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Abstract This paper proposes a Delta-Modulator (∆-M) based quantised
state feedback controller for Takagi-Sugeno (T-S) fuzzy networked systems.
The∆-M (a single bit quantiser) essentially belongs to one class of sliding mode
quantisers (SMQs) and offers various advantages which include lower design
complexity, lower cost and less noisy. For a prescribed quantisation error, the
gains of the state-feedback controller and the quantiser are derived (both in
continuous and discrete time domains) using linear matrix inequalities (LMIs)
which ensures the stability of the overall system. The performance of the
quantised control system is illustrated considering a practical communication
network based on ZigBee protocol. The results of the simulation demonstrate
that the proposed ∆-M based quantised controller could effectively achieve
desired performance under various imperfections of the practical communication
network.

1 Introduction

Nonlinear control based on T-S fuzzy model has been proven great success
over the past few decades [1–4]. The fuzzy systems are proven to be universal
approximator of nonlinear systems [1, 2, 5–12] which can represent a wide
class of nonlinear systems by a set of local linear models interpolated by
membership functions. During the last two decades, due to the astounding
success of communication network and internet, a new class of control system,
called networked control system (NCS), has emerged and many controllers
are designed for this framework [13–16]. Although, NCS offers many benefits
such as reducing system wiring, ease of system diagnosis and maintenance
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and increase in system agility, the communication network in the control loop
gives rise to several new issues due to intermittent packet losses, delays and
quantisation [17,18].

In the past few decades, researchers have developed several effective control
design methods and have proved their stability, both for linear and nonlinear
systems [19–25]. Some of the existing control methods such as sliding mode
control [26], event-triggered control [27], H∞ control [28], formation tracking
control [29], model predictive control [30], distributed control [31] and so on
have been tailored for Networked control to mitigate the effects of various
network imperfections and make the NCS more robust. These have been
applied to many engineering applications such as fault detection, identifying
cyberattacks, robot applications and many more.

One of the major issue with NCS is the bit-rate constraint (i.e. bandwidth
utilisation) of the communication network. This problem can be alleviated
through quantisation which is a process of mapping a large set of input values
to a small set of output values where the continuous-time signals are represented
by quantised signals. Therefore, the role of quantisers in the NCS is critical
from the perspective of performance and stability. In the past, different types of
quantisers have been proposed by researchers which include nearest neighbour
quantisers [32], logarithmic quantisers [33], neural network quantisers [34] and
so on. All these quantisers are essentially high-bit quantisers [35–38]. It is
worth noting that the effectiveness of the quantisers in bandwidth utilisation
increases with the decrease of quantisation levels. However, the accuracy of the
generated control action decreases with decrease in the number of quantisation
levels (quantisation error increases). Although by using a higher number of
bits could reduce the quantisation error, this increases the delay in the control
action. Because all the bits need to be received in order to reconstruct the
input to the controller [39].

The single-bit quantiser is a possible solution to alleviate the problems
associated with high-bit quantisers and achieve better network bandwidth
utilisation. During the past decade, various researchers have used the single-
bit quantisers based on either ∆-Modulator (∆-M), Delta-Sigma Modulator
(∆Σ-M), Hybrid-Delta Modulator (∆H -M) [18, 40, 41], to develop single-bit
controllers. The output of these quantisers (modulators) are called bit-streams
and the associated controllers are popularly known as bit-stream controllers
[42]. The stability of bit-stream controllers have been established and the
guidelines to tune the controllers’ parameters have been reported in [43–47].

In these methods, instead of using a microprocessor to implement the
control functions, the controllers are implemented in hardware using bit-streams
inside programmable logic devices, such as field-programmable gate arrays
(FPGAs). This technique differs from the traditional digital implementation
where the continuous-time signal is represented by a single-bit signal. Moreover,
since all control elements are implemented in parallel, the addition of extra
functionality to a given design will have less impact on the timing of the system.
This is in contrast to what happens in micro-controller based systems where



Title Suppressed Due to Excessive Length 3

control functions are sequentially executed and this may exceed the available
execution time with the addition of more functionalities.

Although the success of single-bit quantisers has been demonstrated in
areas such as control, mobile communication, and biomedical applications
[42, 48–53], their applications to nonlinear systems are not reported in the
literature. The objective of the present study is therefore to investigate if ∆-
M based single-bit quantised controllers can be designed for nonlinear systems
which are represented by T-S fuzzy model.

In the present study, ∆-M based quantised state feedback controller is
designed for T-S fuzzy class of nonlinear systems; both in continuous and
discrete-time domains. The control actions of these controllers are transmitted
as single-bit signal through the communication channel. Due to this, these
controllers offer significant advantages which include consumption of less hardware
resources and communication bandwidth. The main contributions of this paper
are as follows:

(i.) Established the stability conditions for both continuous and discrete ∆-
M based single-bit quantised feedback nonlinear systems.

(ii.) Determined the feedback gain and the quantiser gain which ensures that
the quantisation error is bounded.

(iii.) Validated the theoretical findings using a real ZigBee protocol based
communication system.

The rest of the paper is organised as follows. Section-2 and Section-3
discuss, continuous time ∆-M based control system and discrete time ∆-M
based control system respectively and the stability conditions are derived using
LMIs which ensures the stability of the closed loop system. The effectiveness of
the proposed control strategy and the theoretical findings are validated using
two simulation examples in Section-4 followed by conclusions on Section-5.

Notation: In the sequel the Euclidean norm is used for vectors. WT and
W−1 respectively denote the transpose and the inverse of any matrix W .
W > 0 (≥ 0, < 0,≤ 0) denote symmetric positive definite (positive semi-
definite, negative, negative semi-definite) matrix W and I denote the n × n
identity matrix. If matrix dimensions are not explicitly stated, are assumed to
be compatible with algebraic operations. The symbol ? is used to represent a
term that is induced by the symmetry.

2 Continuous Fuzzy State Feedback Controller

This section describes the procedure for designing ∆-M based quantised state
feedback controller for continuous-time (CT) T-S fuzzy systems.

2.1 System Description

Consider a nonlinear system which is represented by a continuous time T-S
fuzzy model using the following fuzzy IF-THEN rules:
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IF z1(t) is Mi1 and . . . and zp(t) is Mip,
THEN,

ẋ(t) = Ai,cx(t) +Bi,cu(t), i = 1, 2, . . . , r (1)

where x(t) ∈ Rn and u(t) ∈ Rm denote respectively the states of the system
and the control input. The matricesAi,c andBi,c are of appropriate dimensions.
The number of IF-THEN rules equal to r and the fuzzy sets are denoted by
Mij . It is assumed that z(t) = [z1(t), z2(t), . . . , zp(t)]

T is known. Then the
system equation is given by:

ẋ(t) =

r∑
i=1

λi(z(t)){Ai,cx(t) +Bi,cu(t)} (2)

where,

λi(z(t)) =
wi(z(t))
r∑
i=1

wi(z(t))
; wi(z(t)) =

p∏
j=1

Mij(zj(t)) (3)

whereMij(·) are the membership functions of the fuzzy setsMij . It is assumed
that,

wi(z(t)) ≥ 0, i = 1, 2, . . . , r, and
r∑
i=1

wi(z(t)) > 0, ∀ t.

Hence λi(z(t)) satisfy,

λi(z(t)) ≥ 0, i = 1, 2, . . . , r, and
r∑
i=1

λi(z(t)) = 1, ∀ t.

2.2 Continuous-Time Delta Modulator

The block diagram of a multi-input multi-output (MIMO) CT ∆-M is shown
in Figure. 1.

If z1(t) is Mi1 and . . . and zp(t) is Mip, then the dynamics of MIMO CT
∆-M is described as:

s(t) = x (t)− x̂ (t) (4a)
˙̂x(t) = Θi,c sgn(s(t)), i = 1, 2, . . . , r. (4b)

where x̂(t) ∈ Rn, s(t) ∈ Rn and Θi,c ∈ Rn×n denote the quantised signal, the
switching signal (the quantisation error) and gain of the ith two-level quantiser
respectively. Let us rewrite (4b) as:

˙̂x(t) =

r∑
i=1

λi(z(t))Θi,csgn(s(t)) (5)

Further, sgn(s(t)) ∈ [{−1, 1} , · · · , {−1, 1}]T ∈ Rn, where,

sgn(sj(t)) =

{
+1, if sj(t) ≥ 0;
−1, if sj(t) < 0;

j = (1, 2, · · · , n).
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Fig. 1 Continuous-time Delta-Modulator (∆-M)

2.3 Quantised State-Feedback Control System

Using (1) and (4), the quantised state feedback control system can be described
as:

ẋ(t) = Ai,c x(t) +Bi,c û(t) (6a)
˙̂x(t) = Θi,c sgn(s(t)) (6b)
û(t) = Ki,c x̂(t) (6c)
s(t) = x(t)− x̂(t) (6d)

where Ki,c is the state-feedback gain. For the sake of convenience, rewrite (6)
as:

ẋ(t) =

r∑
i=1

r∑
j=1

λi(z(t))λj(z(t)){Ai,c +Bi,cKj,c}x(t)

−
r∑
i=1

r∑
j=1

λi(z(t))λj(z(t))Bi,cKj,c s(t) (7a)

ṡ(t) =

r∑
i=1

r∑
j=1

λi(z(t))λj(z(t)){Ai,c +Bi,cKj,c}x(t)

−
r∑
i=1

r∑
j=1

λi(z(t))λj(z(t))Bi,cKj,c s(t)

−
r∑
i=1

λi(z(t))Θi,c sgn(s(t)). (7b)

Theorem 1 For known Ai,c, Bi,c Ki.c, Θi,c, i = 1, . . . , r and the maximum
quantisation error ε, the quantised fuzzy system (7) is exponentially stable if
there exists a common symmetric positive-definite matrix Rc > 0 and matrices
Λc for i = 1, . . . , r and Φc for i < j ≤ r such that,

Λc =

[
λ11,c λ12,c
λ21,c λ22,c

]
< 0, Φc =

[
φ11,c φ12,c
φ21,c φ22,c

]
< 0 (8)
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where

λ11,c = {Ai,c +Bi,cKi,c}T {P c1 + P c3}
+ {P c1 + P c3}{Ai,c +Bi,cKi,c}

λ12,c = −P c1Bi,cKi,c + {Ai,c +Bi,cKi,c}T {P c2 + P c3}

− P c3{Bi,cKi,c +
Θi,c
ε
}

λ21,c = −KT
i,cB

T
i,cP

c
1 + {P c2 + P c3}{Ai,c +Bi,cKi,c}

− {Bi,cKi,c +
Θi,c
ε
}TP c3

λ22,c = −{Bi,cKi,c +
Θi,c
ε
}TP c2 −KT

i,cB
T
i,cP

c
3

− P c2{Bi,cKi,c +
Θi,c
ε
} − P c3Bi,cKi,c

φ11,c = GTij,c{P c1 + P c3}+ {P c1 + P c3}Gij,c
φ12,c = −P c1Hij,c +GTij,c{P c2 + P c3} − P c3 Iij,c
φ21,c = −HT

ij,cP
c
1 + {P c2 + P c3}Gij,c − ITij,cP c3

φ22,c = −ITij,cP c2 − P c2 Iij,c −HT
ij,cP

c
3 − P c3Hij,c

and

Gij,c =
{Ai,c +Bi,cKj,c}+ {Ai,c +Bj,cKi,c}

2

Hij,c =
{Bi,cKj,c}+ {Bj,cKi,c}

2

Iij,c =
{Bi,cKj,c +

Θi,c

ε }+ {Bj,cKi,c +
Θi,c

ε }
2

Proof Consider a Lyapunov function as:

V (t) = ξc(t)
TRcξc(t) (9)

where ξc(t) = [x(t), s(t)]T and

Rc =

[
P c1 P

c
3

? P c2

]
> 0 (10)

Partial differentiation of (9) gives:

V̇ (t) = ξ̇c
T
(t)Rcξc(t) + ξTc (t)Rcξ̇c(t) (11)
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where

ẋ(t)TP c1x(t) = xT (t)

{
r∑
i=1

λi(z(t))λi(z(t))(Ai,c +Bi,cKi,c)

}T
P c1x(t)

+ xT (t)

2
∑
i<j

λi(z(t))λj(z(t))(Gij,c)


T

P c1x(t)

+ sT (t)

{
−

r∑
i=1

λi(z(t))λi(z(t))(Bi,cKi,c)

}T
P c1x(t)

+ sT (t)

−2∑
i<j

λi(z(t))λj(z(t))(Hij,c)


T

P c1x(t) (12)

xT (t)P c1 ẋ(t) = xT (t)P c1

{
r∑
i=1

λi(z(t))λi(z(t))(Ai,c +Bi,cKi,c)

}
x(t)

+ xT (t)P c1

2
∑
i<j

λi(z(t))λj(z(t))(Gij,c)

x(t)

+ xT (t)P c1

{
−

r∑
i=1

λi(z(t))λi(z(t))(Bi,cKi,c)

}
s(t)

+ xT (t)P c1

−2∑
i<j

λi(z(t))λj(z(t))(Hij,c)

 s(t) (13)

ṡT (t)P c2 s(t) = xT (t)

{
r∑
i=1

λi(z(t))λi(z(t))(Ai,c +Bi,cKi,c)

}T
P c2 s(t)

+ xT (t)

2
∑
i<j

λi(z(t))λj(z(t))(Gij,c)


T

P c2 s(t)

+ sT (t)

{
−

r∑
i=1

λi(z(t))λi(z(t))(Bi,cKi,c +
Θi,c
ε

)

}T
P c2 s(t)

+ sT (t)

−2∑
i<j

λi(z(t))λj(z(t))(Iij,c)


T

P c2 s(t) (14)
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sT (t)P c2 ṡ(t) = sT (t)P c2

{
r∑
i=1

λi(z(t))λi(z(t))(Ai,c +Bi,cKi,c)

}
x(t)

+ sT (t)P c2

−2∑
i<j

λi(z(t))λj(z(t))(Gij,c)

x(t)

+ sT (t)P c2

{
−

r∑
i=1

λi(z(t))λi(z(t))(Bi,cKi,c +
Θi,c
ε

)

}
s(t)

+ sT (t)P c2

−2∑
i<j

λi(z(t))λj(z(t))(Iij,c)

 s(t) (15)

ṡ(t)TP c3x(t) = xT (t)

{
r∑
i=1

λi(z(t))λi(z(t))(Ai,c +Bi,cKi,c)

}T
P c3x(t)

+ xT (t)

2
∑
i<j

λi(z(t))λj(z(t))(Gij,c)


T

P c3x(t)

+ sT (t)

{
−

r∑
i=1

λi(z(t))λi(z(t))(Bi,cKi,c +
Θi,c
ε

)

}T
P c3x(t)

+ sT (t)

−2∑
i<j

λi(z(t))λj(z(t))(Iij,c)


T

P c3x(t) (16)

sT (t)P c3 ẋ(t) = sT (t)P c3

{
r∑
i=1

λi(z(t))λi(z(t))(Ai,c +Bi,cKi,c)

}
x(t)

+ sT (t)P c3

2
∑
i<j

λi(z(t))λj(z(t))(Gij,c)

x(t)

+ sT (t)P c3

{
−

r∑
i=1

λi(z(t))λi(z(t))(Bi,cKi,c)

}
s(t)

+ sT (t)P c3

−2∑
i<j

λi(z(t))λj(z(t))(Hij,c)

 s(t) (17)
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ẋT (t)P c3 s(t) = xT (t)

{
r∑
i=1

λi(z(t))λi(z(t))(Ai,c +Bi,cKi,c)

}T
P c3 s(t)

+ xT (t)

2
∑
i<j

λi(z(t))λj(z(t))(Gij,c)


T

P c3 s(t)

+ sT (t)

{
−

r∑
i=1

λi(z(t))λi(z(t))(Bi,cKi,c)

}T
P c3 s(t)

+ sT (t)

−2∑
i<j

λi(z(t))λj(z(t))(Hij,c)


T

P c3 s(t) (18)

xT (t)P c3 ṡ(t) = xT (t)P c3

{
r∑
i=1

λi(z(t))λi(z(t))(Ai,c +Bi,cKi,c)

}
x(t)

+ xT (t)P c3

−2∑
i<j

λi(z(t))λj(z(t))(Gij,c)

x(t)

+ xT (t)P c3

{
−

r∑
i=1

λi(z(t))λi(z(t))(Bi,cKi,c +
Θi,c
ε

)

}
s(t)

+ xT (t)P c3

−2∑
i<j

λi(z(t))λj(z(t))(Iij,c)

 s(t) (19)

Note that sgn(s(t)) = s(t)
|s(t)| and ε is the maximum quantisation error (i.e.

|s(t)| = ε). Simplifying (12)-(19) gives:

V̇ (t) = ξTc (t)Λcξc(t), i = 1, . . . , r, (20)

and

V̇ (t) = ξTc (t)Φcξc(t), i < j ≤ r, (21)

which completes the proof of Theorem 1.

Theorem 2 For given Ai,c, Bi,c, i = 1, . . . , r and the maximum quantisation
error ε, the quantised fuzzy system (7) is exponentially stable if there exists a
matrix Xc > 0 and unknown matrices αi,c, βi,c, i = 1, . . . , r where the feedback
gain Ki,c and quantiser gain Θi,c in (7) is given by,

Ki,c = αi,c ∗X−1c , Θi,c = βi,c ∗X−1c (22)

Proof Substituting P c1 = P c2 = Pc and P c3 = 0, in (8) gives,

Λc =

[
λ11,c λ12,c
λ21,c λ22,c

]
< 0, i = 1, . . . , r (23)
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where

λ11,c = {Ai,c +Bi,cKi,c}TPc + Pc{Ai,c +Bi,cKi,c}
λ12,c = −PcBi,cKi,c + {Ai,c +Bi,cKi,c}TPc
λ21,c = −KT

i,cB
T
i,cPc + Pc{Ai,c +Bi,cKi,c}

λ22,c = −{Bi,cKi,c +
Θi,c
ε
}TPc − Pc{Bi,cKi,c +

Θi,c
ε
}

and

Φc =

[
φ11,c φ12,c
φ21,c φ22,c

]
< 0, i < j ≤ r (24)

where

φ11,c = GTij,cPc + PcGij,c

φ12,c = −PcHij,c +GTij,cPc

φ21,c = −HT
ij,cPc + PcGij,c

φ22,c = −ITij,cPc − PcIij,c

Pre and post multiply (23) and (24) by Lc = diag{Xc, Xc}, where Xc =
P−1c gives,

Λc =

[
λ11,c λ12,c
λ21,c λ22,c

]
< 0, i = 1, . . . , r (25)

where

λ11,c = XcA
T
i,c + αTi,cB

T
i,c +Ai,cXc +Bi,cαi,c

λ12,c = −Bi,cαi,c +XcA
T
i,c + αTi,cB

T
i,c

λ21,c = −αTi,cBTi,c +Ai,cXc +Bi,cαi,c

λ22,c = −αTi,cBTi,c −
βTi,c
ε
−Bi,cαi,c −

βi,c
ε

and

Φc =

[
φ11,c φ12,c
φ21,c φ22,c

]
< 0, i < j ≤ r (26)
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where

φ11,c = 2XcA
T
i,c + αTi,cB

T
j,c + αTj,cB

T
i,c + 2Ai,cXc

+Bi,cαj,c +Bj,cαi,c

φ12,c = −Bi,cαj,c −Bj,cαi,c + 2XcA
T
i,c + αTi,cB

T
j,c

+ αTj,cB
T
i,c

φ21,c = −αTi,cBTj,c − αTj,cBTi,c + 2Ai,cXc +Bi,cαj,c

+Bj,cαi,c

φ22,c = −αTi,cBTj,c − αTj,cBTi,c − 2
βTi,c
ε

−Bi,cαj,c −Bj,cαi,c − 2
βi,c
ε

Note that in (25) and (26)

αi,c = Ki,c ∗Xc, βi,c = Θi,c ∗Xc (27)

which completes the proof of Theorem 2.

Design summary of the continuous-time∆-M based quantised state-feedback
control system are described in algorithm 1.

Algorithm 1: Implementation of continuous-time quantised control
system.

Input : T-S fuzzy model
Output: State-feedback gain Kc and Quantiser gain Θc

1 Check the LMI in Eq. (8),

*/ Check stability conditions

2 if Eq. (8)< 0, then
3 P c

1 = P c
2 = Pc, P c

3 = 0

4 end

5 Pre and post-multiply Eq. (23) & Eq. (24) by Lc = diag(Xc, Xc);Xc = P−1
c

*/ Determination of Xc, αc & βc

6 Solve LMIs in Eq. (25) and Eq. (26) to obtain Xc, αc & βc

*/ Computation of State-feedback gain and Quantiser gain

7 Kc = αcX
−1
c , Θc = βcX

−1
c

3 Discrete Fuzzy State Feedback Controller

This section gives the design procedure of ∆-M based quantised state feedback
controller for discrete-time (DT) T-S fuzzy systems. Note that although the
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design of this controller follows similar steps of continuous time T-S fuzzy
systems (described in section-2), the design of feedback gain and quantisation
gain as well as the stability conditions are different in discrete domain.

3.1 System Description

Consider a nonlinear system which is represented by a discrete time T-S fuzzy
model with the following IF-THEN rules:

IF z1(k) is Mi1 and . . . and zp(k) is Mip,
THEN

x(k + 1) = Ai,dx(k) +Bi,du(k), i = 1, 2, . . . , r (28)

where x(k) ∈ Rn and u(k) ∈ Rm respectively denote the states of the system
and the control input. The matricesAi,d andBi,d are of appropriate dimensions.
There are r number of IF-THEN rules and the fuzzy sets are denoted byMij . It
is assumed that z(k) = [z1(k), z2(k), . . . , zp(k)]

T is a known. Then the system
equation is given by:

x(k + 1) =

r∑
i=1

λi(z(k)){Ai,dx(k) +Bi,du(k)} (29)

3.2 Discrete-Time Delta Modulator

Note that this controller uses discrete time ∆-M whose design procedure
is different than the continuous time ∆-M. The block diagram of a MIMO
discrete-time ∆-M is shown in Figure. 2.

Fig. 2 Discrete-time Delta-Modulator (∆-M)

If z1(k) is Mi1 and . . . and zp(k) is Mip, then the dynamics of MIMO DT
∆-M is described as:

s(k) = x(k)− x̂(k) (30a)
x̂(k + 1) = x̂(k) +Θi,d sgn(s(k)), i = 1, 2, . . . , r, (30b)
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where Θi,d is the quantisation gain of the ith 2-level quantiser. Rewrite (30b)
as:

x̂(k + 1) = x̂(k) +

r∑
i=1

λi(z(k))Θi,dsgn(s(k)) (31)

Further, sgn(s(k)) ∈ [{−1, 1} , · · · , {−1, 1}]T ∈ Rn for all s(k) ∈ Rn, where

sgn(sj(k)) =

{
+1, if sj(k) ≥ 0;
−1, if sj(k) < 0;

j = (1, 2, · · · , n).

3.3 Quantised State-Feedback Control System

Using (28) and (30), the quantised state-feedback control system can be expressed
as:

x(k + 1) = Ai,d x(k) +Bi,d û(k) (32a)
x̂(k + 1) = x̂(k) +Θi,d sgn(s(k)) (32b)

û(k) = Ki,d x̂(k) (32c)
s(k) = x(k)− x̂(k) (32d)

From (32):

x(k + 1) =

r∑
i=1

r∑
j=1

λi(z(k))λj(z(k)){Ai,d +Bi,dKj,d}x(k)

−
r∑
i=1

r∑
j=1

λi(z(k))λj(z(k))Bi,dKj,d s(k) (33a)

s(k + 1) =

r∑
i=1

r∑
j=1

λi(z(k))λj(z(k)){Ai,d +Bi,dKj,d}x(k)

−
r∑
i=1

r∑
j=1

λi(z(k))λj(z(k))Bi,dKj,d s(k)

− x(k) + s(k)−
r∑
i=1

λi(z(k))Θi,d sgn(s(k)) (33b)

Theorem 3 For known Ai,d, Bi,d Ki.d, Θi,d, i = 1, . . . , r and the maximum
quantisation error ε, the quantised fuzzy system (33) is exponentially stable if
there exists a common symmetric positive-definite matrix Rd > 0 and matrices
Λd for i = 1, . . . , r and Φd for i < j ≤ r such that,

Λd =

[
λ11,d λ12,d
λ21,d λ22,d

]
< 0, Φd =

[
φ11,d φ12,d
φ21,d φ22,d

]
< 0 (34)

where
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λ11,d = {Ai,d +Bi,dKi,d}TP d1 {Ai,d +Bi,dKi,d} − P d1
− P d2 {Ai,d +Bi,dKi,d} − {Ai,d +Bi,dKi,d}TP d2
+ {Ai,d +Bi,dKi,d}TP d2 {Ai,d +Bi,dKi,d}+ P d2

− P d3 {Ai,d +Bi,dKi,d} − {Ai,d +Bi,dKi,d}TP d3
+ 2{Ai,d +Bi,dKi,d}TP d3 {Ai,d +Bi,dKi,d}

λ12,d = −{Ai,d +Bi,dKi,d}TP d1 {Bi,dKi,d} − P d2

+ P d2 {Bi,dKi,d +
Θi,d
ε
}+ {Ai,d +Bi,dKi,d}TP d2

− {Ai,d +Bi,dKi,d}TP d2 {Bi,dKi,d +
Θi,d
ε
}

+ P d3Bi,dKi,d − {Ai,d +Bi,dKi,d}TP d3 {Bi,dKi,d}
+ {Ai,d +Bi,dKi,d}TP d3 − P d3

− {Ai,d +Bi,dKi,d}TP d3 {Bi,dKi,d +
Θi,d
ε
}

λ21,d = −{Bi,dKi,d}TP d1 {Ai,d +Bi,dKi,d} − P d2

+ P d2 {Ai,d +Bi,dKi,d}+ {Bi,dKi,d +
Θi,d
ε
}TP d2

− {Bi,dKi,d +
Θi,d
ε
}TP d2 {Ai,d +Bi,dKi,d}

+KT
i,dB

T
i,dP

d
3 − {Bi,dKi,d}TP d3 {Ai,d +Bi,dKi,d}

+ P d3 {Ai,d +Bi,dKi,d} − P d3

− {Bi,dKi,d +
Θi,d
ε
}TP d3 {Ai,d +Bi,dKi,d}

λ22,d = KT
i,dB

T
i,dP

d
1Bi,dKi,d − P d2 {Bi,dKi,d +

Θi,d
ε
}

− {Bi,dKi,d +
Θi,d
ε
}TP d2

+ {Bi,dKi,d +
Θi,d
ε
}TP d2 {Bi,dKi,d +

Θi,d
ε
}

− PT3 Bi,dKi,d −KT
i,dB

T
i,dP

d
3

+ {Bi,dKi,d +
Θi,d
ε
}TP d3 {Bi,dKi,d}

+ {Bi,dKi,d}TP d3 {Bi,dKi,d +
Θi,d
ε
}
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φ11,d = 4GTij,dP
d
1Gij,d − P d1 − 2P d2Gij,d + P d2

− 2GTij,dP
d
2 + 4GTij,dP

d
2Gij,d − 2P d3Gij,d

+ 4GTij,dP
d
3Gij,d − 2GTij,dP

d
3 + 4GTij,dP

d
3Gij,d

φ12,d = −4GTij,dP d1Hij,d − P d2 + 2P d2 Iij,d + 2GTij,dP
d
2

− 4GTij,dP
d
2 Iij,d + 2P d3Hij,d − 4GTij,dP

d
3Hij,d

+ 2GTij,dP
d
3 − 4GTij,dP

d
3 Iij,d − P d3

φ21,d = −4HT
ij,dP

d
1Gij,d − P d2 + 2P d2Gij,d + 2ITij,dP

d
2

− 4ITij,dP
d
2Gij,d + 2P d3Gij,d − 4ITij,dP

d
3Gij,d

− P d3 + 2HT
ij,dP

d
3 − 4HT

ij,dP
d
3Gij,d

φ22,d = 4HT
ij,dP

d
1Hij,d − 2P d2 Iij,d − 2ITij,dP

d
2

+ 4ITij,dP
d
2 Iij,d − 2P d3Hij,d − 2HT

ij,dP
d
3

+ 4ITij,dP
d
3Hij,d + 4HT

ij,dP
d
3 Iij,d

and

Gij,d =
{Ai,d +Bi,dKj,d}+ {Ai,d +Bj,dKi,d}

2

Hij,d =
{Bi,dKj,d}+ {Bj,dKi,d}

2

Iij,d =
{Bi,dKj,d +

Θi,d

ε }+ {Bj,dKi,d +
Θi,c

ε }
2

Proof Proof is similar to Theorem 1.

Theorem 4 For given Ai,d, Bi,d, i = 1, . . . , r and the maximum quantisation
error ε, the quantised fuzzy system (33) is exponentially stable if there exists a
matrix Xd > 0 and unknown matrices αi,d, βi,d, i = 1, . . . , r where the feedback
gain Ki,d and quantiser gain Θi,d in (7) is given by,

Ki,d = αi,d ∗X−1d , Θi,d = βi,d ∗X−1d (35)

Proof Substituting P d1 = P d2 = Pd and P d3 = 0, in (34) gives,

Λd =

[
λ11,d λ12,d
λ21,d λ22,d

]
< 0, i = 1, . . . , r (36)
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where

λ11,d = 2{Ai,d +Bi,dKi,d}TPd{Ai,d +Bi,dKi,d}
− Pd{Ai,d +Bi,dKi,d} − {Ai,d +Bi,dKi,d}TPd

λ12,d = −{Ai,d +Bi,dKi,d}TPd{Bi,dKi,d} − Pd

+ Pd{Bi,dKi,d +
Θi,d
ε
}+ {Ai,d +Bi,dKi,d}TPd

− {Ai,d +Bi,dKi,d}TPd{Bi,dKi,d +
Θi,d
ε
}

λ21,d = −{Bi,dKi,d}TPd{Ai,d +Bi,dKi,d} − Pd

+ Pd{Ai,d +Bi,dKi,d}+ {Bi,dKi,d +
Θi,d
ε
}TPd

− {Bi,dKi,d +
Θi,d
ε
}TPd{Ai,d +Bi,dKi,d}

λ22,d = KT
i,dB

T
i,dPdBi,dKi,d − Pd{Bi,dKi,d +

Θi,d
ε
}

− {Bi,dKi,d +
Θi,d
ε
}TPd

+ {Bi,dKi,d +
Θi,d
ε
}TPd{Bi,dKi,d +

Θi,d
ε
}

and

Φd =

[
φ11,d φ12,d
φ21,d φ22,d

]
< 0, i < j ≤ r (37)

where

φ11,d = 8GTij,dPdGij,d − 2PdGij,d − 2GTij,dPd

φ12,d = −4GTij,dPdHij,d − Pd + 2PdIij,d + 2GTij,dPd

− 4GTij,dPdIij,d

φ21,d = −4HT
ij,dPdGij,d − Pd + 2PdGij,d + 2ITij,dPd

− 4ITij,dPdGij,d

φ22,d = 4HT
ij,dPdHij,d − 2PdIij,d − 2ITij,dPd

+ 4ITij,dPdIij,d

Using Schur compliment gives [38],

Λd =

λ11,d λ12,d λ13,dλT12,d λ22,d λ23,d
? ? λ33,d

 < 0, i = 1, . . . , r (38)

where
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λ11,d = {Ai,d +Bi,dKi,d}TPd{Ai,d +Bi,dKi,d}
− Pd{Ai,d +Bi,dKi,d} − {Ai,d +Bi,dKi,d}TPd

λ12,d = Pd{Bi,dKi,d +
Θi,d
ε
}+ {Ai,d +Bi,dKi,d}TPd

− {Ai,d +Bi,dKi,d}TPd{Bi,dKi,d +
Θi,d
ε
} − Pd

λ13,d = {Ai,d +Bi,dKi,d}TPd

λ22,d = −Pd{Bi,dKi,d +
Θi,d
ε
} − {Bi,dKi,d +

Θi,d
ε
}TPd

+ {Bi,dKi,d +
Θi,d
ε
}TPd{Bi,dKi,d +

Θi,d
ε
}

λ23,d = −KT
i,dB

T
i,dPd

λ33,d = −Pd

and

Φd =

φ11,d φ12,d φ13,dφT12,d φ22,d φ23,d
? ? φ33,d

 < 0, i < j ≤ r (39)

where

φ11,d = 4GTij,dPdGij,d − 2PdGij,d − 2GTij,dPd

φ12,d = −Pd + 2Pi,dIij,d + 2GTij,dPd − 4GTij,dPdIij,d

φ13,d = 2GTij,dP
T
d

φ22,d = −2PdIij,d − 2ITij,dPd + 4ITij,dPdIij,d

φ23,d = −2HT
ij,dP

T
d

φ33,d = −Pd

Using Schur compliment again gives [38],

Λd =


λ11,d λ12,d λ13,d λ14,d
? λ22,d λ23,d λ24,d
? ? λ33,d 0
? ? ? λ44,d

 < 0, i = 1, . . . , r (40)
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where

λ11,d = −Pd{Ai,d +Bi,dKi,d} − {Ai,d +Bi,dKi,d}TPd

λ12,d = Pd{Bi,dKi,d +
Θi,d
ε
}+ {Ai,d +Bi,dKi,d}TPd − Pd

λ13,d = λ14,d = {Ai,d +Bi,dKi,d}TPi,d

λ22,d = −Pd{Bi,dKi,d +
Θi,d
ε
} − {Bi,dKi,d +

Θi,d
ε
}TPd

λ23,d = −KT
i,dB

T
i,dPd

λ24,d = −{Bi,dKi,d +
Θi,d
ε
}TPd

λ33,d = λ44,d = −Pd

and

Φd =


φ11,d φ12,d φ13,d φ14,d
? φ22,d φ23,d φ24,d
? ? φ33,d 0
? ? ? φ44,d

 < 0, i < j ≤ r (41)

where

φ11,d = −2PdGij,d − 2GTij,dPd

φ12,d = −Pd + 2PdIij,d + 2GTij,dPd

φ13,d = φ14,d = 2GTij,dP
T
d

φ22,d = −2PdIij,d − 2ITij,dPd

φ23,d = −2HT
ij,dP

T
d

φ24,d = −2ITij,dPTd
φ33,d = φ44,d = −Pd

Pre-multiplying and post-multiplying (40) and (41) by Ld = diag{Xd, Xd, Xd, Xd}
where Xd = P−1d gives,

Λd =


λ11,d λ12,d λ13,d λ14,d
? λ22,d λ23,d λ24,d
? ? λ33,d 0
? ? ? λ44,d

 < 0, i = 1, . . . , r (42)
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where

λ11,d = −Ai,dXd −Bi,dαi,d −XdA
T
i,d − αTi,dBTi,d

λ12,d = Bi,dαi,d +
βi,d
ε

+XdA
T
i,d + αTi,dB

T
i,d −Xd

λ13,d = λ14,d = XdA
T
i,d + αTi,dB

T
i,d

λ22,d = −Bi,dαi,d −
βi,d
ε
− αTi,dBTi,d −

βTi,d
ε

λ23,d = −αTi,dBTi,d

λ24,d = −αTi,dBTi,d −
βTi,d
ε

λ33,d = λ44,d = −Xd

and

Φd =


φ11,d φ12,d φ13,d φ14,d
? φ22,d φ23,d φ24,d
? ? φ33,d 0
? ? ? φ44,d

 < 0, i < j ≤ r (43)

where

φ11,d = −2Ai,dXd −Bi,dαj,d −Bj,dαi,d − 2XdA
T
i,d

− αTj,dBTi,d − αTi,dBTj,d

φ12,d = −Xd + 2
βi,d
ε

+Bi,dαj,d +Bj,dαi,d

+ 2XdA
T
i,d + αTj,dB

T
i,d + αTi,dB

T
j,d

φ13,d = φ14,d = 2XdA
T
i,d + αTj,dB

T
i,d + αTi,dB

T
j,d

φ22,d = −2
βi,d
ε
−Bi,dαj,d −Bj,dαi,d

− 2
βTi,d
ε
− αTj,dBTi,d − αTi,dBTj,d

φ23,d = −αTj,dBTi,d − αTi,dBTj,d

φ24,d = −2
βTi,d
ε
− αTj,dBTi,d − αTi,dBTj,d

φ33,d = φ44,d = −Xd

Note that in (42) and (43)

αi,d = Ki,d ∗Xd, βi,d = Θi,d ∗Xd (44)

which completes the proof of Theorem 2.

Design summary of the discrete-time ∆-M based quantised state-feedback
control system are given in algorithm 2.
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Algorithm 2: Implementation of discrete-time quantised control
system

Input : T-S fuzzy model
Output: State-feedback gain Kd and Quantiser gain Θd

1 Check the LMI in Eq. (34),

*/ Check stability conditions

2 if Eq. (34)< 0, then

3 P d
1 = P d

2 = Pd, P d
3 = 0

4 end
*/ Convert the Bi-linear Matrix inequality into LMI using Schur
Compliment

5 Use Schur compliment on Eq. (36) and Eq. (37) twice

6 Pre and post-multiply Eq. (40) & Eq. (41) by
Ld = diag(Xd, Xd, Xd, Xd);Xd = P−1

d

*/ Determination of Xd, αd & βd

7 Solve LMIs in Eq. (42) and Eq. (43) to obtain Xd, αd & βd

*/ Computation of State-feedback gain and Quantiser gain

8 Kd = αdX
−1
d , Θd = βdX

−1
d

4 Simulation Results

The effectiveness of the proposed controller design and implementation framework
in a practical networked environment is demonstrated considering two examples.
In this study, the communication network is implemented using ZigBee protocol.

4.1 Networked Control System

The block diagram of the networked control system is shown in Figure. 3
where the network is simulated using ZigBee protocol. This study follows the
common practice, reported in literature, where the wireless communication
channel is implemented only on one side of the networked control system to
transmit the control signal from the controller node to the system. During
the simulations, it is found out that the transmission delay τ of this network
equals to 0.02 seconds.

The format of the transmitted data packet using ZigBee protocol is given
in Table-1. Note that the length of the information in the transmitted data
packet is assumed to be µ number of bytes, where µ equals to the total number
of system states. For each control action, the length of each data packet (Υ ):

Υ = µ+ 7
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Wireless Network

Encoder

Decoder

Controller

Arduino 
Board

ZigBee 
Module

Arduino 
Board

ZigBee 
Module

Arduino 
Board

ZigBee 
Module

Arduino 
Board

ZigBee 
Module

System/Plant

Fig. 3 Networked control using ZigBee protocol based communication network.

Table 1 Data packet format.

Name Length(bytes)
Header 2

Source Port 1
Destination Port 1
Receiver Address 2

Data µ
Packet End 1

The average transmission time T is given by:

T =
8× Υ
η

(45)

where η is the average rate of radio transmission of the ZigBee module. The
average energy consumed by each transmission E is calculated as:

E = υ × ι× T (46)

where υ and ι denote the operating voltage and current respectively. The
values of different parameters of the ZigBee module used here are:η = 250 K
bits/s; υ = 3.3V; ι = 0.3A.

4.2 Example 1

This example illustrates the effectiveness of the proposed controller in continuous
time domain which is equipped with a continuous time ∆-M. Consider the
nonlinear system described by [54,55]:

ẋ1(t) = −0.1x1(t)− 0.5x31(t) + 0.1x2(t) (47a)
ẋ2(t) = −x1(t)− 10x2(t) + u(t) (47b)

The nonlinear system (47) can be represented by the following fuzzy model:
IF x1(t) is Mi;
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THEN ẋ(t) = Aix(t) + bu(t), i = 1, 2; where

A1 =

[
−0.1 0.1
−1 −10

]
, A2 =

[
−4.6 0.1
−1 −10

]
, b =

[
0
1

]

The gains of the state-feedback controller and the quantiser are designed
following the procedures described in the section-2. In this simulation, the
initial conditions x0 of the plant is considered to be [0.01,−0.01]T and the
maximum quantisation error ε is taken to be 0.1. The quantisation gains Θ1,
Θ2 and the feedback gains K1, K2 are given by:

Θ1 =

[
0.0660 0.2871
0.3186 −0.5346

]
, Θ2 =

[
0.0938 0.4696
0.3052 −0.2321

]

K1 =
[
−2.6637 9.0867

]
,K2 =

[
−2.0574 7.4270

]
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Fig. 4 Dynamics of the states for the example 1.

The dynamics of the states and the switching function are shown in Figure.
4 and Figure. 5 respectively. From Figure. 4, it is observed that all the states
converge to zero within finite time. Further,the switching function starts inside
region Ω < ε, as can be seen in Figure. 5(a) and 5(b), and stays there
indefinitely within that region (see Figure. 5(c) and 5(d)). The results of
practical simulation confirms with the theoretical findings. It is worth noting
that although the results are shown for ε = 0.1, the performance of the
proposed controller is not significantly affected by other choices of ε. However,
its value should not be considered to be very low; as this will result in high
chattering.
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Fig. 5 Dynamics of the switching function for the example 1: (a) s1; (b) s2; (c) Zig-zag
behaviour of s1; (d) Zig-zag behaviour of s2;
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Fig. 6 Dynamics of the states for the example 2.

4.3 Example 2

This example demonstrates the effectiveness of the discrete-time quantised
state feedback controller design which uses a discrete-time ∆-M described in
section-3. Consider a Hẽnon system described by [4]:

x1(k + 1) = −{cx1(k) + (1− c)x1(k)}2 + 0.3x2(k) + u(k) (48a)
x2(k + 1) = cx1(k) + (1− c)x1(k) (48b)

where the constant c ∈ [0, 1] is the retarded coefficient. Let θ(k) = cx1(k) +
(1− c)x1(k). Assume that θ(k) ∈ [−m,m],m > 0. Then the nonlinear system
in (48) can be represented by the following T-S fuzzy model:

Plant Rule 1 :
IF θ(k) is −m,
THEN x(k + 1) = A1x(k) +B1u(k)
Plant Rule 2 :
IF θ(k) is m,
THEN x(k + 1) = A2x(k) +B2u(k)
where

A1 =

[
c×m 0.3
c 0

]
, A2 =

[
−c×m 0.3

c 0

]
, B1 = B2 =

[
1
0

]
The gains of the state-feedback controller and the quantiser are designed

following the procedures described in section-3 for the parameter values c =
0.1 and m = 2. In this simulation, the initial conditions x0 of the plant is
considered to be [0.1,−0.01]T , sampling time h = 0.1 and the maximum
quantisation error ε is taken to be 0.2. The quantisation gains Θ1, Θ2 and
the feedback gains K1, K2 are given by:

Θ1 =

[
0.0930 0.0897
−0.0012 0.1370

]
, Θ2 =

[
0.1005 0.1002
−0.0177 0.1962

]
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Fig. 7 Dynamics of the switching function for the example 2
: (a) s1; (b) s2; (c) Zig-zag behaviour of s1; (d) Zig-zag behaviour of s2;
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K1 =
[
0.0892 −0.5920

]
,K2 =

[
0.3602 −0.5604

]
The dynamics of the states and the switching function are shown in Figure.

6 and Figure. 7 respectively. From Figure. 6, it is observed that all the states
converge towards zero within finite time. Further,the switching function starts
inside region Ω < ε, as can be seen in Figure. 7(a) and 7(b), and stays there
indefinitely within that region (see Figure. 7(c) and 7(d)). The period of the
switching function s1 and s2 is 2 ((see Figure. 7(c) and 7(d)). The results of
practical simulation confirms with the theoretical findings.

Note that, although the examples considered in this study are simple
systems, the procedure of the proposed controller design is generic and can be
applied to all the nonlinear systems which are represented by T-S fuzzy models.
The smaller number of IF-Then rules is not a limitation of this controller.

5 Conclusions

Quantised single-bit state feedback controller is designed for nonlinear T-S
fuzzy networked systems where ∆-M is used as the quantiser. The stability
conditions ∆-M is derived using LMIs for both in continuous and discrete time
domains. The effectiveness of the control strategy is shown considering a real
ZigBee protocol based communication network with inherent imperfections
such as bit-rate constraints, packet losses, transmission delays and so on using
two simulated examples. The simulation results confirm the theoretical findings.
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