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9 Abstract This paper develops a smooth model identifica-

10 tion and self-learning strategy for dynamic systems taking

11 into account possible parameter variations and uncertain-

12 ties. We have tried to solve the problem such that the

13 model follows the changes and variations in the system on

14 a continuous and smooth surface. Running the model to

15 adaptively gain the optimum values of the parameters on a

16 smooth surface would facilitate further improvements in

17 the application of other derivative based optimization

18 control algorithms such as MPC or robust control algo-

19 rithms to achieve a combined modeling-control scheme.

20 Compared to the earlier works on the smooth fuzzy mod-

21 eling structures, we could reach a desired trade-off between

22 the model optimality and the computational load. The

23 proposed method has been evaluated on a test problem as

24 well as the non-linear dynamic of a chemical process.25

26 Keywords Fuzzy control � Fuzzy IF–THEN systems

27 (TSK) � Smooth compositions

28 1 Introduction

29 Soft computing methods are being used for identification of

30 non-linear and complex systems based on the input–output

31 data collected from the original system [1]. There are many

32applications of Artificial Neural Network and Fuzzy

33modeling framework for identification purposes in the

34industry and academia [2]. Such methods have quite

35interesting abilities in modeling the industrial processes

36with different types of data. The advantage of fuzzy models

37is that they can also include the operator’s knowledge and

38information for dealing with the concept of uncertainty and

39handling the probabilistic logics [3]. The inclusion of

40information about the process in the generation of the

41mathematical model makes the model very useful for

42coping with the various non-linear behaviors such as limit

43cycles, or where large changes in the operating conditions

44can be anticipated during the routine operation, such as the

45systems with the time varying parameters, in batch pro-

46cesses or during the start-up and shutdown of the contin-

47uous processes.

48Another difference of neural networks and fuzzy models

49is that the neural networks can approximate the process and

50its derivative based on the so called back propagation

51training, while standard fuzzy models cannot guarantee the

52accuracy in approximation of the derivatives [4, 5].

53The universal approximation properties of the fuzzy

54models are well recognized and it is widely accepted that

55the fuzzy models can approximate any non-linear function

56to any degree of accuracy in a convex compact region [6].

57However, in many applications it is desired to go beyond

58that and have a model to approximate the non-linear

59function on a smooth surface to get better performance and

60stability properties. Especially in the region around the

61steady states, when both error and change in error are

62approaching zero, it is much desired to avoid abrupt

63changes or discontinuity in the input–output mapping

64[4, 7]. The continuity of not only the function, but also its

65derivatives, based on the literature, is defined as the

66smoothness property [8].
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120or not it is more practical that the functions be presented

121through fuzzy numbers of the fuzzy topology or one should

122restrain to only the constant zero and one fuzzy sets 0 and 1

123of the smooth fuzzy relations; we think the first one is

124preferable and will contribute on development of the IF–

125THEN smooth fuzzy modeling and self-adjusting

126scheme in this contribution.

127Taking into account the previous drawbacks, the moti-

128vation of the present work is to present a smooth adaptive

129fuzzy IF–THEN based identification approach. The appli-

130cation of the algorithm to the non-linear dynamic of a

131continuous-stirred tank reactor (CSTR) [22, 23] is analyzed

132to overcome the computational barriers and widen the

133application of the smooth compositions. Indeed, the non-

134linearities, uncertainties, or the environmental parametric

135changes in the dynamic of the non-linear systems may

136make the control process to fail. Hence, the originality of

137the contributions is that we have demonstrated the appli-

138cation of the smooth fuzzy compositions with the varying

139parameters and with the uncertain parameters can assist in

140accomplishment of a precise and effective modeling task

141without direct intervention of the operator through the

142theoretical studies and examples. According to [14],

143smooth fuzzy continuity is equivalent to fuzzy continuity

144on all the cuts that together form the decomposition of the

145smooth fuzzy topology. Therefore, it is expected that

146smooth fuzzy model will show more robustness to the

147parametric changes and uncertainties rather than the clas-

148sical fuzzy model by structure. This claim has been verified

149by simulation results of the CSTR system which could

150show that the proposed adaptive identification algorithm is

151able to handle all the difficult types of such non-linear

152system’s behavior during the manipulation.

153Hence, the rest of this manuscript is as follows. First we

154review fuzzy IF–THEN structures for process modeling

155and introduce the smooth compositions based on the lit-

156erature. Then, we employ them for generation of the

157adaptive fuzzy modeling scheme. Subsequent to that, we

158introduce the self-learning structure for smooth fuzzy

159models, to make them sensitive to the parameter variations

160of the process. After that, we apply the developed structure

161for a benchmark example and then on a practical example

162of CSTR, in two different working modes, and also with

163uncertainty in the parameters. Then, we conclude the

164manuscript.

1652 Fuzzy Structures for Process Modeling

166In many practical engineering problems we face with little

167information on the system along the non-linear system

168behavior, which makes the problem so complex. In many

169cases, the problems come with a high degree of

International Journal of Fuzzy Systems

After introduction of topological structures [9], different 
researchers have studied the concept of smooth fuzzy 
topological spaces [10] and their properties and charac-
terizations in different compact, disconnected and bi-
topological spaces [11–14].

Recently some new smooth compositions have been 
presented that are able to approximate the derivative of the 
plant process with accuracy [15]. Many of the contributions 
in the field for smooth modeling purpose of the dynamical 
systems have employed the fuzzy relational modeling 
framework (see [15–17] and the references therein). They 
have been employed for different purposes including 
modeling static input–output mapping of dynamical sys-
tems and for data clustering.

The identification process then will be consisting of the 
estimation of the unknown relational matrix from the 
input–output data [18, 19]. Even though the fuzzy rela-
tional matrix can be quite easily developed and modified 
online, this advantage must be viewed in the context of 
their limitations. Firstly, their use is normally limited to the 
processes with a small number of variables due to the 
potential large size of the matrix and the computation 
requirements. The relational fuzzy modeling approaches 
generally require significant computational effort, espe-
cially if the number of variables and number of reference 
fuzzy sets used are great. The first-order relational model 
of a system consisting of 2-inputs and 1-output, where 7 
reference sets are used by each variable, will generate the 
matrix consisting of 2401 elements- each element shows 
the degree of membership of a variable in the fuzzy matrix 
[6]. Another difficulty of the fuzzy relational modeling 
framework is that there exist no simple approach for 
deriving the controller output analytically, making it nec-
essary to resort to the numerical approaches, which adds 
difficulty to the already mentioned large computational 
requirements of the model. The controller transparency 
problems that can arise as a result of the incomplete rule 
bases are also important. It is to say, the fuzzy relational 
approach does not provide rules that can be expressed 
linguistically. As such, it may be criticized that this tech-
nique would be difficult to use interactively with the human 
in loop, making it difficult to update and modify the matrix 
using the heuristic knowledge [20].

It also worth reminding the slight alteration of the def-
inition of a smooth fuzzy topology built from the 
employment of the smooth fuzzy norms by fuzzy relations 
which is associated to the concept of composition of binary 
numbers and relations in the earlier works, rather than the 
topology built from the employment of the same norms in 
the IF–THEN model, which more relates to the concept of 
fuzzy numbers as introduced by Zadeh [21]. The main 
difference of two approaches of the relational smooth fuzzy 
models and IF–THEN smooth fuzzy models is that whether
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170 uncertainties. To deal with such problems, fuzzy logic

171 assigns an interval, on which the system variables have the

172 most probability of existence. Then, the interval is divided

173 to say, N ? 1 regions and then for every region it defines a

174 degree of membership of the variables, which are collected

175 in a fuzzy set. Hence, the elements of a fuzzy set can be

176 elements of other fuzzy sets, upon their degrees of mem-

177 bership. Hence, the membership functions characterize all

178 the information of a fuzzy set. In this study, we incorporate

179 Gaussian membership functions for the system input, as

l xið Þ ¼ exp �
1

2
�

xi � ci

di

� �� �2

ð1Þ

181181 where xi is the ith input variable, ci is the ith center of the

182 membership function, and di is the constant showing the

183 spread of the ith membership function.

184 2.1 Fuzzy Set Operation

185 The next step in formation of the fuzzy models is to make

186 the operations on the sets, which mainly are the intersec-

187 tion and the union operations, usually called fuzzy t-norms

188 and s-norms. The mainly used t-norm operator is the min

189 operation and the widely used s-norm is the max operation.

190 We will study the fuzzy operators furthermore in the

191 subsequent.

192 2.2 Fuzzy Modeling

193 The basis of fuzzy IF–THEN model is a set of rules that

194 presents our knowledge of the process. To make up this

195 model, we go through the fuzzification, inference, and

196 defuzzification stages.

197 The fuzzification stage converts numeric inputs into

198 fuzzy sets in order to involve them in the fuzzy modeling

199 methodology. This transformation as stated above is

200 through the use of the membership functions.

201 The inference mechanism is normally known by an

202 expression of the following type,

IF premise antecedentð Þ THEN conclusion consequentð Þ:

204204 This IF–THEN form presents a cause and effect relation-

205 ship, and for every given condition provides a corre-

206 sponding planned action.

207 The defuzzification stage, converse to the fuzzification

208 stage, converts the fuzzy results into the crisp results. This

209 transformation provides a means to choose a crisp single

210 value quantity for employment in the real applications,

211 (e.g., to set the gauge level), based on the results of the

212 fuzzy calculations.

213Hence, the model of fuzzy rules for a given input–output

214data set, corresponding to a process with two inputs x1 and

215x2, and output y; can be written as,

IF x1 is M1 and x2 is M2 THEN y ¼ f x1; x2ð Þ:

217217where X1 and X2 are fuzzy sets (membership functions) of

218x1 and x2, respectively, and y ¼ f x1; x2ð Þ is a crisp con-

219clusion of the system states.

220A generalization of the fuzzy model building process for

221a system with n input variables defined as,

f : Rn ! R y ¼ f x1; x2; . . .; xnð Þ ð2Þ

223223will be

Ri : if x1 is M
i
1 and x2 is M

i
2 and � � � xn is M

i
n then ð3Þ

225225f x1; . . .; xnð Þ is di under the possibility li; i ¼ 1; . . .; r:

227227where Ri is the i-th fuzzy rule that describes the fuzzy

228model. For a given input, the output of the fuzzy model

229employing the widely used centroid defuzzification for-

230mula is,

y kð Þ ¼

Pr
i¼1 di �yi kð Þ
Pr

i¼1 �yi kð Þ
ð4Þ

232232where �yi is considered to be at the center of the region Di at

233every time instant of the dynamics of the system and r is

234the total number of fuzzy rules in the defined fuzzy model.

235Therefore, we see that there are three factors to make up

236a fuzzy model: (1) definition of fuzzy regions, (2) the

237specific form of the membership functions and (3) the

238assigned fuzzy rules.

239The aim of the present manuscript is to study the second

240factor and we want to see how a different design in the

241membership functions using smooth fuzzy compositions

242can better the overall performance and effectiveness of the

243fuzzy model. The validation stage will be done through the

244test data.

2453 Preliminaries on Smooth Fuzzy Compositions

246As stated above, the mostly used fuzzy composition

247(sometimes called s–t composition) is max–min. However,

248other fuzzy compositions also have been introduced in the

249literature, which will be reviewed in this section. Let’s start

250with basic definitions in fuzzy compositions: t-norm and

251s-norm [15, 24].

252Triangular norms (t-norms), are functions defined by

253their properties:

T a; bð Þ ¼ T b; að Þ ð5Þ

255255T a; b; cð Þ ¼ T a; T b; cð Þð Þ ð6Þ

257257

E. N. Sadjadi et al.: Fuzzy Model Identification and Self-Learning with Smooth Compositions
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T a; bð Þ� T c; dð Þ; if a� c; b� d ð7Þ

259259 T a; 1ð Þ ¼ a; 8a 2 0; 1ð Þ ð8Þ

261261 Likewise, Triangular conorms (s-norms) are also defined

262 by their properties:

S a; bð Þ ¼ S b; að Þ ð9Þ

264264 S a; b; cð Þ ¼ S a; S b; cð Þð Þ ð10Þ

266266 S a; bð Þ� S c; dð Þ; if a� c; b� d ð11Þ

268268 S a; 0ð Þ ¼ a; 8a 2 0; 1ð Þ ð12Þ

270270 Theorem 1 If T is a norm then,

S a; bð Þ ¼ 1� T 1� a; 1� bð Þ: ð13Þ

272272

273 Different t-norm and t-conorm have been introduced in

274 the literature [5, 24, 25] and some has been collected in

275 Table 1. We would refer the smooth composition II as

276 ‘‘atan’’ composition and the smooth composition III as

277 ‘‘acos’’ composition, according to the mathematical defi-

278 nition, in the rest of the paper.

279 Employing the different t-norms and s-norms from the

280 above list to make different compositions can give rise to

281 various levels of accuracy in modeling of the dynamical

282 systems upon the context. This matter has been studied in

283 the literature [2]. From them, the smooth fuzzy composi-

284 tions can make the fuzzy model such that the output be a

285 differentiable function of the input variables. Hence, the

286 different schemes of gradient based methods can be used

287 later for the adaptive tuning of the fuzzy model parameters

288 for time variant plants and capturing the uncertainties. This

289idea has been developed before for designing fuzzy rela-

290tional dynamic systems and here we want to employ them

291for rule-based fuzzy model identification and gaining self-

292learning dynamics, in the following.

2934 Generation of Smooth Rules-Based Fuzzy

294Models

295The aim of this section is to find the optimum parameters

296for the membership functions to shape it up correspond-

297ingly, such that the fuzzy model can make the best

298approximation of the non-linear system using the smooth

299fuzzy compositions. For this aim, first we define the error

300function as,

e kð Þ ¼ y kð Þ � y kð Þ ð14Þ

302302
E kð Þ ¼

1

2T

X

T

t¼0

e k þ tð Þð Þ ð15Þ

304304where T is the horizon of training, y kð Þ is target value of the

305fuzzy model and y kð Þ is the output of the fuzzy model. The

306goal is to use this error function to find the optimal shape of

307the membership functions. Hence, the variables to find are

308the centers and the widths of the input and output mem-

309bership functions in the model definition. To simplify the

310procedure, we consider the normal membership functions

311with the variables update algorithm, as

cij k þ 1ð Þ ¼ cij kð Þ � ac
oE kð Þ

ocij
ð16Þ

313313
dij k þ 1ð Þ ¼ dij kð Þ � ac

oE kð Þ

odij
ð17Þ

315315
di k þ 1ð Þ ¼ di kð Þ � ab

oE kð Þ

obi
ð18Þ

317317where hij ¼ cij; dij
� �

are the parameters of the normal

318membership functions that give shape to the membership

319functions, ac; ad and ab are the step lengths in the gradient

320based optimization and i ¼ 1. . .; r; j ¼ 1; . . .; n are the

321numbers of the system rules and the system inputs, and di

322are the parameters to be used in the defuzzification for-

323mula, respectively. In order to derive the error derivatives

324we study the estimation process in more details. To begin

325with, we write the gradient descent method formula as

326follows,

oE

ohij
¼

oE

oy

oy

o �yi

o �yi

o �yiij

o �xij

olij

olij

ohij
: ð19Þ

328328In order to complete the formulation we need to take the

329partial derivative of each variable separately.

Table 1 Fuzzy compositions

Classical compositions

I S a; bð Þ ¼ max a; bð Þ

T a; bð Þ ¼ min a; bð Þ

II S a; bð Þ ¼ aþ b� ab

T a; bð Þ ¼ ab

Smooth compositions

I SS a; bð Þ ¼ r:d:b
� logb dð Þ� logb rð Þ

b�1ð Þ ; r ¼ b� 1ð Þaþ 1;

s ¼ b� 1ð Þbþ 1; b 2 1;1ð Þ

TS a; bð Þ ¼ 1� cos 2
p
cos�1 1� að Þ cos�1 1� bð Þ

� 	

II SS a; bð Þ ¼ 1� 4
p
tan�1 tan p

4
1� að Þ

� 	

tan p
4
1� bð Þ

� 	� 	

TS a; bð Þ ¼ 4
p
tan�1 tan p

4
a

� 	

tan p
4
b

� 	� 	

III SS a; bð Þ ¼ 2
p
cos�1 cos p

2
a

� 	

cos p
2
b

� 	� 	

TS a; bð Þ ¼ 1� 2
p
cos�1 sin p

2
a

� 	

sin p
2
b

� 	� 	

IV SS a; bð Þ ¼ cos 2
p
cos�1 a cos�1 b

� 	

TS a; bð Þ ¼ cos cos�1 aþ cos�1 b� 2
p
cos�1 a cos�1 b

� 	

AQ3
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330 1. We define the fuzzy variables �x1; . . .; �xrf g at every

331 time instant as

332

�xi ¼ �xi1; �xi2; . . . �xin½ � ¼ li1 x1ð Þ; li2 x2ð Þ; . . .; lin xnð Þ½ �;

i ¼ 1. . .; r

334334335 where lij �ð Þ is the value of i-th membership function

336 for j-th input fuzzy set, presented in Eq. (1).

337 For making gradient descent method formula,
olij
ohij

can

338 be written as,

olij �ð Þ

ocij
¼ exp

�1

2

xij � cij

dij

� �2
!

xij � cij

d2ij

!

ð20Þ

340340 olij �ð Þ

odij
¼ exp

�1

2

xij � cij

dij

� �2
!

xij � cij
� 	2

d3ij

 !

: ð21Þ

342342

343

344 2. The estimation of the system output based on the

345 compositional rule inference can be written as,

346

�yi ¼ s-norm t-norm �xi;Ri �x; yð Þð Þð Þ

348348349 for the i-th rule Ri, i ¼ 1; . . .; r: We will use the

350 abbreviation S : s-norm and T : t-norm in the

351 followings.

352 In order to simplify the explanation of the procedure of

353 taking the derivation of o �yi
o �xij

; we assume a system with j ¼

354 2; and put, �xi ¼ �xi1; �xi2½ � and c ¼ Ri �x; yð Þ: Then, based on

355 the properties of t-norms, stated in Eq. (6), we have,

�yi ¼ S T T �xi1; �xi2ð Þ; cð Þð Þ ¼ S T �xi1; cð Þ; T �xi2; cð Þð Þ ð22Þ

357357 We define: K1 ¼ T �xi1; cð Þ and K2 ¼ T �xi2; cð Þ; then,

�yi ¼ S K1;K2ð Þ ð23Þ

359359 o �yi

o �xij
¼

os

oK

oK

o �xij
¼ �S1 �T1; j ¼ 1; 2: ð24Þ

361361 If there exist more state variables, j ¼ n[ 2; �xi ¼

362 �xi1; �xi2; . . . �xin½ � we can follow in the same manner and write

363 as,

o �yi

o �xij
¼ �Sn�1 �Tn�1 � � � �S1 �T1; j ¼ 1; . . .; n: ð25Þ

365365 Hence, to derive the gradient descent based training

366 formulation, the derivative of the error will be,

oE

ocij
¼

oE

oy

oy

o �yi

o �yi

o �xij

o �xij

olij

olij

ocij

368368

¼ e kð Þ �
di � y
Pr

i¼1 y

!

� �Sn�1 �Tn�1 � � � �S1 �T1
� 	

� exp
�1

2

xij�cij

dij

� �2
!

xij � cij

d2ij

!

ð26Þ

370370oE

odij
¼

oE

oy

oy

o �yi

o �yi

o �yij

o�yij

olij

olij

odij
ð27Þ

372372
¼ e kð Þ �

di � y
Pr

i¼1 y

!

� �Sn�1 �Tn�1 � � � �S1 �T1
� 	

� exp
�1

2

xij�cij

dij

� �2
!

xij � cij
� 	2

d3ij

 !

ð28Þ

374374oE

odi
¼

oE

oy

oy

odi
¼ e kð Þ �

y
i

Pr
i¼1 y

!

ð29Þ

376376We want to stress that during the fuzzy adaptation

377process of the present approach, the membership functions

378represent linguistic terms of fuzzy model interferences,

379which are transparent and comprehensible to the system

380operator. This aspect, which lacks in the earlier works

381using matrix based relational fuzzy models [5], is one of

382the strengths of fuzzy modeling scheme.

383Actually, the blind performance index used at the matrix

384based relational fuzzy modeling or artificial neural net-

385works based tuning of the membership functions causes the

386semantically meaningless linguistic terms at the model

387interfaces. In the following, we will illustrate the properties

388of the proposed algorithm.

389Proposition 1 The error function constructed based on

390the Eq. (14) is a smooth function.

391Proof The interference mechanism makes the functional

392expansion of the fuzzified input variables using the dif-

393ferent polynomial basic functions, which are all smooth.

394Hence, the output function of the fuzzy model is a smooth

395function, and therefore, the obtained error function is a

396smooth function. h

397Proposition 2 The derivative of the error function con-

398structed based on the Eq. (14) is a smooth function.

399Proof The interference mechanism makes the functional

400expansion of the fuzzified input variables using the dif-

401ferent polynomial basic functions, which all have smooth

402derivatives. Hence, the output function of the fuzzy model

403has a smooth derivative, and therefore, the obtained error

404function has a smooth derivative. h

405Proposition 3 The rate of convergence of the parameter

406learning phase in Table 1 to the optimal solution is

407quadratic.

E. N. Sadjadi et al.: Fuzzy Model Identification and Self-Learning with Smooth Compositions
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408 Proof Since the derivative of the error function is smooth

409 almost everywhere, the second derivate of the error func-

410 tion is continuous. Hence, when the initial point of the

411 algorithm is sufficiently close to the optimal point and the

412 derivative function is not zero, parameter learning phase of

413 the algorithm will converge quadratic. h

414 Remark 1 The algorithm in Table 1 will converge only if

415 the assumptions in the proof of Proposition 3 are satisfied.

416 The most common difficulty is to choose a proper initial

417 point of search in the basin of convergence of the algo-

418 rithm. The suggested remedy is to run the algorithm from

419 the several random initial points.

420 5 Self-Learning of the Fuzzy Model

421 Until now, we have developed the algorithm to make a

422 model from the system’s input and output data. However,

423 for the time varying systems, after making up the initial

424 model of the system, the system parameters changes and

425 the basic model will not remain useful. Therefore, after that

426 the initial fuzzy model comes available, a modification in

427 the abovementioned algorithm can be useful to improve the

428 system performance in an adaptive self-learning scheme.

429 We make this improvement as indicated in Table 2.

430 The overall scheme of the self-learning algorithm is

431 shown in Fig. 1. In the next section, we demonstrate the

432 application of the algorithm in a practical example of

433 chemical processes (Table 3).

4346 Case Studies

435Two highly non-linear systems are selected for studying

436the proposed modeling approach. The first system is an

437example of chaotic time series. We have added parametric

438uncertainty to demonstrate the effectiveness of the pro-

439posed method to the classical modeling scheme.

440The second example is about modeling of a continuous-

441stirred tank reactor (CSTR) [18, 23]. Different fuzzy

442models are tested and compared in the uncertain working

443conditions.

444Example 1 Model evaluation by prediction of chaotic

445time series

446In this study, we have employed Mackey–Glass chaotic

447time series to assess the prediction performance of the

448proposed smooth fuzzy model. Chaos is a common

449dynamical phenomenon in the various fields and can be

450represented in different forms including the time series.

451Chaotic time series are inherently non-linear, very sen-

452sitive to the initial conditions, and hence, difficult to be

453predicted. Therefore, it is a practical technique to evaluate

454the accuracy of different types of non-linear models based

455on their performance in prediction of the chaotic time

456series.

457We have employed the Mackey–Glass time series as,

�x ¼
ax t � sð Þ

1þ xC t � sð Þ
� bx tð Þ; ð30Þ

459459with the following parameters: a = 0.2; b = 0.1; C = 10;

460initial conditions 9 0=1.2 and s = 17 s. Four different

461fuzzy models have been trained to predict accurately the

Table 2 The proposed algorithm for rule-based fuzzy model identification

Concept: the set of input–output data measurements of the system is available and it is desired to identify the smooth fuzzy model for the

system

Initialization phase

1. Membership function selection: choose a membership function for fuzzification of the input variables. The implemented Guassian

membership function is shown in Eq. (1)

2. Rule selection: select r fuzzy rules and compose the fuzzy model using these r rules. Number of rules can be determined heuristically by the

designer according to the complexity of the system. The general scheme of this step is shown in Eq. (3)

3. Consequent calculation: choose a smooth fuzzy composition to realize the inference mechanism. This stage makes the functional expansion

of the input variables, according to the structure of the employed smooth fuzzy s-norm and t-norm

4. Model output: make the defuzzification of the variables to convert the fuzzy results into the crisp results. The general scheme of this step is

shown in Eq. (4)

Parameter learning phase

Choose a desired value of accuracy e

5. Error calculation: calculate the error value using the model output value thus composed. The scheme of this stage employs the Eqs. (14)

and (15)

6. Parameter update: if e kð Þj j[ e, then update the parameters of the fuzzy model according to the Eqs. (26)–(29); Then, return to step (5)

7. Else, end the algorithm

AQ4

International Journal of Fuzzy Systems



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

Fig. 1 Scheme of the proposed self-learning algorithm

Table 3 Self-learning algorithm for the fuzzy mode

Concept: assume that the basic model is available and we want to improve it based on the new measurements of the system

Initialization

Choose a proper e and the simulation horizon

Put k ¼ 1

Main steps

1. Let k ! k þ 1

2. Use the fuzzy model and the system new measurement data to produce the prediction ŷ kð Þ. Let, e kð Þ ¼ ŷ kð Þ � y kð Þ

3. If e kð Þj j[ e, then update the parameters of the fuzzy model based on the optimization method described above in Sect. 4, else return to step

(1)

4. End if the simulation horizon terminates; else return to step (1)

5. Return to step (1)

Fig. 2 Comparison of training versus validation data

E. N. Sadjadi et al.: Fuzzy Model Identification and Self-Learning with Smooth Compositions
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462

463

464

465

466

467

468

469

470

471through simulation with the parametric change in the

472chaotic system set to b = 0.15. The sequences computed by

473different fuzzy norms is demonstrated in Fig. 4, which

474shows that the smooth fuzzy models provide better per-

475formance with quicker convergence rather than the models

476with the non-smooth compositions. Also, we note that the

477range of errors in all the fuzzy compositions is very narrow,

478as can be seen in Figs. 5 and 6.

Fig. 3 Comparison of error convergence for different fuzzy compositions

Fig. 4 Comparison of the performance of the proposed modeling scheme rather than the classical fuzzy scheme in the presence of parametric

changes

AQ5
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generated time series. Figure 2 compares the data 
employed for training to the data employed for validation 
and prediction. The error convergence can be seen in 
Fig. 3. We do not place much emphasis on the min–max 
error convergence comparison, because the fuzzy min–max 
model is not differentiable to be solved softly with the 
gradient descent we applied to the other compositions.

To study the disturbance rejection performance of the 
different fuzzy models, we have evaluated the models
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479 In Fig. 7 the responses of the models in the noisy

480 environment have been shown and compared. The perfor-

481 mance of the models for a validation data set demonstrated

482 that the smooth fuzzy models have a strong disturbance

483 rejection capability rather than classical product-sum

484 compositions and min–max compositions. The noise has

485 been considered as b = 0.1 ? 0.05 * r, where r is assumed

486 to be random signal at every iteration.

487 To give a quantitative measure of the model accuracy,

488 the performance function accounts for the error in the

489 prediction as, F tð Þ ¼ e tð Þ � e tð Þ has been employed. The

490 comparison of best performance of different compositions

491 is shown in Table 4.

492It can be seen from Figs. 3, 4, 5, 6, 7 and Table 4 that

493smooth fuzzy models and the classical product-sum fuzzy

494model yield compatible results, but the smooth fuzzy

495models are more robust to the parametric changes and

496noises and arrive at a better solution in the presence of

497uncertainties and in the training phase.

498However, they require slightly more computational

499efforts than the product-sum fuzzy model.

500Example 2 Evaluation of the proposed smooth fuzzy

501model with a chemical process

502We want to study the dynamic of a highly non-linear

503continuous-stirred tank reactor (CSTR) process, as a sec-

504ond benchmark example, which is very common in

505chemical and petrochemical plants. The modeling problem

506is selected here for test and comparison of different fuzzy

507compositions. In the process, an irreversible, exothermic

508reaction occurs in a constant volume reactor to generate a

509compound A with concentration Ca tð Þ with the temperature

510of the mixture T tð Þ that is cooled by a single coolant stream

511with the flow rate qc tð Þ. The following equations describe

512the process model [22]:

dCa tð Þ

dt
¼

q

V
Ca0 � Ca tð Þð Þ � k0Ca tð Þ � exp

�E

RT tð Þ

� �

ð31Þ

514514

Fig. 5 Magnified view to the performance of the ‘‘atan’’ fuzzy smooth model in the presence of parametric change in the system

Fig. 6 Magnified view to the performance of the ‘‘acos’’ fuzzy

smooth model in the presence of parametric change in the system

E. N. Sadjadi et al.: Fuzzy Model Identification and Self-Learning with Smooth Compositions
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dT tð Þ

Dt
¼

q tð Þ

V
T0 � T tð Þð Þ � k1Ca tð Þ � exp

�E

RT tð Þ

� �

þ k2qc tð Þ 1� exp �
k3

qc tð Þ

� �� �

Tc0 � T tð Þð Þ

ð32Þ

516516 where the value of inlet feed concentration Ca0, the process

517 flow rate q, and the inlet feed and coolant temperatures T0
518 and Tc0, all are assumed to be constant. In the same way,

519 k0;
E
R
;V; k1; k2 and k3 are constants. The nominal values of

520 the process parameters appear in Table 5.

k1 ¼ �
DHk0

qCp

; k2 ¼
qcCpc

qCpV
; k3 ¼

ha

qcCpc

ð33Þ

522522 The nominal conditions for the product concentration

523 Ca ¼ 0:1 mol=l are:

T ¼ 438:5K; qc ¼ 103:411 l=min ð34Þ

525525The objective in the chemical process is to control the

526measured concentration of A, CA tð Þ by manipulating

527coolant flow rate qc tð Þ.

528Fuzzy modeling: in our study, the above rigorous model

529is used to generate a series of input–output time series data.

530The data are then used to develop fuzzy model employing

531different compositions. The structure of the model is:

Ĉa k þ 1ð Þ ¼ f Ĉa kð Þ; Ĉa k � 1ð Þ; Ĉa k � 2ð Þ; qc k � 1ð Þ
� 	

ð35Þ

533533The fuzzy model has 3 Gaussian membership functions

534and the number of rules is 3� 3� 3� 3 ¼ 81.

535The model performance on a validation data set is

536illustrated in Fig. 8. Four different fuzzy compositions are

Fig. 7 Comparison of the performance of the proposed modeling scheme rather than the classical fuzzy scheme in the noisy environment

Table 4 Comparison of best performance of different compositions in Example 1

RMS error (training) RMS error (estimation in

parametric uncertainty)

RMS error (estimation in noise)

Smooth atan composition 0.1528 0.1240 0.0710

Smooth acos composition 0.1987 0.1414 0.1308

Product–sum composition 0.4323 0.2582 0.2493

Min–max composition 0.249 0.1958 0.1931

International Journal of Fuzzy Systems
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Table 5 Specification of the CSTR

Parameter Description Nominal value

q Process flow rate 100 l=min

V Reactor volume 100 l

k0 Reaction rate constant 7:2� 1010 min�1

E=R Activation energy 104 K

T0 Feed temperature 350 K

Tc0 Inlet coolant temperature 350 K

DH Heat of reaction �2� 105 cal=mol

Cp;Cpc Specific heats 1 cal=g=K

q; qc Liquid densities 103 g=l

ha Heat transfer coefficient 7� 105 cal=min=K

Ca0 Inlet feed concentration 1 mol=l

Fig. 8 The quality of smoothing for the smooth fuzzy model and the classical fuzzy model (up) classical model (below) smooth model

E. N. Sadjadi et al.: Fuzzy Model Identification and Self-Learning with Smooth Compositions
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540
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542
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544
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546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565model may be a promising solution in the system’s

566dynamic model and prediction.

567The key features and main results of developing the

568presented modeling scheme through the examples can be

569briefly summarized as follows:

570(a) The accuracy of modeling with smooth fuzzy

571compositions is highly better than the classical fuzzy

572models, which is clear from the comparison of the

573simulations in both examples.

574(b) The smooth compositions bring about higher speed

575of convergence as shown in Figs. 3, 9 and 10 which

576result in higher capacity and faster tracking of the

577parameter changes and dealing with uncertainties in

578the simulations.

579(c) The model can track the changes precisely, in the

580applications of the chemical processes, in particular

581CSTR. Hence, the smooth fuzzy modeling frame-

582work makes the model adaptive upon the measure-

583ment on a smooth surface of parameters and it

584enables the calculation of derivative of error surface

585and fast removal of the local uncertainties.

586Bearing the points in mind, we will work for the imple-

587mentation of the proposed algorithm in the processes that it

588is required to make up a fast simultaneous measurement

589and control scheme. The connectivist approach for the

590measurement based modeling and model based control will

591lower the down-time production and provide a feasible

Fig. 9 Disturbance rejection performance of the proposed smooth fuzzy modeling scheme compared to the classical fuzzy model

International Journal of Fuzzy Systems

compared: two smooth compositions (based on ‘‘atan’’ and 
‘‘acos’’ function in Table 1), and two classical fuzzy 
models using min–max compositions and product-sum 
compositions.

System simulation is conducted to study how the dif-
ferent set points affect the system’s dynamic performance 
and how different fuzzy structures will track the non-linear 
dynamic. Figure 8 demonstrates the open-loop dynamic 
responses using different set points when coolant flow rate 
qc tð Þ was changed from 103 l/min to 105, to 110, to 100, to 
99, and then to 110. All the developed fuzzy models can 
nearly perfectly describe the process dynamic behavior. It 
also indicates that the process is indeed highly non-linear. 
Figure 8 shows the validation error on the simulation and 
the quality of the model is very good.

Figures 9 and 10 demonstrate the disturbance rejection 
capability of the different fuzzy models. In the simulations, 
the disturbances of the coolant temperature Tc0 are added to 
the system. The coolant temperature is manipulated as 
T0 ¼ 350 þ 5 � sin kð Þ. The dynamic response in the fig-
ure shows that the smooth fuzzy models have a strong 
disturbance rejection capability.

As it can be seen, employing the smooth compositions 
leads to the system prediction with lower error. Taking into 
account that the most of the real time processes under 
control have a smooth nature and the possibility of the 
parametric changes of the plant to the model is relatively 
high, it can be concluded that the proposed smooth fuzzy
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592 solution to the challenge of precise and high level of

593 accuracy in the validation and calibration phases, with the

594 minimal level of being underscored by the parameter

595 variations, perturbations, and noises. This potentially

596 would give the dynamical systems, possibility of working

597 at higher speeds up to video rate and also utilization for the

598 examination of live processes.

599 7 Conclusions

600 The overall achievement of the paper is twofold. From

601 theoretical side, one seeks to extend the operational range

602 of applications of smooth fuzzy compositions to make up

603 fuzzy IF–THEN models, which comprises lower compu-

604 tational complexities in comparison to the earlier works on

605 the relational fuzzy models, and then, to contribute to the

606 state of smooth fuzzy self-learning algorithm for modeling

607 task of the time variant structures. The other achievement

608 is the applications of the developed approach to the

609 chemical non-linear processes, where their effectiveness in

610 the system modeling in the presence of parametric uncer-

611 tainties has been illustrated.

612 We have proposed a novel optimization based method

613 for fuzzy smooth model construction and compared its

614 performance to the classical fuzzy models. Four different

615 compositions for extracting fuzzy models in the presence

616 of uncertainty have been investigated. Two simulation

617 benchmark examples were presented to show the advan-

618 tages and the drawbacks of the methods. For the First

619 benchmark, a detailed comparison of performance of the

620fuzzy compositions for a commonly used Mackey–Glass

621chaotic time series has been done. We have investigated

622the case of parametric uncertainty and a comparison of the

623speed of convergence has been carried out. The perfor-

624mance achieved by the proposed smooth fuzzy models is

625superior to the performance attained through the classical

626fuzzy models; however, the computational load is slightly

627higher. The second benchmark shows an application to a

628chemical process and comparisons with the alternative

629fuzzy models have been done. We have proposed and

630validated by simulation the smooth fuzzy model and

631compared it to the classical implementation, on equal

632conditions, for a CSTR system. We believe that the

633adopted smooth modeling approach is a promising solution

634for designing different adaptive identification—controller

635schemes.

6368 Future Works

637We believe that the paper represents the initial steps in a

638direction that appears to be promising in the smooth fuzzy

639modeling of the complex systems. The transparency of the

640IF–THEN smooth fuzzy models is much better than the

641matrix of relational fuzzy models. Hence, the interpretation

642of the linguistic variable can be useful for better modeling

643and the subsequent control purpose during the operator

644interaction. The achievements can be extended for the time

645varying smooth fuzzy systems [26] in the future works.

646Also, since the smooth fuzzy model is differentiable and

647the use of derivative based iterative optimization

Fig. 10 Disturbance rejection performance of the proposed smooth fuzzy modeling scheme compared to the classical fuzzy model

E. N. Sadjadi et al.: Fuzzy Model Identification and Self-Learning with Smooth Compositions
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648 techniques become possible for better connectivist identi-

649 fication-control approaches [27], hence, the other future

650 work can focus on the development of a detailed error

651 mapping of the smooth fuzzy models for characterization

652 of high speed stages used in the noisy environments for

653 precise measurement and manipulation.

654 When the smooth compositions are employed in the

655 fuzzy models, derivative of the model and error mapping

656 can be obtained analytically. Therefore, the IF–THEN

657 smooth model structure is susceptible for theoretical anal-

658 ysis on the robustness and stability properties rather than

659 matrix based relational smooth fuzzy model.

660 In fact, the success in robust modeling will empower to

661 predict the experimental results accurately in the face of

662 environmental conditions and parametric variations. We

663 believe that the proposers shall give priority to the exper-

664 imental verification of the benefits of the proposed algo-

665 rithm and work on it to meet the industrial needs and take

666 measures for the transfer of it into industry.

667 Other works could focus on the applications of different

668 control theories to the smooth models to improve the cal-

669 ibration accuracy of systems and decrease the number of

670 interactions between the systems/tools/equipments and

671 changes in the measurement configurations during the

672 manipulation, validation, and calibration phases.
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