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Abstract In this article, we study the structural properties

that smooth compositions bring to predictive control of TS

fuzzy models and examine how they affect the uncertain-

ties, parameter variations of the system and environmental

noises to die out. We have employed the smoothness

structure of compositions to convert the MPC cost function

of TS fuzzy model of the nonlinear systems to an incre-

mental iterative algorithm. Hence, the proposed algorithm

does not linearize the nonlinear dynamics, neither requires

solving an NP optimization problem in MPC and, there-

fore, is very fast and simple. The connectivist identifica-

tion—MPC approach—can be employed for the systems

with the long-range horizons. Therefore, the technique is

beneficial to the dead-time and non-minimum phase sys-

tems. The stability analysis of the algorithm has been

carried out, and the performance of the smooth TS fuzzy

identification–controller scheme to the classical ones has

been compared on a non-min phase test problem with

different uncertainties and working environments, includ-

ing (a) the normal working conditions, (b) with the additive

noises, (c) with the parametric changes, (d) with the

additive time-varying disturbances to demonstrate the

robust behavior of the smooth compositions.

Keywords Fuzzy control � Fuzzy IF–THEN systems

(TSK) � Smooth compositions � System identification �
Model predictive control (MPC) � Unstable systems

1 Introduction

Soft computing methods are being used for identification

and control of nonlinear and complex systems based on the

input–output data collected from the original system [1, 2].

There are many applications of artificial neural network

and fuzzy modeling framework for the identification and

model-based control purpose in the industry and academia

[3, 4]. Such methods have quite interesting ability in pre-

senting the industrial processes with different types of data.

The advantage of fuzzy models is that they can also include

the operator information for dealing with the concept of

uncertainty and handling the probabilistic logics [5, 6]. The

inclusion of information about the process in the generation

of the mathematical model makes the control task also

capable of coping with the various nonlinear behaviors

such as limit cycles, or where large changes in the oper-

ating conditions can be anticipated during the routine

operation, such as the systems with the time-varying

parameters, in batch processes or during the start-up and

the shutdown of the continuous processes [7, 8].

Some researchers have demonstrated the universal

approximation properties of the fuzzy logic-based models

[3]. It is widely recognized that the fuzzy models can

approximate any nonlinear function to any degree of

accuracy in a convex compact region. However, in many

applications it is desired to go beyond and have a model to

approximate the nonlinear function on a smooth surface to

get better performance and stability properties [9, 10]. The

first contribution of this manuscript is to make TS fuzzy

model of the nonlinear systems using smooth fuzzy com-

positions. It facilitates to avoid abrupt changes and dis-

continuities in the input–output mapping, especially in the

region around the steady states, when both error and

change in error are approaching zero. The continuity of the
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function and its derivative is defined as the smoothness

property [1, 9, 11].

1.1 Smooth Fuzzy Compositions

After introduction of topological structures [12], different

researchers have studied the concept of smooth fuzzy

topological spaces [13] and their properties and charac-

terizations in different compact, disconnected and bi-

topological spaces [14–17].

Recently, some new smooth compositions have been

presented and have been employed for modeling static

input–output mapping of the dynamical systems in

[2, 18, 19]. All the contributions in application of smooth

compositions for advanced control of dynamic systems

have employed the relational modeling framework [20].

The identification process then will be consisting of the

estimation of the unknown relational matrix from the

input–output data [20, 21]. Even though the fuzzy rela-

tional matrix can be quite easily developed online, this

advantage must be viewed in the context of their known

limitations. Firstly, their use is normally limited to the

processes with a small number of variables in view of the

potential large size of the matrix and the computational

requirements. The relational fuzzy modeling approaches

generally require significant computational effort, espe-

cially if a high number of variables and reference fuzzy sets

are involved. A first-order relational model of a system

consisting of 2 inputs and 1 output, where 7 reference sets

are used by each variable, will generate the matrix of 2401

elements [22]. Another problem posed by the fuzzy rela-

tional modeling framework is that there exists no simple

approach for deriving the controller output analytically,

which makes it necessary that for any change in the system

one needs to resort to the numerical approaches, for doing

the modeling process again. It increases the already men-

tioned large computational requirements of the model.

Also, the controller design problems arise as a result of

incomplete rule bases. It is to say, the fuzzy relational

approach does not provide rules that can be expressed

linguistically. Hence, this technique would be difficult to

use interactively with the human in loop, making it difficult

to update and modify the matrix using the heuristic

knowledge [5, 6]. Therefore, the first motivation of the

present work has been to overcome such barriers by pre-

senting an algorithm for identification of IF–THEN fuzzy

models, rather than relational fuzzy models for more

effective employment of the smooth compositions.

It is worth reminding the slight alteration of the defini-

tion of a smooth fuzzy topology built from the employment

of the smooth fuzzy norms by fuzzy relations which is

associated with the concept of composition of binary

numbers and relations in the earlier works [20, 23, 24],

rather than the topology built from the employment of the

same norms in the IF–THEN model, which more relates to

the concept of fuzzy numbers as introduced by Zadeh [25].

This is to say, the main difference of two approaches of the

relational smooth fuzzy models and IF–THEN smooth

fuzzy models is that whether or not it is more practical that

the functions be presented through fuzzy numbers of the

fuzzy topology or one should restrain to only the constant

zero and one fuzzy sets 0 and 1 of the smooth fuzzy

relations; We think the first one is preferable and will

contribute on development of the IF–THEN smooth fuzzy

connectivist modeling control scheme in this contribution.

Alongside, the other difficulty in smooth fuzzy rela-

tional models is that they suffer from the lack of analyz-

ability. Hence, our other motivation has been not only to

develop a new TS fuzzy modeling framework using the

smooth compositions, but also to construct models which

could be used more efficiently for study on the numerical

behavior, speed of convergence and the stability of the

algorithm in the model predictive controller (MPC) design

phase.

MPC is one of the methods that have been considered

largely for the purpose of fuzzy logic model-based control

of nonlinear processes. It can run the complex nonlinear

dynamics toward the desired point employing the system

data combined with prior knowledge [3, 8]. This control

strategy is based on online optimization algorithms and can

employ the long-range predictive horizons to secure the

stability and optimality of the unstable processes. The

fuzzy model structure of this paper is obtained through a

harmonious selection of components, which employs the

fuzzy smooth structure to simplify its subsequent controller

design.

MPC has been employed for the relational fuzzy model

systems with smooth compositions in [20], where the

authors have attempted to make the one-step-ahead model

predictive control of the nonlinear process. Contrarily, we

have developed MPC for TS fuzzy model with long-range

horizon. Using the long-range horizon, one can predict the

impact of the current process input to the future process

output, to handle the uncertainty in the system and the

models’ mismatches during the closed-loop control per-

formance. Therefore, our proposed algorithm is beneficial

for the multivariable systems, to run the system back to the

feasibility region in the cases of failure in the actuators, to

stabilize the non-minimum phase and dead-time systems.

The originality of the paper in computational facilitation

of the algorithm is that using the smoothness property of

the fuzzy models in the predictive controller design, we

propose a systemic iterative algorithm without need of

solving an NP-hard optimization problem in every step,

which widens the area of application of the algorithm for

the industrial applications without the need to a high
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computational power. In the earlier works of AmirAskari

and Menhaj [20], they have identified the smooth fuzzy

model through relational matrix, and hence, they again

resulted in the NP-hard optimization problem using the

non-derivative-based methods, without any effective

employment of the smoothness structure of the model.

Besides, their formulation is based on the triangular

membership function which is not widely being used;

however, we have put no restriction on the shape of the

membership function in the formulation development.

Although we have used normal membership function to

simplify the expression of the algorithm, the algorithm can

be extended for any kind of the membership function

readily.

Therefore, we believe that the present work paper

improves the general form of the fuzzy smooth models

both theoretically (for the theoretical algorithm develop-

ment and comparative analysis of the simulation results)

and practically (for facilitation in the numerical imple-

mentation of the algorithm to propone to the industry).

We illustrate application of the combined identification–

control scheme on different simulations. It has been applied

to a non-minimum phase system, taken from the literature.

We have considered the variations of the prediction hori-

zon as an important MPC tuning parameter and applied

different working conditions to study the effect of smooth

compositions in the performance of the predictive con-

troller to the TS fuzzy models. According to [7], smooth

fuzzy continuity is equivalent to fuzzy continuity on all the

cuts that together form the decomposition of the smooth

fuzzy topology. Therefore, it is expected that smooth fuzzy

models show more robustness to the parametric changes

and uncertainties in the predictive control rather than the

classical fuzzy models, by structure.

The paper is organized as follows. First, we present the

structure of fuzzy models for dynamic systems which

comprises a review on the different fuzzy compositions.

Then, the identification problem is addressed and we pre-

sent an identification scheme employing the smooth fuzzy

compositions. In the next section, we employ the model

constructed through the proposed identification algorithm

for the purpose of model predictive control of the systems

in the long horizons. We have provided several simulations

of the proposed uniform identification–control design

procedure to study the effectiveness of the smooth com-

positions in predictive control of TS fuzzy models. We will

end the paper with the conclusions.

2 Problem Definitions

Consider a MIMO system with m inputs u 2 U � Rm and p

outputs y 2 Y � Rp.

y k þ 1ð Þ ¼ f n kð Þ; u kð Þð Þ: ð1Þ

The input vector u kð Þ 2 Rm contains the input variables,

and the regression vector n kð Þ includes the current and

lagged inputs and outputs:

n kð Þ ¼ �y1; �y2; . . .; �yp; �u1; . . .; �um
� �T

�y1 ¼ yi kð Þ; yi k � 1ð Þ; . . .; yi k � nyi
� �� �

; i ¼ 1; . . .; p

�uj ¼ uj kð Þ; uj k � 1ð Þ; . . .; uj k � nuj
� �� �

; j ¼ 1; . . .;m

where nyi and nuj specify the number of lagged values for

the ith output and jth input, respectively. We can define a

fuzzy inference for this system as

Rli : if n1 2 Xli;1 and � � � and np 2 Xli;p and

npþ1 2 Xli;pþ1 and � � � and npþm 2 Xli;pþm

then Yli k þ 1ð Þ ¼ hl n kð Þ; u kð Þð Þ; l ¼ 1; . . .; r;

where Xli are the associated interval of existence of the

fuzzy set, n1 is the first element of the vector n; and hl is the
linguistic consequent parameters of the lth fuzzy rule, h ¼
0; 1½ �rp and r is the number of the rules for the ith output.

The output value is calculated from the predicted output

corresponding to each rule via the center of gravity

method:

yi k þ 1ð Þ ¼
Pr

l¼1 blihliPr
l¼1 bli

ð2Þ

Based on the definition, b is the degree of membership

function for the antecedent (states ? input) variables as

follows:

bi : U � � � � � U|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
m times

� Y � � � � � Y|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
p times

! 0; 1½ �l ð3Þ

where the symbol � represents the Cartesian product in the

fuzzy sets. It can be calculated through the s–t composition

where s and t are some t-conorm and t-norm, respectively.

The mostly used fuzzy composition (sometimes called

s–t composition) is max–min. However, other fuzzy com-

positions also have been introduced in the literature

[18, 23] and some has been collected in Table 1. We would

refer the smooth composition II as ‘‘atan’’ composition and

the smooth composition III as ‘‘acos’’ composition,

according to the mathematical definition, in the rest of the

paper.

Employing different t-norm and s-norm from Table 1

can give rise to the different levels of accuracy in modeling

of the dynamical systems upon the context, which has been

studied in the literature [3]. From them, the smooth fuzzy

compositions can make the fuzzy model such that the

output is a deferential function of the input variables.

Hence, the different schemes of gradient-based methods

can be used later for the adaptive tuning of the fuzzy model
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parameters upon the time-varying plant parameters and the

uncertainties of the plant. We would employ this idea for

TS fuzzy model identification and long-range horizon

predictive control, to be described in the sequent.

3 Generation of the Fuzzy Smooth Model

In the process of system identification, we train the fuzzy

model to capture the functioning of the real plants. We can

view this process as an application of an optimization

method to the fuzzy models, very similar to the process of

training neural networks, where the least square opti-

mization problem is solved. At every sampling time, we

consider a target value ti kð Þ for the system output yi kð Þ
and, correspondingly, define the overall performance index

N of the model as

J ¼ 1

2
N t � yð Þ2 ð4Þ

The parameters of the fuzzy model can be tuned through

solving the minimization problem of the performance

index. It leads us to have a general method of modifying

the fuzzy model at every sampling time k. The goal is to

use the performance index to find the optimal shape of the

membership functions. Therefore, the variables to find will

be the center and the width of the fuzzy membership

functions. To simplify the procedure, we consider the

normal membership functions with the gradient-based

variables’ update algorithm:

qld k þ 1ð Þ ¼ qld kð Þ � aq
oJ kð Þ
oqld

ð5Þ

hli k þ 1ð Þ ¼ hli kð Þ � ab
oJ kð Þ
ohli

ð6Þ

where q ¼ cld; dld½ � are parameters of the normal mem-

bership functions, aq and ab are the step lengths in the

gradient-based optimization and l ¼ 1 � � � ; r; d ¼ 1; � � � ;
mþ p are the number of the system rules and the system

inputs, respectively. The error’s derivatives are straight-

forward, and the interested readers are referred to ‘‘Ap-

pendix 1’’ for more details.

4 Fuzzy Model-Based Control

In this section, we intend to employ the smooth fuzzy

model developed in the last section to construct a uniform

online identification-predictive control framework for the

nonlinear processes. In order to facilitate the explanation of

the algorithm development, we consider a single-input

single-output dynamics; however, we emphasize that the
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results are readily extendable to the multi-input multi-

output processes.

We consider the following cost function for the model

predictive control purpose:

J ¼ 1

2T

XT

t¼1

e2 k þ tð Þ þ ku2 k þ t � 1ð Þ
� �

ð7Þ

where the tracking error is defined as

e k þ tð Þ := r k þ tð Þ � y k þ tð Þ ð8Þ

r k þ tð Þ is the reference and y t þ kð Þ is the output of the

plant both at k þ tð Þth sampling time instant. We choose

k� 0 as the penalty factor and T as the control horizon.

Based on the minimization of the cost function J, we derive

a sequence of the optimal increase in input signal

Du kð Þ; . . .;Du k þ T � 1ð Þ; however, just the first increase

signal is applied to the system. At the next time instant

k þ 1, the whole process will be repeated. To derive the

control law, we consider the simple case, where the input

signal of the process is comprised of two membership

functions as

u kð Þ ¼ v1u1 kð Þ þ v2u2 kð Þ ð9Þ

where v1 kð Þ ¼ l1
l1þl2

; v2 kð Þ ¼ l2
l1þl2

: The input signal at

the next time step will be

u k þ 1ð Þ ¼ u kð Þ þ aDu kð Þ ð10Þ

Or, in other formulation,

u kð Þ ¼ v1; v2½ � u1 kð Þ
u2 kð Þ


 �
þ a v1; v2½ � Du1 kð Þ

Du2 kð Þ


 �

The incremental input signals Du1 kð Þ and Du2 kð Þ are

given as

Du. kð Þ ¼ �oJ

ou. kð Þ ; . ¼ 1; 2: ð11Þ

with the length step a 0\a� 1ð Þ:
Based on the definition, we have

oJ

ou. kð Þ ¼
1

T

XT

t¼1

� r k þ tð Þ � y k þ tð Þð Þ oy k þ tð Þ
ou. kð Þ




þ ku k þ t � 1ð Þ ou k þ t � 1ð Þ
ou. kð Þ

� ð12Þ

We assume free u kð Þ and k þ tð Þ ¼ u kð Þ;

t ¼ 1; 2; . . .;N � 1. When one considers i; j ¼ 1; y ¼
Pr

l¼1
blhlPr

l¼1
bl

and Yl k þ 1ð Þ ¼ hl n kð Þ; u kð Þð Þ; l ¼ 1; . . .; r; the

state vector and inputs become

n kð Þ ¼ �y; �u½ �T

�y ¼ y kð Þ; y k � 1ð Þ; . . .; y k � ny
� �� �

�u ¼ u kð Þ; u k � 1ð Þ; . . .; u k � nuð Þ½ �

The increment of the input signal can be obtained by

taking the derivatives

oy k þ tð Þ
ou. kð Þ ¼

Pr
l¼1 hl

obl kþtð Þ
ou. kð Þ

� 

� y k þ tð Þ

Pr
l¼1

obl kþtð Þ
ou. kð Þ

Pr
l¼1 bl k þ tð Þ ;

. ¼ 1; 2

ð13Þ

In Eq. (13), the value of the derivative
obl kþtð Þ
ou. kð Þ can be

computed after the model and inference structure selection.

For the sake of illustration, we consider the following

model structure defined by the smooth fuzzy composition:

bl k þ tð Þ ¼ S T R;U k þ t � 1ð Þ; Y k þ t � 1ð Þð Þð Þ ð14Þ

where U and Y are fuzzy values in 0; 1½ �: For input pre-

diction horizon with t ¼ 1, (i.e.,
oy kþ1ð Þ
ou. kð Þ ), the only term

depending on u kð Þ is U kð Þ. Therefore,
obl k þ 1ð Þ
ou. kð Þ ¼ oS

oT �; �ð Þ
oT �; �ð Þ
oU kð Þ

oU kð Þ
ou. kð Þ ð15Þ

where

oU kð Þ
ou. kð Þ ¼

of u0 kð Þ; .uð Þ
ou. kð Þ

and f �; �ð Þ is the membership function with the parameters

.u ¼ cu; du½ �, cu is the membership function center and du is
the membership function width, obtained in the identifi-

cation phase.

For the input prediction horizon with t ¼ 2, the terms

depending on u kð Þ are b k þ 1ð Þ and
bl k þ 2ð Þ ¼ S T R;U k þ 1ð Þ; Y k þ 1ð Þð Þð Þ: ð16Þ

Therefore,

obl k þ 2ð Þ
ou. kð Þ ¼ oS

oT �; �ð Þ

� oT �; �ð Þ
oU k þ 1ð Þ

oU k þ 1ð Þ
ou. kð Þ þ oT �; �ð Þ

oY k þ 1ð Þ
oY k þ 1ð Þ
ou. kð Þ


 �
; . ¼ 1; 2

oY k þ 1ð Þ
ou. kð Þ ¼ oY k þ 1ð Þ

oy k þ 1ð Þ
oy k þ 1ð Þ
ou. kð Þ ; . ¼ 1; 2

where

oY k þ 1ð Þ
oy k þ 1ð Þ ¼

ofl �y k þ 1ð Þ; .y
� �

oy k þ 1ð Þ ;

and
oy kþ1ð Þ
ou. kð Þ is calculated above in (13).

For i ¼ 3; the only term depending on u kð Þ is b k þ 2ð Þ;
hence,
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obl k þ 3ð Þ
ou. kð Þ ¼ oS

oT �; �ð Þ
oT �; �ð Þ

obl k þ 2ð Þ
obl k þ 2ð Þ
ou. kð Þ


 �
; . ¼ 1; 2

ð17Þ

which is calculated above. For i[ 3; bl k þ i� 1ð Þ is the

only term depending on u kð Þ which can be calculated

recursively (Table 2).

Remark 1 We can extend the control design procedure

and the identification process readily for other definitions

of the membership functions involved or to the systems

with multi-inputs and multi-outputs.

Lemma 1 Assume that there exists a feasible solution for

the control problem in (7). Then, the system dynamics will

converge to track the reference signal as k ! 1:

Proof Assume that we are at the time k and implement

the optimal input u kð Þ ¼ u	0 that runs the system to the state

x k þ 1ð Þ:

JxðkÞ ¼ min
uðkÞ

1

2T

XT

t¼1

e2 k þ tð Þ þ ku2 k þ t � 1ð Þ
� �

ð18Þ

Jx kð Þ ¼ min
uðkÞ

1

2T
e2 k þ 1ð Þ þ ku2 kð Þ
� �

þ JxðkÞ k þ 1ð Þ ð19Þ

h

At this time, we can determine the associated optimal

control input to the system over the horizon 1 to T ? 1:

Jxðkþ1Þ ¼ min
uðkþ1Þ

1

2T

XT

t¼1

e2 k þ t þ 1ð Þ þ ku2 k þ tð Þ
� �

ð20Þ

However, we can employ the previous sequence of

optimal moves followed by zero as well: u k þ 1ð Þ ¼ u	0: As

this sequence of input is not optimal,

Jx kþ1ð Þ � Jx kð Þ �min
u kð Þ

1

2T
e2 k þ tð Þ þ ku2 k þ t � 1ð Þ
� �

ð21Þ

As the value of minimization is positive for e; uð Þ 6¼
0; 0ð Þ; the sequence of the optimal costs is strictly

decreasing for all e; uð Þ 6¼ 0; 0ð Þ:, i.e., J k þ 2ð Þ�
J k þ 1ð Þ� J kð Þ: From the other hand, by the definition in

Eq. (7), we have 0� J: It means that the sequence of the

cost functions J kð Þ; J k þ 1ð Þ; J k þ 2ð Þ is converging to

zero and e ! 0 as well.

Corollary 1 The feasibility of the control input and state

variables implies that the MPC controller will run the state

trajectory to zero.

Proof It can be proved by change of parameters from

Lemma 1, considering that

J �ð Þ[ 0; e; uð Þ 6¼ 0; 0ð Þ; J e ¼ 0; u ¼ 0ð Þ ¼ 0:

h

For the unstable systems, the question will be how to

determine the interval T or at least an upper bound such

that the system enters the positive invariant set. Several

algorithms for the proper selection of the control horizon

T have been introduced in the literature.

Lemma 2 The obtained control law is continuous and

smooth.

Proof Since the control law u is obtained by the deriva-

tion and linear combination of some smooth and continu-

ous functions, the control input is continuous and

smooth. h

Lemma 3 The cost function Jð�Þ is convex, continuous

and smooth.

Proof Since the cost function is obtained by the deriva-

tion and linear combination of some cosine smooth and

continuous functions, it is continuous and smooth. The

convexity of the cost function can be proved easily from

Eq. (7). h

Corollary 2 The control function is the optimal control

sequence, and the system trajectory is the corresponding

optimal trajectory.

Proof The corollary can be concluded from the convexity

of the cost function Jð�Þ in Lemma 3. h

The overall procedure of the connectivist smooth fuzzy

identification and MPC control scheme is portrayed in

Fig. 1.

Remark 2 As it is shown in Fig. 1, we could join the

learning capacities of the adaptive smooth TS fuzzy mod-

eling scheme to the iterative method of MPC controller

design to reach a uniform framework with the parallel

processing features.

Table 2 Method for obtaining

the increment of the input

signal. The derivatives are

obtained along the

corresponding sequences for

being used in (13) per iteration

Iteration k þ 1 k þ 2 k þ 3 ��� k þ T

Term available for computations from the previous instant uðkÞ oy kþ1ð Þ
ou. kð Þ

oy kþ2ð Þ
ou. kð Þ

��� obl kþT�1ð Þ
ou. kð Þ

Model derivative computation obl kþ1ð Þ
ou. kð Þ

obl kþ2ð Þ
ou. kð Þ

obl kþ3ð Þ
ou. kð Þ

��� obl kþTð Þ
ou. kð Þ

State derivative computation oy kþ1ð Þ
ou. kð Þ

oy kþ2ð Þ
ou. kð Þ

oy kþ3ð Þ
ou. kð Þ

��� oy kþTð Þ
ou. kð Þ
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Remark 3 During the fuzzy adaptation process, the

membership functions represent linguistic terms of smooth

TS fuzzy model interference, which are comprehensible to

a human. This aspect, which has been forgotten in the

earlier works using relational fuzzy models [18, 20, 23], is

one of the strengths of fuzzy modeling. Actually, the blind

performance index used at the relational smooth fuzzy

modeling-based tuning of the membership functions of the

earlier works causes semantically meaningless linguistic

terms at the model interfaces.

Remark 4 In the present work, we have developed a

systematic incremental controller using the smoothness and

continuity properties of the model structure, to employ the

online membership function calibration of the model with

the least online computational burdens. This is while the

MPC design for TS fuzzy models is typically based on the

minimization of a NP-hard problem [20] or employs some

kind of linearization algorithm [7].

Lemma 4 The rate of convergence of the control function

is quadratic.

Proof Based on Lemma 3, derivative of the control

function is smooth almost everywhere, and its second

derivate is continuous. Hence, when the initial point of the

control signal and the system states are sufficiently close to

the optimal points and the derivative function is not zero,

the optimization algorithm will converge quadratically. h

Corollary 3 The smooth fuzzy MPC control function will

converge faster than the classical fuzzy MPC and to a more

stable solution.

Proof Considering the quadratic rate of convergence for

the control function in the smooth TS fuzzy models and the

linear rate of convergence of the classical fuzzy model, the

corollary can be concluded straight from Lemma 4. h

Remark 5 The algorithm in Table 3 will converge only if

the assumptions in the proof of Lemma 1 are satisfied. The

most common difficulty is to choose a proper initial point

of search in the basin of convergence of the algorithm. The

suggested remedy is to run the algorithm from the several

random initial points.

We show the effectiveness of the proposed uniform

smooth TS fuzzy connectivist identification–control

approach on different simulations of a non-minimum phase

example below.

5 Illustrative Example

5.1 Smooth Fuzzy IF–THEN Model

for Identification: MPC Control of a Non-

minimum Phase System

In this section, we intend to illustrate the effectiveness of

the proposed approach through an example based on [17].

We also study the role of extending control horizon on the

overall performance of the controlled system. Consider the

following discrete-time nonlinear system:

y k þ 1ð Þ ¼ �u kð Þ þ 1:2u k � 1ð Þ þ 1:4 exp �y2 kð Þ
� �

� 0:6y k � 1ð Þ ð22Þ

The open-loop response shown in Fig. 2 indicates that

the process is indeed highly nonlinear.

Initially we have modeled the system through the pro-

posed smooth fuzzy modeling scheme. Then, we controlled

Fig. 1 Overall scheme of the presented connectivist smooth TS fuzzy identification–control approach
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the system in different control horizons T. We have taken

a ¼ 0:5 and k ¼ 0 for this purpose.

System simulation is conducted to study how change of

the control horizon and the selection of fuzzy composition

affect the controller’s performance. We have tested the

controller performance in different time horizons.

5.1.1 Fuzzy Controller Design

A series of simulations are conducted to examine the effect

of fuzzy composition for predictive control of TS fuzzy

models. In testing the set point tracking capability, the set

point has been changed in a train of pulses. The dynamic

response of the system and systems’ input is depicted in the

same figure. Figure 3 demonstrates the closed-loop

dynamic responses in three control horizons using different

fuzzy compositions: two ‘‘atan’’ and ‘‘acos’’ TS smooth

fuzzy controllers and the classical product–sum TS fuzzy

controller. Apparently, the control dynamics with all three

compositions are satisfying and good.

5.1.2 Disturbance Rejection Performance

To make the control problem more realistic, values of the

parameters have been randomly varied and different dis-

turbances have been added to the system.

We have employed both the classical fuzzy structure and

smooth fuzzy structures in the comparative scheme to

examine the effectiveness of the smooth compositions.

To give a quantitative measure of the controller accu-

racy, the performance function accounts for the error as

F tð Þ ¼ e tð Þ � e tð Þ has been employed. The comparison of

the best performance of different compositions is shown in

Tables 4, 5, 6 and 7.

From Figs. 3, 4, 5 and 6, it is observed that the smooth

fuzzy compositions perform better than the classical com-

positions in overall.

5.1.3 Additive Noise

To show how different compositions influence the control

performance, we have considered noise in the environment

which is added to the system (usually not measurable

variable). Obviously, this leads to degradation in the nor-

mal performance of the controllers. The performance of the

smooth fuzzy MPC scheme in the presence of the additive

noise is shown in Fig. 4. We have considered the follow-

ings as the additive noise to the system:

y k þ 1ð Þ ¼ �u kð Þ þ 1:2u k � 1ð Þ þ 1:4 exp �y2 kð Þ
� �

� 0:6y k � 1ð Þ þ 0:05 	 R ð23Þ

where R is a random noise signal. It can be seen from

Fig. 4 and Table 5 that smooth fuzzy model and MPC

controller are more robust to the additive noise and arrives

at a better solution, and faster rather than the classical

product–sum fuzzy structure.

Table 3 Model predictive algorithm for the smooth TS fuzzy model

Concept: Assume that the smooth TS fuzzy model is available and we want to implement the predictive control strategy to track the

reference signal.

Initialization:

Choose the maximum iteration and the simulation horizon.

Main Steps:

1. While NOT max iterations

2. Update
oy kþtð Þ
ou. kð Þ based on Eq. (13) and instructions of Table 2

3. Update the incremental input signal Du kð Þ based on Eq. (11)

4. Update the solution u k þ 1ð Þ ¼ u kð Þ þ aDu kð Þ
5. Apply the input to the system

End loop

Fig. 2 Open loop of the plant
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Fig. 3 Comparison of three compositions under the normal working conditions: (top) short-term control horizon T = 1, (middle) medium-term

horizon T = 4, (bottom) long-term horizon T = 11
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Table 4 Performance comparison of the system with different control horizons under the normal conditions

RMS error Rise time

Short term

(T = 1)

Medium term

(T = 4)

Long term

(T = 11)

Short term

(T = 1)

Medium term

(T = 4)

Long term

(T = 11)

Product–sum

composition

0.9011 1.0352 1.0472 393 456 547

Smooth atan

composition

0.4567 0.5412 0.7745 310 306 476

Smooth acos

composition

0.4710 0.5412 0.7868 309 306 473

Table 5 Performance comparison of the system with different control horizons in the presence of the additive noises

RMS error Rise time

Short term

(T = 1)

Medium term

(T = 4)

Long term

(T = 11)

Short term

(T = 1)

Medium term

(T = 4)

Long term

(T = 11)

Product–sum

composition

3.22 0.8587 1.0602 418 388 571

Smooth atan

composition

1.02 0.7291 0.8289 353 365 459

Smooth acos

composition

1.23 0.5937 0.9283 300 368 439

Table 6 Performance comparison of the system with different control horizons in the presence of the parametric changes

RMS error Rise time

Short term

(T = 1)

Medium term

(T = 4)

Long term

(T = 11)

Short term

(T = 1)

Medium term

(T = 4)

Long term

(T = 11)

Product–sum

composition

0.8701 0.8940 0.9175 400 418 496

Smooth atan

composition

0.7140 0.7230 0.7399 302 317 445

Smooth acos

composition

0. 5061 0. 6433 0.7737 302 309 459

Table 7 Performance comparison of the system with different control horizons in the presence of the additive time-varying disturbances

RMS error Rise time

Short term

(T = 1)

Medium term

(T = 4)

Long term

(T = 11)

Short term

(T = 1)

Medium term

(T = 4)

Long term

(T = 11)

Product–sum

composition

0.8448 0.8554 1.0347 372 390 472

Smooth atan

composition

0.5302 0.5573 0.9512 303 306 461

Smooth acos

composition

0. 4678 0.5370 0.6578 304 307 344
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Fig. 4 Performance of the proposed MPC scheme with three fuzzy compositions in noisy environment: (top) short-term control horizon T = 1,

(middle) medium-term horizon T = 4, (bottom) long-term horizon T = 11
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Fig. 5 Comparison of three compositions with change in the parameters of the plant: (top) short-term control horizon T = 1, (middle) medium-

term horizon T = 4, (bottom) long-term horizon T = 11
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Fig. 6 Comparison of three compositions with the additive time-varying disturbances: (top) short-term control horizon T = 1, (middle) medium-

term horizon T = 4, (bottom) long-term horizon T = 11
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5.1.4 Parametric Changes

We also have studied how the change in parameters (usu-

ally not measurable) can impact the controller perfor-

mances. Obviously, this leads to degradation in the normal

performance of the controllers. The disturbance rejection

performance of the proposed smooth scheme is observed to

be excellent as is shown in Fig. 5. We have considered the

parametric changes to the system as

y k þ 1ð Þ ¼ �u kð Þ þ 1:2u k � 1ð Þ
þ 1:4þ 0:08 	 Rð Þ exp �y2 kð Þ

� �
� 0:6y k � 1ð Þ

ð24Þ

with R as defined above. It can be seen from Fig. 5 and

Table 6 that the smooth fuzzy model and MPC controller

are more robust to the parametric changes and arrive at a

better solution, and faster rather than the classical product–

sum fuzzy structure.

5.1.5 Additive Time-Varying Disturbances

We also have studied how time-varying disturbances

(usually not measurable) can impact the controller perfor-

mance. This leads to degradation in the normal perfor-

mance of the controllers, too. The controller managed to

achieve the desired reference trajectory under the constant

disturbance of

y k þ 1ð Þ ¼ �u kð Þ þ 1:2u k � 1ð Þ þ 1:4 exp �y2 kð Þ
� �

� 0:6y k � 1ð Þ 	 0:05 	 sinðkÞ ð25Þ

It can be seen from Fig. 6 and Table 7 that the smooth

fuzzy model and MPC controller are more robust to the

additive time-varying disturbances and arrive at a better

solution, rather than the classical product–sum fuzzy

structure.

The study of dynamic responses shows that the smooth

TS fuzzy identification-predictive controllers have strong

disturbance rejection capabilities, in all the figures, in

comparison with the classical fuzzy one.

Also, as it can be seen, employment of the classical

compositions in the fuzzy implementation of the non-

minimum phase system with the short horizon leads to

smooth controller operation with the small system over-

shoot/undershot, which is compensated with the smooth

fuzzy compositions. Moreover, the performed comparative

study on the equal initial conditions for the different fuzzy

compositions shows that the classical fuzzy representation

suffers from the instability in the system performance or

shows higher level of performance delay, depending on the

control horizon.

Taking into account that most of the real-time processes

under control have a smooth nature and the possibility of

parametric changes and noise in the environment of the

plant is relatively high, it can be concluded that the pro-

posed smooth TS fuzzy model may be a promising solution

in the fuzzy MPC scheme.

In all the figures, it can be distinguished that both the

employed smooth ‘‘atan’’ and ‘‘acos’’ compositions provide

more satisfactory and stable performance with superiority

to the classical fuzzy controllers. More analytical study on

the robustness and stability of the control system is beyond

the scope of the current paper. The interested reader can

consult Ref. [1].

The key features and main results of developing the

presented smooth fuzzy TS modeling–control

scheme through the simulations can be briefly summarized

as follows:

(a) The accuracy of modeling and control with the

smooth fuzzy compositions is highly better than the

classical fuzzy models, which is clear from the

comparison of the errors in the simulations. In the

longer horizons, the superiority of the smooth

compositions is more obvious. Hence, smooth com-

positions are even more propone for the unstable sys-

tem, non-minimum phases and/or delayed systems.

(b) The smooth compositions bring about higher speed

of convergence in the controller as shown in Figs. 4,

5 and 6.

(c) Employment of the smooth compositions brings

about faster transient responses and lesser rise time

to the outputs.

(d) The classical fuzzy composition shows lower level

of stability in the presence of the additive time-

varying disturbances and parametric variation rather

than the smooth fuzzy compositions and the signal

variation is higher.

Beside the mentioned points, based on Eqs. (11)–(13),

the controller input can be computed incrementally, while

the common practice requires solving a MIP optimization

problem, for every iteration from the scratch, or lin-

earization of the nonlinear dynamics. Hence, the presented

approach lowers very much the computational burdens,

although this has not demonstrated explicitly here.

Bearing the points in mind, we will work for the

implementation of the smooth TS fuzzy identification–

control algorithm in the processes that it is required to

make up a fast simultaneous measurement and control

scheme. The connectivist approach for the measurement-

based modeling and model-based control will lower the

down-time production and provide a feasible solution to

the challenge of precise and high level of accuracy in the

validation and calibration phases, with the minimal level of

being underscored by the parameter variations, perturba-

tions and noises. This potentially would give the dynamical
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systems, possibility of working at higher speeds up to video

rate and also utilization for the examination of live

processes.

6 Conclusions

Several interesting properties of smooth fuzzy composi-

tions have been cited and proved in [1], and robustness

advantage of smooth fuzzy models has been reported in

almost all the contributions in the field [2, 18, 20, 23].

However, they cannot be employed for the practical cases

and industrial systems until an easy and industrial imple-

mentable algorithm appears. This manuscript is a response

to this requirement, and we formulated a scheme for

identification and long-horizon MPC control of the smooth

TS fuzzy models in the general form. We also have studied

the effectiveness of the proposed connectivist smooth TS

fuzzy identification and control framework.

Hence, the overall achievement of the paper is twofold.

One seeks to contribute to the state of smooth fuzzy

compositions by proposing a general and systematic expert

free modeling–controller design methodology which com-

prises lower computational complexities, and then to

extend the operation range of smooth IF–THEN fuzzy

models for the practical applications. A gradient-based

optimization approach has been developed to convert the

MPC cost function of the smooth TS fuzzy model into an

incremental controller design problem which results in a

very fast and simple controller, in comparison with the

other fuzzy MPC approaches that solve the problem

through the Hessian and gradient approximation or by

solving MIP optimization problem.

Different simulations on a non-minimum phase unsta-

ble system were presented to illustrate the superiority of the

smooth compositions in the presence of disturbances and

noises with different control horizons. Three fuzzy com-

positions for extracting fuzzy MPC controllers along the

predicted trajectory based upon the TS fuzzy models have

been compared. According to the test results, we can say

that the overall smooth TS fuzzy modeling–control

scheme is very much suitable for the adaptive control of

time-changing dynamics and noisy systems. It is demon-

strated that the smooth fuzzy compositions are the best

choice to respond in time to the disturbances, with the high

level of stability in case of changing reference.

7 Future Works

Using the results of the present study on smooth TS fuzzy

model identification-predictive controller design, the long-

range prediction horizons for the dead-time systems can be

addressed in the future work. Also, it will be possible to

deal with the systems’ constraints on the manipulated

variables by handling them through proper application of

the merit functions and penalty parameters. Moreover, it

would be possible to consider the multi-objective opti-

mization criteria for the nonlinear processes. We believe

that the future works also can dedicate to study the ana-

lytical robustness conditions in the controller design phase.

The application of the developed algorithm to an industrial

dynamic is undergone in the group.
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Appendix 1

In order to drive error derivatives, we study the identifi-

cation process in more detail. To begin with, we write the

gradient descent method formula and define the vectors as

follows:

oJ

oqld
¼ oJ

oy

oy

oyi

oyi

o�yli

o�yli
onld

onld
obld

obld
oqld

But to complete the formulation we need to take partial

derivative of each variable separately.

First, we define the fuzzy variables �n1; �n2; . . .; �nr
n o

at

every time instant as

�nl ¼ nl1; nl2. . .; nl;mþp

� �

¼ bl1 n1ð Þ; bl2 n2ð Þ; . . .; bl;mþp nmþp

� �� �
; l ¼ 1. . .; r

and �n ¼ �nl
h ir

l¼1
, where b �ð Þ, as stated above, is value of the

membership function for the fuzzy set. In general, this

function can be written as

bld �ð Þ ¼ exp
�1

2

nld � cld

dld

� �2
 !

:

Therefore, for making up the gradient descent method

formula, onld
oqld

can be written as

onld
ocld

¼ exp
�1

2

nld � cld

dld

� �2
 !

nld � cld

d2ij

 !

ð26Þ

onld
odld

¼ exp
�1

2

nld � cld

dld

� �2
 !

nld � cldð Þ2

d3ld

 !

ð27Þ
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Based on the compositional rule inference, we can say

that estimation of the output, according to our notation, is

�yli ¼ s� norm t � norm �nl;Rl
�n; yi
� 
� 
� 


for all l ¼ 1; . . .; r: Let us abbreviate S : s� norm and T :

t � norm in the following.

To facilitate the explanation of the procedure of taking

the derivation of
o�yli
onld

, we assume a simple system and put

�nl ¼ nl1; nl2½ � and c ¼ R �n; yi
� 


: Then, based on the prop-

erties of t norms, we have

�yli ¼ S T T nl1; nl2ð Þ; cð Þð Þ ¼ S T nl1; cð Þ; T nl2; cð Þð Þ

We define: K1 ¼ T nl1; cð Þ and K2 ¼ T nl2; cð Þ; then
�yli ¼ S K1;K2ð Þ

o�yli
onl1

¼ oS

oKd

oKd

onl1
¼ �S

1 �T
1
; d ¼ 1; 2;

ð28Þ

where �S
1
and �T

1
are the first-order derivatives of the

compositions, which will be calculated below. If there exist

more state variables in the augmented state vector, n0l ¼
nl1; nl2 � � � ; nl;mþp

� �
we could continue in the same manner

and write as

o�yli
onld

¼ �S
mþp�1 �T

mþp�1
. . .�S

1 �T
1
: ð29Þ

Hence, to derive the gradient descent method formula-

tion, the general formula for the error derivation will be

oJ

ocld
¼ oJ

oy

oy

oyi

oyi

onld

onld
obld

obld
ocld

¼ e kð Þ � hli � yiPr
i¼1 bli

� �
� �S

mþp�1 �T
mþp�1

. . .�S
1 �T

1
� 


� exp �1

2

nld � cld

dld

� �2
 !

nld � cld

d2ld

 !

ð30Þ
oJ

odld
¼ oJ

oy

oy

oyi

oyi

onld

onld
obld

obld
odld

¼ e kð Þ � hli � yiPr
i¼1 bli

� �
� �S

mþp�1 �T
mþp�1 � � � �S1 �T1

� 


� exp �1

2

nld � cld

dld

� �2
 !

nld � cldð Þ2

d3ld

 !

ð31Þ
oJ

ohli
¼ oJ

oy

oy

oyi

oyi

ohli

¼ e kð Þ � hli � bliPr
i¼1 bli

� � ð32Þ

Appendix 2

Let us take B ¼ SB TB nl1; cð Þ; TB nl2; cð Þð Þ, and, K1 ¼
TB nl1; cð Þ;K2 ¼ TB nl2; cð Þ; where,

TB nl1; cð Þ ¼ 4

p
tan�1 tan

p
4
nl1

� 

tan

p
4
c

� 
� 


SB K1;K2ð Þ ¼ 1� 4

p
tan�1 tan

p
4
ð1� K1Þ

� 

tan

p
4
ð1� K2Þ

� 
� 


Now, the first-order derivative will be

�B ¼ �S
1

B
�T
1

B

¼ 4

p
1

1þ tan p
4
nl1

� �
tan p

4
c

� �� �2 �
p
4
sec2

p
4
nl1

� 

tan

p
4
c

� 


��4

p
� 1

1þ tan p
4
ð1� K1Þ

� �
� tan p

4
ð1� K2Þ

� �� �2

� sec2
p
4

1� K1ð Þ
� 


��p
4

� tan
p
4
ð1� K2Þ

� 


ð33Þ

Now, similarly, take C ¼ SC TCðnl1; cÞ; TCðnl2; cÞð Þ with
K1 ¼ TCðnl1; cÞ;K2 ¼ TCðnl2; nl1Þ; and,

TC la �ð Þ; lb �ð Þð Þ ¼ 1� 2

p
cos�1 sin nl1ð Þ sin p

2
c

� 
� 


SC K1;K2ð Þ ¼ 2

p
cos�1 cos

p
2
K1

� 

cos

p
2
K2

� 
� 


Then, the first-order derivative is

�C ¼ �S
1

C
�T
1

C

¼ 2

p
� �1
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