
1

Resource Identification in Fog-to-Cloud Systems: Toward an Identity
Management Strategy

Alejandro Gómez-Cárdenas · Xavi Masip-Bruin · Eva Marín-Tordera · Sarang Kahvazadeh

Abstract

Fog-to-Cloud (F2C) is a novel paradigm aiming at extending the cloud computing capabilities to the edge of the network

through the hierarchical and coordinated management of both, centralized cloud datacenters and distributed fog resources. It

will allow all kind of devices that are capable to connect to the F2C network to share its idle resources and access both,

service provider and third parties resources to expand its own capabilities. However, despite the numerous advantages offered

by the F2C model, such as the possibility of offloading delay-sensitive tasks to a nearby device and using the cloud

infrastructure in the execution of resource-intensive tasks, the list of open challenges that need to be addressed in order to

have a deployable F2C system is pretty long. In this paper we focus on the resource identification challenge, proposing an

identity management system (IDMS) solution that starts assigning identifiers (IDs) to the devices in the F2C network in a

decentralized fashion using hashes and afterwards, manages the usage of those IDs applying a fragmentation technique. The

obtained results during the validation phase show that our proposal not only meets the desired IDMS characteristics, but also

that the fragmentation strategy is aligned with the constrained nature of the devices in the lowest tier of the network hierarchy.

Keywords Identity management · Identification · IDMS · Resource identity · Fog-to-cloud resource identification

I. Introduction
In the Internet of Things (IoT) [1] era, where any everyday

object can be turned into a gadget capable to both interact

with other computers and monitor its surrounding

environment, the number of connected devices requesting

the cloud services to process or store the data they generate

is growing exponentially. This situation is originated in the

fact that these devices are characterized by their multiple

limitations in terms of hardware turning into the need for

offloading tasks they cannot process, typically, to cloud

datacenters.

Nevertheless, the rapid technological development and

deployment of IoT devices [2] have led to the emergence of

new use cases at the edge of the network where the use of

the cloud infrastructure is not the most suitable solution, as

for example, delay-sensitive applications that need to

operate with a lower latency than the one offered by cloud,

such as critical urban infrastructure or eHealth monitor

devices. In these cases, the cloud’s centralized nature and

the conceptual distance between the cloud datacenter and

the user/device requesting the service [3] prevent cloud to

meet the low-delay requirement.

 Alejandro Gómez-Cárdenas

alejandg@ac.upc.edu

Xavi Masip-Bruin

xmasip@ac.upc.edu

Eva Marín-Tordera

eva@ac.upc.edu

Sarang Kahvazadeh

skahvaza@ac.upc.edu

Universitat Politècnica de Catalunya

Advanced Network Architectures Lab (CRAAX) located at Rambla de

l'Exposició 59, Vilanova i la Geltrú, Barcelona, Spain 08800

Other cloud limitations, such as the lack of mobility

support, undefined security and privacy policies, quality of

service (QoS) issues and the need of a reliable Internet

connectivity with sufficient bandwidth [4], have encouraged

the emergence of new computing paradigms that put the

focus on the devices that operate at the edge of the network.

An already existing approach came from the so-called

Fog computing concept [5] [6]. Fog computing is a novel

paradigm that proposes to extend the cloud capacities to the

edge of the network, where data is generated, through some

sort of distributed fog nodes (also called aggregator nodes)

that allow to use network resources but with a reduced

latency and thus, a better QoS. Key research initiatives in

fog related areas are the OpenFog Consortium [7] and the

mF2C [8], the latter leveraging the Fog-to-Cloud (F2C)

concept defined in [9] (further discussed in section II).

Recognized the potential benefits brought by fog

computing systems [10] and the new range of services and

applications that it will drive, it is undoubtedly worth the

study of the still open challenges (see [11]) that have to be

overcome in order to have a fog framework that can be

deployed.

In this paper we focus on the identity management

system (IDMS) [12] challenge, specifically, in the

management of the devices (resources) identities, which is

one of the key functionalities of any fog computing control

plane. In this sense, it is worth highlighting the fact that

even when there are many IDMS proposals in the literature,

as we review in section IV, they don’t meet the fog

paradigm requirements (as described in section III). This is

due to: i) the highly dynamic network conditions expected

in the fog computing environment caused mainly by the

mobile devices; ii) the predominant centralized approach in

2

the existing solutions, and; iii) the large amount of

computing resources required by these proposals for a

proper operation, not to be met by usually highly

constrained devices at the edge of the network.

The main contributions of this paper are summarized

next:

• Unlike other IDMS proposal, we assign a unique

identifier (ID) to each device leveraging the model

hierarchical topology instead of using the IP

address as identifier.

• We assign persistent IDs that remain even if the

node moves to another location.

• The fragmentation strategy during the ID

management allows a more efficient use of the

scarce hardware resources available in the devices.

The reminder of this paper is organized as follows. In

section II we describe the F2C system model. In section III

we study the relevance of the adoption of a proper identity

management strategy and its most common requirements. In

section IV the related work is discussed. The proposed

IDMS is presented in section V. Section VI shows an

illustrative use case of the adoption of the proposed IDMS.

In section VII the results obtained in the validation phase

are analyzed and finally, we conclude this work in section

VIII.

II. F2C system model
F2C is a collaborative computing paradigm where

resources are distributed in a hierarchical topology. The

main difference between the original fog computing

proposal and the F2C is that while in fog computing the

cloud services will be used mainly for long-term data

storage and data mining, in F2C it plays a more active role.

For example, a service may be granulated to execute

simultaneously the delay-sensitive tasks in the neighboring

nodes and the non-critical tasks in the cloud.

It is said that F2C is a collaborative approach because it

will allow users not only to use the available resources but

also to contribute to the resources pool with idle resources

in their devices, i.e., users will be able to share their idle

compute capacity, memory and storage while connected to

the F2C network.

In short, F2C is structured as follows: in the lower

hierarchical tier the most constrained resources will be

grouped (IoT devices). The middle tier will be integrated by

the fog nodes playing as gateways for the devices in the

lower tier, and finally, the cloud datacenter seating at the

top.

For the sake of illustration Figure 1 shows the general

F2C topology and communication model. Reacting to a user

wiling to execute a service, the F2C system will select the

best place to execute it, depending on the required data

location, the maximum delay allowed, the service

characteristics and some other parameters. Thus, the

devices participating in the F2C infrastructure can execute

tasks either in nearby devices at the same hierarchical tier,

in a higher fog tier or even in the cloud datacenter

according with the task requirements.

Consequently, F2C services will be able to use a

combined set of resources that will not necessarily be

located in the same hierarchical tier. Let’s consider for

example a service that can be decomposed into subtasks.

The resulting subtasks can be assigned to nodes deployed

throughout the network according to their specific

requirements. Accordingly, the subtasks that need few

compute resources can be allocated to constrained IoT

devices and subtasks that require long-term storage or

intensive processing to the cloud datacenters.

III. IDMS requirements in F2C systems
It is called identity management system (IDMS) to the set

of tasks, techniques and procedures used to identify

uniquely an individual or an object within a given context

[13]. The IDMS is a key component that should be present

in every level of the F2C hierarchy. It will facilitate, among

other things, to control the access to the available resources

in the network and to implement the most essential security

features, such as authentication and isolation of devices that

incur in malicious behavior.

It is worth emphasizing the importance of the adoption of

the proper identity management strategy. In F2C, mobile

devices will require to be identified constantly across the

network, especially when they move from one fog node

coverage area to another, for example, when device A in

Figure 1 moves from fog node1 to fog node2. In order to be

able to offer a seamless handover experience, it will be

imperative that the adopted identity management strategy

allows nodes to be identified in the shortest possible time.

According to [14], IDMS will ease the management of

services, data and devices. Also, it will provide support to

the service providers during the development phase while

protecting the user’s privacy and hardware specifications,

thus it is a crucial feature of the system.

In [13], the author argues that the requirements for the

IDMS design criteria are closely tied to the use cases, that

is, the requirements that the IDMS should meet are not

fixed but they depend on the environment where such

system will be implemented. For example, a desired

characteristic of the telephone management system (which

may be considered as a kind of IDMS, being the phone

numbers the identifiers) is that the telephone numbers are

easy to remember, that is, the memorability. Nevertheless,

with today’s computer specifications, where even the most

constrained devices can process data much faster than

humans, the memorability characteristic is not a priority in

environments such as Fog computing or F2C. In fact, since

such characteristic may represent a security issue –such as

the identity forging thread addressed in [15] [16]–, it is not

recommended.

3

Fig. 1 Fog-to-Cloud topology and communication model.

In this section we have compiled a list of requirements

that according to [13], [17] and [18] an IDMS like the one

presented in section V should meet for a successful and

effective management of identities in F2C systems.

• Scalability. The scalability is the capacity of the

identity management strategy to get adapted to large

volumes of changes. In F2C systems, it is essential that

the IDMS component continues to work without losing

quality or affecting other characteristics regardless the

number of nodes in the F2C network.

• Decentralization. F2C is foreseen as a decentralized

paradigm and thus its control functions should be

decentralized as well. The distributed nature of the

system not only allows it to keep operating even if a

section of the network fails but also decrease the

response delay by locating the key functions at the edge

of the network topology.

• Mobility. One of the most important characteristics of

the F2C paradigm is its support to mobility. Therefore,

it is necessary that F2C individual functionalities,

including the IDMS, provide such support to those

devices on the move without degrading the QoS.

• Uniqueness. The identity management strategy must

ensure that the resource identities are globally unique,

at least in the scope of their network connections.

• Security. In raw words, security is responsible for

enabling right individuals to access to the right

resources at the right time and for the right reasons. The

identity management aims at authentication process to

provide data and information for authorized users. [19].

• Privacy. It is said that a function provides privacy

when it prevents unauthorized users to consult, copy,

modify or delete private information. In F2C systems,

the adopted IDMS strategy must hide the end users and

system sensitive information, including the data that

can be used for inferring information, such as personal

data, location, trajectories, behavior patterns, etc.

• Interoperability. This characteristic refers to the

facility provided by the identity management strategy to

exchange data with other service providers [20]. For

example, sharing whether a device is registered in the

network, its’ ID and other data, with another F2C

provider.

IV. Related work
Currently, in computer networks, there are two major

categories in research related to identity management

systems. The first category is the object oriented one,

which, as its name suggests, focuses on identifying

individual objects. The second category is known as user-

centric and it is the most commonly implemented [21].

The OpenID is a user-centric identity technology created

by an open source community that allows users to sign in to

multiple sites without needing to create new passwords for

each one of them [22]. The OpenID addresses the problem

of having multiple user credentials, one for each web

service, by relying the user authentication process to a

centralized third party identity provider, which provides

users with the OpenID identifier, an identity URL [23].

Although the OpenID approach is robust and widely

adopted, its implementation in F2C environments to

identify devices is not appropriate. For example, the

centralized nature of the OpenID not only creates a single

point of failure but also goes against the distributed F2C

approach. This approach not only includes the distribution

of resources but also control functions, including the

identity management system. Even more, OpenID, as other

user-centric solutions, focuses on reducing the multiple user

credentials, which in F2C from the resource identification

perspective isn’t a problem.

In [24] the authors address another user-centric IDMS,

the fingerprint. Such technique also has a version designed

to uniquely identify devices, however, its effectiveness is

conditioned by the need each device to be different, either

in hardware, software or both [25], a condition that is

unrealistic, especially in wireless sensor networks (WSNs)

where a large number of basically identical devices are

deployed. Even more, given the information collected from

the devices, the use of this technique can be considered as a

violation of the privacy of users.

In [26] the authors propose to use the identifier provided

by the device vendor during the IoT devices identification

process. However, as explained in [27], a standardized

naming convention should be agreed in advanced by the

manufacturers, which is unlikely to happen given the

impact this would have on their infrastructure.

In order to avoid security risks related to the

management of identities (user impersonation attacks, for

example), authors in [28] propose a remote user

authentication protocol that anonymize the identities in each

login. Such anonymity is achieved by the use of a random

nonce that encrypts the real identities and uses a dynamic

identity in each session instead. The main issue with this

proposal is that the performance evaluation focuses only on

validating the proposal to be secure but unfortunately

neglects performance aspects in constrained and legacy

devices. In F2C, the constant encryption of the device ID

could represent a problem for the most restricted devices,

especially those mobile devices that go from one fog node

to another one in a very short period of time (such as

4

drones, intelligent vehicles, among others).

Authors in [29] propose an IDMS for the mobile cloud

computing that strengthens the authentication process and

identity privacy by the implementation of a two-steps

authentication process (zero knowledge proof and token

verification). The main issue with this strategy is that

compared with other solutions, there is a communication

overhead penalty of 30%. Besides that, the fog nodes

overhead caused by the token generation task in highly

dynamic environments due the devices mobility has not

been considered.

In [30] authors present the Host Identity Protocol version

2 (HIPv2) which in order to provide support to the mobile

nodes proposes to separate the host location and identifier

from the IP address. However, as pointed out in [31], the

HIPv2 key problem is that its implementation implies to

change the TCP/IP protocols structure, which undoubtedly

affects the functioning of existing networks, applications

and even devices.

Authors in [32] present an approach for identifying IoT

devices through the network traffic analysis. In their

proposal, authors apply a set of machine learning based

classifiers to a stream of sessions issued by a specific

device. They claim that after a careful traffic analysis, it is

possible to identify the device that generates such stream of

sessions in the network. Nevertheless, this strategy presents

important drawbacks that disallow to be applied into F2C

systems: i) it does not identify devices individually but a

classification of them (smartphone, computer, sensor,

etcetera); ii) the identification of the network device is

limited to a list of known devices, thus, new uncommon

devices won’t be recognized; iii) it is necessary to allocate

compute resources to the traffic analysis task, and finally;

iv) scalability may be a problem in highly heterogeneous

scenarios.

In [33] an IDMS architecture that uses the cloud

datacenters is introduced. Such work aims to provide device

authentication and authorization among heterogeneous

mobile networks. However, when implementing this

proposal in a F2C environment, the QoS will be degraded

by the inherent latency associated to the cloud usage during

the identification, affecting mainly the mobile nodes.

Authors in [34] propose an identity management

framework specifically tailored for Internet of Things

scenarios, leveraging a centralized database to store the

devices identities. Communication between two nodes is

triggered by the requester node (client) when getting a

token from the identity store, only valid for that specific

connection. However, a key concern of this proposal seats

on the single point of failure built by the centralized

database of the identity store. A failure on the identity store

would make the identity management solution not to

properly work. It is worth mentioning that the required

effort to manage the token will also incur in a delay that

may be not negligible.

V.IDMS proposal
For a better understanding, this section has been divided

into identity assignment and management. In the first one,

we address the naming problem in F2C systems and in the

second one we describe the identity management strategy

we are proposing.

A. Identity assignments

In our previous work [35], we proposed a new hash-based

identity management for combined F2C system. The

proposal consists of three modules: certification, hash

function and identification.

1. Certification: In the early stage and as a part of the

F2C service subscription, users must fill in and submit

a form in the F2C webpage to get their secret key.

Then, users can register their devices on the F2C

system using the obtained key. The certification

provides secure channel between users and F2C system.

2. Hash function: This module uses the SHA-512 hash

algorithm [36] to transform the device identification

input into a 128-bytes fixed-length hash string which

afterwards will be used as device ID. The device

identification input are two concatenated strings: the

secret key obtained during the registration phase and a

random string. Once the device ID has been generated,

it is stored in a distributed fashion among the F2C key

nodes using Distributed Hash Tables (DHT).

3. Identification: The last step of the proposal is to search

device’s ID in the DHT. In this matter, some cases

might be occurred. For example, consider figure 1.

Device A appears for the first time in F2C system and it

is in the vicinity of Fog node 1. Fog node are able to

provide identity for the device and store it in the DHT

over the whole F2C system. In another case, Device C

is already registered and has the hash value (ID), when

it arrives to the Fog node 3, it can easily look up in the

DHT to find out the device C’ identity. All the device’s

ID participants in the F2C system are stored in DHT by

time stamp to track devices. One of the main advantage

here is mobility facility. For example, if Device B

already registered by fog node 1, moves to fog node 2,

it can be found in the F2C system due to DHT across

key components. All the device identity assignments

and registration in DHT are done in hierarchical

manner by nearby fog nodes or cloud.

B. Identity management

In our identity management proposal, the large global

identities are partitioned into small fragments [37]. Those

fragments facilitate network resources to be identified by a

small fraction of their name rather than the full global

identifier according to their connection layer (CL) in the

F2C system.

The connection layer (CL) is the hierarchical view

between different nodes in the F2C system. The CL in F2C

will be given by the cloud as higher layer in F2C hierarchy.

According to [38], three hierarchical levels may be

considered for fog computing and thus, for F2C systems.

5

Although, inter-service-provider interaction must be

considered as a layer in F2C scenario. Therefore, we

classified the four hierarchical CLs (figure 2) in F2C system

as below:

• Edge: In this connection layer, all connection occurred

between the components (Physical or virtual) under the

same fog node. In this type of CL, resources from an

area at the edge of the network are geographically at

vicinity of each other. For example, a shopping mall

building can be considered as an area at the edge of the

network.

• Fog: The CL of the fog is the connections between the

fog nodes and the resources that they aggregate. For

example, connection between a temperature sensor in

one area and a laptop in another area under different

fog nodes.

• Cloud: This CL has the overview of the all resources

(might be geographically located far from each other)

that established connection to the F2C system by a

common cloud service provider.

• Global: The type of CL is the interconnection between

all service providers of services globally. The resources

may geographically have located far or near to each

other but be connected to different network. Let’s say

F2C service provider A and F2C service provider B.

As illustrated in figure 3, The CLs are classified in four

categories. In the F2C system, the number of layers might

be changed, therefore the CLs and ID’s fragmentation

policy might be changed as well to be matched properly

with the F2C layers. Therefore, it is worth clarifying that

the four fragments policy may be considered as the general

use policy and that it might change to fit other use case’s

needs.

When the connection layer has been defined for a system

topology, the identifiers will be divided into n parts, where

n is the number of CLs in the F2C system. The nodes in the

F2C system will use the fraction of identifiers according to

the hierarchical tier they are located for mutual

identification instead of the full identifier. According to the

node position in the hierarchical tier, the number of

fragment of identifiers are changing. For example,

assuming the network topology shown in figure 3, if the

device tagged as B requests a storage resource located in the

fog node2, such CL will be tagged as fog and thus, two

fragments of the full identifier will be required during the

mutual identification process. Assuming identifiers as the

one shown in figure 2, the full device identifier will be

fractioned according to the CL as shown in the right of the

figure 3.

In the topological view, in the higher CL, the more ID

fragments will be used. Therefore, in the higher CL, larger

ID will be used. The reason behind that is a higher node in

the hierarchical F2C system has more devices (children)

below itself in hierarchy. Then, for identifying each one of

the children individually, longer identifiers will be used.

Fig. 2 Device’s ID fragmented by connection layer.

Fig. 3 Fragmentation policy according to the CL between two nodes.

Due to the use case’s need and implementation, the

length of ID’ fragments may be different from fragment to

fragment. In the lowest tier in F2C systems (IoT layer), the

length of first ID’s fragment depends on maximum number

of resource’s ID that fog node (as aggregator node) can

store in cache during a specific time, that is, the identifiers

cache size. If the fog node can store larger identifiers cache

sizes, then a larger identifier fragments is required. In the

IoT layer, small ID’s fragments and cache sizes occurred

due to their low computational power and resource

limitation. Note that adjusting the ID’s fragment length in

function of the fog node cache size must be considered,

otherwise, ID’s collision problems will arise.

There are many different research contributions

addressing the collision problem in the naming scenario

(see [39] [40] [41]). Interestingly, in our identity

management proposal, we define a collision occurs when

two or more resources in a CL use the same identifier.

Consequently, meeting what the main objective for an ID is

to unambiguously identify a resource, the collision

probability, as defined in (1) must be reduced as much as

possible.

𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) = 𝑐 / 𝑒𝑙 (1)

6

Fig. 4 IDMS procedure.

In (1):

• c: It is the maximum number of IDs that the

aggregator node can store in cache

• e: It is the number of elements in the character set

used for building the ID.

• l: it is the pretended ID fragment length.

For avoiding and preventing ID collision, nodes in global

connection layer use their full ID rather than a fraction of it

during the identification process.

In fact, one of the main advantages of the proposed

identity management is that the full resource identifier is

not spreading nor storing through the whole network but its

only know by: i) the resource to which the ID belongs; ii)

the fog node when resources are connected through it to the

F2C system and; iii) other resources in global connection

layer where the full resource’s ID is required for a proper

identification and the decrease in collision risk.

Fog nodes play a vital role in our proposal due to be

responsible for sharing the required resource ID fragments

with other nodes according to the CL in the hierarchical

F2C systems. For example, in the figure 3 if the node A

requests a connection to the node C, the aggregator node

that groups both of them will determine the CL and the

number of fragments that such connection requires. In this

case, only the first fragment will be used.

The sequence diagram shown in figure 4 describes the

procedure to be followed when two nodes in the F2C need

to communicate. As remark, we want to mention that in this

scenario, we consider that nodes will be authenticated in the

previous steps before communicating and all

communication between layers, devices, users, etc. will be

through secure channels. The steps 1 and 2 and their

respective ACK are the initial preconditions to have the

system running. In the first interaction, a node that can

exercise the role of aggregator node asks the cloud agent to

add it to the list of aggregators available in the fog tier. The

cloud agent responds with an ACK. This process is repeated

in the second interaction, with the difference that the node

that requests to be added is in the lower tier of the network

hierarchy, and the aggregation request is made to an

aggregator node in the fog tier, instead of the cloud agent.

Let’s assume that the Device B in figure 4 is offering a

resource -hardware such as processor or storage, a service

or data collected by sensors- that the Device A is requiring

and that Device A is also part of the F2C network. The

Device A will request to the network for the desired

resource in a secure fashion and when it finds the resource

available in an aggregator node, it will submit its ID among

other information securely. Using such information, the

aggregator node will calculate the CL of the interaction and

based on such CL, the Device B identifier fragment to be

shared with Device A.

VI. Illustrative scenario: deploying a F2C
system in a smart city

This section introduces an illustrative example to

understand what the envisioned procedures and assumptions

related to the naming strategy when deploying a F2C

system will be. For the sake of realism, we consider a city

as the scenario where the F2C system will be deployed as

well as some preliminary assumptions.

7

Fig. 5 Illustrative scenario.

Let’s suppose the local government of a city, along with

a regional Internet Service Provider is planning to

modernize the city downtown by enriching the set of

services that the city offers to the citizens. To that end,

diverse IT infrastructure is deployed enabling the execution

of innovative services, such as smart traffic management,

urban surveillance, real time environment information

(weather, pollution, noise, sunrise, sunset, etcetera), or

enriched dependable e-health services, just to name a few.

Assuming the fact that the deployed resources will not keep

operating at full capacity all over the time, it is proposed to

offer the idle city resources as an additional service to

citizens, so paving the way for: i) a new collaborative

model where citizens may execute other tasks and services

in these idle city resources, and; ii) the creation of an

environment where citizens can also contribute by sharing

idle resources in their own devices.

In order to implement such resources and services

management, the city manager has decided to deploy a F2C

management solution, thus organizing the available

resources in layers according with their capabilities, as

follows (figure 5). The lower tier, also called IoT layer, is

integrated by the most constrained resources, such as

sensors, actuators and other basic computing devices –e.g.

Raspberry Pi or Arduino boards– and is represented in

figure 5 by the green circles connected to their respective

fog nodes. In the second tier (orange circles marked with

capital letters), the resources with medium processing

power are grouped. These resources deploy control and

aggregation functions for resources in the immediate lower

tier and also when needed, provide their own resources to

execute tasks that cannot be executed in the IoT resources.

Finally, the upper tier, consists of the datacenter located at

the ISP facilities. This tier is mainly used to execute

demanding tasks and long-term data analysis and storage.

During the initial F2C deployment, a key decisions must

be made regarding the way in which the resources

participating in the network will be identified. It refers to

the length in which the resource IDs will be fragmented in

every tier of the network. To that end, it is worth

highlighting the differences brought when considering the

IoT layer. Indeed, while a F2C manager may pretty

accurately know the amount of resources deployed at the

cloud and fog tiers –easy decision about the length for the

fragment that correspond to those tiers–, there is no clue on

the maximum number of resources connected and stored in

the aggregation node cache for a given period of time in the

IoT layer. Hence, while an easy decision can be taken about

the length for the fragment that corresponds to the cloud

and fog tiers, an estimation is needed for the IoT layer. We

also assume that, in the illustrative scenario for the

envisioned city, the downtown area with the highest

population density hosts every day up to a maximum of 1.5

million people of which 500,000 live there, 700,000 are

employees that work in the zone and the rest are visitors.

Thus, the city manager must choose the optimal ID’s

fragment length for the IoT layer assuming that the F2C

framework is preconfigured to store in every aggregation

node a cache, with information of the resources connected

to them during a specific period of time that the people in

the area are potential service users with a single device, and

that they all are managed by a single aggregation node. As a

first approach, although certainly further work is needed to

evaluate the impact of varying this period, we set that

period of time to the last seven days.

From the aforementioned data, the city manager gets two

of the three variables set in (1), namely c and e. In this case

c is the number of people that every day visit the area

multiplied by seven, plus the number of people that every

day goes to the area to work, plus the number of people that

live there. Due to the adopted naming schema, IDs are

generated using only the hexadecimal charset, therefore the

value of e in (1) is 16.

The third and last variable of (1) is the desired length of the

ID’s fragment l. We assume that the city manager prefers to

prioritize a low ID collision probability over a short

fragment. Therefore, the collision probability for fragments

of 8 characters’ length in hexadecimal representation is

calculated.

The result (2) shows that the probability of collision is

0.00076, that is, 0.076%.

𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) = 3,300,000 / 168 = 0.00076 (2)

Getting a smaller collision probability, would require the

city manager to consider shorter fragments of 10 characters’

length, as shown in (3).

𝑃(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) = 3,300,000 / 1610 = 3𝑥10−6 (3)

The obtained results for the collision probability with the

new parameters can be considered negligible and thus this

would be the fragment length chosen by the project

manager for the IDMS in the proposed F2C

implementation.

8

Table 1. IDMS features.

Feature Description

Scalability

The fact that the aggregator nodes will provide the identity
management service to the nodes which they group will
allow the IDMS to scale well regardless the number of
devices connected to the network.

Decentralization

In F2C the control functions will be decentralized. The
identity management by the aggregator nodes that we
propose is aligned with such decentralization, what
eliminates the single point of failure. In fact, the service
will continue operating normally even if the cloud fails.

Mobility

In our proposal, each F2C node will have its own
identifier, which will allow mobile nodes not to lose their
identities, even when changing their IP. Likewise, in order
to provide a seamless service to mobile devices that will
require to be identified constaly by the aggregator nodes,
we put the focus in the reduction of the time required for
identify a node in the network.

Uniqueness

Each node in the F2C system will have its own globally
unique identifier. The fragmentation strategy that we
propose will allow the devices to have an identifier that
still is unique in the context of their connections.

Security

A key feature of the IDMS is the capability to provide
security to the systems. Our proposal will allow the nodes
to be identified unambigusoly using a short version of their
full identifiers.

Privacy

Using a short version of the node identifiers will disallow
the scalade of masquerade attacks. Likewise, the non-
incorporation of prefixes to perform the partitioning will
prevent sensitive information from being extracted or
inferred from the ID.

Interoperability
With few modifications and agreements, the IDMS
presented can be implemented in fog computing and F2C
systems from different service providers.

VII. Evaluation and results
In this section we describe the evaluations carried out for

the presented proposal. The rationale behind this evaluation

is to qualitatively validating the fulfillment of the proposal

with the expected characteristics of an IDMS (see section

III) as well as analyzing the results obtained during the

evaluation phase.

In this sense, it is worth emphasizing that during the

evaluation of the proposal we have focused on the lowest

tier of the network hierarchy, the IoT layer. This is because

from the identity management perspective and due to the

dynamism that characterize the lower network tier, it is the

most challenging to manage in the whole F2C system.

Thus, in order to validate our naming strategy, we have

studied the time required to generate an ID in two of the

most typical and constrained IoT devices: an Arduino and a

Raspberry Pi. Likewise, to validate our fragmentation

proposal we have created a fictional scenario where a

Raspberry Pi plays the aggregator (fog) node role. Such

scenario will be further described in subsection C.

A. IDMS characteristics validation

The motivation that drove the development of this work

was the lack of an identity management system that

supports the features offered by F2C system. In this sense,

we argue that the IDMS that focus on the aforementioned

approach must take into consideration the requirements that

the environment demands.

In this section, we return to the requirements described in

section III and explain how the proposed solution meets

them (table 1).

B. Naming assignment validation

Since the devices grouped in the IoT layer will be very

constrained in terms of computational power, it is

imperative that the functions deployed in them are in

accordance with said limitations. For that reason, we have

implemented and validated our naming assignment proposal

in two constrained IoT devices, an Arduino UNO WiFi rev2

with an ATMEGA4809 microcontroller that operates at

16Mhz, 48 kb of flash memory and 6.14 of SRAM [42] and

a Raspberry Pi v3 which incorporates a Quad Core 1.2GHz

Broadcom BCM2837 64bit CPU and 1GB memory RAM

[43].

In our experiment, we have measured five times the time

it takes to each of the devices described above to calculate

an ID using our hash-based proposal. The averaged results

are shown in table 2.

As can be expected given the specifications of both

devices, the Raspberry Pi can process more bytes per

second than the Arduino board. Nevertheless, the purpose

of this validation is not to compare the hash rate between

those devices but to prove that even the most constrained

IoT devices are capable to execute our naming solution with

an acceptable hash rate.

C. Database lookup time

To validate our identity management proposal, we have

chosen two well-defined parameters that allowed us to

measure the effectiveness of our proposal by comparing the

performance obtained before and after applying our

solution. The used metrics are the lookup time in the

database that stores the identifiers and the space in disk that

the DB uses.

The reasons why we have chosen these parameters are: i)

in F2C all the framework components, including the IDMS,

must be able to perform their function efficiently,

otherwise, an uncontrolled delay in any of them may cause

a bottleneck in the system and degrade the QoS. When an

aggregator node receives a connection request, it should

perform a lookup in the DHT in order to validate that the

device ID is authorized in the system. In all the cases, the

goal is to provide a seamless experience, especially to the

mobile nodes that are using or sharing a resource on the go,

so then, the less time it takes to search in the database, the

faster the node will be connected to the network; ii) given

the limitations of the constrained IoT and legacy devices,

the resources, including the storage, must be used in the

most efficient way possible. It means that the space in disk

that each component uses matters.

Therefore, we have developed a testbed where a

Raspberry Pi v3 acts as aggregator node. In the Raspberry

Pi we have installed the Ubuntu Server 16.04 as Operating

System and a Database Management System (DBMS). In

the DBMS we have created and filled six databases (DB),

each one with 2 million of synthetic identifiers. In the first

database the ID length was set as 128 bytes. In the next

databases the ID length was set as 64, 32, 16, 8 and 4 bytes

respectively.

9

Fig. 6 Queries execution times.

The database with identifiers of 128 bytes was

considered as the database that stores the full devices’

identifiers. The shorter IDs stored in the following

databases were considered as the possible lengths of the

first ID fragment, the one that corresponds to the edge CL.

After that, we executed lookup queries in all the DBs

considering different volumes of data. In each DB we

conducted queries with 200, 400, 600, 800, 1000, 1200,

1400, 1600, 1800 and 2000 (thousands of) records

respectively in order to be able to analyze how the times

behave as the volume of data increases. Each query was

repeated ten times and the results were averaged and

presented in figure 6.

From figure 6 we can observe that the execution time in

all the DBs is so similar when the data volume is low (200

thousands) but as that volume of data increases, the

graphical lines begin to break that tendency, highlighting

among them the one that represents the DB with the 128

bytes identifier because it requires the most time to process

the queries, especially when the data volume is too high.

On the other hand, the database that requires the least time

to process the queries is the one that stores the 4-byte

fragments. However, it can be seen that the differences

between the queries execution times in the 4-bytes and the

8-bytes databases are minimal, so much so that in figure 6

the lines are basically overlapping. Such behavior is caused

by the index processing in the DBMS engine.

Table 2. IoT devices hash rate.

Device Bytes processed per second

Arduino 7,667.63

Raspberry Pi 42,004.48

Table 3. Databases sizes.

Database Size (MB) %

128 Bytes 312.80 100%

64 Bytes 164.67 52.64%

32 Bytes 110.63 35.36%

36% 16 Bytes 79.59 25.44%

8 Bytes 64.58 20.64%

4 Bytes 55.58

17.76%

In this case, it is convenient to take the length of the first

fragment of the identifier as 8 bytes instead of 4, as this will

greatly reduce the probability of collision in the identifiers

without significantly increasing the time required to

perform queries to the DB.

D. Database size in disk

Using the scenario and DBs described in the previous

subsections, we have measured the space in disk that each

DB uses. The results are summarized in the table 3.

The table 3 shows that using the presented fragmentation

strategy also the storage required to store the databases is

markedly reduced. The database that stores the 4-bytes IDs

fragments only uses the 17.76% space in disk compared

10

with the 128-bytes IDs database. Likewise, the database

with the 8-bytes IDs fragments uses 79.36% less than the

DB with the full identifiers.

VIII. Conclusions and future work
F2C has been designed as a solution to efficiently manage

the resource continuum from the edge up to the cloud. A

F2C system brings remarkable benefits, such as the

possibility of executing services and applications closer to

the end users and thus, with low-latency, it also facilitates

mobility and handover by distributed fog nodes, and allows

users to have more control over their data. However, there

are still open challenges and issues that must be addressed.

One of the main challenges in F2C system is the lack of an

Identity Management System that meets the environment

requirements.

In this work we propose an IDMS that consists of a hash-

based naming strategy and a new hierarchical identity

management technique. The proposed strategy assigns to

each device a unique (ID) that is partitioned into smaller

fragments according to the device hierarchical position in

the F2C system. The fog node can determine the connection

layer and according to that, the number of required

fragments for a proper mutual identification among devices.

In the evaluation part, we illustrate that database sizes

and query execution times both are decrease significantly

when compared to a strategy using the full resource

identifier, with a very low and hence affordable increase in

the collision probability. The proposed strategy facilitates

the efficiently usage of the limited resources at the edge of

the network in F2C systems due to the aforementioned

reductions and finally the identification’s time process is

markedly reduced. Likewise, the qualitative analysis shows

that the proposed IDMS meets the main features that the

identity management system must offer in a F2C

environment.

As a future work, we plan to develop and implement the

proposed hierarchical IDMS in a close-to-real scenario to

assess the proposed solution benefits in a F2C system.

Acknowledgment
This work is supported by the H2020 mF2C project (730929), by

the Spanish Ministry of Economy and Competitiveness and by the

European Regional Development Fund both under contract

TEC2015-66220-R (MINECO/FEDER), and for Alejandro

Gómez-Cárdenas by the Consejo Nacional de Ciencia y

Tecnología de los Estados Unidos Mexicanos (CONACyT), under

grant No. 411640.

References
1. Evans, D.: The Internet of Things: How the Next Evolution of

the Internet is Changing Everything. (2011).

2. S. K. Datta, R. P. F. Da Costa, C. Bonnet: Resource discovery

in Internet of Things: Current trends and future standardization

aspects. In: 2015 IEEE 2nd World Forum on Internet of Things

(WF-IoT). pp. 542–547 (2015).

3. Y. Zhou, D. Zhang, N. Xiong: Post-cloud computing

paradigms: a survey and comparison. Tsinghua Science and

Technology. 22, 714–732 (2017).

4. Firdhous, M., Ghazali, O., Hassan, S.: Fog Computing: Will it

be the Future of Cloud Computing? Presented at the

Proceedings of the Third International Conference on

Informatics & Applications, Kuala Terengganu, Malaysia

(2014).

5. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B.,

Koldehofe, B.: Mobile Fog: A Programming Model for Large-

scale Applications on the Internet of Things. In: Proceedings of

the Second ACM SIGCOMM Workshop on Mobile Cloud

Computing. pp. 15–20. ACM, New York, NY, USA (2013).

6. H. Hong: From Cloud Computing to Fog Computing: Unleash

the Power of Edge and End Devices. In: 2017 IEEE

International Conference on Cloud Computing Technology and

Science (CloudCom). pp. 331–334 (2017).

7. OpenFog Consortium: OpenFog Reference Architecture for

Fog Computing, (2017).

8. mF2C Consortium: mF2C Project Overview,

http://www.mf2c-project.eu/project-overview/, (N.D.).

9. X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan, G.

J. Ren: Foggy clouds and cloudy fogs: a real need for

coordinated management of fog-to-cloud computing systems.

IEEE Wireless Communications. 23, 120–128 (2016).

10. Ramirez, W., Masip-Bruin, X., Marin-Tordera, E., Souza,

V.B.C., Jukan, A., Ren, G.-J., Dios, O.G. de: Evaluating the

benefits of combined and continuous Fog-to-Cloud

architectures. Computer Communications. 113, 43–52 (2017).

11. Y. Liu, J. E. Fieldsend, G. Min: A Framework of Fog

Computing: Architecture, Challenges, and Optimization. IEEE

Access. 5, 25445–25454 (2017).

12. W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu: Edge Computing:

Vision and Challenges. IEEE Internet of Things Journal. 3,

637–646 (2016).

13. J. Leskinen: Evaluation Criteria for Future Identity

Management. In: 2012 IEEE 11th International Conference on

Trust, Security and Privacy in Computing and

Communications. pp. 801–806 (2012).

14. J. Cao, L. Xu, R. Abdallah, W. Shi: EdgeOS_H: A Home

Operating System for Internet of Everything. In: 2017 IEEE

37th International Conference on Distributed Computing

Systems (ICDCS). pp. 1756–1764 (2017).

15. W. Feng, Z. Yan, H. Zhang, K. Zeng, Y. Xiao, Y. T. Hou: A

Survey on Security, Privacy, and Trust in Mobile

Crowdsourcing. IEEE Internet of Things Journal. 5, 2971–

2992 (2018).

16. K. Zhang, X. Liang, R. Lu, X. Shen: Sybil Attacks and Their

Defenses in the Internet of Things. IEEE Internet of Things

Journal. 1, 372–383 (2014).

17. ETSI: Human Factors (HF): User identification solutions in

converging networks, (2001).

18. Craig Webster: WebNS: Model for a Peer-to-peer Name

Service, (2011).

19. Identity and Access: About - Identity and Access,

https://www.identityandaccess.org/about/, (2016).

20. S. Balasubramaniam, G. A. Lewis, E. Morris, S. Simanta, D.

B. Smith: Identity management and its impact on federation in

a system-of-systems context. In: 2009 3rd Annual IEEE

Systems Conference. pp. 179–182 (2009).

21. H. Kaffel-Ben Ayed, H. Boujezza, I. Riabi: An IDMS

approach towards privacy and new requirements in IoT. In:

2017 13th International Wireless Communications and Mobile

Computing Conference (IWCMC). pp. 429–434 (2017).

22. OpenID: What is OpenID?, https://openid.net/what-is-openid/,

(N.D.).

11

23. A. Tapiador, A. Mendo: A survey on OpenID identifiers. In:

2011 7th International Conference on Next Generation Web

Services Practices. pp. 357–362 (2011).

24. Jain, A., Prasad, M.V.N.K.: A novel fingerprint indexing

scheme using dynamic clustering. Journal of Reliable

Intelligent Environments. 2, 159–171 (2016).

25. F. Jaafar: An Integrated Architecture for IoT Fingerprinting.

In: 2017 IEEE International Conference on Software Quality,

Reliability and Security Companion (QRS-C). pp. 601–602

(2017).

26. Banda, G., Bommakanti, C.K., Mohan, H.: One IoT: an IoT

protocol and framework for OEMs to make IoT-enabled

devices forward compatible. Journal of Reliable Intelligent

Environments. 2, 131–144 (2016).

27. Balakrichenan, S.: Why DNS should be the naming service for

Internet of Things?, (2016).

28. Sharma, G., Kalra, S.: A secure remote user authentication

scheme for smart cities e-governance applications. Journal of

Reliable Intelligent Environments. 3, 177–188 (2017).

29. M. Suguna, R. Anusia, S. M. Shalinie, S. Deepti: Secure

identity management in mobile cloud computing. In: 2017

International Conference on Nextgen Electronic Technologies:

Silicon to Software (ICNETS2). pp. 42–45 (2017).

30. R. Moskowitz, Ed., T. Heer, P. Jokela, T. Henderson: Host

Identity Protocol Version 2 (HIPv2), https://www.rfc-

editor.org/info/rfc7401, (2015).

31. X. Yang, X. Ji: Host Identity Protocol—Realizing the

separation of the location and host identity. In: 2008

International Conference on Information and Automation. pp.

749–752 (2008).

32. Meidan, Y., Bohadana, M., Shabtai, A., Guarnizo, J.D., Ochoa,

M., Tippenhauer, N.O., Elovici, Y.: ProfilIoT: a machine

learning approach for IoT device identification based on

network traffic analysis. In: Proceedings of the Symposium on

Applied Computing. pp. 506–509. ACM, Marrakech, Morocco

(2017).

33. P. Zhang, H. Sun, Z. Yan: Building up Trusted Identity

Management in Mobile Heterogeneous Environment. In:

2011IEEE 10th International Conference on Trust, Security

and Privacy in Computing and Communications. pp. 873–877

(2011).

34. M. Trnka, T. Cerny: Identity Management of Devices in

Internet of Things Environment. In: 2016 6th International

Conference on IT Convergence and Security (ICITCS). pp. 1–

4 (2016).

35. Gómez-Cárdenas, A., Masip-Bruin, X., Marín-Tordera, E.,

Kahvazadeh, S., Garcia, J.: A Hash-Based Naming Strategy for

the Fog-to-Cloud Computing Paradigm. In: Heras, D.B.,

Bougé, L., Mencagli, G., Jeannot, E., Sakellariou, R., Badia,

R.M., Barbosa, J.G., Ricci, L., Scott, S.L., Lankes, S., and

Weidendorfer, J. (eds.) Euro-Par 2017: Parallel Processing

Workshops. pp. 316–324. Springer International Publishing

(2018).

36. National Institute of Standards and Technology: SHA-3

Standard: Permutation-Based Hash and Extendable-Output

Functions,

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf,

(2015).

37. A. Gomez-Cárdenas, X. Masip-Bruin, E. Marin-Tordera, S.

Kahvazadeh, J. Garcia: A Resource Identity Management

Strategy for Combined Fog-to-Cloud Systems. In: 2018 IEEE

19th International Symposium on “A World of Wireless,

Mobile and Multimedia Networks” (WoWMoM). pp. 01–06

(2018).

38. Sarkar, S., Misra, S.: Theoretical modelling of fog computing:

a green computing paradigm to support IoT applications. IET

Networks. 5, 23–29 (2016).

39. Farrell, S., Dannewitz, C., Ohlman, B., Kutscher, D., Hallam-

Baker, P., Keränen, A.: Naming Things with Hashes. RFC

Editor (2013).

40. Bouk, S.H., Ahmed, S.H., Kim, D.: Hierarchical and hash

based naming with Compact Trie name management scheme

for Vehicular Content Centric Networks. Computer

Communications. 71, 73–83 (2015).

41. Savolainen, T., Soininen, J., Silverajan, B.: IPv6 Addressing

Strategies for IoT. IEEE Sensors Journal. 13, 3511–3519

(2013).

42. Arduino: Arduino UNO WiFi Rev2,

https://store.arduino.cc/arduino-uno-wiFi-rev2, (N.D.).

43. Raspberry Pi Foundation: Raspberry Pi 3 Model B,

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/,

(2016).

	I. Introduction
	II. F2C system model
	III. IDMS requirements in F2C systems
	IV. Related work
	V. IDMS proposal
	A. Identity assignments
	B. Identity management

	VI. Illustrative scenario: deploying a F2C system in a smart city
	VII. Evaluation and results
	A. IDMS characteristics validation
	B. Naming assignment validation
	C. Database lookup time
	D. Database size in disk

	VIII. Conclusions and future work
	Acknowledgment
	References

