125.

50. B. Korte and J. Vygen, Combinatorial Optimization:
Theory and Algorithms. Springer, 2006.

51. P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and
J. Natt och Dag, “An industrial survey of requirements
interdependencies in software product release planning,”
in Fifth IEEE International Symposium on Requirements
Engineering, 2001. Proceedings, 2001, pp. 84–91.

52. G. Ruhe, A. Eberlein, and D. Pfahl, “Trade-off anal-
ysis for requirements selection,” International Journal
of Software Engineering and Knowledge Engineering,
vol. 13, no. 04, pp. 345-366, 2003.

53. J. d. Sagrado, I. M. d. ÃĄguila, and F. J. Orellana,
“Multiobjective ant colony optimization for requirements
selection,” Empirical Software Engineering, pp. 1–34,
Nov. 2013.

54. Y. Zhang, M. Harman, and S. L. Lim, “Empirical eval-
uation of search based requirements interaction manage-
ment,” Information and Software Technology, vol. 55,
no. 1, pp. 126 – 152, 2013, special section: Best papers
from the 2nd International Symposium on Search Based
Software Engineering 2010.

55. A. NgoThe and M. Saliu, “Fuzzy structural dependency
constraints in software release planning,” in Fuzzy Sys-
tems, 2005. FUZZ ’05. The 14th IEEE International
Conference on, May 2005, pp. 442-447.

56. S. Mathew and M. Sunitha, “Strongest strong cycles and
theta fuzzy graphs,” Fuzzy Systems, IEEE Transactions
on, vol. 21, no. 6, pp. 1096-1104, Dec 2013.

57. J. N. Mordeson and P. S. Nair, “Applications of fuzzy
graphs,” in Fuzzy Graphs and Fuzzy Hypergraphs, J. N.
Mordeson and P. S. Nair, Eds. PhysicaVerlag HD, Jan.
2000, no. 46, pp. 83–133.

58. D. Mougouei and W. Nurhayati, “A fuzzy-based tech-
nique for describing security requirements of intrusion
tolerant systems,” International Journal of Software En-
gineering and its Applications, vol. 7, no. 2, pp. 99–112,
2013.

59. D. Mougouei, W. Rahman, and M. M. Almasi, “Measur-
ing security of web services in requirement engineering
phase,” International Journal of Cyber-Security and Dig-
ital Forensics (IJCSDF), vol. 1, no. 2, pp. 89–98, 2012.

60. D. Mougouei, M. Moghtadaei, and S. Moradmand, “A
goal-based modeling approach to develop security re-
quirements of fault tolerant security-critical systems,” in
2012 International Conference on Computer and Com-
munication Engineering (ICCCE). IEEE, 2012, pp. 200–
205.

61. L. A. Zadeh, “Fyzzy sets,” Inf. Comput., vol. 8, pp. 338-
353, Dec 1965.

62. G. J. Klir and T. A. Folger, Fuzzy Sets, Uncertainty, and
Information. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1987.

63. J. Karlsson and K. Ryan, “Supporting the selection of
software requirements,” in Software Specification and De-
sign, 1996., Proceedings of the 8th International Work-
shop on, Mar 1996, pp. 146–149.

64. A. M. Law and W. D. Kelton, Simulation Modeling and
Analysis, 2nd ed. McGraw-Hill Higher Education, 1997.

65. “Random (Java Platform SE 7).” [Online]. Avail-
able: http://docs.oracle.com/javase/7/docs/api/java/
util/Random.html

66. J. Y. Halpern and C. Hitchcock, “Graded causation
and defaults,” The British Journal for the Philosophy
of Science, vol. 66, no. 2, pp. 413–457, 2015. [Online].
Available: http://bjps.oxfordjournals.org/content/66/2/
413.abstract

67. T. do Nascimento Ferreira, A. A. Araújo, A. D. B. Neto,
and J. T. de Souza, “Incorporating user preferences in
ant colony optimization for the next release problem,”
Applied Soft Computing, vol. 49, pp. 1283–1296, 2016.

68. Z. Racheva, M. Daneva, K. Sikkel, and L. Buglione,
“Business value is not only dollars âĂŞ results from case
study research on agile software projects,” in Product-
Focused Software Process Improvement, ser. Lecture
Notes in Computer Science, M. A. Babar, M. Vierimaa,
and M. Oivo, Eds. Springer Berlin Heidelberg, Jan. 2010,
no. 6156, pp. 131–145.

69. J. Sprenger, “Foundations for a probabilistic theory of
causal strength,” 2016.

70. J. Pearl, Causality. Cambridge university press, 2009.
71. D. Janzing, D. Balduzzi, M. Grosse-Wentrup,

B. Schölkopf et al., “Quantifying causal influences,”
The Annals of Statistics, vol. 41, no. 5, pp. 2324–2358,
2013.

72. E. Eells, Probabilistic causality. Cambridge University
Press, 1991, vol. 1.

73. C. W.-K. Leung, S. C.-F. Chan, F.-L. Chung, and
G. Ngai, “A probabilistic rating inference framework for
mining user preferences from reviews,” World Wide Web,
vol. 14, no. 2, pp. 187–215, 2011.

74. S. Holland, M. Ester, and W. Kießling, “Preference min-
ing: A novel approach on mining user preferences for
personalized applications,” in European Conference on
Principles of Data Mining and Knowledge Discovery.
Springer, 2003, pp. 204–216.

75. A. S. Sayyad, T. Menzies, and H. Ammar, “On the value
of user preferences in search-based software engineering:
a case study in software product lines,” in 2013 35th In-
ternational Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 492–501.

76. C.-F. J. Wu, “Jackknife, bootstrap and other resampling
methods in regression analysis,” the Annals of Statistics,
pp. 1261–1295, 1986.

77. J. H. Macke, P. Berens, A. S. Ecker, A. S. Tolias, and
M. Bethge, “Generating spike trains with specified corre-
lation coefficients,” Neural Computation, vol. 21, no. 2,
pp. 397–423, 2009.

Appendices

A Acronyms

The acronyms below are listed based on the order of
first appearance in the paper.

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html
http://bjps.oxfordjournals.org/content/66/2/413.abstract
http://bjps.oxfordjournals.org/content/66/2/413.abstract

17

NRP Next Release Problem
BKP Binary Knapsack Problem
AV Accumulated Value
EV Estimated Value
CV Customer Value
SDP Selection Deficiency Problem
OV Overall Value
GORS Graph Oriented Requirement Selection
FRIG Fuzzy Requirement Interdependency Graph
LOI Level Of Interdependency
RAN Radio Access Network
PMR Performance Management Traffic Recording
PMS Precious Messaging System

B Notations

A glossary of the frequently used symbols in this paper
is given below.

R Set of requirements
ri Requirement ri ∈ R
vi Estimated value of ri
ci Estimated cost of ri
b Available budget
xi Selection variable (ri ∈ R is selected or not)
D Set of explicit value-related dependencies
O Optimal set
Õ Set of excluded requirements
G A fuzzy requirement interdependency graph
µ Fuzzy membership function of requirements
ρ Fuzzy membership function of dependencies
∧ Fuzzy AND operator
Ii Impact of excluded requirements on ri
∨ Fuzzy OR operator
η Pearl’s measure of causal strength

	1 Introduction
	2 Related Work
	3 Modeling Value-related Requirement Dependencies using Fuzzy Graphs
	4 Optimizing the Overall Value of an Optimal Set using the GORS Model
	5 Validation
	6 Automated Identification of Explicit Value-related Requirement Dependencies
	7 Conclusions and Future Work
	Appendices
	A Acronyms
	B Notations

