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Abstract Fuzzy neural networks, with suitable Learn-

ing strategy, have been demonstrated as an effective

tool for online data modelling. However, it is a chal-

lenging task to construct a model to ensure its qual-

ity and stability for non-stationary dynamic systems

with some uncertainties. To solve this problem, this

paper presents a novel identification model based on

recurrent interval type-2 fuzzy wavelet neural network

(RIT2FWNN) with new learning algorithm. The model

benefits from both advantages of recurrent and wavelet

neural networks such as use of temporal data and fast

convergence properties. The proposed antecedent and

consequent parameters update rules are derived using

sliding-mode-control-theory. To evaluate the proposed

fuzzy model, it is utilized to design a nonlinear model-

based predictive controller and is applied for the syn-

chronization of fractional-order time-delay chaotic sys-

tems. Using Lyapunov stability analysis, it is shown

that all update rules of the parameters are uniformly

ultimately bounded. The adaptation laws obtained in

this method are very simple and have closed forms.

Some stability conditions are derived to prove learning

dynamics and asymptotic stability of the network by

using an appropriate Lyapunov function. The efficacy
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and performance of the proposed method is verified by

simulation examples.
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1 Introduction

In the study of nonlinear dynamical system identifi-

cation, conventional modeling approaches may not be

suitable to be used due to the lack of precise, formal

knowledge about the system, strongly nonlinear behav-

ior, a high degree of uncertainty and time-varying char-

acteristics. Most of problems require methods that can

handle qualitative and quantitative information with

varying precision and complexity. These considerations

impose extra demands on the effectiveness of process

modeling techniques [31]. Model-free methods like fuzzy

logic and neural network are universal estimators that

can be applied to approximate the behavior of the non-

linear dynamical systems [21]. Fusion of these tech-

niques into a system enhances the capability of them

like fuzzy neural network [8,18].

Since the output of dynamic systems is a function

of time-delayed input and time-delayed output, recur-

rent neural network (RNN) is suitable choice for iden-

tifying their behaviour. These networks have recurrent

loops in their topologies that makes it possible to tem-

porarily store information, capture dynamic response

of the system and enhance the approximation accu-

racy of the network [19,15]. In addition, combination

of RNN and type-2 fuzzy sets are applied to various

practical applications [11,19,17] to enhance noise toler-

ance of the system; different methods for their parame-

ter tuning are discussed. The recurrent fuzzy structure
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that is used in [17] formed an external loop and inter-

nal feedback by feeding the rule firing strength of each
rule to other rules and itself. The structure benefits

from variable-dimensional Kalman filter and gradient

descent (GD) algorithm for tuning its parameters. The

recurrent Takagi-Sugeno-Kang (TSK) fuzzy structure

in [10] obtains from locally feeding the firing strength of

each fuzzy rule back to itself. An iterative linear support

vector regression algorithm is applied to tune all param-

eters. In addition interval type-2 fuzzy system applied

to represent the complex nonlinear plant in practical

industrial systems [26,27]. For example on fault detec-

tion problem, the author in [26] utilized it to design

an event-triggered fault detection filter for non-linear

networked systems which the parameter uncertainty is

captured by type-2 fuzzy membership functions.

Due to the number of possible nonlinear interac-

tions in nonlinear dynamical system is theoretically in-

finite, a nonlinear function should be chosen which is
rich enough to describe a nonlinear process with good

accuracy. Moreover, certain types of functions can ef-

ficiently approximate only certain nonlinear relation-

ships [31]. Some basis functions have important general

properties to deal with nonlinearity and uncertainties

like wavelet representation.

Wavelet function as the activation function can en-

hance the advantages of neural networks for faster learn-

ing ability and wavelet decomposition for identification

purposes. In literature, wavelet neural network (WNN)

and its integration with fuzzy logic to determine an

optimal definition of premise and consequent part of

fuzzy rules, are applied in identification and control of

nonlinear dynamical systems [21,5,20]. Discrete wavelet

transform and WNN which is trained by back propaga-

tion and GD algorithms has also been used to improve

the pattern recognition effects of sEMG signals [6].

Stability and convergence are fundamental in nu-

merical analysis for on-line modeling, identification and

control tasks. One of the foremost stability analysis

techniques is the direct implementation of Lyapunov’s

stability theory. Another way of designing a robust and

stable system is to use the variable structure systems

(VSS) theory, which construct the parameter adapta-

tion mechanism and a rigorous stability analysis [30,

9].

Sliding mode control (SMC) approach as a class of

VSS has high performance in dealing with uncertainties

and imprecision. Since robustness and invariance prop-

erties to matched uncertainties are the most significant

properties of an SMC, the use of it in artificial neu-

ral networks (ANN) or fuzzy neural networks (FNN)

can ensure convergence and stability of the learning

algorithm [33]. As the result has shown in [30], SMC

improves the performance of systems based on soft-

computing techniques which utilize the gradient-based
training strategies.

In literature, several research works use the diffusion

of SMC approach into ANNs. In [12] a sliding mode in-

cremental learning algorithm is used for tuning the pa-

rameters of interval type-2 FNN (IT2FNN) where an

adaptive learning rate with an adaptation law is de-

rived. An adaptive controller for speed control of in-

duction motor which utilizes IT2FNN and SMC-based

learning algorithm is proposed in [22]. In another study,

a new learning algorithm for radial basis function neu-

ral networks is demonstrated that is based on applying

fast terminal sliding mode [13]. In [34], a novel identi-

fication and control scheme using multi-time scale re-

current high-order neural networks is presented. The

scheme uses modified optimal bounded ellipsoid based

weight’s updating laws to identify a nonlinear systems.

Recently, the synchronization of the fractional or-
der chaotic systems have been studied for many appli-

cations in science and technology. It has been observed

that many applications arising in various fields of sci-

ence and engineering are described more accurately by

fractional order differential equations. Fractional calcu-

lus is a mathematical topic which deals with derivatives

and integrations with non-integer order and applied to

model non-linear biological systems with complex be-

havior and long-term memory [2].

Chaos is a nonlinear and deterministic phenomenon

which characterized by a subset of features comprising

having an unusual sensitivity to initial states, not being

periodic, having fractal structures, and being governed

by one or more control parameters [7]. On the other

hands, the chaotic dynamics of fractional-order differ-

ential systems has gained attraction in the investiga-

tion of dynamical systems, such as the fractional order

of Chua’s circuit, Duffing system [1], Lu system, Chen

system [28].

In [4], a direct adaptive fuzzy controller is designed

to obtain a generalized projective synchronization of

two different incommensurate fractional-order chaotic

systems in the presence of both uncertain dynamics

and external disturbances. Lin and Lee developed an

adaptive fuzzy-control scheme incorporating with SMC

approach to synchronize two nonlinear fractional-order

Duffing-Holmes chaotic systems [16]. They investigated

the effect of delay on the chaotic behavior of the fractional-

order system for the first time. Mohammadzadeh et.al

formulated a robust nonlinear model-based predictive

control for synchronization of the fractional-order chaotic

systems [24]. By considering a fractional-order Lyapunov

function, Mohadeszadeh and Delavari designed an adap-

tive finite-time sliding mode control for chaos synchro-
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nization between two identical and non-identical fractional-

order hyper-chaotic systems [23]. The robust adaptive
interval type-2 fuzzy control strategy incorporating Lya-

punov stability criterion and H∞ synchronization per-

formance is studied in [14].

The models of real-world systems is not known com-

pletely and/or their accuracy are affected by nonlin-

ear and time-varying behaviour which can be origi-

nated from actual high degrees of uncertainties about

the plant or from the plant dynamics, external distur-

bances and time-varying parameters. Identification per-

formance of such applications is influenced by these

factors. This study presents a new robust nonlinear

and stable identification model RIT2FWNN to address

these issues. In order to show the capabilities of the

proposed model in such conditions, it is used to iden-

tify a second-order nonlinear time-varying plant and

as a model in MPC to estimate the tracking error on-

line. The controller is applied for the synchronization of

uncertain fractional order chaotic systems and the ro-

bustness of its synchronization in the presence of exter-

nal disturbances, and approximation errors are investi-

gated. The model performance in handling the uncer-

tainties and imprecision can be achieved by utilization

of recurrent IT2FNN and wavelet activation function.

For the parameter adaptation of the RIT2FWNN, slid-

ing mode theory-based supervised online training algo-

rithm is elaborated. This learning algorithm is shown

to be stable in the sense of Lyapunov stability theory

which derives mathematical stability proofs to ensure

finite time stability in RIT2FWNN. Moreover, fast con-

vergence learning speed and the robustness of recurrent

proposed structure is guaranteed. The main contribu-

tions of this manuscript are as follows:

– The proposed structure of RIT2FWNN includes wavelet

activation function with its parameters being tuned

by a novel sliding-mode-control-theory learning al-

gorithm.

– Utilizing the Lyapunov stability theorem which is

applied to obtain the parameter tuning algorithms.

As it is expected, it is shown that the error value

will be smaller in cases where the number of rules

and input variables are more.

– Since the performance of MPC highly depends on

the accuracy of the model, a robust model-based

predictive controller scheme is developed with the

aid of the proposed model.

– The robustness of the developed model-based pre-

dictive controller is examined in the case there exist

uncertain dynamics and time delays in the dynamic

system.

Different symbols defined in this paper are listed in Ta-

ble 1.

The organization of this paper is as follows. In Sec-

tion 2, problem statement and preliminaries are given.

The structure of RIT2FWNN and the novel SMC-theory-

based learning rules are introduced in Section 3. The

enhanced model-based predictive controller is presented

in Section 4. To demonstrate the validation of the pro-

posed method, synchronization of two fractional-order

time-delay chaotic systems and identification of a non-

linear dynamic system are investigated in Section 5.

Finally, the conclusions are given in Section 6.

Table 1: Symbols defined in this paper

Symbol Definition Symbol Definition

Dαt α-order Caputo differen-

tial operator

c Center of MF

Γ (.) Euler’s gamma function σ Upper standard devia-

tion of MF
f(X, t) Bounded smooth nonlin-

ear function

σ Lower standard devia-

tion of MF
ω(t) External bounded dis-

turbance

ξ Recurrent parameter

yd Reference signal θ Lower weights of recur-

rent node

e Tracking error θ Upper weights of re-

current node
y System output w Lower firing strength
x System’s states w Upper firing strength
us Predictive control signal w̃ Normalized values of w

I Number of input vari-

ables

w̃ Normalized values of w

N Number of fuzzy rules q Design parameter
h Number of MF S Sliding surface
fr Output of rth fuzzy rule α Adaptive learning rate

Ã Type-2 fuzzy MF ν Small positive number
ρ Weight coefficient γ Learning rate for (α)
a Dilation R, Q Weighting matrices
b Translation Nc Control horizon
ψ(x) Mother wavelet function Np Prediction horizon
µ Upper membership de-

gree

ϑ Step response coeffi-

cient
µ Lower membership de-

gree

J Cost function

er Free response eo Forced response

2 Problem Statement and Preliminaries For

Fractional-Order Systems

The commonly used definitions in literature for Fractional-

Order operator are Grunwald-Letnikov, Riemann-Liouville,

and Caputo definitions. The last one is introduced for

engineering applications because its Laplace transform

requires integer-order derivatives for the initial condi-

tions. The Caputo’s fractional derivative of a function

x(t) with respect to time is defined as follows [29]:

Dα
t =

1

Γ (m− α)

∫ t

0

(t− τ)−α+m−1x(m)(τ)dτ (1)
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where m = [α] + 1, [α] is the integer part of α, Dα
t

is called the α-order Caputo differential operator, and
Γ (.) is the well-known Euler’s gamma function:

Γ (P ) =

∫ ∞

0

tP−1e−tdt; with Γ (P + 1) = PΓ (P ) (2)

This function can be considered as an extension of the

factorial to real number arguments. The mathematical

model of the fractional-order chaotic nonlinear systems

to be discussed in this paper can be described as:

D
(α1)
t x1 = x2

...

D
(αn−1)
t xn−1 = xn

D
(αn)
t xn = f(X, t) + u+ ω(t)

y = x1

(3)

where X = [x1, x2, ..., xn]
T = [x, x(α), x(2α), ..., x(n−1)α]

is the system’s states vector, yϵR outputs, uϵR is the

control input with the initial conditions, u(0) = 0 and

y(0) = 0. If α1 = α2 = . . . = αn = α the above system

is called a commensurate order system. Then equivalent

form of the above system is specified as:

xnα = f(X, t) + u+ ω(t) (4)

y = x1

The unknown function f(X, t) is a bounded smooth

nonlinear function which specifies system dynamics and

ω(t) is the external bounded disturbance. The main ob-

jective is to force the system output y to follow a given

bounded reference signal yd while assuring under cer-

tain constraint, all involved signals are bounded. To

quantify this objective, the reference signal vector yd
and the tracking error vector e are defined as,

yd = [yd, y
(α)
d , ..., y

(n−1)α
d ]T (5)

e = yd − y = [e, e(α), ..., e(n−1)α]T (6)

e(iα) = y
(iα)
d − y(iα)

By substituting (6) into (4), the control system in the

state space domain is obtained as follows:

xnα = Ax+B[f(X) + u] (7)

y = CTx

where

A =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

. . . . . . . . . . . .
. . . . . .

0 0 0 0 . . . 1

−k1 −k2 −k3 −k4 . . . −kn


B =



0

0

...

0

1


C =



1

0

...

0

0


. (8)
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Fig. 1: The designed control block diagram

The equivalent control effort can be considered as fol-

lows:

u = −KT e+Dα
t yd + us (9)

where us is predictive control signal in previous sam-

ple times which is designed based on model predictive

control. K = (k1, k2, ..., kn)
T ϵR is chosen such that the

stability condition |arg(eig(A))| > qπ/2, 0 < q < 1 is

satisfied, eig(A) is the eigenvalues of the system state

matrix given in (7).

To design us, dynamic of the tracking error is mod-

eled by the proposed RIT2FWNN with its premise and

consequent part as well adaptive learning rate are up-

dated using the proposed online learning algorithm based

on SMC. Fig.1 shows a conceptual diagram of the con-

trol scheme.

3 Proposed Recurrent Interval Type-2 Fuzzy

Wavelet Neural Network structure

The structure of RIT2FWNN implements a recurrent

wavelet fuzzy model is organized into layers whose con-

sequent part is nonlinear function of the input variables.

Each rule in RIT2FWNN has the following form:

Rr : If x1 is Ã1j · · · xi is Ãih and · · · and xI is ÃIl
then:

fr =
I∑

i=1

ρri|ari|−
1
2 (1− z2ri)e

− z2ri
2 (10)

where I is the number of input variables, h is the num-

ber of membership function and fr is the output of

rth rule (r = {1, 2, ..., N}). Ãik is the kth type-2 fuzzy

membership function (MF) related to ith input vari-

able. ρ is the weight coefficient between the input and

the hidden layer. Consequent part of above rule in-

volved a wavelet function of input variables. Wavelets

are defined by a family of functions a and b (a > 0, b ϵ R)

as follows:

Ψr(x) = |ar|−
1
2ψ(

X − br

ar
), ar ̸= 0 (11)
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where Ψr(x) demonstrates the family of wavelets ob-

tained from the single ψ(x) function, called as a mother
wavelet and localized in both time and frequency space,

by dilation and translation, ar = {ar1, ar2, · · · , arI}
and br = {br1, br2, · · · , brI}, respectively and xr =

{x1, x2, · · · , xI} are input variables. In this manuscript,

among several families of wavelets, Mexican Hat is con-

sidered as mother wavelet function. It is derived from

a function that is proportional to the second derivative

function of the Gaussian probability density function.

Ψr(z) =

I∑
i=1

|ari|−
1
2 (1− z2ri)e

− z2ri
2 (12)

where, zri =
xi−bri
ari

.

RIT2FWNN consists of seven layers. In the first

layer, nodes representing input linguistic variables are

fed into the network. In the second layer, each node cor-

responds to one linguistic term. For each entering in-

put variable, type-2 MFs are used which have uncertain

standard deviation and fixed center. The membership

degree µik(xi) and µ
ik
(xi) are calculated according to

(13):

µik(xi) = exp(−
1

2

(xi + ξik − cik)
2

σik
2

) (13)

µ
ik
(xi) = exp(−

1

2

(xi + ξik − cik)
2

σik
2

)

where cik is center of type-2 MF, σik and σik are the

upper and lower standard deviation of the kth type-2

MF of ith input. Moreover, ξik is the recurrent param-

eter defined as (14) which store the past information of

the network. It is to be noted that the feedback weights

of nodes in layer 2 are interval values.

ξik =
θikµik

(t− 1) + θikµik(t− 1)

θik + θik
(14)

where θik and θik are considered as feedback weights

of the nodes. Nodes in the third layer correspond to

one fuzzy rule and perform a fuzzy meet operation on

inputs from layer 2 to obtain upper and lower firing

strength as follows:

wr = µÃ1(x1) ∗ µÃ2(x2) ∗ · · · ∗ µÃI(xI) (15)

wr = µ
Ã1

(x1) ∗ µÃ2
(x2) ∗ · · · ∗ µ

ÃI
(xI)

Layer 4 determines the normalized values of the lower

and the upper firing strength corresponding to each

node in layer 3:

w̃r =
wr∑N
r=1 wr

and w̃r =
wr∑N
r=1 wr

(16)

Layer 5 is consequent layer. In this layer, Nodes com-

pute the product of normalized firing strength w̃r, w̃r

and wavelet function of input variables. Layer 6 involves

two summation blocks, one of them is for upper and the
other is for lower outputs of the previous layer. Layer 7

calculates the output of the network using (17):

yN =q
N∑

r=1

frw̃r + (1− q)
N∑

r=1

frw̃r = q
N∑

r=1

ρr|ar|−
1
2 ψ(

X − br

ar
)w̃r

(17)

+ (1− q)

N∑
r=1

ρr|ar|−
1
2 ψ(

X − br

ar
)w̃r

where q is the design parameter which enables to adjust

the contribution of the lower or the upper values of

rules depending on identification requirements for the

system [3]. In literature, q has either been considered to

be a constant or a time-varying parameter [12]. In this

paper, the adaptation laws for the parameters and the

proof of the stability of the learning process are given

using a time-varying q.

Remark 1: Main improvement made in the pro-

posed approach with respect to existing approaches in

literature [26,27] are use of wavelet functions which

makes it possible to benefit from a local nonlinear gen-

eral function approximator. This in turn will improve

function approximation property of the system and pro-

vides means for a tight control system. On the other

hand, the existence of recurrent term in type-2 fuzzy

membership functions allows the use of a short term

memory which captures the dynamics of the system and

improves the performance of controller.

3.1 Sliding Mode on-line Learning Algorithm

Based on the principles of the SMC theory, the zero

value of the learning error coordinate can be defined as

a time-varying sliding surface, i.e.

S(e(t)) = e(t) = yN (t)− y(t) = 0 (18)

which is the condition that guarantees when the system

is on the sliding surface S the RIT2FWNN output yN (t)

will track the desired output signal y(t) for all time

t > th where th is the hitting time of e(t) = 0.

Definition 1 A sliding motion will have place on a

sliding manifold S(e(t)) = e(t) = 0, after time th if

the condition S(t)Ṡ(t) < 0 is true for all t in some

nontrivial semi open subinterval of time of the form

[t, th) ⊂ (0, th).

The online learning algorithm for the adaptation of the

parameters of RIT2FWNN should be derived in such a

way that the sliding mode condition of the above defi-

nition will be enforced.
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Theorem 1 If the learning algorithm for the parame-

ters of upper and lower Gaussian MFs and weights of
feedback loops are chosen as follows:

ċik = ẋi + (xi − cik + ξik)α sgn(e) (19)

σ̇ik = −(σik +
σ3
ik

(xi − cik + ξik)
2 )α sgn(e) (20)

σ̇ik = −(σik +
σ3
ik

(xi − cik + ξik)
2 )α sgn(e) (21)

θ̇ik =− (xi − cik + ξik)
−1(

2

σik + σik

)−2 (22)

(
µ
ik
(t− 1)− ξik

θik + θik
)−1α sgn(e)

θ̇ik =− (xi − cik + ξik)
−1(

2

σik + σik

)−2 (23)

(
µik(t− 1)− ξik

θik + θik
)−1α sgn(e)

and the adaptation of the parameters of wavelet func-

tions and coefficient in the consequents part of fuzzy

rules are chosen as follows:

ȧri = −
1

Ψri(z)ρri
(−

1

2
a−1
ri +

z2ri
ari

3− z2ri
1− z2ri

)−1 (24)

qw̃r + (1− q)w̃r

(qw̃r + (1− q)w̃r)T (qw̃r + (1− q)w̃r)
αsgn(e)

ḃri = −
1

Ψri(z)ρri
(
zri

ari

3− z2ri
1− z2ri

)−1 (25)

qw̃r + (1− q)w̃r

(qw̃r + (1− q)w̃r)T (qw̃r + (1− q)w̃r)
αsgn(e)

ρ̇ri = −
1

Ψri(z)

qw̃r + (1− q)w̃r

(qw̃r + (1− q)w̃r)T (qw̃r + (1− q)w̃r)
αsgn(e)

(26)

and the parameter q is updated as follows:

q̇ = −
1

F (W̃ − W̃ )T
αsgn(e) (27)

and the adaptive learning rate (α) changes as follows:

α̇ = (2NI +N + 1)γ|e| − νγα ν, γ > 0 (28)

The parameter γ is considered as the learning rate for

the adaptive learning rate α which has a small positive

real value.The parameter ν should be very small not to

interrupt the adaptation mechanism. Then, given an ar-

bitrary initial condition e(0), the learning error e(t) will

converge to zero within a finite time th.

Proof: The reader is referred to the Appendix. Ac-

cording to the following equation which obtained from
the proof, the error value will be smaller in cases where

the number of rules and input variables are more.

|e| ≤
α∗ν

2(3IN + 1)
(29)

In equation (28) the parameter γ is the learning

rate for the adaptive learning rate α. Since the first

term of this equation is positive, the second term is

considered to avoid bursting in parameter α. The value

of the parameter ν should be adjusted in such a way

that the adaptation mechanism not to be disturbed.

Despite aforementioned advantages of simplicity and

robustness of SMC, it suffers from a technical prob-

lem, called chattering. Sensitivity to noise is another

phenomena caused by the presence of signum function

in the structure of SMC. In this manuscript, in order

to alleviate the problem associated with the chatter-
ing and sensitivity to noise, a continuous approxima-

tion method is used which smooths the discontinuity

caused by the signum function as follows:

sign(e(t)) ≈
e(t)

|e(t)|+ δ
(30)

where δ is a small positive number [33].

4 Model Predictive Control Design

The target of the following equation (31) as the cost

function is to solve an enhanced model-based predictive

control:

min
us(k),...,us(k+Nc)

J =

t+Np∑
k−t

ê(k)TQê(k) +∆us(k)
TR∆us(k)

(31)

ê(t) = RIT2FWNN[e(t− k1), . . . , e(t− kl), us(t− 1)]

where us is predictive control signal, e(t−kl), l = 1, . . . , r

are the tracking errors, ∆us(t) = us(t) − us(t − 1), R

and Q are positive definite weighting matrices. Nc and

Np are control and prediction horizon. In order to mini-

mize the cost function (31), the output predictions over

the horizon must be computed. RIT2FWNN is used to

estimate the tracking error e(t). The consequent param-

eters of RIT2FWNN are tuned based on the updating

rule proposed in previous section. By considering the

Diophantine equation corresponding to the prediction

for ê(t+ k + 1|t):

ê(t+ k|t) =Gk(z
−1)∆us(t+ k − 1) (32)

+Gkp(z
−1)∆us(t− 1) + Fk(z

−1)e(t)
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The last two terms of equation (32) depend on past

values of the process output and input variables. That
is, they correspond to the free response er of the process

considered if the control signals are kept constant and

are computed as follows:

er(t+ k|t) = RIT2FWNN[e(t+ k − 1), . . . , e(t+ k − r), us(t− 1)]

(33)

The first term of equation (32) depends only on future

values of the control signal and can be interpreted as

the forced response which is obtained by (34). That is,

the response obtained when the initial conditions are

zero e(t− k) = 0, ∆us(t− k) = 0.

eo(t+ k|t) =
k−1∑
i=0

ϑi∆us(t+ k − i+ 1|t) (34)

where ϑi, i = 0, ..., k − 1 are the step response coeffi-

cients that are obtained using unit step on RIT2FWNN

model. Step response can be estimated as follows [25]:

g(t− 1) =
êstep(t+ k|t)− êr(t+ k|t)

dus(t)
(35)

where dus(t) is the step size and êstep(t+ k|t) is calcu-
lated by RIT2FWNN like as er. Equation (32) can be

rewritten as follows:

ê(t+ k|t) = Gk(z
−1)∆u(t+ k − 1) + fk (36)

such that fk = Gkp(z
−1)∆us(t−1)+Fk(z

−1)e(t). Then

the step ahead prediction of the system output on data

up to time Np in matrix form described as follows:



ê(t + 1|t)

ê(t + 2|t)
...

ê(t + Np|t)


=



G0 0 · · · 0

G1 G1 · · · 0

...
...

. . .
...

GNp−1 GNp−2 · · · G0





∆u(t)

∆u(t + 1)

...

∆u(t + Np − 1)


+



f1

f2

...

fNp


The predictions can be expressed in condensed form as

follows:

E = G∆us + er (37)

The optimization problem (31) can be written as fol-

lows:

J = ETQE +∆UT
s R∆Us (38)

= (G∆Us + er)
TQ(G∆Us + er) +∆UT

s R∆Us

By making the gradient of J in (38) equal to zero:

∂J

∂∆Us
= 2GTQfr + 2(GTQG+R)∆Us (39)

Then the optimum is:

∆Us = (GTQG+R)−1GTQer (40)

5 Simulation Studies and Discussions

In this section, two illustrative examples are presented

to demonstrate the applicability and feasibility of the

proposed method and to confirm the theoretical results.

In these examples, the designed controller is applied to

synchronize two identical and non-identical uncertain

fractional-order chaotic systems in the presence of ex-

ternal disturbances. Besides, to analyze how the pro-

posed structure measures the mathematical model of

a system from measurements of the system inputs and

outputs, an example of nonlinear system identification

is considered.

Example 1: As the first example, the proposed

identification model, is applied to identify a second-

order nonlinear time-varying plant [12] described as:

y(k) =
x1x2 + x3

x4
(41)

where x(1) = y(k−1)y(k−2)y(k−3)u(k−1), x(2) = y(k−3)−
b(k), x(3) = c(k)u(k) and x(4) = a(k)+y(k−2)2+y(k−3)2.

The time-varying parameters a, b and c are defined as:

a(k) = 1.2− 0.2cos(2πk/T ) (42)

b(k) = 1− 0.4sin(2πk/T )

c(k) = 1 + 0.4sin(2πk/T )

where T = 1000 is the time span of the test. This ex-

ample have been implemented with three inputs which

are fuzzified with three Gaussian type-2 MFs with a

fixed center and uncertain standard deviation. The in-

puts are the delayed signal from the plant output- y(t−
T0), y(t − 2T0) and input signal u(t), with the period of

discretization selected as T0 = 1 ms. The incoming net-

work signals have been normalized to be in the range

[−1, 1]. The input signal u(k) is as follows:

u(k) =



sin(πk/25), k < 250.

1.0, 250 ≤ k < 500.

−1.0, 500 ≤ k < 750.

0.3sin(πk/25) + 0.1sin(πk/32)

+0.6sin(πk/10), 750 ≤ k < 1000.

(43)

Fig. 2(a) compares the plant output with the out-

put yielded by RIT2FWNN. 2(b) shows the root mean

square error (RMSE) values versus each epoch num-

ber which illustrates the proposed SMC-based learn-

ing algorithm is stable. Figs. 2(c) and 2(d) show the

adaptation of parameter α and q, respectively. Figs.2(c)

shows the learning rate α will be stable at infinity. Ta-

ble 2 compares the performance of RIT2FWNN with

two different approaches and [12]. These results reveal
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the benefit of using recurrent structure and SMC-based

learning algorithm of RIT2FWNN by achieving smaller
RMSE values. It is to be noted that by increasing the

nonlinearity of the RIT2FWNN by using wavelet func-

tions in the consequents part of fuzzy rules and feedback

loops on type-2 MFs, the accuracy of other learning

methods such as gradient-based methods are lowered

considerably.

Furthermore, the accuracies of extended Kalman fil-

ter and the proposed SMC-based learning method are

similar. As previously discussed, the adaptation laws

obtained in the proposed SMC-based learning method

have explicit forms which do not have any derivative

computations of the output of RIT2FWNN concerning

trainable parameters and manipulation of some high

order matrices. This is the main reason why the com-

putation time for extended Kalman filter and gradient-

based methods is higher than SMC-based methods (see

Table 2). Additionally, further results are provided to

demonstrate the benefits of the proposed model with its

type-1 counterpart. As can be seen, the proposed type-2

model achieves smaller test and train RMSE than that

by the type-1.

Table 2: The RMSE values of different methods in Ex.1.

Training

methods

GD EKF SMC-
based

proposed
type-2
method

proposed
type-1
method

Train

RMSE

0.0532 0.0217 0.0342 0.0263 0.0338

Test

RMSE

0.0761 0.0245 0.0280 0.0207 0.0251

Time 136.322 312.129 85.3026 135.437 108.371

Remark 2: As the simulation results show, the pro-

posed model have better RMSE results than others.

However it is more complicated in network structure.

The best advantages of the proposed RIT2FWNN with

respect to other such as [12], is the rate of convergence.

Most controllers in real world application are based on

model and it is needed to be achieved faster. Hence, the

degree of freedom in the proposed model is increased to

obtain a faster convergence speed. Furthermore, several

experiments have been done on the speed of conver-

gence of different models. The average arising times are

approximately 29 and 38 seconds for the proposed and

[12] respectively, which confirm the favourable conver-

gence behaviour of the proposed model versus time.

Example 2: As the second example, we will verify

the effectiveness of the proposed method to synchronize

two different uncertain fractional-order Duffing-Holmes

chaotic time-delay systems [1]. The master and slave
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Fig. 2: (a) Plant output of example 1 and the RIT2FWNN
system. (b) RMSE values during the online identification pro-
cedure. (c) Adaptation of the learning rate (d) Adaptation of
parameter q.
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systems dynamics are given as follows, respectively:
Dαx1(t) = 2.5x2(t)

Dαx2(t) = −( 1
2.5
x1(t))3 − 1

2.5
x1(t)− 0.1x2(t)

+0.01x1(t− 0.001) + 0.01x1(t)2(t− 0.001)

+0.01x2(t− 0.001) + 25cos(1.29t).

(44)


Dαy1(t) = 2.2y2(t)

Dαy2(t) = −( 1
2.0
y1(t))3 − 1

1.8
y1(t)− 0.1y2(t)

+0.01y1(t− 0.001) + 0.01y1(t)2(t− 0.001)

+0.01y2(t− 0.001) + 25cos(1.29t) + ω(t) + u(t).

(45)

where ω(t) = 0.7sin(t) is the external bounded distur-

bance, and u(t) is control input of the slave system. The

initial conditions are x(0) = [x1(0), x2(0)]
T = [0, 0] and

y(0) = [y1(0), y2(0)]
T = [1,−1]. The simulation sample

time is 0.001 and the fractional derivative order is con-

sidered as α = 0.98. The control effort of the slave can

be obtained as follows:

u = −KT e+Dαx2 + us (46)

where K = [900, 30]. The following cost function is con-

sidered to achieve the control signal us:

min
us(k),...,us(k+10)

J =

t+10∑
k−t

ê(t)2 +∆us(t)
2 (47)

ê(t) = RIT2FWNN[e(t− 1), e(t− 2), us(t− 1)]

Each three inputs of RIT2FWNN are fuzzified with two

Gaussian type-2 MFs with a fixed center and uncer-

tain standard deviation. The premise and consequent

parameters of RIT2FWNN are tuned based on the pro-

posed online SMC-based learning algorithm.

Figs. 3 and 4 show the control trajectory and track-

ing error, respectively. The trajectories of the states

x1, y1 and x2, y2 are depicted in Fig. 5 that demon-

strate synchronization is perfectly achieved. The three-

dimensional phase portrait, synchronization performance,

of the chaotic master and slave systems is shown in Fig.

6. It can be seen that the synchronization performance

of the proposed method in the presence of external dis-

turbances and is successfully realized and the control

trajectory is also admissible and bounded. The mean

square error (MSE) values for the synchronization er-

rors (e1, e2) are given in Table 3. It can be seen that

the performances of the proposed method in this paper

are significantly better than other approaches; (1) slid-

ing mode technique [16], (2) non-linear model predictive

Fig. 3: Tracking error for Ex.2.

Fig. 4: Control signal for Ex.2.

Fig. 5: Trajectories of the states x1, y1 and x2, y2, Ex.2.

Fig. 6: 3D phase portrait, synchronization performance, of
the master and slave systems for Ex.2.

controller (NMPC)[24]. Additionally, tracking error re-

sults in the presence of pulse disturbance are depicted

in Fig. 7. As can be seen, the controller is robust against

external disturbances.

Table 3: Comparison the values of MSE for different methods
in Ex.2.

SMC method
[16]

NMPC [24] proposed method

e1 2500 0.0031 0.0012

e2 1900 1.2897 0.4333
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Fig. 7: Tracking error when the pulse disturbance applied for
Ex.2.

Example 3: In this example, we will apply the pro-

posed method to synchronize two nonidentical fractional-

order time-delay chaotic systems. The master system is

as follows [32]:
Dαy1(t) = y3 − 3y1(t)y2(t− 0.001) + ωm

1 (t)

Dαy2(t) = 1− 0.1y2(t)− y21(t− 0.001) + ωm
2 (t)

Dαy3(t) = −y1(t− 0.001)− y3(t) + ωm
3 (t)

(48)

The initial conditions are y(0) = [y1(0), y2(0), y3(0)]
T =

[0.1, 4, 0.5] and the simulation sample time is 0.001.The

slave system is Liu fractional-order time-delay chaotic

system which its dynamics are as follows[32]:


Dαx1(t) = 10(x2(t)− x1(t)) + ωs

1(t) + u1(t)

Dαx2(t) = 40x1(t− 0.001)− x1(t)x3(t) + ωs
2(t) + u2(t)

Dαx3(t) = −2.5x3(t− 0.001) + 4x21(t) + ωs
3(t) + u3(t)

(49)

where the fractional derivative order of both slave and

master chaotic systems are α = 0.92. The initial condi-

tions are [x1(0), x2(0), x3(0)]
T = [0.1, 4, 0.5]. The con-

troller design procedure is the same as Example 2. dmk (t)

and dsk(t), k = 1, 2, 3 are the external bounded distur-

bances of slave and master system respectively which

are initialized as follows:

ωm(t) = (ωm
1 (t), ωm

2 (t), ωm
3 (t))T (50)

= (−0.1cos(10t), 0.2cos(20t), 0.1sin(10t))T

ωs(t) = (ωm
1 (t), ωs

2(t), ω
s
3(t))

T

= (0.1sin(20t),−0.3sin(10t),−0.5cos(10t))T

The trajectories of the states xk, yk where k = 1, 2, 3 and

the control signals are shown in Figs.8 and 9, respec-

tively. As one can see from the figure, the tracking per-

formance is good even in the presence of disturbances

and unknown functions of dynamics of the system. The

designed controller can synchronize effectively two non-

identical fractional-order time-delay chaotic systems.

Fig. 8: Trajectories of the states xk, yk for k = 1, 2, 3 for
Ex.3

Fig. 9: Control signals for Ex.3

Fig. 10: Tracking error for Ex.3.

From Fig.10, it can be observed that the tracking er-

rors e1(t), e2(t) and e3(t) converge both to small inter-

vals around zero. Table 4 indicates that the obtained

MSE results are comparable with the results in [32].

Fig. 11 shows the tacking error results in the presence

of pulse disturbances. It is shown that the developed

controller preserves the robustness properties against

external disturbances.

6 Conclusion and Future Work

In this paper, a novel robust model RIT2FWNN with

fully SMC-based learning algorithm is proposed to de-

sign a model-based predictive controller to deal with
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Fig. 11: Tracking error when the pulse disturbance applied
for Ex.3.

Table 4: Comparison the values of MSE for different methods
in Ex.3.

Hybrid projective synchronization proposed method

e1 0.15 0.019

e2 0.95 0.021

e3 1.43 0.086

synchronization between two different fractional-order

time-delay chaotic systems with subject to uncertainty

and external additive disturbances.This synchroniza-

tion is effectively obtained which demonstrate the su-

perior performance of the proposed methodology. The

model is tested against identification of a nonlinear and

time-varying dynamic system. Since the output of these

system depends on different step delayed outputs and

inputs, the task of identification of such systems is diffi-

cult. The simulation results indicate that the proposed

approach is quite useful in modeling unknown function

of dynamic systems, having not only favorable tracking

performance but also produce strong robustness and

faster convergence speed. The Lyapunov stability the-

orem is applied to derive the parameter update rule of

the model to guarantee all parameters uniformly ulti-

mately bounded.

The proposed RIT2FWNN owns some advantages:

1. The proposed SMC-based learning strategy efficiently

updates the parameters of RIT2FWNN to cope with

on-line problems which face uncertainty and exter-

nal disturbances. Additionally, the adaptive learn-

ing rate can get fast convergence for the systems.

2. The parameters adjustments can guarantee the con-

vergence of RIT2FWNN that can be maintained in

experimental results and theoretical analysis.

3. Utilizing wavelet function and considering recurrent

part in the structure along side with the proposed

learning method make the performance of the pro-

posed model better with respect to other learning

methods under uncertain conditions in the presence

of disturbances.
4. High Synchronization accuracy which implies that

the proposed model is a suitable choice. Hence, it is

applied to MPC applications.

However the proposed RIT2FWNN network has dis-

advantages such as fixed structure which makes it com-

plex spatially for systems with higher numbers of in-

puts.

As future work, there are many challenging issues

remaining to investigate, including the choice of higher

order sliding mode control in the process of training,

employing self-structuring methods to achieve optimized

construction of RIT2FWNN network.
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[PROOF OF THEOREM 1]
The time derivative of (16) is calculated as follows:

˙̃wr =
ẇr
∑N
r=1 wr −

∑N
r=1 ẇrwr(∑N

r=1 wr
)2 =

ẇr − w̃r
∑N
r=1 ẇr∑N

r=1 wr
(51)

˙̃wr =
ẇr
∑N
r=1 wr −

∑N
r=1 ẇrwr(∑N

r=1 wr
)2 =

ẇr − w̃r
∑N
r=1 ẇr∑N

r=1 wr

considering the following equations for ẇr and ẇr:

ẇr = Jrwr; ẇr = Jrwr (52)

thus the equation (51) changes as follows:

˙̃wr = −w̃rJr + w̃r

N∑
r=1

w̃rJr; ˙̃wr = −w̃rJr + w̃r

N∑
r=1

w̃rJr

(53)

Furthermore, the time derivative of upper and lower of type-2
MFs are calculated as (54):

µ̇
ik
(xi) = −(

(xi + ξik − cik) (ẋi + ξ̇ik − ċik)

σ2
ik

(54)

−
σ̇ik (xi + ξik − cik)

2

σ3
ik

)

µ̇ik(xi) = −(
(xi + ξik − cik) (ẋi + ξ̇ik − ċik

σ2
ik

−
σ̇ik (xi + ξik − cik)

2

σ3
ik

)

and the time derivative of the recurrent parameter is as fol-
lows:

ξ̇ik =
θ̇ik(µik(t− 1)− ξik) + θ̇ik(µik(t− 1)− ξik)

(θik + θik)
(55)

considering µ̇
ik
(xi) = −AikȦik where Aik and Ȧik are as

follows:
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Aik =
xi

σik
−
cik

σik
+
θikµik(t− 1) + θikµik(t− 1)

σik(θik + θik)
(56)

Ȧik =
ẋi

σik
−
ċik

σik
− σ̇ik(

xi − cik + ξik

σ2
ik

) +
θ̇ik(µik(t− 1)− ξik)

σik(θik + θik)
+
θ̇ik (µik(t− 1)− ξik)

σik(θik + θik)

By using Maclaurin series expansion:

1

σik
=

1
σik+σik

2
+
σik−σik

2

=
2

σik + σik
(1−

σik − σik

σik + σik
+ (

σik − σik
σik + σik

)2 +H.O.T︸ ︷︷ ︸
Dik

) (57)

1

σik
=

1
σik+σik

2
+
σik−σik

2

=
2

σik + σik
(1−

σik − σik
σik + σik

+ (
σik − σik

σik + σik
)2 +H.O.T︸ ︷︷ ︸

Dik

)

Dik and Dik are limited as follows:

(1 +Dik)
2 + 1 < BD,

(
1 +Dik

)2
+ 1 < BD (58)

thus the Jr and Jr in (53) are as follows:

Jr = −
I∑
i=1

AikȦik ; Jr = −
I∑
i=1

AikȦik (59)

by substituting (19)-(23) in the above equation:

Jr = Jr = Iαsgn(e) (60)

In order to check the stability condition, the following Lyapunov function is considered:

V =
1

2
e2 +

1

2γ
(α− α∗)2 (61)

The stability condition is met when the time derivative of V is negative definite (V̇ < 0). So,

V̇ = ėe+
1

γ
α̇ (α− α∗) = e ( ˙yN − ẏ) +

1

γ
α̇ (α− α∗) (62)

by differentiating (17)

ẏN = q̇

N∑
r=1

frw̃r + q

N∑
r=1

(
ḟrw̃r + fr ˙̃wr

)
− q̇

N∑
r=1

frw̃r + (1− q)

N∑
r=1

(
ḟrw̃r + fr

˙̃wr
)

(63)

by substituting (53):

ẏN = q̇

N∑
r=1

frw̃r + q

N∑
r=1

(ḟrw̃r + fr(−w̃rJr + w̃r

N∑
r=1

w̃rJr))− q̇

N∑
r=1

frw̃r + (1− q)

N∑
r=1

(ḟrw̃r + fr(−w̃rJr + w̃r

N∑
r=1

w̃rJr))

(64)

by considering (60):

ẏN = q̇

N∑
r=1

frw̃r + q

N∑
r=1

(ḟrw̃r − Iαsgn(e) fr(w̃r − w̃r

N∑
r=1

w̃r))− q̇

N∑
r=1

frw̃r + (1− q)

N∑
r=1

(ḟrw̃r − Iαsgn(e) fr(w̃r − w̃r

N∑
r=1

w̃r))

(65)

since
∑N
r=1 w̃r = 1 and

∑N
r=1 w̃r = 1 equation (65) can be summarized and then by substituting q̇ according to (27),

ẏN = −
1

F (W̃ − W̃ )T
αsgn(e)

N∑
r=1

fr
(
w̃r − w̃r

)
+

N∑
r=1

ḟr
(
qw̃r + (1− q)w̃r

)
= −αsgn(e) +

N∑
r=1

ḟr(qw̃r + (1− q)w̃r) (66)

and the time derivative of fr in (10) is calculated as:

ḟr =
I∑

i=1

ρ̇riΨri(z) +
I∑

i=1

ρri

(
−
1

2
ȧria

−1
ri |ari|−

1
2 (1− z2ri)e

− z2ri
2

)
+ ρri

(
|ari|−

1
2

[
−2żrizrie

− z2ri
2 − żrizrie

− z2ri
2 (1− z2ri)

])
(67)
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ḟr =
I∑

i=1

ρ̇riΨri(z) +
I∑

i=1

ρri(−
1

2
ȧria

−1
ri )Ψri(z)−

I∑
i=1

ρriżrizri

[
2
Ψri(z)

1− z2ri
+ Ψri(z)

]
(68)

=

I∑
i=1

ρ̇riΨri(z) +

I∑
i=1

ρriΨri(z)

(
−
1

2
ȧria

−1
ri − żrizri(

2

1− z2ri
+ 1)

)

=

I∑
i=1

ρ̇riΨri(z) +

I∑
i=1

ρriΨri(z)

(
−
1

2
ȧria

−1
ri − żrizri(

3− z2ri
1− z2ri

)

)

=

I∑
i=1

ρ̇riΨri(z) +

I∑
i=1

ρriΨri(z)

(
−
1

2
ȧria

−1
ri − (

ẋi − ḃri

ari
− ȧri

xi − bri

a2ri
)zri(

3− z2ri
1− z2ri

)

)

ḟr =

I∑
i=1

ρ̇riΨri(z) +

I∑
i=1

ρriΨri(z)

(
ȧri(−

1

2
a−1
ri +

xi − bri

a2ri

3− z2ri
1− z2ri

zri)

)
−

I∑
i=1

ρriΨri(z)

(
ẋi

ari

3− z2ri
1− z2ri

zri +
ḃri

ari
zri(

3− z2ri
1− z2ri

)

)
(69)

so ẏN in (66) changes as follows:

ẏN = −αsgn(e) +
N∑
r=1

I∑
i=1

ρ̇riΨri(z) +

I∑
i=1

ρriΨri(z)

(
ȧri(−

1

2
a
−1
ri +

xi − bri

a2ri

3 − z2ri
1 − z2ri

zri) −
ẋi

ari

3 − z2ri
1 − z2ri

zri +
ḃri

ari
zri(

3 − z2ri
1 − z2ri

)

)
(qw̃r + (1 − q)w̃r)

(70)

substituting ẏN (70) and then ȧri, ḃri and ρ̇ri according to (24) to (26) into the time derivative of Lyapunov function (62):

V̇ = −|e|(3IN + 1)α+ e

[
N∑
r=1

[
I∑
i=1

ρri(−Ψri(z)
ẋi

ari

3− z2ri
1− z2ri

zri)(qw̃r + (1− q)w̃r)

]
− ẏ

]
+

1

γ
α̇ (α− α∗) (71)

V̇ < −|e|(3IN + 1)α+ |e|

[
N∑
r=1

[
I∑
i=1

Bρ(−Bψ
Bẋ

ari
|
3− z2ri
1− z2ri

||zri|)(qw̃r + (1− q)w̃r)

]
−Bẏ

]
+

1

γ
α̇ (α− α∗)

< −|e|(3IN + 1)α+ |e| (NIBρBψBẋBa −Bẏ) +
1

γ
α̇ (α− α∗)

where, α∗ ≥ (NIBρBψBẋBa−Bẏ)
(3NI+1)

which is regarded as an unknown parameter and is determined during the tuning of learning

rate. Thus,

V̇ ≤ −|e|(3IN + 1)α+ |e| (NIBρBψBẋBa −Bẏ) + |e|(3IN + 1)α∗ − |e|(3IN + 1)α∗ +
1

γ
α̇ (α− α∗) (72)

≤ |e| (NIBρBψBẋBa −Bẏ)− |e|(3IN + 1)α∗ − (α− α∗)

(
(3IN + 1)|e| −

1

γ
α̇

)
the adaptive learning rate (α) changes as follows:

α̇ = (3IN + 1)γ|e| − νγα (73)

in which ν has small real value. The time derivative of Lyapunov function (72) is changed as follow:

V̇ ≤ |e| [NIBρBψBẋBa −Bẏ]− |e|(3IN + 1)α∗ − (α− α∗)να (74)

≤ |e| [NIBρBψBẋBa −Bẏ]− |e|(3IN + 1)α∗ − ν

(
α−

α∗

2

)2

+
να∗2

4

since α∗ ≥ (NIBρBψBẋBa−Bẏ)
(3NI+1)

|e| (NIBρBψBẋBa −Bẏ)− |e|(3IN + 1)(
α∗

2
) ≤ 0 (75)

consequently,

V̇ ≤ −(
α∗

2
)(3IN + 1)|e|+

να∗2

4
(76)

In this case in order to have a negative definite time derivative of the Lyapunov function, it is required that the following
condition holds.

|e| ≤
α∗ν

2(3IN + 1)
(77)

Hence, it is concluded that error converges to a small neighborhood of zero, in which and stays there. Furthermore, the radius
of this neighborhood can be made as small as desired using appropriate values for α∗ and ν. This concludes the proof.


